1
|
Biyani S, Patil AS, Swami V, Sharma S, Gera M, Swarnkar S. Exploring the genetic expression of Sdf1, Foxc1 and histologic changes following mandibular advancement and recovery phase in Wistar rats. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102109. [PMID: 39374870 DOI: 10.1016/j.jormas.2024.102109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE This study evaluated the impact of mandibular advancement on Sdf1 and Foxc1 gene expression in the mandibular condylar cartilage of young Wistar rats. By examining the changes that occur during a unique one-month recovery period, it highlights the critical role of gene expression and condylar adaptation during the recovery phase. The analysis focused on whether, during the recovery period, reversal changes occur when functional appliances are removed and whether genetic expression important for condyle growth and adaptation downregulates. MATERIAL AND METHODS The study involved 30 male Wistar rats divided into 2 control groups Appliance Control and Recovery Control groups, and 2 experimental groups, the Appliance group with mandibular advancement bite-jumping appliance for 30 days, and the Recovery group with appliance for 30 days followed by a 30-day recovery. Molecular analysis of condylar cartilage using real-time RT-PCR and histological assessments was conducted. RESULTS Significant genetic expression alterations were noted in both the experimental groups for Sdf1 (p < 0.05) and Foxc1 (p < 0.05). According to histological investigations, significant alterations with an increase in the proliferative and hypertrophic layer in condylar cartilage were seen. CONCLUSION Mandibular advancement bite-jumping appliances induce proliferative and hypertrophic layer changes in mandibular condylar cartilage, shown by elevated Foxc1 levels and decreased Sdf1 levels. Post-appliance removal, persistent gene expression reveals a true joint stimulation.
Collapse
Affiliation(s)
- Shruti Biyani
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth Deemed to Be University Dental College and Hospital, Pune, India.
| | - Amol Somaji Patil
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth Deemed to Be University Dental College and Hospital, Pune, India.
| | - Vinit Swami
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth Deemed to Be University Dental College and Hospital, Pune, India.
| | - Sonakshi Sharma
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth Deemed to Be University Dental College and Hospital, Pune, India.
| | - Meydha Gera
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth Deemed to Be University Dental College and Hospital, Pune, India.
| | - Shivangini Swarnkar
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth Deemed to Be University Dental College and Hospital, Pune, India.
| |
Collapse
|
2
|
Aladev SD, Sokolov DK, Strokotova AV, Kazanskaya GM, Volkov AM, Aidagulova SV, Grigorieva EV. Multiple Administration of Dexamethasone Possesses a Deferred Long-Term Effect to Glycosylated Components of Mouse Brain. Neurol Int 2024; 16:790-803. [PMID: 39051219 PMCID: PMC11270268 DOI: 10.3390/neurolint16040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Glucocorticoids are used during glioblastoma treatment to prevent the cerebral edema effect surrounding normal brain tissue. The aim of our study was to investigate the long-term effects of multiple administrations of glucocorticoids onto the glycosylated components (proteoglycans and glycosaminoglycans) of normal brain extracellular matrix and the glucocorticoid receptor (GR, Nr3c1) in an experimental model in vivo. Two-month-old male C57Bl/6 mice (n = 90) were injected intraperitoneally with various doses of dexamethasone (DXM) (1; 2.5 mg/kg) for 10 days. The mRNA levels of the GR, proteoglycans core proteins, and heparan sulfate metabolism-involved genes were determined at the 15th, 30th, 60th, and 90th days by a real-time RT-PCR. The glycosaminoglycans content was studied using dot blot and staining with Alcian blue. A DXM treatment increased total GAG content (2-fold), whereas the content of highly sulfated glycosaminoglycans decreased (1.5-2-fold). The mRNA level of the heparan sulfate metabolism-involved gene Hs3St2 increased 5-fold, the mRNA level of Hs6St2 increased6-7-fold, and the mRNA level of proteoglycan aggrecan increased 2-fold. A correlation analysis revealed an association between the mRNA level of the GR and the mRNA level of 8 of the 14 proteoglycans-coding and 4 of the 13 heparan sulfate metabolism-involved genes supporting GR involvement in the DXM regulation of the expression of these genes. In summary, multiple DXM administrations led to an increase in the total GAG content and reorganized the brain extracellular matrix in terms of its glycosylation pattern.
Collapse
Affiliation(s)
- Stanislav D. Aladev
- Institute of Molecular Biology and Biophysics FRC FTM, Novosibirsk 630117, Russia; (D.K.S.); (A.V.S.); (G.M.K.); (S.V.A.); (E.V.G.)
| | - Dmitry K. Sokolov
- Institute of Molecular Biology and Biophysics FRC FTM, Novosibirsk 630117, Russia; (D.K.S.); (A.V.S.); (G.M.K.); (S.V.A.); (E.V.G.)
| | - Anastasia V. Strokotova
- Institute of Molecular Biology and Biophysics FRC FTM, Novosibirsk 630117, Russia; (D.K.S.); (A.V.S.); (G.M.K.); (S.V.A.); (E.V.G.)
| | - Galina M. Kazanskaya
- Institute of Molecular Biology and Biophysics FRC FTM, Novosibirsk 630117, Russia; (D.K.S.); (A.V.S.); (G.M.K.); (S.V.A.); (E.V.G.)
- E.N. Meshalkin National Medical Research Center, Novosibirsk 630055, Russia;
| | - Alexander M. Volkov
- E.N. Meshalkin National Medical Research Center, Novosibirsk 630055, Russia;
| | - Svetlana V. Aidagulova
- Institute of Molecular Biology and Biophysics FRC FTM, Novosibirsk 630117, Russia; (D.K.S.); (A.V.S.); (G.M.K.); (S.V.A.); (E.V.G.)
- Laboratory of Cellular Biology, Novosibirsk State Medical University, Novosibirsk 630091, Russia
| | - Elvira V. Grigorieva
- Institute of Molecular Biology and Biophysics FRC FTM, Novosibirsk 630117, Russia; (D.K.S.); (A.V.S.); (G.M.K.); (S.V.A.); (E.V.G.)
| |
Collapse
|
3
|
Engert J, Doll J, Vona B, Ehret Kasemo T, Spahn B, Hagen R, Rak K, Voelker J. mRNA Abundance of Neurogenic Factors Correlates with Hearing Capacity in Auditory Brainstem Nuclei of the Rat. Life (Basel) 2023; 13:1858. [PMID: 37763262 PMCID: PMC10532994 DOI: 10.3390/life13091858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Neural stem cells (NSCs) have previously been described up to the adult stage in the rat cochlear nucleus (CN). A decreasing neurogenic potential was observed with critical changes around hearing onset. A better understanding of molecular factors affecting NSCs and neurogenesis is of interest as they represent potential targets to treat the cause of neurologically based hearing disorders. The role of genes affecting NSC development and neurogenesis in CN over time on hearing capacity has remained unclear. This study investigated the mRNA abundance of genes influencing NSCs and neurogenesis in rats' CN over time. The CN of rats on postnatal days 6, 12, and 24 were examined. Real-time quantitative polymerase chain reaction arrays were used to compare mRNA levels of 84 genes relevant to NSCs and neurogenesis. Age- and hearing-specific patterns of changes in mRNA abundance of neurogenically relevant genes were detected in the rat CN. Additionally, crucial neurogenic factors with significant and relevant influence on neurogenesis were identified. The results of this work should contribute to a better understanding of the molecular mechanisms underlying the neurogenesis of the auditory pathway.
Collapse
Affiliation(s)
- Jonas Engert
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Julia Doll
- Institute of Pathology, University of Wuerzburg, Josef-Schneider-Strasse 2, 97080 Wuerzburg, Germany;
| | - Barbara Vona
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany;
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073 Göttingen, Germany
| | - Totta Ehret Kasemo
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Bjoern Spahn
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Rudolf Hagen
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Kristen Rak
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| | - Johannes Voelker
- Department of Otorhinolaryngology, University Hospital Wuerzburg, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Josef-Schneider-Strasse 11, 97080 Wuerzburg, Germany; (T.E.K.); (B.S.); (R.H.); (K.R.); (J.V.)
| |
Collapse
|
4
|
Asghar H, Ahmed T. Comparative Study of Time-Dependent Aluminum Exposure and Post-Exposure Recovery Shows Better Improvement in Synaptic Changes and Neuronal Pathology in Rat Brain After Short-Term Exposure. Neurochem Res 2023:10.1007/s11064-023-03936-6. [PMID: 37093344 DOI: 10.1007/s11064-023-03936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023]
Abstract
Aluminum is a ubiquitous metal that causes multiple brain pathologies such as, cognitive dysfunction and Alzheimer's disease like symptoms. Exposure to aluminum through drinking water is responsible for hampering learning and memory. This study aimed to compare (1) the time-dependent effect of aluminum exposure (keeping total exposure of 5850 mg/kg same) in two durations, 30 and 45 days, and (2) to compare post-exposure self-recovery effect after 20 days in both (30 and 45 days exposure) groups. Rats were given 130 and 195 mg/kg of AlCl3·6H2O for 45 and 30 days respectively, to see the time-dependent exposure effect. At the end of exposure, rats were given distilled water and allowed to self-recover for 20 days to study the recovery. Expression levels of synaptic genes (Syp, SNAP25, Nrxn1/2, PSD95, Shank1/2, Homer1, CamkIV, Nrg1/2 and Kalrn) were measured using qPCR and compared in the exposure and recovery groups. Cellular morphology of the rat brain cortex and hippocampus was also investigated. Damage in lipid and protein profile was measured by employing FTIR. Results showed downregulation of mRNA expression of synaptic genes, plaques deposition, disorganization in lipid and protein profile by increasing membrane fluidity, and disorder and alteration of protein secondary structure after both exposure periods. However, better improvement/recovery in these parameters were observed in recovery group of 30 days aluminum exposure compared to 45 days aluminum exposure group. Taken together, these results suggested that short-term exposure resulted in better restoration of lipid and protein profile after time-dependent exposure of aluminum than prolonged exposure.
Collapse
Affiliation(s)
- Humna Asghar
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan.
| |
Collapse
|
5
|
Pascoal VDB, Marchesini RB, Athié MCP, Matos AHB, Conte FF, Pereira TC, Secolin R, Gilioli R, Malheiros JM, Polli RS, Tannús A, Covolan L, Pascoal LB, Vieira AS, Cavalheiro EA, Cendes F, Lopes-Cendes I. Modulating Expression of Endogenous Interleukin 1 Beta in the Acute Phase of the Pilocarpine Model of Epilepsy May Change Animal Survival. Cell Mol Neurobiol 2023; 43:367-380. [PMID: 35061107 DOI: 10.1007/s10571-022-01190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023]
Abstract
The pilocarpine-induced (PILO) model has helped elucidate the electrophysiological and molecular aspects related to mesial temporal lobe epilepsy. It has been suggested that the extensive cell death and edema observed in the brains of these animals could be induced by increased inflammatory responses, such as the rapid release of the inflammatory cytokine interleukin 1 beta (Il1b). In this study, we investigate the role of endogenous Il1b in the acute phase of the PILO model. Our aim is twofold. First, we want to determine whether it is feasible to silence Il1b in the central nervous system using a non-invasive procedure. Second, we aim to investigate the effect of silencing endogenous Il1b and its antagonist, Il1rn.We used RNA interference applied non-invasively to knockdown Il1b and its endogenous antagonist Il1rn. We found that knocking down Il1b prior to pilocarpine injection increased the mortality rate of treated animals. Furthermore, we observed that, when exposing the animals to more Il1b by silencing its endogenous antagonist Il1rn, there was a better response to status epilepticus with decreased animal mortality in the acute phase of the PILO model. Thus, we show the feasibility of using a novel, less invasive approach to study genes involved in the inflammatory response in the central nervous system. Furthermore, our results provide suggestive evidence that modulating endogenous Il1b improves animal survival in the acute phase of the PILO model and may have effects that extend into the chronic phase.
Collapse
Affiliation(s)
- V D B Pascoal
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
- Department of Basic Science, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - R B Marchesini
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - M C P Athié
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - A H B Matos
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - F F Conte
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
| | - T C Pereira
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, SP, Brazil
| | - R Secolin
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil
- Department of Basic Science, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - R Gilioli
- Multidisciplinary Centre for Biological Investigation (CEMIB), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - J M Malheiros
- Centro de Imagens e Espectroscopia por Ressonancia Magnetica (CIERMag), Institute of Physics, University of Sao Paulo (USP), Sao Carlos, SP, Brazil
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - R S Polli
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil
| | - A Tannús
- Centro de Imagens e Espectroscopia por Ressonancia Magnetica (CIERMag), Institute of Physics, University of Sao Paulo (USP), Sao Carlos, SP, Brazil
| | - L Covolan
- Department of Physiology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, SP, Brazil
| | - L B Pascoal
- Laboratory of Cell Signaling, School of Medical Sciences, University of Campinas - (UNICAMP), Campinas, SP, Brazil
| | - A S Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas - (UNICAMP), Campinas, SP, Brazil
| | - E A Cavalheiro
- Department of Neurology and Neurosurgery, Federal University of Sao Paulo, (UNIFESP), Sao Paulo, SP, Brazil
| | - F Cendes
- Department of Neurology, School of Medical Sciences, University of Campinas - (UNICAMP); and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, SP, Brazil
| | - I Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), and the Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Tessália Vieira de Camargo, 126, Cidade Universitária "Zeferino Vaz", Campinas, SP, 13083-887, Brazil.
| |
Collapse
|
6
|
Zhang Y, Zhang S, Chu Y, Zhang Q, Zhou R, Yu D, Wang S, Lyu L, Xu G, Zhao ZK. Genetic manipulation of the interconversion between diacylglycerols and triacylglycerols in Rhodosporidium toruloides. Front Bioeng Biotechnol 2022; 10:1034972. [PMID: 36394004 PMCID: PMC9643831 DOI: 10.3389/fbioe.2022.1034972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
The basidiomycetous yeast Rhodosporidium toruloides (R. toruloides) is an excellent producer for neutral lipids, including triacylglycerols (TAG). Partially because genetic tools for this yeast were less developed, limited efforts were shown to explore its capacity for the production of higher-value lipids such as diacylglycerols (DAG). Here, four genes linked to the interconversion between DAG and TAG were manipulated to promote the production of DAG and free fatty acids (FFA). Among them, three TAG synthesis-related genes, DGA1, LRO1, and ARE1, were down-regulated successively via the RNA interference technology, and an endogenous TAG lipase encoded by TGL5 was fused with LDP1 and over-expressed to convert TAG into DAG and FFA. Results showed that those engineered R. toruloides strains grew normally under nutrient-rich conditions but notably slower than the parental strain NP11 in the lipid production stage. When cultivated in nitrogen-limited media, engineered strains were able to produce total lipids with improved contents of DAG and FFA by up to two-fold and three-fold, respectively. Further correlation analysis between lipid composition and cell density indicated that the formation of TAG correlated positively with cell growth; however, other lipids including DAG did negatively. This study offered valuable information and strains to engineer R. toruloides for advanced production of fatty acid derivatives.
Collapse
Affiliation(s)
- Yue Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sufang Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Yadong Chu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Qi Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Renhui Zhou
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Di Yu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Shuang Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liting Lyu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guowang Xu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, Dalian, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- *Correspondence: Zongbao Kent Zhao,
| |
Collapse
|
7
|
Characterization of Cysteine Cathepsin Expression in the Central Nervous System of Aged Wild-Type and Cathepsin-Deficient Mice. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The association of cathepsin proteases in neurobiology is increasingly recognized. Our previous studies indicated that cathepsin-K-deficient (Ctsk−/−) mice have learning and memory impairments. Alterations in cathepsin expression are known to result in compensatory changes in levels of related cathepsins. To gain insight into the therapeutic usefulness of cathepsin inhibitors in aging individuals with osteoporosis or neurodegenerative diseases, we studied for variations in cathepsin expression and activity in aged (18–20 months) versus young (5–7 months) wild-type (WT) and cathepsin-deficient mice brains. There were age-dependent increases in cathepsin B, D, and L and cystatin C protein levels in various brain regions, mainly of WT and Ctsk−/− mice. This corresponded with changes in activity levels of cathepsins B and L, but not cathepsin D. In contrast, very little age-dependent variation was observed in cathepsin-B- and cathepsin-L-deficient mouse brain, especially at the protein level. The observed alterations in cathepsin protein amounts and activity are likely contributing to changes in important aging-related processes such as autophagy. In addition, the results provide insight into the potential impact of cathepsin inhibitor therapy in aged individuals, as well as in long-term use of cathepsin inhibitor therapy.
Collapse
|
8
|
Lindlöf A. The Vulnerability of the Developing Brain: Analysis of Highly Expressed Genes in Infant C57BL/6 Mouse Hippocampus in Relation to Phenotypic Annotation Derived From Mutational Studies. Bioinform Biol Insights 2022; 16:11779322211062722. [PMID: 35023907 PMCID: PMC8743926 DOI: 10.1177/11779322211062722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/06/2022] Open
Abstract
The hippocampus has been shown to have a major role in learning and memory, but also to participate in the regulation of emotions. However, its specific role(s) in memory is still unclear. Hippocampal damage or dysfunction mainly results in memory issues, especially in the declarative memory but, in animal studies, has also shown to lead to hyperactivity and difficulty in inhibiting responses previously taught. The brain structure is affected in neuropathological disorders, such as Alzheimer's, epilepsy, and schizophrenia, and also by depression and stress. The hippocampus structure is far from mature at birth and undergoes substantial development throughout infant and juvenile life. The aim of this study was to survey genes highly expressed throughout the postnatal period in mouse hippocampus and which have also been linked to an abnormal phenotype through mutational studies to achieve a greater understanding about hippocampal functions during postnatal development. Publicly available gene expression data from C57BL/6 mouse hippocampus was analyzed; from a total of 5 time points (at postnatal day 1, 10, 15, 21, and 30), 547 genes highly expressed in all of these time points were selected for analysis. Highly expressed genes are considered to be of potential biological importance and appear to be multifunctional, and hence any dysfunction in such a gene will most likely have a large impact on the development of abilities during the postnatal and juvenile period. Phenotypic annotation data downloaded from Mouse Genomic Informatics database were analyzed for these genes, and the results showed that many of them are important for proper embryo development and infant survival, proper growth, and increase in body size, as well as for voluntary movement functions, motor coordination, and balance. The results also indicated an association with seizures that have primarily been characterized by uncontrolled motor activity and the development of proper grooming abilities. The complete list of genes and their phenotypic annotation data have been compiled in a file for easy access.
Collapse
|
9
|
Tesic V, Ciric J, Jovanovic Macura I, Zogovic N, Milanovic D, Kanazir S, Perovic M. Corticosterone and Glucocorticoid Receptor in the Cortex of Rats during Aging-The Effects of Long-Term Food Restriction. Nutrients 2021; 13:nu13124526. [PMID: 34960078 PMCID: PMC8703853 DOI: 10.3390/nu13124526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous beneficial effects of food restriction on aging and age-related pathologies are well documented. It is also well-established that both short- and long-term food restriction regimens induce elevated circulating levels of glucocorticoids, stress-induced hormones produced by adrenal glands that can also exert deleterious effects on the brain. In the present study, we examined the effect of long-term food restriction on the glucocorticoid hormone/glucocorticoid receptor (GR) system in the cortex during aging, in 18- and 24-month-old rats. Corticosterone level was increased in the cortex of aged ad libitum-fed rats. Food restriction induced its further increase, accompanied with an increase in the level of 11β-hydroxysteroid dehydrogenase type 1. However, alterations in the level of GR phosphorylated at Ser232 were not detected in animals on food restriction, in line with unaltered CDK5 level, the decrease of Hsp90, and an increase in a negative regulator of GR function, FKBP51. Moreover, our data revealed that reduced food intake prevented age-related increase in the levels of NFκB, gfap, and bax, confirming its anti-inflammatory and anti-apoptotic effects. Along with an increase in the levels of c-fos, our study provides additional evidences that food restriction affects cortical responsiveness to glucocorticoids during aging.
Collapse
Affiliation(s)
- Vesna Tesic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Jelena Ciric
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Irena Jovanovic Macura
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Nevena Zogovic
- Department of Neurophysiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia;
| | - Desanka Milanovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
- Correspondence:
| | - Milka Perovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul. despota Stefana 142, 11060 Belgrade, Serbia; (V.T.); (J.C.); (I.J.M.); (D.M.); (M.P.)
| |
Collapse
|
10
|
Fiddler JL, Clarke SL. Evaluation of candidate reference genes for quantitative real-time PCR analysis in a male rat model of dietary iron deficiency. GENES & NUTRITION 2021; 16:17. [PMID: 34600467 PMCID: PMC8487497 DOI: 10.1186/s12263-021-00698-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Quantitative real-time polymerase chain reaction (qPCR) is a reliable and efficient method for quantitation of gene expression. Due to the increased use of qPCR in examining nutrient-gene interactions, it is important to examine, develop, and utilize standardized approaches for data analyses and interpretation. A common method used to normalize expression data involves the use of reference genes (RG) to determine relative mRNA abundance. When calculating the relative abundance, the selection of RG can influence experimental results and has the potential to skew data interpretation. Although common RG may be used for normalization, often little consideration is given to the suitability of RG selection for an experimental condition or between various tissue or cell types. In the current study, we examined the stability of gene expression using BestKeeper, comparative delta quantitation cycle, NormFinder, and RefFinder in a variety of tissues obtained from iron-deficient and pair-fed iron-replete rats to determine the optimal selection among ten candidate RG. RESULTS Our results suggest that several commonly used RG (e.g., Actb and Gapdh) exhibit less stability compared to other candidate RG (e.g., Rpl19 and Rps29) in both iron-deficient and iron-replete pair-fed conditions. For all evaluated RG, Tfrc expression significantly increased in iron-deficient animal livers compared to the iron-replete pair-fed controls; however, the relative induction varied nearly 4-fold between the most suitable (Rpl19) and least suitable (Gapdh) RG. CONCLUSION These results indicate the selection and use of RG should be empirically determined and RG selection may vary across experimental conditions and biological tissues.
Collapse
Affiliation(s)
- Joanna L Fiddler
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14850-6301, USA.
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
11
|
lncRNAs Are Involved in Sevoflurane Anesthesia-Related Brain Function Modulation through Affecting Mitochondrial Function and Aging Process. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8841511. [PMID: 33354572 PMCID: PMC7735847 DOI: 10.1155/2020/8841511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 02/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in brain function modulation and neurodegenerative diseases. However, whether lncRNA regulations are involved in the mechanisms of perioperative neurocognitive disorders, especially in anesthesia-related brain dysfunction, remain unknown. Therefore, we explored the expression and regulation pattern profiles of lncRNAs in the hippocampus of aged rats after sevoflurane anesthesia. Three lncRNAs and 772 protein-coding genes were identified by microarray analysis and evidenced by in vitro and in vivo experiments as differentially expressed. Functional annotation and differentially expressed- (DE-) lncRNA-mRNA coexpression networks reveal that DE-lncRNAs are associated with mitochondrial dysfunction and oxidative stress, aging-related metabolism alterations, DNA damage, and apoptosis, as well as neurodegenerative features during sevoflurane anesthesia. These results suggest that lncRNAs play roles in general anesthesia-related brain function modulation during the perioperative context and provide insights into the lncRNA-related modulation mechanisms and targets.
Collapse
|
12
|
The pseudogene problem and RT-qPCR data normalization; SYMPK: a suitable reference gene for papillary thyroid carcinoma. Sci Rep 2020; 10:18408. [PMID: 33110161 PMCID: PMC7592052 DOI: 10.1038/s41598-020-75495-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 10/14/2020] [Indexed: 01/23/2023] Open
Abstract
In RT-qPCR, accuracy requires multiple levels of standardization, but results could be obfuscated by human errors and technical limitations. Data normalization against suitable reference genes is critical, yet their observed expression can be confounded by pseudogenes. Eight reference genes were selected based on literature review and analysis of papillary thyroid carcinoma (PTC) microarray data. RNA extraction and cDNA synthesis were followed by RT-qPCR amplification in triplicate with exon-junction or intron-spanning primers. Several statistical analyses were applied using Microsoft Excel, NormFinder, and BestKeeper. In normal tissues, the least correlation of variation (CqCV%) and the lowest maximum fold change (MFC) were respectively recorded for PYCR1 and SYMPK. In PTC tissues, SYMPK had the lowest CqCV% (5.16%) and MFC (1.17). According to NormFinder, the best reference combination was SYMPK and ACTB (stability value = 0.209). BestKeeper suggested SYMPK as the best reference in both normal (r = 0.969) and PTC tissues (r = 0.958). SYMPK is suggested as the best reference gene for overcoming the pseudogene problem in RT-qPCR data normalization, with a stability value of 0.319.
Collapse
|
13
|
Jiang T, Dai S, Yi Y, Liu Y, Zhang S, Luo M, Wang H, Xu D. The combination of hprt and gapdh is the best compound reference genes in the fetal rat hippocampus. Dev Neurobiol 2020; 80:229-238. [PMID: 32875725 DOI: 10.1002/dneu.22779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/11/2020] [Accepted: 08/24/2020] [Indexed: 11/06/2022]
Abstract
Hippocampus, as an important organ of central memory storage and spatial orientation, has been studied increasingly in recent years. The expression of reference genes in the hippocampus of adult rats, which are commonly used in the quantitative real-time polymerase chain reaction (qRT-PCR), is unstable in the fetal hippocampus and may not be suitable for the fetal period. Therefore, this study intends to screen and determine the optimal compound reference genes in the fetal rat hippocampus. Based on the literature, we selected five housekeeping genes (HKGs), including glyceraldehyde 3-phosphate dehydrogenase (gapdh), actin beta (β-actin), hypoxanthine phosphoribosyltransferase (hprt), 18s ribosomal RNA (18s rRNA), and cyclophilin B (cypB). We analyzed the expression of them under physiological conditions in the fetal rat hippocampus using BestKeeper, GeNorm, and NormFinder, to select the most stable compound reference genes. Furthermore, to verify the stability of the compound reference genes, we analyzed the expression of reference genes in the fetal rat hippocampus under the pathological model of prenatal dexamethasone exposure (PDE). Finally, we evaluated the accuracy of compound reference genes through detecting the expression of fetal rat hippocampal brain-derived neurotrophic factor (BDNF) under PDE model. This study determined that the combination of gapdh and hprt was the most stable and suitable compound reference genes in the fetal rat hippocampus. There was no significant difference between male and female fetal rats. We provided the support of accurate and reliable reference genes for the further study of diseases related to the fetal hippocampus.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Shiyun Dai
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yiwen Yi
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yi Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Shuai Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Mingcui Luo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
14
|
Validation of housekeeping genes as an internal control for gene expression studies in the brain of ovariectomized rats treated with tibolone. Gene 2020; 769:145255. [PMID: 33098938 DOI: 10.1016/j.gene.2020.145255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/12/2020] [Accepted: 10/17/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION In the central nervous system (CNS), tibolone actions are mainly modulated through its interaction with estrogen, progesterone, and androgen receptors. Several studies have reported the expression of sex hormone receptors in the CNS using the RT-PCR endpoint technique. Although some studies have validated reference genes for rat brain tissue in different experimental conditions, no suitable reference genes have been reported in brain tissue from ovariectomized rats treated with tibolone. OBJECTIVE The aim of this investigation was to evaluate the expression of different housekeeping genes in several brain regions in ovariectomized rats treated with tibolone to determine the stability of a single housekeeping gene and a combination of two housekeeping genes under these experimental conditions. METHODS Adult female Sprague-Dawley rats were ovariectomized. Seven days after the surgery, animals were administered a single dose of vehicle (water) or tibolone (10 mg/kg/weight). Twenty-four hours later, animals were sacrificed, and the hypothalamus, hippocampus, prefrontal cortex, and cerebellum were dissected. Total RNA was extracted from these tissues, and RT-qPCR was performed to amplify Ppia, Hprt1, Rpl32, and Gapdh housekeeping genes. RESULTS Ppia was the most stable gene in the hypothalamus and cerebellum, whereas Hprt1 was the most stable gene in the prefrontal cortex. For the analysis of the combination of two genes, the most stable combination was Ppia and Hrpt1 for the prefrontal cortex and Ppia and Rpl32 for the cerebellum. CONCLUSION In ovariectomized rats treated with tibolone, Hprt1 and Ppia genes showed high stability as housekeeping genes for qPCR analysis.
Collapse
|
15
|
Figueira da Costa TN, Andreotti S, de Farias TDSM, Lima FB, Bargi-Souza P. The Influence of Melatonin on the Daily 24-h Rhythm of Putative Reference Gene Expression in White Adipose Tissues. J Biol Rhythms 2020; 35:530-541. [PMID: 32886018 DOI: 10.1177/0748730420949337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In adipose tissue, the expression of hundreds of genes exhibits circadian oscillation, which may or may not be affected by circulating melatonin levels. Using control and pinealectomized rats, we investigated the daily expression profile of Actb, Hprt-1, B2m, and Rpl37a, genes that are commonly used as reference genes for reverse transcription quantitative polymerase chain reaction (RT-qPCR), in epididymal (EP), retroperitoneal (RP), and subcutaneous (SC) adipose tissues. In control rats, Actb expression presented a daily oscillation in all adipose tissues investigated, Hprt-1 showed 24-h fluctuations in only RP and SC depots, B2m was stable over 24 h for EP and RP but oscillated over 24 h in SC adipose tissue, and Rpl37a presented a daily oscillation in only RP fat. In the absence of melatonin, the rhythmicity of Actb in all adipose depots was abolished, the daily rhythmicity of Hprt-1 and B2m was disrupted in SC fat, the peak expression of Rpl37a and Hprt-1 was delayed, and the amplitude of Rpl37a was reduced in RP adipose tissue. Collectively, our results demonstrate that the expression of putative reference genes displays a daily rhythm influenced by melatonin levels in a manner specific to the adipose depot. Thus, the proper standardization and daily profile expression of reference genes should be performed carefully in temporal studies using RT-qPCR analysis.
Collapse
Affiliation(s)
- Tatienne Neder Figueira da Costa
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Federal University of Tocantins, Palmas, TO, Brazil
| | - Sandra Andreotti
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Fábio Bessa Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Campus Pampulha, Belo Horizonte, MG, Brazil
| |
Collapse
|
16
|
Physicochemical and biopharmaceutical characterization of novel Matrix-Liposomes. Eur J Pharm Biopharm 2020; 153:158-167. [PMID: 32522680 DOI: 10.1016/j.ejpb.2020.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 11/24/2022]
Abstract
Matrix-Liposomes (MLs) are a very promising solid oral drug delivery system; however, data on their interaction with biological membranes are not available. Here, we describe the quality of MLs manufactured by dual centrifugation. MLs were prepared with a Z-average range of 139 to 160 nm and a PDI of 0.18 to 0.25. To investigate the effect of MLs on intestinal tissue (with and without mucolytic treatment), we then established an ex vivo rat intestine model. The integrity of the epithelial membranes of rat intestine was not affected by the incubation with MLs without or with pre-mucolytic treatment. Tissue samples were also analysed for changes in P-glycoprotein (P-gp) expression and function. The net secretion of the P-gp substrate Rh123 across the rat duodenum was increased in the presence of MLs. To summarize, MLs do not affect intestinal epithelial integrity, although they impact Rh123 secretion. In future, these novel MLs have to be further evaluated for proficient intestinal drug delivery.
Collapse
|
17
|
Perović M, Jović M, Todorović S, Đorđević AM, Milanović D, Kanazir S, Lončarević-Vasiljković N. Neuroprotective effects of food restriction in a rat model of traumatic brain injury - the role of glucocorticoid signaling. Nutr Neurosci 2020; 25:537-549. [PMID: 32476608 DOI: 10.1080/1028415x.2020.1769410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is one of the most common causes of neurological damage in young and middle aged people. Food restriction (FR) has been shown to act neuroprotectively in animal models of stroke and TBI. Indeed, our previous studies showed that FR attenuates inflammation, through suppression of microglial activation and TNF-α production, suppresses caspase-3-induced neuronal cell death and enhances neuroplasticity in the rat model of TBI. Glucocorticoids (GCs) play a central role in mediating both molecular and behavioral responses to food restriction. However, the exact mechanisms of FR neuroprotection in TBI are still unclear. The goal of the present study was to examine whether FR exerts its beneficial effects by altering the glucocorticoid receptor (GR) signaling alone and/or together with other protective factors. METHODS To this end, we examined the effects of FR (50% of regular daily food intake for 3 months prior to TBI) on the protein levels of total GR, GR phosphoisoform Ser232 (p-GR) and its transcriptional activity, as well as 11β-HSD1, NFκB (p65) and HSP70 as factors related to the GR signaling. RESULTS Our results demonstrate that FR applied prior to TBI significantly changes p-GR levels, and it's transcriptional activity during the recovery period after TBI. Moreover, as a pretreatment, FR modulates other protective factors in response to TBI, such as 11β-HSD1, NF-κB (p65) and HSP70 that act in parallel with GR in it's anti-inflammatory and neuroprotective effects in the rat model of brain injury. CONCLUSION Our results suggest that prophylactic FR represents a potent non-invasive approach capable of changing GR signalling, together with other factors related to the GR signaling in the model of TBI.
Collapse
Affiliation(s)
- Milka Perović
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade Belgrade, Serbia
| | - Milena Jović
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade Belgrade, Serbia
| | - Smilja Todorović
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade Belgrade, Serbia
| | - Aleksandra Mladenović Đorđević
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade Belgrade, Serbia
| | - Desanka Milanović
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade Belgrade, Serbia
| | - Selma Kanazir
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade Belgrade, Serbia
| | - Nataša Lončarević-Vasiljković
- Department of Neurobiology, Institute for Biological Research 'Siniša Stanković' - National Institute of Republic of Serbia, University of Belgrade Belgrade, Serbia
| |
Collapse
|
18
|
Selection of Reliable Reference Genes for Analysis of Gene Expression in Spinal Cord during Rat Postnatal Development and after Injury. Brain Sci 2019; 10:brainsci10010006. [PMID: 31861889 PMCID: PMC7017034 DOI: 10.3390/brainsci10010006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
In order to obtain unbiased results of target gene expression, selection of the most appropriate reference gene (RG) remains a key precondition. However, an experimental study focused on the validation of stably expressed RGs in the rat spinal cord (SC) during development or after spinal cord injury (SCI) is missing. In our study, we tested the stability of the expression of nine selected RGs in rat SC tissue during normal development (postnatal days 1-43, adulthood) and after minimal (mSCI) and contusion (cSCI) spinal cord injury. The following RGs were tested: common housekeeping genes of basal cell metabolism (Gapdh, Hprt1, Mapk6) and protein translation (Rpl29, Eef1a1, Eif2b2), as well as newly designed RGs (Gpatch1, Gorasp1, Cds2) selected according to the RefGenes tool of GeneVestigator. The stability of RGs was assessed by geNorm, NormFinder, and BestKeeper. All three applets favored Gapdh and Eef1a1 as the most stable genes in SC during development. In both models of SCI, Eif2b2 displayed the highest stability of expression, followed by Gapdh and Gorasp1/Hprt1 in cSCI, and Gapdh and Eef1a1 in the mSCI experiments. To verify our results, selected RGs were employed for normalization of the expression of genes with a clear biological context in the SC-Gfap and Slc1a3/Glast during postnatal development and Aif1/Iba1 and Cd68/Ed1 after SCI.
Collapse
|
19
|
Rozycka A, Charzynska A, Misiewicz Z, Maciej Stepniewski T, Sobolewska A, Kossut M, Liguz-Lecznar M. Glutamate, GABA, and Presynaptic Markers Involved in Neurotransmission Are Differently Affected by Age in Distinct Mouse Brain Regions. ACS Chem Neurosci 2019; 10:4449-4461. [PMID: 31556991 DOI: 10.1021/acschemneuro.9b00220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Molecular synaptic aging perturbs neurotransmission and decreases the potential for neuroplasticity. The direction and degree of changes observed in aging are often region or cell specific, hampering the generalization of age-related effects. Using real-time PCR and Western blot analyses, we investigated age-related changes in several presynaptic markers (Vglut1, Vglut2, Gad65, Gad67, Vgat, synaptophysin) involved in the initial steps of glutamatergic and GABAergic neurotransmission, in several cortical regions, in young (3-4 months old), middle-aged (1 year old), and old (2 years old) mice. We found age-related changes mainly in protein levels while, apart from the occipital cortex, virtually no significant changes in mRNA levels were detected, which suggests that aging acts on the investigated markers mainly through post-transcriptional mechanisms depending on the brain region. Principal component analysis (PCA) of protein data revealed that each brain region possessed a type of "biochemical distinctiveness" (each analyzed brain region was best characterized by higher variability level of a particular synaptic marker) that was lost with age. Analysis of glutamate and γ-aminobutyric acid (GABA) levels in aging suggested that mechanisms keeping an overall balance between the two amino acids in the brain are weakened in the hippocampus. Our results unravel the differences in mRNA/protein interactions in the aging brain.
Collapse
Affiliation(s)
- Aleksandra Rozycka
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| | - Agata Charzynska
- Laboratory of Bioinformatics, Neurobiology Center, Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland
| | - Zuzanna Misiewicz
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
- Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki FI-00014, Finland
| | - Tomasz Maciej Stepniewski
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
- Research Programme on Biomedical Informatics (GRIB) - Department of Experimental and Health Sciences, Hospital del Mar Medical Research Institute, Pompeu Fabra University, 08002 Barcelona, Spain
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Str., 02-957 Warsaw, Poland
| | - Malgorzata Kossut
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
- Faculty of Psychology, SWPS University of Social Sciences and Humanities, 03-815 Warsaw, Poland
| | - Monika Liguz-Lecznar
- Laboratory of Neuroplasticity, Nencki Institute of Experimental Biology Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland
| |
Collapse
|
20
|
Coley EJL, Demaestri C, Ganguly P, Honeycutt JA, Peterzell S, Rose N, Ahmed N, Holschbach M, Trivedi M, Brenhouse HC. Cross-Generational Transmission of Early Life Stress Effects on HPA Regulators and Bdnf Are Mediated by Sex, Lineage, and Upbringing. Front Behav Neurosci 2019; 13:101. [PMID: 31143105 PMCID: PMC6521572 DOI: 10.3389/fnbeh.2019.00101] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/24/2019] [Indexed: 01/10/2023] Open
Abstract
Early life stress (ELS) is a potent developmental disruptor and increases the risk for psychopathology. Various forms of ELS have been studied in both humans and rodents, and have been implicated in altered DNA methylation, gene transcription, stress hormone levels, and behavior. Although recent studies have focused on stress-induced epigenetic changes, the extent to which ELS alters HPA axis function and stress responsivity across generations, whether these effects are sex-specific, and how lineage interacts with upbringing to impact these effects, remain unclear. To address these points, two generations of rodents were utilized, with the first generation subjected to ELS via maternal separation, and the second to a balanced cross-fostering paradigm. We hypothesized that ELS would disrupt normative development in both generations, manifesting as altered methylation and expression of genes associated with stress signaling pathways (Nr3c1, Nr3c2, and Bdnf), blunted corticosterone (CORT), and anxiety-like behaviors. Additionally, we expected deficits in the second generation to be modulated by caretaking environment and for the pattern of results to differ between the sexes. Results suggest that direct exposure to ELS leads to sex-specific effects on gene regulation and HPA functioning in adulthood, with maternal separation leading to increases in Bdnf methylation in both sexes, decreases in Bdnf expression in females, and decreases in Nr3c1 methylation in males, as well as blunted CORT and less anxiety-like behavior in females. These alterations converged with caretaking to impart perturbations upon the subsequent generation. Across sex, ELS lineage led to decreased methylation of Nr3c1, and increased methylation of Bdnf. In fostered animals, upbringing by a previously stressed mother interacted with offspring lineage to impact methylation of Nr3c1 and Bdnf. Upbringing was also implicated in altered anxiety-like behavior in males, and baseline CORT levels in females. Such effects may correspond with observed alterations in maternal behavior across groups. In conclusion, ELS conferred enduring sex-specific alterations, both first-hand and trans-generationally via lineage and upbringing. Importantly, lineage of cross-fostered pups was sufficient to normalize or disturb maternal behavior of foster-dams, an observation requiring further elucidation. These results have implications for multi-generational effects of ELS in humans and may motivate early interventions.
Collapse
Affiliation(s)
- Elena J L Coley
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, MA, United States
| | - Camila Demaestri
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, MA, United States
| | - Prabarna Ganguly
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, MA, United States
| | - Jennifer A Honeycutt
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, MA, United States
| | - Shayna Peterzell
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, MA, United States
| | - Natasha Rose
- Neural Metabolism and Epigenetics Laboratory, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Nida Ahmed
- Neural Metabolism and Epigenetics Laboratory, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Mary Holschbach
- Department of Behavioral Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Malav Trivedi
- Neural Metabolism and Epigenetics Laboratory, Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States.,Department of Behavioral Neuroscience, College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Heather C Brenhouse
- Developmental Neuropsychobiology Laboratory, Department of Psychology, Northeastern University, Boston, MA, United States
| |
Collapse
|
21
|
Watkins AJ, Pearce G, Unak P, Guldu OK, Yasakci V, Akin O, Aras O, Wong J, Ma X. Tissue Morphology and Gene Expression Characterisation of Transplantable Adenocarcinoma Bearing Mice Exposed to Fluorodeoxyglucose-Conjugated Magnetic Nanoparticles. J Biomed Nanotechnol 2018; 14:1979-1991. [PMID: 30165933 DOI: 10.1166/jbn.2018.2631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fluorodeoxyglucose-conjugated magnetic nanoparticles, designed to target cancer cells with high specificity when heated by an alternating magnetic field, could provide a low-cost, non-toxic treatment for cancer. However, it is essential that the in vivo impacts of such technologies on both tumour and healthy tissues are characterised fully. Profiling tissue gene expression by semi-quantitative reverse transcriptase real-time PCR can provide a sensitive measurement of tissue response to treatment. However, the accuracy of such analyses is dependent on the selection of stable reference genes. In this study, we determined the impact of fluorodeoxyglucose-conjugated magnetic nanoparticles on tumour and non-tumour tissue gene expression and morphology in MAC16 adenocarcinoma established male NMRI mice. Mice received an injection of 8 mg/kg body weight fluorodeoxyglucose-conjugated magnetic nanoparticles either intravenously in to the tail vein, directly into the tumour or subcutaneously directly overlying the tumour. Tissues from mice were sampled between 70 minutes and 12 hours post injection. Using the bioinformatic geNorm tool, we established the stability of six candidate reference genes (Hprt, Pgk1, Ppib, Sdha, Tbp and Tuba); we observed Pgk1 and Ppib to be the most stable. We then characterised the expression profiles of several apoptosis genes of interest in our adenocarcinoma samples, observing differential expression in response to mode of administration and exposure duration. Using histological assessment and fluorescent TUNNEL staining, we observed no detrimental impact on either tumour or non-tumour tissue morphology or levels of apoptosis. These observations define the underlying efficacy of fluorodeoxyglucose-conjugated magnetic nanoparticles on tumour and non-tumour tissue morphology and gene expression, setting the basis for future studies.
Collapse
|
22
|
Pan Y, Lü P, Zhu F, Li C, He Y, Chen K. Dietary restriction alters the fatbody transcriptome during immune responses in Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2018; 223:50-57. [DOI: 10.1016/j.cbpb.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 01/15/2023]
|
23
|
Al-Aqil FA, Monte MJ, Peleteiro-Vigil A, Briz O, Rosales R, González R, Aranda CJ, Ocón B, Uriarte I, de Medina FS, Martinez-Augustín O, Avila MA, Marín JJG, Romero MR. Interaction of glucocorticoids with FXR/FGF19/FGF21-mediated ileum-liver crosstalk. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2927-2937. [PMID: 29883717 DOI: 10.1016/j.bbadis.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Abstract
At high doses, glucocorticoids (GC) have been associated with enhanced serum bile acids and liver injury. We have evaluated the effect of GC, in the absence of hepatotoxicity, on FXR/FGF91(Fgf15)/FGF21-mediated ileum-liver crosstalk. Rats and mice (wild type and Fxr-/-, Fgf15-/- and int-Gr-/- strains; the latter with GC receptor (Gr) knockout selective for intestinal epithelial cells), were treated (i.p.) with dexamethasone, prednisolone or budesonide. In both species, high doses of GC caused hepatotoxicity. At a non-hepatotoxic dose, GC induced ileal Fgf15 down-regulation and liver Fgf21 up-regulation, without affecting Fxr expression. Fgf21 mRNA levels correlated with those of several genes involved in glucose and bile acid metabolism. Surprisingly, liver Cyp7a1 was not up-regulated. The expression of factors involved in transcriptional modulation by Fxr and Gr (p300, Drip205, CBP and Smrt) was not affected. Pxr target genes Cyp3a11 and Mrp2 were not up-regulated in liver or intestine. In contrast, the expression of some Pparα target genes in liver (Fgf21, Cyp4a14 and Vanin-1) and intestine (Vanin-1 and Cyp3a11) was altered. In mice with experimental colitis, liver Fgf21 was up-regulated (4.4-fold). HepG2 cells transfection with FGF21 inhibited CYP7A1 promoter (prCYP7A1-Luc2). This was mimicked by pure human FGF21 protein or culture in medium previously conditioned by cells over-expressing FGF21. This response was not abolished by deletion of a putative response element for phosphorylated FGF21 effectors present in prCYP7A1. In conclusion, GC interfere with FXR/FGF19-mediated intestinal control of CYP7A1 expression by the liver and stimulate hepatic secretion of FGF21, which inhibits CYP7A1 promoter through an autocrine mechanism.
Collapse
Affiliation(s)
- Faten A Al-Aqil
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Ana Peleteiro-Vigil
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Ruben Rosales
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Raquel González
- Dept. Pharmacology, University of Granada, Granada, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Carlos J Aranda
- Dept. Biochemistry and Molecular Biology, University of Granada, Granada, Spain
| | - Borja Ocón
- Dept. Pharmacology, University of Granada, Granada, Spain
| | - Iker Uriarte
- Hepatology Programme, Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, Pamplona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Fermín Sánchez de Medina
- Dept. Pharmacology, University of Granada, Granada, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Olga Martinez-Augustín
- Dept. Biochemistry and Molecular Biology, University of Granada, Granada, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Matías A Avila
- Hepatology Programme, Center for Applied Medical Research (CIMA), IDISNA, University of Navarra, Pamplona, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - José J G Marín
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
24
|
Sattler J, Tu J, Stoner S, Li J, Buttgereit F, Seibel MJ, Zhou H, Cooper MS. Role of 11β-HSD type 1 in abnormal HPA axis activity during immune-mediated arthritis. Endocr Connect 2018; 7:385-394. [PMID: 29386227 PMCID: PMC5825927 DOI: 10.1530/ec-17-0361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 11/25/2022]
Abstract
Patients with chronic immune-mediated arthritis exhibit abnormal hypothalamo-pituitary-adrenal (HPA) axis activity. The basis for this abnormality is not known. Immune-mediated arthritis is associated with increased extra-adrenal synthesis of active glucocorticoids by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. 11β-HSD1 is expressed in the central nervous system, including regions involved in HPA axis regulation. We examined whether altered 11β-HSD1 expression within these regions contributes to HPA axis dysregulation during arthritis. The expression of 11β-HSD1, and other components of glucocorticoid signaling, were examined in various brain regions and the pituitary gland of mice with experimentally induced arthritis. Two arthritis protocols were employed: The K/BxN spontaneous arthritis model for chronic arthritis and the K/BxN serum transfer arthritis model for acute arthritis. 11β-HSD1 mRNA (Hsd11b1) was expressed in the hippocampus, hypothalamus, cortex, cerebellum and pituitary gland. Hypothalamic Hsd11b1 expression did not change in response to arthritis in either model. Pituitary Hsd11b1 expression was however significantly increased in both chronic and acute arthritis models. Hippocampal Hsd11b1 was decreased in acute but not chronic arthritis. Chronic, but not acute, arthritis was associated with a reduction in hypothalamic corticotropin-releasing hormone and arginine vasopressin expression. In both models, serum adrenocorticotropic hormone and corticosterone levels were no different from non-inflammatory controls. These findings demonstrate inflammation-dependent regulation of Hsd11b1 expression in the pituitary gland and hippocampus. The upregulation of 11β-HSD1 expression in the pituitary during both chronic and acute arthritis, and thus, an increase in glucocorticoid negative feedback, could contribute to the abnormalities in HPA axis activity seen in immune-mediated arthritis.
Collapse
Affiliation(s)
- Janko Sattler
- Adrenal Steroid GroupANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Department of Rheumatology and Clinical ImmunologyCharité-University Medicine, Berlin, Germany
| | - Jinwen Tu
- Adrenal Steroid GroupANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Bone Research ProgramANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Concord Clinical SchoolThe University of Sydney, Sydney, Australia
| | - Shihani Stoner
- Bone Research ProgramANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Jingbao Li
- Bone Research ProgramANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Key Laboratory for Space Bioscience and BiotechnologyInstitute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, China
| | - Frank Buttgereit
- Department of Rheumatology and Clinical ImmunologyCharité-University Medicine, Berlin, Germany
| | - Markus J Seibel
- Bone Research ProgramANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Concord Clinical SchoolThe University of Sydney, Sydney, Australia
- Department of Endocrinology & MetabolismConcord Hospital, Sydney, Australia
| | - Hong Zhou
- Bone Research ProgramANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Concord Clinical SchoolThe University of Sydney, Sydney, Australia
| | - Mark S Cooper
- Adrenal Steroid GroupANZAC Research Institute, University of Sydney, Sydney, NSW, Australia
- Concord Clinical SchoolThe University of Sydney, Sydney, Australia
- Department of Endocrinology & MetabolismConcord Hospital, Sydney, Australia
| |
Collapse
|
25
|
Lovelock DF, Deak T. Repeated exposure to two stressors in sequence demonstrates that corticosterone and paraventricular nucleus of the hypothalamus interleukin-1β responses habituate independently. J Neuroendocrinol 2017; 29:10.1111/jne.12514. [PMID: 28803453 PMCID: PMC5617797 DOI: 10.1111/jne.12514] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/09/2023]
Abstract
A wide range of stress-related pathologies such as post-traumatic stress disorder are considered to arise from aberrant or maladaptive forms of stress adaptation. The hypothalamic-pituitary-adrenal (HPA) axis readily adapts to repeated stressor exposure, yet little is known about adaptation in neuroimmune responses to repeated or sequential stress challenges. In Experiment 1, rats were exposed to 10 days of restraint alone (60 minutes daily), forced swim alone (30 minutes daily) or daily sequential exposure to restraint (60 minutes) followed immediately by forced swim (30 minutes), termed sequential stress exposure. Habituation of the corticosterone (CORT) response occurred to restraint by 5 days and swim at 10 days, whereas rats exposed to sequential stress exposure failed to display habituation to the combined challenge. Experiment 2 compared 1 or 5 days of forced swim with sequential stress exposure and examined how each affected expression of several neuroimmune and cellular activation genes in the paraventricular nucleus of the hypothalamus (PVN), prefrontal cortex (PFC) and hippocampus (HPC). Sequential exposure to restraint and swim increased interleukin (IL)-1β in the PVN, an effect that was attenuated after 5 days. Sequential stress exposure also elicited IL-6 and tumour necrosis factor-α responses in the HPC and PFC, respectively, which did not habituate after 5 days. Experiment 3 tested whether prior habituation to restraint (5 days) would alter the IL-1β response evoked by swim exposure imposed immediately after the sixth day of restraint. Surprisingly, a history of repeated exposure to restraint attenuated the PVN IL-1β response after swim in comparison to acutely-exposed subjects despite an equivalent CORT response. Overall, these findings suggest that habituation of neuroimmune responses to stress proceeds: (i) independent of HPA axis habituation; (ii) likely requires more daily sessions of stress to develop; and (iii) IL-1β displays a greater tendency to habituate after repeated stress challenges compared to other stress-reactive cytokines.
Collapse
Affiliation(s)
- Dennis F. Lovelock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton NY 13902-6000
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton NY 13902-6000
| |
Collapse
|
26
|
Cooke RF, Mehrkam LR, Marques RS, Lippolis KD, Bohnert DW. Effects of a simulated wolf encounter on brain and blood biomarkers of stress-related psychological disorders in beef cows with or without previous exposure to wolves. J Anim Sci 2017; 95:1154-1163. [PMID: 28380532 DOI: 10.2527/jas.2016.1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This experiment compared mRNA expression of brain-blood biomarkers associated with stress-related psychological disorders, including post-traumatic stress disorder (PTSD), in beef cows from wolf-naïve and wolf-experienced origins that were subjected to a simulated wolf encounter. Multiparous, non-pregnant, non-lactating Angus-crossbred cows from the Eastern Oregon Agricultural Research Center (Burns, OR; CON; = 10) and from a commercial operation near Council, ID (WLF; = 10) were used. To date, gray wolves are not present around Burns, OR, and thus CON were naïve to wolves. Conversely, wolves are present around Council, ID, and WLF cows were selected from a herd that had experienced multiple wolf-predation episodes from 2008 to 2015. After a 60-d commingling and adaptation period, CON and WLF cows were allocated to groups A or B (d -1; 5 CON and 5 WLF cows in each group). On d 0, cows from group A were sampled for blood and immediately slaughtered, and samples were analyzed to evaluate inherent differences between CON and WLF cows. On d 1, cows from group B were exposed in pairs (1 CON and 1 WLF cow) to experimental procedures. Cows were sampled for blood, moved to 2 adjacent drylot pens (1 WLF and 1 CON cow/pen) and subjected to a simulated wolf encounter event for 20 min. The encounter consisted of (1) cotton plugs saturated with wolf urine attached to the drylot fence, (2) reproduction of wolf howls, and (3) three leashed dogs that were walked along the fence perimeter. Thereafter, another blood sample was collected and cows were slaughtered. Upon slaughter, the brain was removed and dissected for collection of the hypothalamus, and one longitudinal slice of the medial pre-frontal cortex, amygdala, and Cornu Ammonis (1 region of the hippocampus from both hemispheres). Within cows from group A, expression of in hippocampus and amygdala were greater ( < 0.01) in WLF vs. CON cows. Within cows from group B, expression of hippocampal mRNA and expression of c mRNA in hippocampus and amygdala were less ( ≤ 0.04) in WLF vs. CON cows. These are key biological markers known to be downregulated during stress-related psychological disorders elicited by fear, particularly PTSD. Hence, cows originated from a wolf-experienced herd presented biological evidence suggesting a psychological disorder, such as PTSD, after the simulated wolf encounter when compared with cows originated from a wolf-naïve herd.
Collapse
|
27
|
Gong H, Sun L, Chen B, Han Y, Pang J, Wu W, Qi R, Zhang TM. Evaluation of candidate reference genes for RT-qPCR studies in three metabolism related tissues of mice after caloric restriction. Sci Rep 2016; 6:38513. [PMID: 27922100 PMCID: PMC5138604 DOI: 10.1038/srep38513] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/09/2016] [Indexed: 12/24/2022] Open
Abstract
Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) is a routine method for gene expression analysis, and reliable results depend on proper normalization by stable reference genes. Caloric restriction (CR) is a robust lifestyle intervention to slow aging and delay onset of age-associated diseases via inducing global changes in gene expression. Reliable normalization of RT-qPCR data becomes crucial in CR studies. In this study, the expression stability of 12 candidate reference genes were evaluated in inguinal white adipose tissue (iWAT), skeletal muscle (Sk.M) and liver of CR mice by using three algorithms, geNorm, NormFinder, and Bestkeeper. Our results showed β2m, Ppia and Hmbs as the most stable genes in iWAT, Sk.M and liver, respectively. Moreover, two reference genes were sufficient to normalize RT-qPCR data in each tissue and the suitable pair of reference genes was β2m-Hprt in iWAT, Ppia-Gusb in Sk.M and Hmbs-β2m in liver. By contrast, the least stable gene in iWAT or Sk.M was Gapdh, and in liver was Pgk1. Furthermore, the expression of Leptin and Ppar-γ were profiled in these tissues to validate the selected reference genes. Our data provided a basis for gene expression analysis in future CR studies.
Collapse
Affiliation(s)
- Huan Gong
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Liang Sun
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Beidong Chen
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Yiwen Han
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Jing Pang
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Wei Wu
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Ruomei Qi
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Tie-Mei Zhang
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| |
Collapse
|
28
|
Lee DG, Yang KE, Hwang JW, Kang HS, Lee SY, Choi S, Shin J, Jang IS, An HJ, Chung H, Jung HI, Choi JS. Degradation of Kidney and Psoas Muscle Proteins as Indicators of Post-Mortem Interval in a Rat Model, with Use of Lateral Flow Technology. PLoS One 2016; 11:e0160557. [PMID: 27552165 PMCID: PMC4995019 DOI: 10.1371/journal.pone.0160557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 07/21/2016] [Indexed: 11/29/2022] Open
Abstract
We investigated potential protein markers of post-mortem interval (PMI) using rat kidney and psoas muscle. Tissue samples were taken at 12 h intervals for up to 96 h after death by suffocation. Expression levels of eight soluble proteins were analyzed by Western blotting. Degradation patterns of selected proteins were clearly divided into three groups: short-term, mid-term, and long-term PMI markers based on the half maximum intensity of intact protein expression. In kidney, glycogen synthase (GS) and glycogen synthase kinase-3β were degraded completely within 48 h making them short-term PMI markers. AMP-activated protein kinase α, caspase 3 and GS were short-term PMI markers in psoas muscle. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was a mid-term PMI marker in both tissues. Expression levels of the typical long-term PMI markers, p53 and β-catenin, were constant for at least 96 h post-mortem in both tissues. The degradation patterns of GS and caspase-3 were verified by immunohistochemistry in both tissues. GAPDH was chosen as a test PMI protein to perform a lateral flow assay (LFA). The presence of recombinant GAPDH was clearly detected in LFA and quantified in a concentration-dependent manner. These results suggest that LFA might be used to estimate PMI at a crime scene.
Collapse
Affiliation(s)
- Dong-Gi Lee
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Kyeong Eun Yang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Jeong Won Hwang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hwan-Soo Kang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Seung-Yeul Lee
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Seoyeon Choi
- National Core Research Center for Nanomedical Technology, Yonsei University, Seoul, Republic of Korea
| | - Joonchul Shin
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ik-Soon Jang
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Heesun Chung
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Hyo-Il Jung
- National Core Research Center for Nanomedical Technology, Yonsei University, Seoul, Republic of Korea
- School of Mechanical Engineering, Yonsei University, Seoul, Republic of Korea
- * E-mail: (HIJ); (JSC)
| | - Jong-Soon Choi
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (HIJ); (JSC)
| |
Collapse
|
29
|
Penner MR, Parrish RR, Hoang LT, Roth TL, Lubin FD, Barnes CA. Age-related changes in Egr1 transcription and DNA methylation within the hippocampus. Hippocampus 2016; 26:1008-20. [PMID: 26972614 DOI: 10.1002/hipo.22583] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2016] [Indexed: 12/19/2022]
Abstract
Aged animals show functional alterations in hippocampal neurons that lead to deficits in synaptic plasticity and changes in cognitive function. Transcription of immediate-early genes (IEGs), including Egr1, is necessary for processes such as long-term potentiation and memory consolidation. Here, we show an age-related reduction in the transcription of Egr1 in the dentate gyrus following spatial behavior, whereas in the area CA1, Egr1 is reduced at rest, but its transcription can be effectively driven by spatial behavior to levels equivalent to those observed in adult animals. One mechanism possibly contributing to these aging-related changes is an age-associated, CpG site-specific change in methylation in DNA associated with the promoter region of the Egr1 gene. Our results add to a growing body of work demonstrating that complex transcriptional and epigenetic changes in the hippocampus significantly contribute to brain and cognitive aging. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M R Penner
- Evelyn F McKnight Brain Institute and Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, Arizona
| | - R R Parrish
- Department of Neurobiology and Evelyn F McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - L T Hoang
- Evelyn F McKnight Brain Institute and Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, Arizona
| | - T L Roth
- Department of Psychology, University of Delaware, Newark, Delaware
| | - F D Lubin
- Department of Neurobiology and Evelyn F McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - C A Barnes
- Evelyn F McKnight Brain Institute and Division of Neural Systems, Memory and Aging, University of Arizona, Tucson, Arizona.,Department Psychology, Neurology and Neuroscience, University of Arizona, Tucson, Arizona
| |
Collapse
|
30
|
Reference genes for valid gene expression studies on rat dental, periodontal and alveolar bone tissue by means of RT-qPCR with a focus on orthodontic tooth movement and periodontitis. Ann Anat 2015; 204:93-105. [PMID: 26689124 DOI: 10.1016/j.aanat.2015.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/02/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To obtain valid results in relative gene/mRNA-expression analyses by RT-qPCR, a careful selection of stable reference genes is required for normalization. Currently there is little information on reference gene stability in dental, periodontal and alveolar bone tissues of the rat, especially regarding orthodontic tooth movement and periodontitis. We therefore aimed to identify the best selection and number of reference genes under these experimental as well as physiological conditions. MATERIALS AND METHODS In 7 male Fischer344-rats the upper left first and second molars were moved orthodontically for 2 weeks and in 7 more animals additionally subjected to an experimental periodontitis, whereas 7 animals were left untreated. Tissue samples of defined size containing both molars (without crowns) as well as the adjacent periodontal and alveolar bone tissue were retrieved and RNA extracted for RT-qPCR analyses. Nine candidate reference genes were evaluated and ranked according to their expression stability by 4 different algorithms (geNorm, NormFinder, BestKeeper, comparative ΔCq). RESULTS PPIB/YWHAZ were the most stabile reference genes for the combined dental, periodontal and alveolar bone tissue of the rat overall, in untreated animals and rats with additional periodontitis, whereas PPIB/B2M performed best in orthodontically treated rats with YWHAZ ranking third. Gene-stability ranking differed considerably between investigated groups. A combination of two reference genes was found to be sufficient for normalization in all cases. CONCLUSIONS The substantial differences in expression stability emphasize the need for valid reference genes, when aiming for meaningful results in relative gene expression analyses. Our results should enable researchers to optimize gene expression analysis in future studies by choosing the most suitable reference genes for normalization.
Collapse
|
31
|
Chapman JR, Waldenström J. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies. PLoS One 2015; 10:e0141853. [PMID: 26555275 PMCID: PMC4640531 DOI: 10.1371/journal.pone.0141853] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/13/2015] [Indexed: 12/20/2022] Open
Abstract
The choice of reference genes that are stably expressed amongst treatment groups is a crucial step in real-time quantitative PCR gene expression studies. Recent guidelines have specified that a minimum of two validated reference genes should be used for normalisation. However, a quantitative review of the literature showed that the average number of reference genes used across all studies was 1.2. Thus, the vast majority of studies continue to use a single gene, with β-actin (ACTB) and/or glyceraldehyde 3-phosphate dehydrogenase (GAPDH) being commonly selected in studies of vertebrate gene expression. Few studies (15%) tested a panel of potential reference genes for stability of expression before using them to normalise data. Amongst studies specifically testing reference gene stability, few found ACTB or GAPDH to be optimal, whereby these genes were significantly less likely to be chosen when larger panels of potential reference genes were screened. Fewer reference genes were tested for stability in non-model organisms, presumably owing to a dearth of available primers in less well characterised species. Furthermore, the experimental conditions under which real-time quantitative PCR analyses were conducted had a large influence on the choice of reference genes, whereby different studies of rat brain tissue showed different reference genes to be the most stable. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies.
Collapse
Affiliation(s)
- Joanne R. Chapman
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
- * E-mail:
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
32
|
Timaru-Kast R, Herbig EL, Luh C, Engelhard K, Thal SC. Influence of Age on Cerebral Housekeeping Gene Expression for Normalization of Quantitative Polymerase Chain Reaction after Acute Brain Injury in Mice. J Neurotrauma 2015; 32:1777-88. [PMID: 26102571 DOI: 10.1089/neu.2014.3784] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To prevent methodological errors of quantitative PCR (qPCR) normalization with reference genes is obligatory. Although known to influence gene expression, impact of age on housekeeping gene expression has not been determined after acute brain lesions such as traumatic brain injury (TBI). Therefore, expression of eight common control genes was investigated at 15 min, 24 h, and 72 h after experimental TBI in 2- and 21-month-old C57Bl6 mice. Expression of β2-microglobulin (B2M), β-actin (ActB), and porphobilinogen deaminase (PBGD) increased after TBI in both ages. β2M demonstrated age-dependent differences and highest inter- and intragroup variations. Expression of cyclophilin A, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), hypoxanthine ribosyltransferase (HPRT), S100B, and 18SrRNA remained stable. Cyclophilin A and HPRT demonstrated strongest inter- and intragroup stability. The data indicate that the expression of most but not all control genes is stable during aging. The correct choice of housekeeping genes is of key importance to ensure adequate normalization of qPCR data. With respect to insult and age, normalization strategies should consider cyclophilin A as a single normalizer. Normalization with two reference genes is recommended with cyclophilin A and HPRT in young mice and in mixed age studies and with cyclophilin A and GAPDH in old mice. In addition, the present study suggests not to use β2-microglobulin, β-actin or PBGD as single control genes because of strong regulation after CCI in 2- and 21-month-old mice.
Collapse
Affiliation(s)
- Ralph Timaru-Kast
- Department of Anesthesiology, Medical Center of Johannes Gutenberg-University , Mainz, Germany
| | - Elina L Herbig
- Department of Anesthesiology, Medical Center of Johannes Gutenberg-University , Mainz, Germany
| | - Clara Luh
- Department of Anesthesiology, Medical Center of Johannes Gutenberg-University , Mainz, Germany
| | - Kristin Engelhard
- Department of Anesthesiology, Medical Center of Johannes Gutenberg-University , Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, Medical Center of Johannes Gutenberg-University , Mainz, Germany
| |
Collapse
|
33
|
Tesic V, Perovic M, Lazic D, Kojic S, Smiljanic K, Ruzdijic S, Rakic L, Kanazir S. Long-term intermittent feeding restores impaired GR signaling in the hippocampus of aged rat. J Steroid Biochem Mol Biol 2015; 149:43-52. [PMID: 25616002 DOI: 10.1016/j.jsbmb.2015.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 11/22/2022]
Abstract
Diminished glucocorticoid signaling is associated with an age-related decline in hippocampal functioning. In this study we demonstrate the effect of intermittent, every other day (EOD) feeding on the glucocorticoid hormone/glucocorticoid receptor (GR) system in the hippocampus of middle-aged (18-month-old) and aged (24-month-old) Wistar rats. In aged ad libitum-fed rats, a decrease in the level of total GR and GR phosphorylated at Ser(232) (pGR) was detected. Conversely, aged rats subjected to EOD feeding, starting from 6 months of age, showed an increase in GR and pGR levels and a higher content of hippocampal corticosterone. Furthermore, prominent nuclear staining of pGR was observed in CA1 pyramidal and DG granule neurons of aged EOD-fed rats. These changes were accompanied by increased Sgk-1 and decreased GFAP transcription, pointing to upregulated transcriptional activity of GR. EOD feeding also induced an increase in the expression of the mineralocorticoid receptor. Our results reveal that intermittent feeding restores impaired GR signaling in the hippocampus of aged animals by inducing rather than by stabilizing GR signaling during aging.
Collapse
Affiliation(s)
- Vesna Tesic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Milka Perovic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Divna Lazic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Snezana Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Kosara Smiljanic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Sabera Ruzdijic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | | | - Selma Kanazir
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
34
|
Moura ACD, Lazzari VM, Agnes G, Almeida S, Giovenardi M, Veiga ABGD. Transcriptional expression study in the central nervous system of rats: what gene should be used as internal control? EINSTEIN-SAO PAULO 2015; 12:336-41. [PMID: 25295456 PMCID: PMC4872946 DOI: 10.1590/s1679-45082014ao3042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 06/26/2014] [Indexed: 11/22/2022] Open
Abstract
Objective A growing number of published articles report the expression of specific genes with different behavior patterns in rats. The levels of messenger ribonucleic acid transcripts are usually analyzed by reverse transcription followed by polymerase chain reaction and quantified after normalization with an internal control or reference gene (housekeeping gene). Nevertheless, housekeeping genes exhibit different expression in the central nervous system, depending on the physiological conditions and the area of the brain to be studied. The choice of a good internal control gene is essential for obtaining reliable results. This study evaluated the expression of three housekeeping genes (beta-actin, cyclophilin A, and ubiquitin C) in different areas of the central nervous system in rats (olfactory bulb, hippocampus, striatum, and prefrontal cortex). Methods Wistar rats (virgin females, n=6) during the diestrum period were used. Total ribonucleic acid was extracted from each region of the brain; the complementary deoxyribonucleic acid was synthesized by reverse transcription and amplified by real-time quantitative polymerase chain reaction using SYBR™ Green and primers specific for each one of the reference genes. The stability of the expression was determined using NormFinder. Results Beta-actin was the most stable gene in the hippocampus and striatum, while cyclophilin A and ubiquitin C showed greater stability in the prefrontal cortex and the olfactory bulb, respectively. Conclusion Based on our study, further studies of gene expression using rats as animal models should take into consideration these results when choosing a reliable internal control gene.
Collapse
Affiliation(s)
| | | | - Grasiela Agnes
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Silvana Almeida
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Márcia Giovenardi
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | |
Collapse
|
35
|
Wang X, Ma X, Huang L, Zhang X. Identification of the valid reference genes for quantitative RT-PCR in annual ryegrass (Lolium multiflorum) under salt stress. Molecules 2015; 20:4833-47. [PMID: 25786166 PMCID: PMC6272566 DOI: 10.3390/molecules20034833] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 01/13/2023] Open
Abstract
Annual ryegrass (Lolium multiflorum) is a cool-season annual grass cultivated worldwide for its high yield and quality. With the areas of saline soil increasing, investigation of the molecular mechanisms of annual ryegrass tolerance under salt stress has become a significant topic. qRT-PCR has been a predominant assay for determination of the gene expression, in which selecting a valid internal reference gene is a crucial step. The objective of present study was to evaluate and identify suitable reference genes for qRT-PCR in annual ryegrass under salt stress. The results calculated by RefFinder indicated that eEF1A(s) was the most stable reference gene in leaves, whereas EF1-a was the least stable; meanwhile, TBP-1 was the most optimal in roots and in all samples, and the eIF-5A shouldn’t be utilized for normalization of the gene expression. eEF1A(s) is more suitable than TBP-1 as reference gene in leaves when verified with P5CS1 and Cyt-Cu/Zn SOD genes. We should choose optimal reference genes in specific tissues instead of the most stable one selected from different conditions and tissues.
Collapse
Affiliation(s)
- Xia Wang
- Grassland Science Department, Sichuan Agriculture University, Chengdu 611130, China.
| | - Xiao Ma
- Grassland Science Department, Sichuan Agriculture University, Chengdu 611130, China.
| | - Linkai Huang
- Grassland Science Department, Sichuan Agriculture University, Chengdu 611130, China.
| | - Xinquan Zhang
- Grassland Science Department, Sichuan Agriculture University, Chengdu 611130, China.
| |
Collapse
|
36
|
Ritzel RM, Patel AR, Pan S, Crapser J, Hammond M, Jellison E, McCullough LD. Age- and location-related changes in microglial function. Neurobiol Aging 2015; 36:2153-63. [PMID: 25816747 DOI: 10.1016/j.neurobiolaging.2015.02.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 02/08/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
Abstract
Inflammation in the central nervous system (CNS) is primarily regulated by microglia. No longer considered a homogenous population, microglia display a high degree of heterogeneity, immunological diversity and regional variability in function. Given their low rate of self-renewal, the microenvironment in which microglia reside may play an important role in microglial senescence. This study examines age-related changes in microglia in the brain and spinal cord. Using ex-vivo flow cytometry analyses, functional assays were performed to assess changes in microglial morphology, oxidative stress, cytokine production, and phagocytic activity with age in both the brain and spinal cord. The regional CNS environment had a significant effect on microglial activity with age. Blood-CNS barrier permeability was greater in the aging spinal cord compared with aging brain; this was associated with increased tissue cytokine levels. Aged microglia had deficits in phagocytosis at baseline and after stimulus-induced activation. The identification of age-specific, high scatter microglia together with the use of ex-vivo functional analyses provides the first functional characterization of senescent microglia. Age and regional-specificity of CNS disease should be taken into consideration when developing immune-modulatory treatments.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Anita R Patel
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Sarah Pan
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Joshua Crapser
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Matt Hammond
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA
| | - Evan Jellison
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Louise D McCullough
- Department of Neurology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
37
|
Identification of reference genes in human myelomonocytic cells for gene expression studies in altered gravity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:363575. [PMID: 25654098 PMCID: PMC4309215 DOI: 10.1155/2015/363575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/04/2014] [Indexed: 12/14/2022]
Abstract
Gene expression studies are indispensable for investigation and elucidation of molecular mechanisms. For the process of normalization, reference genes (“housekeeping genes”) are essential to verify gene expression analysis. Thus, it is assumed that these reference genes demonstrate similar expression levels over all experimental conditions. However, common recommendations about reference genes were established during 1 g conditions and therefore their applicability in studies with altered gravity has not been demonstrated yet. The microarray technology is frequently used to generate expression profiles under defined conditions and to determine the relative difference in expression levels between two or more different states. In our study, we searched for potential reference genes with stable expression during different gravitational conditions (microgravity, normogravity, and hypergravity) which are additionally not altered in different hardware systems. We were able to identify eight genes (ALB, B4GALT6, GAPDH, HMBS, YWHAZ, ABCA5, ABCA9, and ABCC1) which demonstrated no altered gene expression levels in all tested conditions and therefore represent good candidates for the standardization of gene expression studies in altered gravity.
Collapse
|
38
|
Smiljanic K, Pesic V, Mladenovic Djordjevic A, Pavkovic Z, Brkic M, Ruzdijic S, Kanazir S. Long-term dietary restriction differentially affects the expression of BDNF and its receptors in the cortex and hippocampus of middle-aged and aged male rats. Biogerontology 2014; 16:71-83. [PMID: 25344640 DOI: 10.1007/s10522-014-9537-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/20/2014] [Indexed: 12/17/2022]
Abstract
Dietary restriction (DR) exerts significant beneficial effects in terms of aging and age-related diseases in many organisms including humans. The present study aimed to examine the influence of long-term DR on the BDNF system at the transcriptional and translational levels in the cortex and hippocampus of middle-aged (12-month-old) and aged (24-month-old) male Wistar rats. The obtained results revealed that the DR upregulated the expression of exon-specific BDNF transcripts in both regions, followed by elevated levels of mBDNF only in the cortex in middle-aged animals. In aged animals, DR modulated BDNF protein levels by increasing proBDNF and by declining mBDNF levels. Additionally, elevated levels of the full-length TrkB accompanied by a decreased level of the less-glycosylated TrkB protein were observed in middle-aged rats following DR, while in aged rats, DR amplified only the expression of the less-glycosylated form of TrkB. The levels of phosphorylated TrkB(Y816) were stable during aging regardless of feeding. Reduced levels of p75(NTR) were detected in both regions of middle-aged DR-fed animals, while a significant increase was measured in the cortex of aged DR-fed rats. These findings shed additional light on DR as a modulator of BDNF system revealing its disparate effects in middle-aged and aged animals. Given the importance of the proBDNF/BDNF circuit-level expression in different brain functions and various aspects of behavior, it is necessary to further elucidate the optimal duration of the applied dietary regimen with regard to the animal age in order to achieve its most favorable effects.
Collapse
Affiliation(s)
- Kosara Smiljanic
- Laboratory of Molecular Neurobiology, Department of Neurobiology, Institute for Biological Research ''Sinisa Stankovic'', University of Belgrade, Bul D.Stefana 142, 11060, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
39
|
Cleal JK, Shepherd JN, Shearer JL, Bruce KD, Cagampang FR. Sensitivity of housekeeping genes in the suprachiasmatic nucleus of the mouse brain to diet and the daily light-dark cycle. Brain Res 2014; 1575:72-7. [PMID: 24881883 DOI: 10.1016/j.brainres.2014.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 02/07/2023]
Abstract
The endogenous timing system within the suprachiasmatic nuclei (SCN) of the hypothalamus drives the cyclic expression of the clock molecules across the 24h day-night cycle controlling downstream molecular pathways and physiological processes. The developing fetal clock system is sensitive to the environment and physiology of the pregnant mother and as such disruption of this system could lead to altered physiology in the offspring. Characterizing the gene profiles of the endogenous molecular clock system by quantitative reverse transcription polymerase chain reaction is dependent on normalization by appropriate housekeeping genes (HKGs). However, many HKGs commonly used as internal controls, although stably expressed under control conditions, can vary significantly in their expression under certain experimental conditions. Here we analyzed the expression of 10 classic HKG across the 24h light-dark cycle in the SCN of mouse offspring exposed to normal chow or a high fat diet during early development and in postnatal life. We found that the HKGs glyceraldehyde-3-phosphate dehydrogenase, beta actin and adenosine triphosphate synthase subunit to be the most stably expressed genes in the SCN regardless of diet or time within the 24h light-dark cycle, and are therefore suitable to be used as internal controls. However SCN samples collected during the light and dark periods did show differences in expression and as such the timing of collection should be considered when carrying out gene expression studies.
Collapse
Affiliation(s)
- Jane K Cleal
- Institute of Developmental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital (mailpoint 887), Southampton SO16 6YD, UK.
| | - James N Shepherd
- Institute of Developmental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital (mailpoint 887), Southampton SO16 6YD, UK
| | - Jasmine L Shearer
- Institute of Developmental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital (mailpoint 887), Southampton SO16 6YD, UK
| | - Kimberley D Bruce
- Institute of Developmental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital (mailpoint 887), Southampton SO16 6YD, UK
| | - Felino R Cagampang
- Institute of Developmental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital (mailpoint 887), Southampton SO16 6YD, UK
| |
Collapse
|
40
|
Montalvo-Ortiz JL, Keegan J, Gallardo C, Gerst N, Tetsuka K, Tucker C, Matsumoto M, Fang D, Csernansky JG, Dong H. HDAC inhibitors restore the capacity of aged mice to respond to haloperidol through modulation of histone acetylation. Neuropsychopharmacology 2014; 39:1469-78. [PMID: 24366052 PMCID: PMC3988551 DOI: 10.1038/npp.2013.346] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 12/05/2013] [Accepted: 12/08/2013] [Indexed: 01/21/2023]
Abstract
Antipsychotic drugs are widely prescribed to elderly patients for the treatment of a variety of psychopathological conditions, including psychosis and the behavioral disturbances associated with dementia. However, clinical experience suggests that these drugs may be less efficacious in the elderly individuals than in the young. Recent studies suggest that aging may be associated with epigenetic changes and that valproic acid (VPA), a histone deacetylase inhibitor, may reverse such changes. However, it is not yet known whether HDAC inhibitors can modulate age-related epigenetic changes that may impact antipsychotic drug action. In this study, we analyzed conditioned avoidance response (CAR) and c-Fos expression patterns to elucidate the effect of HDAC inhibitors VPA and entinostat (MS-275) on behavioral and molecular markers of the effects of haloperidol (HAL) in aged mice. Our results showed that HAL administration failed to suppress the avoidance response during the CAR test, suggesting an age-related decrease in drug efficacy. In addition, HAL-induced c-Fos expression in the nucleus accumbens shell and prefrontal cortex was significantly lower in aged mice as compared with young mice. Pretreatment with VPA and MS-275 significantly improved HAL effects on the CAR test in aged mice. Also, VPA and MS-275 pretreatment restored HAL-induced increases in c-Fos expression in the nucleus accumbens shell and prefrontal cortex of aged mice to levels comparable with those observed in young mice. Lastly, but most importantly, increases in c-Fos expression and HAL efficacy in the CAR test of the HAL+VPA and HAL+MS-275 groups were correlated with elevated histone acetylation at the c-fos promoter region in aged mice. These findings suggest that pretreatment with VPA or MS-275 increases the behavioral and molecular effects of HAL in aged mice and that these effects occur via modulation of age-related histone hypoacetylation in the nucleus accumbens shell and prefrontal cortex.
Collapse
Affiliation(s)
- Janitza L Montalvo-Ortiz
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jack Keegan
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher Gallardo
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nicolas Gerst
- Astellas Research Institute of America, Skokie, IL, USA
| | | | - Chris Tucker
- Astellas Research Institute of America, Skokie, IL, USA
| | | | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John G Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
41
|
The effects of dietary restriction and aging on amyloid precursor protein and presenilin-1 mRNA and protein expression in rat brain. Neuroreport 2014; 25:398-403. [PMID: 24346258 DOI: 10.1097/wnr.0000000000000107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The objective of this study was to examine the effects of aging and long-term dietary restriction (DR) on the level of amyloid precursor protein (APP) and presenilin-1 (PS-1), proteins that are critically involved in Alzheimer's disease. Changes in mRNA and protein expression were assessed by real-time PCR and western blot analysis during aging and long-term DR in the cortex and hippocampus of 6-, 12-, 18-, and 24-month-old rats. Prominent regional changes in expression were observed in response to aging and DR. Although the hippocampus displayed significant alterations in APP mRNA and protein expression and no significant changes in PS-1 expression, an opposite pattern was observed in the cortex. DR counteracted the age-related changes in APP mRNA expression in both structures of old animals. The observed DR-induced increase in mRNA levels in the hippocampus was accompanied by an increase in the level of full-length protein APP. These results indicate that although both structures are very sensitive to aging, a specific spatial pattern of changes in APP and PS-1 occurs during aging. Furthermore, these findings provide evidence that DR can affect APP and PS-1 expression in a manner consistent with its proposed 'antiaging' effect.
Collapse
|
42
|
Varga J, Klausz B, Domokos Á, Kálmán S, Pákáski M, Szűcs S, Garab D, Zvara Á, Puskás L, Kálmán J, Tímár J, Bagdy G, Zelena D. Increase in Alzheimer's related markers preceeds memory disturbances: Studies in vasopressin-deficient Brattleboro rat. Brain Res Bull 2014; 100:6-13. [DOI: 10.1016/j.brainresbull.2013.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 11/25/2022]
|
43
|
He Y, Yu S, Bae E, Shen H, Wang Y. Methamphetamine alters reference gene expression in nigra and striatum of adult rat brain. Neurotoxicology 2013; 39:138-45. [PMID: 24042092 DOI: 10.1016/j.neuro.2013.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/09/2013] [Accepted: 08/22/2013] [Indexed: 01/28/2023]
Abstract
The nigrostriatal dopaminergic system is a major lesion target for methamphetamine (MA), one of the most addictive and neurotoxic drugs of abuse. High doses of MA alter the expression of a large number of genes. Reference genes (RGs) are considered relatively stable and are often used as standards for quantitative real-time PCR (qRT-PCR) reactions. The purpose of this study was to determine whether MA altered the expression of RGs and to identify the appropriate RGs for gene expression studies in animals receiving MA. Adult male Sprague-Dawley rats were treated with high doses of MA or saline. Striatum and substantia nigra were harvested at 2h or 24h after MA administration. The expression and stability of 10 commonly used RGs were examined using qRT-PCR and then evaluated by geNorm and Normfinder. We found that MA altered the expression of selected RGs. These candidate RGs presented differential stability in the striatum and in substantia nigra at both 2h and 24h after MA injection. Selection of an unstable RG as a standard altered the significance of tyrosine hydroxylase (TH) mRNA expression after MA administration. In conclusion, our data show that MA site- and time-dependently altered the expression of RGs in nigrostriatal dopaminergic system. These temporal and spatial factors should be considered when selecting appropriate RGs for interpreting the expression of target genes in animals receiving MA.
Collapse
Affiliation(s)
- Yi He
- Neural Protection and Regeneration Section, National Institute on Drug Abuse, Intramural Research Program, NIH, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
44
|
Li B, Matter EK, Hoppert HT, Grayson BE, Seeley RJ, Sandoval DA. Identification of optimal reference genes for RT-qPCR in the rat hypothalamus and intestine for the study of obesity. Int J Obes (Lond) 2013; 38:192-7. [PMID: 23736358 DOI: 10.1038/ijo.2013.86] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/28/2013] [Accepted: 04/28/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Obesity has a complicated metabolic pathology, and defining the underlying mechanisms of obesity requires integrative studies with molecular end points. Real-time quantitative PCR (RT-qPCR) is a powerful tool that has been widely utilized. However, the importance of using carefully validated reference genes in RT-qPCR seems to have been overlooked in obesity-related research. The objective of this study was to select a set of reference genes with stable expressions to be used for RT-qPCR normalization in rats under fasted vs re-fed and chow vs high-fat diet (HFD) conditions. DESIGN Male long-Evans rats were treated under four conditions: chow/fasted, chow/re-fed, HFD/fasted and HFD/re-fed. Expression stabilities of 13 candidate reference genes were evaluated in the rat hypothalamus, duodenum, jejunum and ileum using the ReFinder software program. The optimal number of reference genes needed for RT-qPCR analyses was determined using geNorm. RESULTS Using geNorm analysis, we found that it was sufficient to use the two most stably expressed genes as references in RT-qPCR analyses for each tissue under specific experimental conditions. B2M and RPLP0 in the hypothalamus, RPS18 and HMBS in the duodenum, RPLP2 and RPLP0 in the jejunum and RPS18 and YWHAZ in the ileum were the most suitable pairs for a normalization study when the four aforementioned experimental conditions were considered. CONCLUSIONS Our study demonstrates that gene expression levels of reference genes commonly used in obesity-related studies, such as ACTB or RPS18, are altered by changes in acute or chronic energy status. These findings underline the importance of using reference genes that are stable in expression across experimental conditions when studying the rat hypothalamus and intestine, because these tissues have an integral role in the regulation of energy homeostasis. It is our hope that this study will raise awareness among obesity researchers on the essential need for reference gene validation in gene expression studies.
Collapse
Affiliation(s)
- B Li
- Department of Internal Medicine, Division of Endocrinology University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - E K Matter
- Department of Internal Medicine, Division of Endocrinology University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - H T Hoppert
- Department of Internal Medicine, Division of Endocrinology University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - B E Grayson
- Department of Internal Medicine, Division of Endocrinology University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - R J Seeley
- Department of Internal Medicine, Division of Endocrinology University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - D A Sandoval
- Department of Internal Medicine, Division of Endocrinology University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
45
|
Tong J, Liu W, Wang X, Han X, Hyrien O, Samadani U, Smith DH, Huang JH. Inhibition of Nogo-66 receptor 1 enhances recovery of cognitive function after traumatic brain injury in mice. J Neurotrauma 2013; 30:247-58. [PMID: 22967270 DOI: 10.1089/neu.2012.2493] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) axons recover poorly following injury because of the expression of myelin-derived inhibitors of axonal outgrowth such as Nogo, myelin-associated glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein (OMgp), all of which bind to the Nogo-66 receptor 1 (NgR1). Herein we examine the role of NgR1 in the recovery of motor and cognitive function after traumatic brain injury (TBI) using a controlled cortical impact (CCI) model in NgR1 knockout (KO) and wild-type (WT) mice. Four weeks post-injury, scores on the Novel Object Recognition test were significantly increased in NgR1 KO mice compared with WT mice (p<0.05), but motor behavior test scores did not differ significantly between the two groups. Nissl staining showed that NgR1 KO mice had less brain injury volume 2 weeks after CCI (p<0.05). Histological analysis revealed more doublecortin (DCX+) cells (p<0.01) and more Ki-67+ cells in the contralateral dentate gyrus (DG) (p<0.05) 2 weeks after CCI in NgR1 KO mice than in WT. Furthermore, DCX+ cells still retained their longer processes in KO mice (p<0.01) 4 weeks following trauma. The number of bromodeoxyuridine (BrdU)+ cells did not differ between the two groups at 4 weeks post-trauma, but KO mice had higher numbers of cells that co-stained with NeuN, a marker of mature neurons. Increased transcription of growth-associated protein (GAP)-43 in both the injured and contralateral sides of the hippocampus (both p<0.05) was detected in NgR1 KO mice relative to WT. These data suggest that NgR1 negatively influences plasticity and cognitive recovery after TBI.
Collapse
Affiliation(s)
- Jing Tong
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lindqvist A, Manders D, Word RA. The impact of reference gene selection in quantification of gene expression levels in guinea pig cervical tissues and cells. BMC Res Notes 2013; 6:34. [PMID: 23363446 PMCID: PMC3565975 DOI: 10.1186/1756-0500-6-34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate measurements of mRNA expression levels in tissues or cells are crucially dependent on the use of relevant reference genes for normalization of data. In this study we used quantitative real-time PCR and two Excel-based applets (geNorm and BestKeeper) to determine the best reference genes for quantification of target gene mRNA in a complex tissue organ such as the guinea pig cervix. RESULTS Gene expression studies were conducted in cervical epithelium and stroma during pregnancy and parturition and in cultures of primary cells from this tissue. Among 15 reference gene candidates examined, both geNorm and BestKeeper found CLF1 and CLTC to be the most stable in cervical stroma and cervical epithelium, ACTB and PPIB in primary stroma cells, and CLTC and PPIB in primary epithelial cells. The order of stability among the remaining candidate genes was not in such an agreement. Commonly used reference such as GAPDH and B2M demonstrated lower stability. Determination of pairwise variation values for reference gene combinations using geNorm revealed that the geometric mean of the two most stable genes provides sufficient normalization in most cases. However, for cervical stroma tissue in which many reference gene candidates displayed low stability, inclusion of three reference genes in the geometric mean may improve accuracy of target gene expression level analyses. Using the top ranked reference genes we examined the expression levels of target gene PTGS2 in cervical tissue and cultured cervical cells. We compared the results with PTGS2 expression normalized to the least stable gene and found significant differences in gene expression, up to 10-fold in some samples, emphasizing the importance of appropriately selecting reference genes. CONCLUSIONS We recommend using the geometric mean of CFL1 and CLTC for normalization of qPCR studies in guinea pig cervical tissue studies, ACTB and PPIB in primary stroma cells and CLTC and PPIB in primary epithelial cells from guinea pig.
Collapse
Affiliation(s)
- Annika Lindqvist
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd F2,302, Dallas, TX 75390, USA.
| | | | | |
Collapse
|
47
|
Ragni E, Viganò M, Rebulla P, Giordano R, Lazzari L. What is beyond a qRT-PCR study on mesenchymal stem cell differentiation properties: how to choose the most reliable housekeeping genes. J Cell Mol Med 2013; 17:168-80. [PMID: 23305553 PMCID: PMC3823147 DOI: 10.1111/j.1582-4934.2012.01660.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/10/2012] [Indexed: 12/18/2022] Open
Abstract
In the last years, mesenchymal stem cells (MSCs) have been identified as an attractive cell population in regenerative medicine. In view of future therapeutic applications, the study of specific differentiation-related gene expression is a pivotal prerequisite to define the most appropriate MSC source for clinical translation. In this context, it is crucial to use stable housekeeping genes (HGs) for normalization of qRT-PCR to obtain validated and comparable results. By our knowledge, an exhaustive validation study of HGs comparing MSCs from different sources under various differentiation conditions is still missing. In this pivotal study, we compared the expression levels of 12 genes (ACTB, Β2M, EF1alpha, GAPDH, GUSB, PPIA, RPL13A, RPLP0, TBP, UBC, YWHAZ and 18S rRNA) to assess their suitability as HGs in MSCs during adipogenic, osteogenic and chondrogenic differentiation. We demonstrated that many of the most popular HGs including 18S rRNA, B2M and ACTB were inadequate for normalization, whereas TBP/YWHAZ/GUSB were frequently identified among the best performers. Moreover, we showed the dramatic effects of suboptimal HGs choice on the quantification of cell differentiation markers, thus interfering with a reliable comparison of the lineage potential properties among various MSCs. Thus, in the emerging field of regenerative medicine, the identification of the most appropriate MSC source and cell line is so crucial for the treatment of patients that being inaccurate in the first step of the stem cell characterization can bring important consequences for the patients and for the promising potential of stem cell therapy.
Collapse
Affiliation(s)
- Enrico Ragni
- Cell Factory Franco Calori, Center for Transfusion Medicine, Cellular Therapy and Cryobiology, Department of Regenerative Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | | | | | | | | |
Collapse
|
48
|
Abstract
AIM Identify sex- and hormone-independent housekeeping genes in rat liver by using a commercially available quantitative reverse transcription-polymerase chain reaction array designed to measure the expression of 32 rat housekeeping genes. RESULTS We found that the levels of five of the genes were sexually dimorphic, 22 genes were overexpressed, and one was underexpressed in multi-hormone-deficient hypophysectomized rats of both sexes. Only three genes fulfilled the stability criteria determined by geNorm and NormFinder as suitable housekeeping genes. Normalizing quantitative reverse transcription-polymerase chain reaction data with either of these three genes alone, the geometric means of any two of the genes, or even the geometric mean of all the three genes, produced similar results. In contrast, application of unproven housekeeping genes could lead to erroneous conclusions, having found that insulin-like growth factor 1 messenger RNA levels could be calculated dramatically either as male or as female predominant depending on the choice of housekeeping gene. CONCLUSION It is essential to validate the constancy of housekeeping genes under every experimental condition. (This research protocol was approved by the university's Institutional Animal Care and Use Committee.).
Collapse
Affiliation(s)
| | | | - Bernard H. Shapiro
- Corresponding author to whom proofs should be sent at the above address 215-898-1772 [telephone],
| |
Collapse
|
49
|
Chawla MK, Penner MR, Olson KM, Sutherland VL, Mittelman-Smith MA, Barnes CA. Spatial behavior and seizure-induced changes in c-fos mRNA expression in young and old rats. Neurobiol Aging 2012; 34:1184-98. [PMID: 23158763 DOI: 10.1016/j.neurobiolaging.2012.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 10/03/2012] [Accepted: 10/19/2012] [Indexed: 12/21/2022]
Abstract
The subcellular processes of gene induction and expression in the hippocampus are likely to underlie some of the known age-related impairments in spatial learning and memory. It is well established that immediate-early genes are rapidly and transiently induced in response to neuronal activity and this expression is required for stabilization of durable memories. To examine whether age-related memory impairment might be caused, in part, by differences in the level of cellular activation or subcellular processing, c-fos expression in CA1 pyramidal and dentate gyrus granule cells in the dorsal hippocampus of young and old rats was determined using fluorescence in situ hybridization and reverse transcription polymerase chain reaction. No significant age differences were found in the numbers of pyramidal or granule cells that show c-fos expression; however, c-fos mRNA transcripts were altered in these 2 cell types in aged animals. These findings suggest that though the networks of cells that participate in behavior or seizure-induced activity are largely maintained in aged rats, their RNA transcript levels are altered. This might, in part, contribute to cognitive deficits frequently observed with advancing age.
Collapse
Affiliation(s)
- Monica K Chawla
- ARL Division of Neural Systems, Memory and Aging and Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ 85724-5115, USA
| | | | | | | | | | | |
Collapse
|
50
|
Apparent versus true gene expression changes of three hypoxia-related genes in autopsy derived tissue and the importance of normalisation. Int J Legal Med 2012; 127:335-44. [DOI: 10.1007/s00414-012-0787-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/16/2012] [Indexed: 01/21/2023]
|