1
|
McPherson JI, Prakash Krishnan Muthaiah V, Kaliyappan K, Leddy JJ, Personius KE. Temporal expression of brainstem neurotrophic proteins following mild traumatic brain injury. Brain Res 2024; 1835:148908. [PMID: 38582416 DOI: 10.1016/j.brainres.2024.148908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
BDNF, a neurotrophic factor, and its receptors have been implicated in the pathophysiology of mild traumatic brain injury (mTBI). The brainstem houses many vital functions, that are also associated with signs and symptoms of mTBI, but has been understudied in mTBI animal models. We determined the extent to which neurotrophic protein and associated receptor expression is affected within the brainstem of adult rats following mTBI. Their behavioral function was assessed and temporal expression of the 'negative' regulators of neuronal function (p75, t-TrkB, and pro-BDNF) and 'positive' neuroprotective (FL-TrkB and m-BDNF) protein isoforms were determined via western blot and immunohistochemistry at 1, 3, 7, and 14 post-injury days (PID) following mTBI or sham (control) procedure. Within the brainstem, p75 expression increased at PID 1 vs. sham animals. t-TrkB and pro-BDNF expression increased at PID 7 and 14. The 'positive' protein isoforms of FL-TrkB and m-BDNF expression were increased only at PID 7. The ratio of t-TrkB:FL-TrkB (negative:positive) was substantial across groups and time points, suggesting a negative impact of neurotrophic signaling on neuronal function. Additional NeuN experiments revealed cell death occurring within a subset of neurons within the medulla. While behavioral measures improved by PID 7-14, negative neurotrophic biochemical responses persisted. Despite the assertion that mTBI produces "mild" injury, evidence of cell death was observed in the medulla. Ratios of TrkB and BDNF isoforms with conflicting functions suggest that future work should specifically measure each subtype since they induce opposing downstream effects on neuronal function.
Collapse
Affiliation(s)
- Jacob I McPherson
- Department of Rehabilitation Science, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, United States.
| | - Vijaya Prakash Krishnan Muthaiah
- Department of Rehabilitation Science, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, United States
| | - Kathiravan Kaliyappan
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - John J Leddy
- Department of Orthopaedics and Sports Medicine, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Kirkwood E Personius
- Department of Rehabilitation Science, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
2
|
Freidin D, Har-Even M, Rubovitch V, Murray KE, Maggio N, Shavit-Stein E, Keidan L, Citron BA, Pick CG. Cognitive and Cellular Effects of Combined Organophosphate Toxicity and Mild Traumatic Brain Injury. Biomedicines 2023; 11:1481. [PMID: 37239152 PMCID: PMC10216664 DOI: 10.3390/biomedicines11051481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic brain injury (TBI) is considered the most common neurological disorder among people under the age of 50. In modern combat zones, a combination of TBI and organophosphates (OP) can cause both fatal and long-term effects on the brain. We utilized a mouse closed-head TBI model induced by a weight drop device, along with OP exposure to paraoxon. Spatial and visual memory as well as neuron loss and reactive astrocytosis were measured 30 days after exposure to mild TBI (mTBI) and/or paraoxon. Molecular and cellular changes were assessed in the temporal cortex and hippocampus. Cognitive and behavioral deficits were most pronounced in animals that received a combination of paraoxon exposure and mTBI, suggesting an additive effect of the insults. Neuron survival was reduced in proximity to the injury site after exposure to paraoxon with or without mTBI, whereas in the dentate gyrus hilus, cell survival was only reduced in mice exposed to paraoxon prior to sustaining a mTBI. Neuroinflammation was increased in the dentate gyrus in all groups exposed to mTBI and/or to paraoxon. Astrocyte morphology was significantly changed in mice exposed to paraoxon prior to sustaining an mTBI. These results provide further support for assumptions concerning the effects of OP exposure following the Gulf War. This study reveals additional insights into the potentially additive effects of OP exposure and mTBI, which may result in more severe brain damage on the modern battlefield.
Collapse
Affiliation(s)
- Dor Freidin
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.F.); (M.H.-E.)
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.F.); (M.H.-E.)
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.F.); (M.H.-E.)
| | - Kathleen E. Murray
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research & Development, East Orange, NJ 07018, USA
- Rutgers School of Graduate Studies, Newark, NJ 07103, USA
| | - Nicola Maggio
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Efrat Shavit-Stein
- Department of Neurology, The Chaim Sheba Medical Center, Ramat Gan 52626202, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lee Keidan
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.F.); (M.H.-E.)
| | - Bruce A. Citron
- Laboratory of Molecular Biology, VA New Jersey Health Care System, Research & Development, East Orange, NJ 07018, USA
- Rutgers School of Graduate Studies, Newark, NJ 07103, USA
- Department of Pharmacology, Physiology & Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.F.); (M.H.-E.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- The Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Ketogenic Diet as a potential treatment for traumatic brain injury in mice. Sci Rep 2021; 11:23559. [PMID: 34876621 PMCID: PMC8651717 DOI: 10.1038/s41598-021-02849-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a brain dysfunction without present treatment. Previous studies have shown that animals fed ketogenic diet (KD) perform better in learning tasks than those fed standard diet (SD) following brain injury. The goal of this study was to examine whether KD is a neuroprotective in TBI mouse model. We utilized a closed head injury model to induce TBI in mice, followed by up to 30 days of KD/SD. Elevated levels of ketone bodies were confirmed in the blood following KD. Cognitive and behavioral performance was assessed post injury and molecular and cellular changes were assessed within the temporal cortex and hippocampus. Y-maze and Novel Object Recognition tasks indicated that mTBI mice maintained on KD displayed better cognitive abilities than mTBI mice maintained on SD. Mice maintained on SD post-injury demonstrated SIRT1 reduction when compared with uninjured and KD groups. In addition, KD management attenuated mTBI-induced astrocyte reactivity in the dentate gyrus and decreased degeneration of neurons in the dentate gyrus and in the cortex. These results support accumulating evidence that KD may be an effective approach to increase the brain’s resistance to damage and suggest a potential new therapeutic strategy for treating TBI.
Collapse
|
4
|
Qubty D, Schreiber S, Rubovitch V, Boag A, Pick CG. No Significant Effects of Cellphone Electromagnetic Radiation on Mice Memory or Anxiety: Some Mixed Effects on Traumatic Brain Injured Mice. Neurotrauma Rep 2021; 2:381-390. [PMID: 34723249 PMCID: PMC8550818 DOI: 10.1089/neur.2021.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Current literature details an array of contradictory results regarding the effect of radiofrequency electromagnetic radiation (RF-EMR) on health, both in humans and in animal models. The present study was designed to ascertain the conflicting data published regarding the possible impact of cellular exposure (radiation) on male and female mice as far as spatial memory, anxiety, and general well-being is concerned. To increase the likelihood of identifying possible "subtle" effects, we chose to test it in already cognitively impaired (following mild traumatic brain injury; mTBI) mice. Exposure to cellular radiation by itself had no significant impact on anxiety levels or spatial/visual memory in mice. When examining the dual impact of mTBI and cellular radiation on anxiety, no differences were found in the anxiety-like behavior as seen at the elevated plus maze (EPM). When exposed to both mTBI and cellular radiation, our results show improvement of visual memory impairment in both female and male mice, but worsening of the spatial memory of female mice. These results do not allow for a decisive conclusion regarding the possible hazards of cellular radiation on brain function in mice, and the mTBI did not facilitate identification of subtle effects by augmenting them.
Collapse
Affiliation(s)
- Doaa Qubty
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shaul Schreiber
- Department of Psychiatry, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Boag
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Psychiatry, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,The Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv, Israel.,Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Tweedie D, Karnati HK, Mullins R, Pick CG, Hoffer BJ, Goetzl EJ, Kapogiannis D, Greig NH. Time-dependent cytokine and chemokine changes in mouse cerebral cortex following a mild traumatic brain injury. eLife 2020; 9:55827. [PMID: 32804078 PMCID: PMC7473773 DOI: 10.7554/elife.55827] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is a serious global health problem, many individuals live with TBI-related neurological dysfunction. A lack of biomarkers of TBI has impeded medication development. To identify new potential biomarkers, we time-dependently evaluated mouse brain tissue and neuronally derived plasma extracellular vesicle proteins in a mild model of TBI with parallels to concussive head injury. Mice (CD-1, 30–40 g) received a sham procedure or 30 g weight-drop and were euthanized 8, 24, 48, 72, 96 hr, 7, 14 and 30 days later. We quantified ipsilateral cortical proteins, many of which differed from sham by 8 hours post-mTBI, particularly GAS-1 and VEGF-B were increased while CXCL16 reduced, 23 proteins changed in 4 or more of the time points. Gene ontology pathways mapped from altered proteins over time related to pathological and physiological processes. Validation of proteins identified in this study may provide utility as treatment response biomarkers.
Collapse
Affiliation(s)
- David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| | - Hanuma Kumar Karnati
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| | - Roger Mullins
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Sylvan Adams Sports Institute, and Dr. Miriam and SheldonG. Adelson Chair and Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv, Israel
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, United States
| | - Edward J Goetzl
- Department of Medicine, University of California Medical Center, San Francisco, San Francisco, United States
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
| |
Collapse
|
6
|
Meningher I, Bernstein-Eliav M, Rubovitch V, Pick CG, Tavor I. Alterations in Network Connectivity after Traumatic Brain Injury in Mice. J Neurotrauma 2020; 37:2169-2179. [PMID: 32434427 DOI: 10.1089/neu.2020.7063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Victims of mild traumatic brain injury (mTBI) usually do not display clear morphological brain defects, but frequently have long-lasting cognitive deficits, emotional difficulties, and behavioral disturbances. In the present study we used diffusion magnetic resonance imaging (dMRI) combined with graph theory measurements to investigate the effects of mTBI on brain network connectivity. We employed a non-invasive closed-head weight-drop mouse model to produce mTBI. Mice were scanned at two time points, 24 h before the injury and either 7 or 30 days following the injury. Connectivity matrices were computed for each animal at each time point, and these were subsequently used to extract graph theory measures reflecting network integration and segregation, on both the global (i.e., whole brain) and local (i.e., single regions) levels. We found that cluster coefficient, reflecting network segregation, decreased 7 days post-injury and then returned to baseline level 30 days following the injury. Global efficiency, reflecting network integration, demonstrated opposite patterns in the left and right hemispheres, with an increase of right hemisphere efficiency at 7 days and then a decrease in efficiency following 30 days, and vice versa in the left hemisphere. These findings suggest a possible compensation mechanism acting to moderate the influence of mTBI on the global network. Moreover, these results highlight the importance of tracking the dynamic changes in mTBI over time, and the potential of structural connectivity as a promising approach for studying network integrity and pathology progression in mTBI.
Collapse
Affiliation(s)
- Inbar Meningher
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Bernstein-Eliav
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv, Israel
| | - Ido Tavor
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
7
|
Motor Effects of Minimal Traumatic Brain Injury in Mice. J Mol Neurosci 2019; 70:365-377. [PMID: 31820347 DOI: 10.1007/s12031-019-01422-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022]
Abstract
Traumatic brain injury (TBI) is considered to be the leading cause of disability and death among young people. Up to 30% of mTBI patients report motor impairments, such as altered coordination and impaired balance and gait. The objective of the present study was to characterize motor performance and motor learning changes, in order to achieve a more thorough understanding of the possible motor consequences of mTBI in humans. Mice were exposed to traumatic brain injury using the weight-drop model and subsequently subjected to a battery of behavioral motor tests. Immunohistochemistry was conducted in order to evaluate neuronal survival and synaptic connectivity. TBI mice showed a different walking pattern on the Erasmus ladder task, without any significant impairment in motor performance and motor learning. In the running wheels, mTBI mice showed reduced activity during the second dark phase and increased activity during the second light phase compared to the control mice. There was no difference in the sum of wheel revolutions throughout the experiment. On the Cat-Walk paradigm, the mice showed a wider frontal base of support post mTBI. The same mice spent a significantly greater percent of time standing on three paws post mTBI compared with controls. mTBI mice also showed a decrease in the number of neurons in the temporal cortex compared with the control group. In summary, mTBI mice suffered from mild motor impairments, minor changes in the circadian clock, and neuronal damage. A more in-depth examination of the mechanisms by which mTBI compensate for motor deficits is necessary.
Collapse
|
8
|
Lecca D, Bader M, Tweedie D, Hoffman AF, Jung YJ, Hsueh SC, Hoffer BJ, Becker RE, Pick CG, Lupica CR, Greig NH. (-)-Phenserine and the prevention of pre-programmed cell death and neuroinflammation in mild traumatic brain injury and Alzheimer's disease challenged mice. Neurobiol Dis 2019; 130:104528. [PMID: 31295555 PMCID: PMC6716152 DOI: 10.1016/j.nbd.2019.104528] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/05/2019] [Accepted: 07/06/2019] [Indexed: 01/12/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a risk factor for neurodegenerative disorders, such as Alzheimer's disease (AD) and Parkinson's disease (PD). TBI-derived neuropathologies are promoted by inflammatory processes: chronic microgliosis and release of pro-inflammatory cytokines that further promote neuronal dysfunction and loss. Herein, we evaluated the effect on pre-programmed cell death/neuroinflammation/synaptic integrity and function of (-)-Phenserine tartrate (Phen), an agent originally developed for AD. This was studied at two clinically translatable doses (2.5 and 5.0 mg/kg, BID), in a weight drop (concussive) mTBI model in wild type (WT) and AD APP/PSEN1 transgenic mice. Phen mitigated mTBI-induced cognitive impairment, assessed by Novel Object Recognition and Y-maze behavioral paradigms, in WT mice. Phen fully abated mTBI-induced neurodegeneration, evaluated by counting Fluoro-Jade C-positive (FJC+) cells, in hippocampus and cortex of WT mice. In APP/PSEN1 mice, degenerating cell counts were consistently greater across all experimental groups vs. WT mice. mTBI elevated FJC+ cell counts vs. the APP/PSEN1 control (sham) group, and Phen similarly mitigated this. Anti-inflammatory effects on microglial activation (IBA1-immunoreactivity (IR)) and the pro-inflammatory cytokine TNF-α were evaluated. mTBI increased IBA1-IR and TNF-α/IBA1 colocalization vs. sham, both in WT and APP/PSEN1 mice. Phen decreased IBA1-IR throughout hippocampi and cortices of WT mice, and in cortices of AD mice. Phen, likewise, reduced levels of IBA1/TNF-α-IR colocalization volume across all areas in WT animals, with a similar trend in APP/PSEN1 mice. Actions on astrocyte activation by mTBI were followed by evaluating GFAP, and were similarly mitigated by Phen. Synaptic density was evaluated by quantifying PSD-95+ dendritic spines and Synaptophysin (Syn)-IR. Both were significantly reduced in mTBI vs. sham in both WT and APP/PSEN1 mice. Phen fully reversed the PSD-95+ spine loss in WT and Syn-IR decrease in both WT and APP/PSEN1 mice. To associate immunohistochemical changes in synaptic markers with function, hippocampal long term potentiation (LTP) was induced in WT mice. LTP was impaired by mTBI, and this impairment was mitigated by Phen. In synopsis, clinically translatable doses of Phen ameliorated mTBI-mediated pre-programmed cell death/neuroinflammation/synaptic dysfunction in WT mice, consistent with fully mitigating mTBI-induced cognitive impairments. Phen additionally demonstrated positive actions in the more pathologic brain microenvironment of AD mice, further supporting consideration of its repurposing as a treatment for mTBI.
Collapse
Affiliation(s)
- Daniela Lecca
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Miaad Bader
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Alexander F Hoffman
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 21224 Baltimore, MD, USA
| | - Yoo Jin Jung
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Shin-Chang Hsueh
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Robert E Becker
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA; Aristea Translational Medicine Corporation, Park City, UT 84098, USA
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel; Center for the Biology of Addictive Diseases, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Carl R Lupica
- Electrophysiology Research Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, 21224 Baltimore, MD, USA
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
9
|
Bodnar CN, Roberts KN, Higgins EK, Bachstetter AD. A Systematic Review of Closed Head Injury Models of Mild Traumatic Brain Injury in Mice and Rats. J Neurotrauma 2019; 36:1683-1706. [PMID: 30661454 PMCID: PMC6555186 DOI: 10.1089/neu.2018.6127] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles. Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done and what knowledge is missing in the field to reduce the burden of mTBI.
Collapse
Affiliation(s)
- Colleen N. Bodnar
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Emma K. Higgins
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
10
|
Glotfelty EJ, Delgado TE, Tovar-y-Romo LB, Luo Y, Hoffer BJ, Olson L, Karlsson TE, Mattson MP, Harvey BK, Tweedie D, Li Y, Greig NH. Incretin Mimetics as Rational Candidates for the Treatment of Traumatic Brain Injury. ACS Pharmacol Transl Sci 2019; 2:66-91. [PMID: 31396586 PMCID: PMC6687335 DOI: 10.1021/acsptsci.9b00003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI) is becoming an increasing public health issue. With an annually estimated 1.7 million TBIs in the United States (U.S) and nearly 70 million worldwide, the injury, isolated or compounded with others, is a major cause of short- and long-term disability and mortality. This, along with no specific treatment, has made exploration of TBI therapies a priority of the health system. Age and sex differences create a spectrum of vulnerability to TBI, with highest prevalence among younger and older populations. Increased public interest in the long-term effects and prevention of TBI have recently reached peaks, with media attention bringing heightened awareness to sport and war related head injuries. Along with short-term issues, TBI can increase the likelihood for development of long-term neurodegenerative disorders. A growing body of literature supports the use of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and glucagon (Gcg) receptor (R) agonists, along with unimolecular combinations of these therapies, for their potent neurotrophic/neuroprotective activities across a variety of cellular and animal models of chronic neurodegenerative diseases (Alzheimer's and Parkinson's diseases) and acute cerebrovascular disorders (stroke). Mild or moderate TBI shares many of the hallmarks of these conditions; recent work provides evidence that use of these compounds is an effective strategy for its treatment. Safety and efficacy of many incretin-based therapies (GLP-1 and GIP) have been demonstrated in humans for the treatment of type 2 diabetes mellitus (T2DM), making these compounds ideal for rapid evaluation in clinical trials of mild and moderate TBI.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Thomas E. Delgado
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Luis B. Tovar-y-Romo
- Division
of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yu Luo
- Department
of Molecular Genetics, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Barry J. Hoffer
- Department
of Neurosurgery, Case Western Reserve University
School of Medicine, Cleveland, Ohio 44106, United States
| | - Lars Olson
- Department
of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Mark P. Mattson
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Brandon K. Harvey
- Molecular
Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience
Department, National Institute on Drug Abuse,
National Institutes of Health, Baltimore, Maryland 21224, United States
| | - David Tweedie
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Yazhou Li
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | - Nigel H. Greig
- Translational
Gerontology Branch, and Laboratory of Neurosciences, Intramural
Research Program, National Institute on
Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| |
Collapse
|
11
|
Rubovitch V, Pharayra A, Har-Even M, Dvir O, Mattson MP, Pick CG. Dietary Energy Restriction Ameliorates Cognitive Impairment in a Mouse Model of Traumatic Brain Injury. J Mol Neurosci 2019; 67:613-621. [PMID: 30734244 DOI: 10.1007/s12031-019-01271-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) is one of the most common causes of neurological damage in young people. It was previously reported that dietary restriction, by either intermittent fasting (IF) or daily caloric restriction (CR), could protect neurons against dysfunction and degeneration in animal models of stroke and Parkinson's disease. Recently, several studies have shown that the protein Sirtuin 1 (SIRT1) plays a significant role in the induced neuroprotection following dietary restriction. In the present study, we found a significant reduction of SIRT1 levels in the cortex and hippocampus in a mouse model of mild weight-drop closed head TBI. This reduction was prevented in mice maintained on IF (alternate day fasting) and CR initiated after the head trauma. Hippocampus-dependent learning and memory (measured using a novel object recognition test) was impaired 30 days post-injury in mice fed ad libitum, but not in mice in the IF and CR groups. These results suggest a clinical potential for IF and/or CR as an intervention to reduce brain damage and improve functional outcome in TBI patients.
Collapse
Affiliation(s)
- V Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - A Pharayra
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - M Har-Even
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - O Dvir
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - M P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - C G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, 69978, Tel-Aviv, Israel.,The Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel-Aviv University, 69978, Tel-Aviv, Israel
| |
Collapse
|
12
|
GM1 ganglioside prevents axonal regeneration inhibition and cognitive deficits in a mouse model of traumatic brain injury. Sci Rep 2018; 8:13340. [PMID: 30190579 PMCID: PMC6127193 DOI: 10.1038/s41598-018-31623-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/13/2018] [Indexed: 11/08/2022] Open
Abstract
Traumatic Brain Injury (TBI) is one of the most common causes of neurological damage in young populations. It has been previously suggested that one of the mechanisms that underlie brain injury is Axonal Outgrowth Inhibition (AOI) that is caused by altered composition of the gangliosides on the axon surface. In the present study, we have found a significant reduction of GM1 ganglioside levels in the cortex in a closed head traumatic brain injury model of a mouse, induced by a weight drop device. In addition, axonal regeneration in the brains of the injured mice was affected as seen by the expression of the axonal marker pNF-H and the growth cones (visualized by F-actin and β-III-tubulin). NeuN immunostaining revealed mTBI-induced damage to neuronal survival. Finally, as expected, spatial and visual memories (measured by the Y-maze and the Novel Object Recognition tests, respectively) were also damaged 7 and 30 days post injury. A single low dose of GM1 shortly after the injury (2 mg/kg; IP) prevented all of the deficits mentioned above. These results reveal additional insights into the neuroprotective characteristics of GM1 in prevention of biochemical, cellular and cognitive changes caused by trauma, and may suggest a potential intervention for mTBI.
Collapse
|
13
|
Exendin-4 attenuates blast traumatic brain injury induced cognitive impairments, losses of synaptophysin and in vitro TBI-induced hippocampal cellular degeneration. Sci Rep 2017. [PMID: 28623327 PMCID: PMC5473835 DOI: 10.1038/s41598-017-03792-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mild blast traumatic brain injury (B-TBI) induced lasting cognitive impairments in novel object recognition and less severe deficits in Y-maze behaviors. B-TBI significantly reduced the levels of synaptophysin (SYP) protein staining in cortical (CTX) and hippocampal (HIPP) tissues. Treatment with exendin-4 (Ex-4) delivered by subcutaneous micro-osmotic pumps 48 hours prior to or 2 hours immediately after B-TBI prevented the induction of both cognitive deficits and B-TBI induced changes in SYP staining. The effects of a series of biaxial stretch injuries (BSI) on a neuronal derived cell line, HT22 cells, were assessed in an in vitro model of TBI. Biaxial stretch damage induced shrunken neurites and cell death. Treatment of HT22 cultures with Ex-4 (25 to 100 nM), prior to injury, attenuated the cytotoxic effects of BSI and preserved neurite length similar to sham treated cells. These data imply that treatment with Ex-4 may represent a viable option for the management of secondary events triggered by blast-induced, mild traumatic brain injury that is commonly observed in militarized zones.
Collapse
|
14
|
Tweedie D, Rachmany L, Kim DS, Rubovitch V, Lehrmann E, Zhang Y, Becker KG, Perez E, Pick CG, Greig NH. Mild traumatic brain injury-induced hippocampal gene expressions: The identification of target cellular processes for drug development. J Neurosci Methods 2016; 272:4-18. [PMID: 26868732 PMCID: PMC4977213 DOI: 10.1016/j.jneumeth.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Neurological dysfunction after traumatic brain injury (TBI) poses short-term or long-lasting health issues for family members and health care providers. Presently there are no approved medicines to treat TBI. Epidemiological evidence suggests that TBI may cause neurodegenerative disease later in life. In an effort to illuminate target cellular processes for drug development, we examined the effects of a mild TBI on hippocampal gene expression in mouse. METHODS mTBI was induced in a closed head, weight drop-system in mice (ICR). Animals were anesthetized and subjected to mTBI (30g). Fourteen days after injury the ipsilateral hippocampus was utilized for cDNA gene array studies. mTBI animals were compared with sham-operated animals. Genes regulated by TBI were identified to define TBI-induced physiological/pathological processes. mTBI regulated genes were divided into functional groupings to provide gene ontologies. Genes were further divided to identify molecular/cellular pathways regulated by mTBI. RESULTS Numerous genes were regulated after a single mTBI event that mapped to many ontologies and molecular pathways related to inflammation and neurological physiology/pathology, including neurodegenerative disease. CONCLUSIONS These data illustrate diverse transcriptional changes in hippocampal tissues triggered by a single mild injury. The systematic analysis of individual genes that lead to the identification of functional categories, such as gene ontologies and then molecular pathways, illustrate target processes of relevance to TBI pathology. These processes may be further dissected to identify key factors that can be evaluated at the protein level to highlight possible treatments for TBI in human disease and potential biomarkers of neurodegenerative processes.
Collapse
Affiliation(s)
- David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Lital Rachmany
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Dong Seok Kim
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Peptron Inc., 37-24, Yuseong-daero 1628 beon-gil, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Elin Lehrmann
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Evelyn Perez
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
15
|
Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, Greig NH, Wang JY. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods 2016; 272:38-49. [PMID: 27382003 PMCID: PMC5201203 DOI: 10.1016/j.jneumeth.2016.06.018] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Neuroinflammation is prominent in the short and long-term consequences of neuronal injuries that occur after TBI. Neuroinflammation involves the activation of glia, including microglia and astrocytes, to release inflammatory mediators within the brain, and the subsequent recruitment of peripheral immune cells. Various animal models of TBI have been developed that have proved valuable to elucidate the pathophysiology of the disorder and to assess the safety and efficacy of novel therapies prior to clinical trials. These models provide an excellent platform to delineate key injury mechanisms that associate with types of injury (concussion, contusion, and penetration injuries) that occur clinically for the investigation of mild, moderate, and severe forms of TBI. Additionally, TBI modeling in genetically engineered mice, in particular, has aided the identification of key molecules and pathways for putative injury mechanisms, as targets for development of novel therapies for human TBI. This Review details the evidence showing that neuroinflammation, characterized by the activation of microglia and astrocytes and elevated production of inflammatory mediators, is a critical process occurring in various TBI animal models, provides a broad overview of commonly used animal models of TBI, and overviews representative techniques to quantify markers of the brain inflammatory process. A better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI.
Collapse
Affiliation(s)
- Chong-Chi Chiu
- Department of General Surgery, Chi Mei Medical Center, Tainan and Liouying, Taiwan
| | - Yi-En Liao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ling-Yu Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ya Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hanuma K Karnati
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
16
|
Levy D, Edut S, Baraz-Goldstein R, Rubovitch V, Defrin R, Bree D, Gariepy H, Zhao J, Pick CG. Responses of dural mast cells in concussive and blast models of mild traumatic brain injury in mice: Potential implications for post-traumatic headache. Cephalalgia 2016; 36:915-23. [PMID: 26566937 PMCID: PMC5500910 DOI: 10.1177/0333102415617412] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/22/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chronic post-traumatic headache (PTH) is one of the most common symptoms of mild traumatic brain injury (mTBI) but its underlying mechanisms remain unknown. Inflammatory degranulation of dural mast cells (MCs) is thought to promote headache, and may play a role in PTH. Whether mTBI is associated with persistent degranulation of dural MCs is yet to be determined. METHODS Histochemistry was used to evaluate time course changes in dural MC density and degranulation level in concussive head trauma and blast mouse models of mTBI. The effects of sumatriptan and the MC stabilizer cromolyn sodium on concussion-evoked dural MC degranulation were also investigated. RESULTS Concussive head injury evoked persistent MC degranulation for at least 30 days. Blast trauma gave rise to a delayed MC degranulation response commencing at seven days that also persisted for at least 30 days. Neither sumatriptan nor cromolyn treatment reduced concussion-evoked persistent MC degranulation. CONCLUSIONS mTBI evoked by closed head injury or blast exposure is associated with persistent dural MC degranulation. Such a response in mTBI patients may contribute to PTH. Amelioration of PTH by sumatriptan may not involve inhibition of dural MC degranulation. If persistent dural MC degranulation contributes to PTH, then cromolyn treatment may not be effective.
Collapse
Affiliation(s)
- Dan Levy
- Department of Anesthesia Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, USA Harvard Medical School, USA
| | - Shahaf Edut
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Renana Baraz-Goldstein
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Ruth Defrin
- Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Israel Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Dara Bree
- Department of Anesthesia Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, USA Harvard Medical School, USA
| | - Helaine Gariepy
- Department of Anesthesia Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, USA Harvard Medical School, USA
| | - Jun Zhao
- Department of Anesthesia Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, USA
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Israel Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
17
|
Yang LY, Greig NH, Huang YN, Hsieh TH, Tweedie D, Yu QS, Hoffer BJ, Luo Y, Kao YC, Wang JY. Post-traumatic administration of the p53 inactivator pifithrin-α oxygen analogue reduces hippocampal neuronal loss and improves cognitive deficits after experimental traumatic brain injury. Neurobiol Dis 2016; 96:216-226. [PMID: 27553877 DOI: 10.1016/j.nbd.2016.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 08/04/2016] [Accepted: 08/18/2016] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Neuronal apoptosis in the hippocampus has been detected after TBI. The hippocampal dysfunction may result in cognitive deficits in learning, memory, and spatial information processing. Our previous studies demonstrated that a p53 inhibitor, pifithrin-α oxygen analogue (PFT-α (O)), significantly reduced cortical cell death, which is substantial following controlled cortical impact (CCI) TBI, and improved neurological functional outcomes via anti-apoptotic mechanisms. In the present study, we examined the effect of PFT-α (O) on CCI TBI-induced hippocampal cellular pathophysiology in light of this brain region's role in memory. To investigate whether p53-dependent apoptosis plays a role in hippocampal neuronal loss and associated cognitive deficits and to define underlying mechanisms, SD rats were subjected to experimental CCI TBI followed by the administration of PFT-α or PFT-α (O) (2mg/kg, i.v.) or vehicle at 5h after TBI. Magnetic resonance imaging (MRI) scans were acquired at 24h and 7days post-injury to assess evolving structural hippocampal damage. Fluoro-Jade C was used to stain hippocampal sub-regions, including CA1 and dentate gyrus (DG), for cellular degeneration. Neurological functions, including motor and recognition memory, were assessed by behavioral tests at 7days post injury. p53, p53 upregulated modulator of apoptosis (PUMA), 4-hydroxynonenal (4-HNE), cyclooxygenase-IV (COX IV), annexin V and NeuN were visualized by double immunofluorescence staining with cell-specific markers. Levels of mRNA encoding for caspase-3, p53, PUMA, Bcl-2, Bcl-2-associated X protein (BAX) and superoxide dismutase (SOD) were measured by RT-qPCR. Our results showed that post-injury administration of PFT-α and, particularly, PFT-α (O) at 5h dramatically reduced injury volumes in the ipsilateral hippocampus, improved motor outcomes, and ameliorated cognitive deficits at 7days after TBI, as evaluated by novel object recognition and open-field test. PFT-α and especially PFT-α (O) significantly reduced the number of FJC-positive cells in hippocampus CA1 and DG subregions, versus vehicle treatment, and significantly decreased caspase-3 and PUMA mRNA expression. PFT-α (O), but not PFT-α, treatment significantly lowered p53 and elevated SOD2 mRNA expression. Double immunofluorescence staining demonstrated that PFT-α (O) treatment decreased p53, annexin V and 4-HNE positive neurons in the hippocampal CA1 region. Furthermore, PUMA co-localization with the mitochondrial maker COX IV, and the upregulation of PUMA were inhibited by PFT-α (O) after TBI. Our data suggest that PFT-α and especially PFT-α (O) significantly reduce hippocampal neuronal degeneration, and ameliorate neurological and cognitive deficits in vivo via antiapoptotic and antioxidative properties.
Collapse
Affiliation(s)
- Ling-Yu Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ya-Ni Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Tsung-Hsun Hsieh
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Qian-Sheng Yu
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yu Luo
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Yu-Chieh Kao
- Translational Imaging Research Center and Department of Radiology, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
18
|
Tweedie D, Fukui K, Li Y, Yu QS, Barak S, Tamargo IA, Rubovitch V, Holloway HW, Lehrmann E, Wood WH, Zhang Y, Becker KG, Perez E, Van Praag H, Luo Y, Hoffer BJ, Becker RE, Pick CG, Greig NH. Cognitive Impairments Induced by Concussive Mild Traumatic Brain Injury in Mouse Are Ameliorated by Treatment with Phenserine via Multiple Non-Cholinergic and Cholinergic Mechanisms. PLoS One 2016; 11:e0156493. [PMID: 27254111 PMCID: PMC4890804 DOI: 10.1371/journal.pone.0156493] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/16/2016] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI), often caused by a concussive impact to the head, affects an estimated 1.7 million Americans annually. With no approved drugs, its pharmacological treatment represents a significant and currently unmet medical need. In our prior development of the anti-cholinesterase compound phenserine for the treatment of neurodegenerative disorders, we recognized that it also possesses non-cholinergic actions with clinical potential. Here, we demonstrate neuroprotective actions of phenserine in neuronal cultures challenged with oxidative stress and glutamate excitotoxicity, two insults of relevance to TBI. These actions translated into amelioration of spatial and visual memory impairments in a mouse model of closed head mild TBI (mTBI) two days following cessation of clinically translatable dosing with phenserine (2.5 and 5.0 mg/kg BID x 5 days initiated post mTBI) in the absence of anti-cholinesterase activity. mTBI elevated levels of thiobarbituric acid reactive substances (TBARS), a marker of oxidative stress. Phenserine counteracted this by augmenting homeostatic mechanisms to mitigate oxidative stress, including superoxide dismutase [SOD] 1 and 2, and glutathione peroxidase [GPx], the activity and protein levels of which were measured by specific assays. Microarray analysis of hippocampal gene expression established that large numbers of genes were exclusively regulated by each individual treatment with a substantial number of them co-regulated between groups. Molecular pathways associated with lipid peroxidation were found to be regulated by mTBI, and treatment of mTBI animals with phenserine effectively reversed injury-induced regulations in the ‘Blalock Alzheimer’s Disease Up’ pathway. Together these data suggest that multiple phenserine-associated actions underpin this compound’s ability to ameliorate cognitive deficits caused by mTBI, and support the further evaluation of the compound as a therapeutic for TBI.
Collapse
Affiliation(s)
- David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Koji Fukui
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
- Division of Bioscience and Engineering, Shibaura Institute of Technology, Saitama 3378570, Japan
| | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Qian-sheng Yu
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Shani Barak
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Ian A. Tamargo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Harold W. Holloway
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - William H. Wood
- Laboratory of Genetics and Genomics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Evelyn Perez
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Henriette Van Praag
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
| | - Yu Luo
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States of America
| | - Robert E. Becker
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
- Independent Researcher, 7123 Pinebrook Road, Park City, UT 94098, United States of America
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Nigel H. Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, United States of America
- * E-mail:
| |
Collapse
|
19
|
Novel pharmaceutical treatments for minimal traumatic brain injury and evaluation of animal models and methodologies supporting their development. J Neurosci Methods 2016; 272:69-76. [PMID: 26868733 DOI: 10.1016/j.jneumeth.2016.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 02/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The need for effective pharmaceuticals within animal models of traumatic brain injury (TBI) continues to be paramount, as TBI remains the major cause of brain damage for children and young adults. While preventative measures may act to reduce the incidence of initial blunt trauma, well-tolerated drugs are needed to target the neurologically damaging internal cascade of molecular mechanisms that follow. Such processes, known collectively as the secondary injury phase, include inflammation, excitotoxicity, and apoptosis among other changes still subject to research. In this article positive treatment findings to mitigate this secondary injury in rodent TBI models will be overviewed, and include recent studies on Exendin-4, N-Acetyl-l-cycteine, Salubrinal and Thrombin. CONCLUSIONS These studies provide representative examples of methodologies that can be combined with widely available in vivo rodent models to evaluate therapeutic approaches of translational relevance, as well as drug targets and biochemical cascades that may slow or accelerate the degenerative processes induced by TBI. They employ well-characterized tests such as the novel object recognition task for assessing cognitive deficits. The application of such methodologies provides both decision points and a gateway for implementation of further translational studies to establish the feasibility of clinical efficacy of potential therapeutic interventions.
Collapse
|
20
|
Tajiri N, De La Peña I, Acosta SA, Kaneko Y, Tamir S, Landesman Y, Carlson R, Shacham S, Borlongan CV. A Nuclear Attack on Traumatic Brain Injury: Sequestration of Cell Death in the Nucleus. CNS Neurosci Ther 2016; 22:306-15. [PMID: 26842647 PMCID: PMC5067638 DOI: 10.1111/cns.12501] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 11/28/2022] Open
Abstract
Background Exportin 1 (XPO1/CRM1) plays prominent roles in the regulation of nuclear protein export. Selective inhibitors of nuclear export (SINE) are small orally bioavailable molecules that serve as drug‐like inhibitors of XPO1, with potent anti‐cancer properties. Traumatic brain injury (TBI) presents with a secondary cell death characterized by neuroinflammation that is putatively regulated by nuclear receptors. Aims and Results Here, we report that the SINE compounds (KPT‐350 or KPT‐335) sequestered TBI‐induced neuroinflammation‐related proteins (NF‐kB, AKT, FOXP1) within the nucleus of cultured primary rat cortical neurons, which coincided with protection against TNF‐α (20 ng/mL)‐induced neurotoxicity as shown by at least 50% and 100% increments in preservation of cell viability and cellular enzymatic activity, respectively, compared to non‐treated neuronal cells (P's < 0.05). In parallel, using an in vivo controlled cortical impact (CCI) model of TBI, we demonstrate that adult Sprague‐Dawley rats treated post‐injury with SINE compounds exhibited significant reductions in TBI‐induced behavioral and histological deficits. Animals that received KPT‐350 orally starting at 2 h post‐TBI and once a day thereafter over the next 4 days exhibited significantly better motor coordination, and balance in the rotorod test and motor asymmetry test by 100–200% improvements, as early as 4 h after initial SINE compound injection that was sustained during subsequent KPT‐350 dosing, and throughout the 18‐day post‐TBI study period compared to vehicle treatment (P's < 0.05). Moreover, KPT‐350 reduced cortical core impact area and peri‐impact cell death compared to vehicle treatment (P's < 0.05). Conclusions Both in vitro and in vivo experiments revealed that KPT‐350 increased XPO1, AKT, and FOXP1 nuclear expression and relegated NF‐kB expression within the neuronal nuclei. Altogether, these findings advance the utility of SINE compounds to stop trafficking of cell death proteins within the nucleus as an efficacious treatment for TBI.
Collapse
Affiliation(s)
- Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Ike De La Peña
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sandra A Acosta
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
21
|
Tweedie D, Rachmany L, Rubovitch V, Li Y, Holloway HW, Lehrmann E, Zhang Y, Becker KG, Perez E, Hoffer BJ, Pick CG, Greig NH. Blast traumatic brain injury-induced cognitive deficits are attenuated by preinjury or postinjury treatment with the glucagon-like peptide-1 receptor agonist, exendin-4. Alzheimers Dement 2015; 12:34-48. [PMID: 26327236 DOI: 10.1016/j.jalz.2015.07.489] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 06/19/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Blast traumatic brain injury (B-TBI) affects military and civilian personnel. Presently, there are no approved drugs for blast brain injury. METHODS Exendin-4 (Ex-4), administered subcutaneously, was evaluated as a pretreatment (48 hours) and postinjury treatment (2 hours) on neurodegeneration, behaviors, and gene expressions in a murine open field model of blast injury. RESULTS B-TBI induced neurodegeneration, changes in cognition, and genes expressions linked to dementia disorders. Ex-4, administered preinjury or postinjury, ameliorated B-TBI-induced neurodegeneration at 72 hours, memory deficits from days 7-14, and attenuated genes regulated by blast at day 14 postinjury. DISCUSSION The present data suggest shared pathologic processes between concussive and B-TBI, with end points amenable to beneficial therapeutic manipulation by Ex-4. B-TBI-induced dementia-related gene pathways and cognitive deficits in mice somewhat parallel epidemiologic studies of Barnes et al. who identified a greater risk in US military veterans who experienced diverse TBIs, for dementia in later life.
Collapse
Affiliation(s)
- David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Lital Rachmany
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Harold W Holloway
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Elin Lehrmann
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yongqing Zhang
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kevin G Becker
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Evelyn Perez
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Graduate Program in Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
22
|
Bell MT, Puskas F, Bennett DT, Cleveland JC, Herson PS, Mares JM, Meng X, Weyant MJ, Fullerton DA, Brett Reece T. Clinical indicators of paraplegia underplay universal spinal cord neuronal injury from transient aortic occlusion. Brain Res 2015; 1618:55-60. [DOI: 10.1016/j.brainres.2015.04.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 11/25/2022]
|
23
|
Yang LY, Chu YH, Tweedie D, Yu QS, Pick CG, Hoffer BJ, Greig NH, Wang JY. Post-trauma administration of the pifithrin-α oxygen analog improves histological and functional outcomes after experimental traumatic brain injury. Exp Neurol 2015; 269:56-66. [PMID: 25819102 DOI: 10.1016/j.expneurol.2015.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 01/10/2023]
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Programmed death of neuronal cells plays a crucial role in acute and chronic neurodegeneration following TBI. The tumor suppressor protein p53, a transcription factor, has been recognized as an important regulator of apoptotic neuronal death. The p53 inactivator pifithrin-α (PFT-α) has been shown to be neuroprotective against stroke. A previous cellular study indicated that PFT-α oxygen analog (PFT-α (O)) is more stable and active than PFT-α. We aimed to investigate whether inhibition of p53 using PFT-α or PFT-α (O) would be a potential neuroprotective strategy for TBI. To evaluate whether these drugs protect against excitotoxicity in vitro, primary rat cortical cultures were challenged with glutamate (50mM) in the presence or absence of various concentrations of the p53 inhibitors PFT-α or PFT-α (O). Cell viability was estimated by LDH assay. In vivo, adult Sprague Dawley rats were subjected to controlled cortical impact (CCI, with 4m/s velocity, 2mm deformation). Five hours after injury, PFT-α or PFT-α (O) (2mg/kg, i.v.) was administered to animals. Sensory and motor functions were evaluated by behavioral tests at 24h after TBI. The p53-positive neurons were identified by double staining with cell-specific markers. Levels of mRNA encoding for p53-regulated genes (BAX, PUMA, Bcl-2 and p21) were measured by reverse transcription followed by real time-PCR from TBI animals without or with PFT-α/PFT-α (O) treatment. We found that PFT-α(O) (10 μM) enhanced neuronal survival against glutamate-induced cytotoxicity in vitro more effectively than PFT-α (10 μM). In vivo PFT-α (O) treatment enhanced functional recovery and decreased contusion volume at 24h post-injury. Neuroprotection by PFT-α (O) treatment also reduced p53-positive neurons in the cortical contusion region. In addition, p53-regulated PUMA mRNA levels at 8h were significantly reduced by PFT-α (O) administration after TBI. PFT-α (O) treatment also decreased phospho-p53 positive neurons in the cortical contusion region. Our data suggest that PFT-α (O) provided a significant reduction of cortical cell death and protected neurons from glutamate-induced excitotoxicity in vitro, as well as improved neurological functional outcome and reduced brain injury in vivo via anti-apoptotic mechanisms. The inhibition of p53-induced apoptosis by PFT-α (O) provides a useful tool to evaluate reversible apoptotic mechanisms and may develop into a novel therapeutic strategy for TBI.
Collapse
Affiliation(s)
- L-Y Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Y-H Chu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - D Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Q-S Yu
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - C G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - B J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - N H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - J-Y Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
24
|
Baratz R, Tweedie D, Wang JY, Rubovitch V, Luo W, Hoffer BJ, Greig NH, Pick CG. Transiently lowering tumor necrosis factor-α synthesis ameliorates neuronal cell loss and cognitive impairments induced by minimal traumatic brain injury in mice. J Neuroinflammation 2015; 12:45. [PMID: 25879458 PMCID: PMC4352276 DOI: 10.1186/s12974-015-0237-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/06/2015] [Indexed: 11/30/2022] Open
Abstract
Background The treatment of traumatic brain injury (TBI) represents an unmet medical need, as no effective pharmacological treatment currently exists. The development of such a treatment requires a fundamental understanding of the pathophysiological mechanisms that underpin the sequelae resulting from TBI, particularly the ensuing neuronal cell death and cognitive impairments. Tumor necrosis factor-alpha (TNF-α) is a cytokine that is a master regulator of systemic and neuroinflammatory processes. TNF-α levels are reported to become rapidly elevated post TBI and, potentially, can lead to secondary neuronal damage. Methods To elucidate the role of TNF-α in TBI, particularly as a drug target, the present study evaluated (i) time-dependent TNF-α levels and (ii) markers of apoptosis and gliosis within the brain and related these to behavioral measures of ‘well being’ and cognition in a mouse closed head 50 g weight drop mild TBI (mTBI) model in the presence and absence of post-treatment with an experimental TNF-α synthesis inhibitor, 3,6′-dithiothalidomide. Results mTBI elevated brain TNF-α levels, which peaked at 12 h post injury and returned to baseline by 18 h. This was accompanied by a neuronal loss and an increase in astrocyte number (evaluated by neuronal nuclei (NeuN) and glial fibrillary acidic protein (GFAP) immunostaining), as well as an elevation in the apoptotic death marker BH3-interacting domain death agonist (BID) at 72 h. Selective impairments in measures of cognition, evaluated by novel object recognition and passive avoidance paradigms - without changes in well being, were evident at 7 days after injury. A single systemic treatment with the TNF-α synthesis inhibitor 3,6′-dithiothalidomide 1 h post injury prevented the mTBI-induced TNF-α elevation and fully ameliorated the neuronal loss (NeuN), elevations in astrocyte number (GFAP) and BID, and cognitive impairments. Cognitive impairments evident at 7 days after injury were prevented by treatment as late as 12 h post mTBI but were not reversed when treatment was delayed until 18 h. Conclusions These results implicate that TNF-α in mTBI induced secondary brain damage and indicate that pharmacologically limiting the generation of TNF-α post mTBI may mitigate such damage, defining a time-dependent window of up to 12 h to achieve this reversal.
Collapse
Affiliation(s)
- Renana Baratz
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - David Tweedie
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, BRC Room 05C220, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Weiming Luo
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, BRC Room 05C220, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Nigel H Greig
- Drug Design and Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, BRC Room 05C220, 251 Bayview Blvd., Baltimore, MD, 21224, USA.
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
25
|
Zhang Y, Chopp M, Meng Y, Zhang ZG, Doppler E, Winter S, Schallert T, Mahmood A, Xiong Y. Cerebrolysin improves cognitive performance in rats after mild traumatic brain injury. J Neurosurg 2015; 122:843-55. [PMID: 25614944 DOI: 10.3171/2014.11.jns14271] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECT Long-term memory deficits occur after mild traumatic brain injuries (mTBIs), and effective treatment modalities are currently unavailable. Cerebrolysin, a peptide preparation mimicking the action of neurotrophic factors, has beneficial effects on neurodegenerative diseases and brain injuries. The present study investigated the long-term effects of Cerebrolysin treatment on cognitive function in rats after mTBI. METHODS Rats subjected to closed-head mTBI were treated with saline (n = 11) or Cerebrolysin (2.5 ml/kg, n = 11) starting 24 hours after injury and then daily for 28 days. Sham animals underwent surgery without injury (n = 8). To evaluate cognitive function, the modified Morris water maze (MWM) test and a social odor-based novelty recognition task were performed after mTBI. All rats were killed on Day 90 after mTBI, and brain sections were immunostained for histological analyses of amyloid precursor protein (APP), astrogliosis, neuroblasts, and neurogenesis. RESULTS Mild TBI caused long-lasting cognitive memory deficits in the MWM and social odor recognition tests up to 90 days after injury. Compared with saline treatment, Cerebrolysin treatment significantly improved both long-term spatial learning and memory in the MWM test and nonspatial recognition memory in the social odor recognition task up to 90 days after mTBI (p < 0.05). Cerebrolysin significantly increased the number of neuroblasts and promoted neurogenesis in the dentate gyrus, and it reduced APP levels and astrogliosis in the corpus callosum, cortex, dentate gyrus, CA1, and CA3 regions (p < 0.05). CONCLUSIONS These results indicate that Cerebrolysin treatment of mTBI improves long-term cognitive function, and this improvement may be partially related to decreased brain APP accumulation and astrogliosis as well as increased neuroblasts and neurogenesis.
Collapse
|
26
|
Rubovitch V, Barak S, Rachmany L, Goldstein RB, Zilberstein Y, Pick CG. The Neuroprotective Effect of Salubrinal in a Mouse Model of Traumatic Brain Injury. Neuromolecular Med 2015; 17:58-70. [DOI: 10.1007/s12017-015-8340-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/06/2015] [Indexed: 12/15/2022]
|
27
|
Schreiber S, Lin R, Haim L, Baratz-Goldstien R, Rubovitch V, Vaisman N, Pick CG. Enriched environment improves the cognitive effects from traumatic brain injury in mice. Behav Brain Res 2014; 271:59-64. [PMID: 24906196 DOI: 10.1016/j.bbr.2014.05.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/24/2014] [Accepted: 05/27/2014] [Indexed: 11/28/2022]
Abstract
To date, there is yet no established effective treatment (medication or cognitive intervention) for post-traumatic brain injury (TBI) patients with chronic sequelae. Enriched environment (EE) has been recognized of importance in brain regulation, behaviour and physiology. Rodents reared in, or pre-exposed to EE, recovered better from brain insults. Using the concussive head trauma model of minimal TBI in mice, we evaluated the effect of transition to EE following a weight-drop (30g or 50g) induced mTBI on behavioural and cognitive parameters in mice in the Novel Object Recognition task, the Y- and the Elevated Plus mazes. In all assays, both mTBI groups (30g, 50g) housed in normal conditions were equally and significantly impaired 6 weeks post injury in comparison with the no-mTBI (p<0.001 and p<0.03, respectively) and the mTBI+EE groups (p<0.001 for the 30g, and p<0.017 for the 50g). No differences were found between the control and the EE mice. Two separate finding emerge: (1) the significantly positive effects of the placement in EE following mTBI, on the rehabilitative process of the tested behaviours in the affected mice; (2) the lack of difference between the groups of mice affected by 30g or by 50g. Further studies are needed in order to characterize the exact pathways involved in the positive effects of the EE on mice recovery from mTBI. Possible clinical implications indicate the importance of adapting correlates of EE to humans, i.e., prolonged and intensive physical activity - possibly combined with juggling training and intensive cognitive stimulation.
Collapse
Affiliation(s)
- S Schreiber
- Department of Psychiatry, Tel Aviv Sourasky Medical Center, Israel; Tel-Aviv University, Sackler Faculty of Medicine, Tel-Aviv, Israel.
| | - R Lin
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - L Haim
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - R Baratz-Goldstien
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - V Rubovitch
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - N Vaisman
- The Unit of Clinical Nutrition, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - C G Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Greig NH, Tweedie D, Rachmany L, Li Y, Rubovitch V, Schreiber S, Chiang YH, Hoffer BJ, Miller J, Lahiri DK, Sambamurti K, Becker RE, Pick CG. Incretin mimetics as pharmacologic tools to elucidate and as a new drug strategy to treat traumatic brain injury. Alzheimers Dement 2014; 10:S62-75. [PMID: 24529527 PMCID: PMC4201593 DOI: 10.1016/j.jalz.2013.12.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 01/12/2023]
Abstract
Traumatic brain injury (TBI), either as an isolated injury or in conjunction with other injuries, is an increasingly common event. An estimated 1.7 million injuries occur within the USA each year and 10 million people are affected annually worldwide. Indeed, nearly one third (30.5%) of all injury-related deaths in the USA are associated with TBI, which will soon outpace many common diseases as the major cause of death and disability. Associated with a high morbidity and mortality and no specific therapeutic treatment, TBI has become a pressing public health and medical problem. The highest incidence of TBI occurs in young adults (15-24 years age) and in the elderly (≥75 years of age). Older individuals are particularly vulnerable to these types of injury, often associated with falls, and have shown increased mortality and worse functional outcome after lower initial injury severity. In addition, a new and growing form of TBI, blast injury, associated with the detonation of improvised explosive devices in the war theaters of Iraq and Afghanistan, are inflicting a wave of unique casualties of immediate impact to both military personnel and civilians, for which long-term consequences remain unknown and may potentially be catastrophic. The neuropathology underpinning head injury is becoming increasingly better understood. Depending on severity, TBI induces immediate neuropathologic effects that, for the mildest form, may be transient; however, with increasing severity, these injuries cause cumulative neural damage and degeneration. Even with mild TBI, which represents the majority of cases, a broad spectrum of neurologic deficits, including cognitive impairments, can manifest that may significantly influence quality of life. Further, TBI can act as a conduit to longer term neurodegenerative disorders. Prior studies of glucagon-like peptide-1 (GLP-1) and long-acting GLP-1 receptor agonists have demonstrated neurotrophic/neuroprotective activities across a broad spectrum of cellular and animal models of chronic neurodegenerative (Alzheimer's and Parkinson's diseases) and acute cerebrovascular (stroke) disorders. In view of the mechanisms underpinning these disorders as well as TBI, we review the literature and recent studies assessing GLP-1 receptor agonists as a potential treatment strategy for mild to moderate TBI.
Collapse
Affiliation(s)
- Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lital Rachmany
- Department of Anatomy & Anthropology, Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vardit Rubovitch
- Department of Anatomy & Anthropology, Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Shaul Schreiber
- Department of Psychiatry, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei City, Taiwan, ROC; Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, Taipei City, Taiwan, ROC
| | - Barry J Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jonathan Miller
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Debomoy K Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kumar Sambamurti
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Robert E Becker
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA; Aristea Translational Medicine, Park City, UT, USA
| | - Chaim G Pick
- Department of Anatomy & Anthropology, Sackler School of Medicine and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
29
|
Itzekson Z, Maggio N, Milman A, Shavit E, Pick CG, Chapman J. Reversal of trauma-induced amnesia in mice by a thrombin receptor antagonist. J Mol Neurosci 2013; 53:87-95. [PMID: 24352712 DOI: 10.1007/s12031-013-0200-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 11/28/2013] [Indexed: 12/27/2022]
Abstract
Minimal traumatic brain injury (mTBI) is associated with the existence of retrograde amnesia and microscopic bleeds containing activated coagulation factors. In an mTBI model, we report that thrombin induces amnesia through its receptor protease-activated receptor 1 (PAR-1). Thrombin activity was significantly elevated (32 %, p < 0.05) 5 min following mTBI compared to controls. Amnesia was assessed by the novel object recognition test in mTBI animals and in animals injected intracerebroventricularly (ICV) with either thrombin or a PAR-1 agonist 1 h after the acquisition phase. Saline-injected controls had a preference index of over 0.3 while mTBI animals and those injected with thrombin or the PAR-1 agonist spent equal time with both objects indicating no recall of the object presented to them 24 h previously (p < 0.05). Co-injecting a PAR-1 antagonist (SCH79797) completely blocked the amnestic effects of mTBI, thrombin, and the PAR-1 agonist. Long-term potentiation, measured in hippocampal slices 24 h after mTBI, ICV thrombin or the PAR-1 agonist, was significantly impaired and this effect was completely reversed by the PAR-1 antagonist. The results support a crucial role for PAR-1 in the generation of amnesia following mTBI, revealing a novel therapeutic target for the cognitive effects of brain trauma.
Collapse
Affiliation(s)
- Zeev Itzekson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
30
|
Cognitive impairments accompanying rodent mild traumatic brain injury involve p53-dependent neuronal cell death and are ameliorated by the tetrahydrobenzothiazole PFT-α. PLoS One 2013; 8:e79837. [PMID: 24312187 PMCID: PMC3842915 DOI: 10.1371/journal.pone.0079837] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/02/2013] [Indexed: 01/21/2023] Open
Abstract
With parallels to concussive mild traumatic brain injury (mTBI) occurring in humans, anesthetized mice subjected to a single 30 g weight drop mTBI event to the right parietal cortex exhibited significant diffuse neuronal degeneration that was accompanied by delayed impairments in recognition and spatial memory. To elucidate the involvement of reversible p53-dependent apoptosis in this neuronal loss and associated cognitive deficits, mice were subjected to experimental mTBI followed by the systemic administration of the tetrahydrobenzothiazole p53 inactivator, PFT-α, or vehicle. Neuronal loss was quantified immunohistochemically at 72 hr. post-injury by the use of fluoro-Jade B and NeuN within the dentate gyrus on both sides of the brain, and recognition and spatial memory were assessed by novel object recognition and Y-maze paradigms at 7 and 30 days post injury. Systemic administration of a single dose of PFT-α 1 hr. post-injury significantly ameliorated both neuronal cell death and cognitive impairments, which were no different from sham control animals. Cellular studies on human SH-SY5Y cells and rat primary neurons challenged with glutamate excitotoxicity and H2O2 induced oxidative stress, confirmed the ability of PFT-α and a close analog to protect against these TBI associated mechanisms mediating neuronal loss. These studies suggest that p53-dependent apoptotic mechanisms underpin the neuronal and cognitive losses accompanying mTBI, and that these are potentially reversible by p53 inactivation.
Collapse
|
31
|
Rachmany L, Tweedie D, Li Y, Rubovitch V, Holloway HW, Miller J, Hoffer BJ, Greig NH, Pick CG. Exendin-4 induced glucagon-like peptide-1 receptor activation reverses behavioral impairments of mild traumatic brain injury in mice. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1621-1636. [PMID: 22892942 PMCID: PMC3776106 DOI: 10.1007/s11357-012-9464-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
Mild traumatic brain injury (mTBI) represents a major and increasing public health concern and is both the most frequent cause of mortality and disability in young adults and a chief cause of morbidity in the elderly. Albeit mTBI patients do not show clear structural brain defects and, generally, do not require hospitalization, they frequently suffer from long-lasting cognitive, behavioral, and emotional problems. No effective pharmaceutical therapy is available, and existing treatment chiefly involves intensive care management after injury. The diffuse neural cell death evident after mTBI is considered mediated by oxidative stress and glutamate-induced excitotoxicity. Prior studies of the long-acting GLP-1 receptor agonist, exendin-4 (Ex-4), an incretin mimetic approved for type 2 diabetes mellitus treatment, demonstrated its neurotrophic/protective activity in cellular and animal models of stroke, Alzheimer's and Parkinson's diseases, and, consequent to commonalities in mechanisms underpinning these disorders, Ex-4 was assessed in a mouse mTBI model. In neuronal cultures in this study, Ex-4 ameliorated H2O2-induced oxidative stress and glutamate toxicity. To evaluate in vivo translation, we administered steady-state Ex-4 (3.5 pM/kg/min) or saline to control and mTBI mice over 7 days starting 48 h prior to or 1 h post-sham or mTBI (30 g weight drop under anesthesia). Ex-4 proved well-tolerated and fully ameliorated mTBI-induced deficits in novel object recognition 7 and 30 days post-trauma. Less mTBI-induced impairment was evident in Y-maze, elevated plus maze, and passive avoidance paradigms, but when impairment was apparent Ex-4 induced amelioration. Together, these results suggest that Ex-4 may act as a neurotrophic/neuroprotective drug to minimize mTBI impairment.
Collapse
Affiliation(s)
- Lital Rachmany
- Department of Anatomy and Anthropology, Sackler School of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tweedie D, Rachmany L, Rubovitch V, Zhang Y, Becker KG, Perez E, Hoffer BJ, Pick CG, Greig NH. Changes in mouse cognition and hippocampal gene expression observed in a mild physical- and blast-traumatic brain injury. Neurobiol Dis 2013; 54:1-11. [PMID: 23454194 PMCID: PMC3628969 DOI: 10.1016/j.nbd.2013.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/23/2013] [Accepted: 02/19/2013] [Indexed: 12/25/2022] Open
Abstract
Warfare has long been associated with traumatic brain injury (TBI) in militarized zones. Common forms of TBI can be caused by a physical insult to the head-brain or by the effects of a high velocity blast shock wave generated by the detonation of an explosive device. While both forms of trauma are distinctly different regarding the mechanism of trauma induction, there are striking similarities in the cognitive and emotional status of survivors. Presently, proven effective therapeutics for the treatment of either form of TBI are unavailable. To be able to develop efficacious therapies, studies involving animal models of physical- and blast-TBI are required to identify possible novel or existing medicines that may be of value in the management of clinical events. We examined indices of cognition and anxiety-like behavior and the hippocampal gene transcriptome of mice subjected to both forms of TBI. We identified common behavioral deficits and gene expression regulations, in addition to unique injury-specific forms of gene regulation. Molecular pathways presented a pattern similar to that seen in gene expression. Interestingly, pathways connected to Alzheimer's disease displayed a markedly different form of regulation depending on the type of TBI. While these data highlight similarities in behavioral outcomes after trauma, the divergence in hippocampal transcriptome observed between models suggests that, at the molecular level, the TBIs are quite different. These models may provide tools to help define therapeutic approaches for the treatment of physical- and blast-TBIs. Based upon observations of increasing numbers of personnel displaying TBI related emotional and behavioral changes in militarized zones, the development of efficacious therapies will become a national if not a global priority.
Collapse
Affiliation(s)
- David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lital Rachmany
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Evelyn Perez
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
33
|
Tweedie D, Rachmany L, Rubovitch V, Lehrmann E, Zhang Y, Becker KG, Perez E, Miller J, Hoffer BJ, Greig NH, Pick CG. Exendin-4, a glucagon-like peptide-1 receptor agonist prevents mTBI-induced changes in hippocampus gene expression and memory deficits in mice. Exp Neurol 2012; 239:170-82. [PMID: 23059457 DOI: 10.1016/j.expneurol.2012.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/06/2012] [Accepted: 10/02/2012] [Indexed: 12/25/2022]
Abstract
Traumatic brain injury (TBI) is a global problem reaching near epidemic numbers that manifests clinically with cognitive problems that decades later may result in dementias like Alzheimer's disease (AD). Presently, little can be done to prevent ensuing neurological dysfunctions by pharmacological means. Recently, it has become apparent that several CNS diseases share common terminal features of neuronal cell death. The effects of exendin-4 (Ex-4), a neuroprotective agent delivered via a subcutaneous micro-osmotic pump, were examined in the setting of mild TBI (mTBI). Utilizing a model of mTBI, where cognitive disturbances occur over time, animals were subjected to four treatments: sham; Ex-4; mTBI and Ex-4/mTBI. mTBI mice displayed deficits in novel object recognition, while Ex-4/mTBI mice performed similar to sham. Hippocampal gene expression, assessed by gene array methods, showed significant differences with little overlap in co-regulated genes between groups. Importantly, changes in gene expression induced by mTBI, including genes associated with AD were largely prevented by Ex-4. These data suggest a strong beneficial action of Ex-4 in managing secondary events induced by a traumatic brain injury.
Collapse
Affiliation(s)
- David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
The nuclear factor erythroid 2-like 2 activator, tert-butylhydroquinone, improves cognitive performance in mice after mild traumatic brain injury. Neuroscience 2012; 223:305-14. [PMID: 22890082 DOI: 10.1016/j.neuroscience.2012.07.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/21/2012] [Accepted: 07/31/2012] [Indexed: 11/21/2022]
Abstract
Traumatic Brain injury affects at least 1.7 million people in the United States alone each year. The majority of injuries are categorized as mild but these still produce lasting symptoms that plague the patient and the medical field. Currently treatments are aimed at reducing a patient's symptoms, but there is no effective method to combat the source of the problem, neuronal loss. We tested a mild, closed head traumatic brain injury model for the effects of modulation of the antioxidant transcription factor Nrf2 by the chemical activator, tert-butylhydroquinone (tBHQ). We found that post-injury visual memory was improved by a 7 day course of treatment and that the level of activated caspase-3 in the hippocampus was reduced. The injury-induced memory loss was also reversed by a single injection at 30 min after injury. Since the protective stress response molecule, HSP70, can be upregulated by Nrf2, we examined protein levels in the hippocampus, and found that HSP70 was elevated by the injury and then further increased by the treatment. To test the possible role of HSP70, model neurons in culture exposed to a mild injury and treated with the Nrf2 activator displayed improved survival that was blocked by the HSP70 inhibitor, VER155008. Following mild traumatic brain injury, there may be a partial protective response and patients could benefit from directed enhancement of regulatory pathways such as Nrf2 for neuroprotection.
Collapse
|
35
|
Mild traumatic brain injury in the rat alters neuronal number in the limbic system and increases conditioned fear and anxiety-like behaviors. Exp Neurol 2012; 235:574-87. [DOI: 10.1016/j.expneurol.2012.03.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 02/13/2012] [Accepted: 03/25/2012] [Indexed: 12/23/2022]
|
36
|
Daneshvar DH, Riley DO, Nowinski CJ, McKee AC, Stern RA, Cantu RC. Long-term consequences: effects on normal development profile after concussion. Phys Med Rehabil Clin N Am 2011; 22:683-700, ix. [PMID: 22050943 DOI: 10.1016/j.pmr.2011.08.009] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Each year in the United States, approximately 1.7 million people are diagnosed with a traumatic brain injury (TBI), about 75% of which are classified as mild TBIs or concussions. Although symptoms typically resolve in a matter of weeks, both children and adults may suffer from postconcussion syndrome for months or longer. A progressive tauopathy, chronic traumatic encephalopathy, is believed to stem from repeated brain trauma. Alzheimer-like dementia, Parkinsonism, and motor neuron disease are also associated with repetitive brain trauma. Effective diagnoses, treatments, and education plans are required to reduce the future burden and incidence of long-term effects of head injuries.
Collapse
Affiliation(s)
- Daniel H Daneshvar
- Department of Neurology, Center for the Study of Traumatic Encephalopathy, Boston University School of Medicine, Boston 02118, MA, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Rubovitch V, Ten-Bosch M, Zohar O, Harrison CR, Tempel-Brami C, Stein E, Hoffer BJ, Balaban CD, Schreiber S, Chiu WT, Pick CG. A mouse model of blast-induced mild traumatic brain injury. Exp Neurol 2011; 232:280-9. [PMID: 21946269 DOI: 10.1016/j.expneurol.2011.09.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 09/01/2011] [Accepted: 09/09/2011] [Indexed: 01/10/2023]
Abstract
Improvised explosive devices (IEDs) are one of the main causes for casualties among civilians and military personnel in the present war against terror. Mild traumatic brain injury from IEDs induces various degrees of cognitive, emotional and behavioral disturbances but knowledge of the exact brain pathophysiology following exposure to blast is poorly understood. The study was aimed at establishing a murine model for a mild BI-TBI that isolates low-level blast pressure effects to the brain without systemic injuries. An open-field explosives detonation was used to replicate, as closely as possible, low-level blast trauma in the battlefield or at a terror-attack site. No alterations in basic neurological assessment or brain gross pathology were found acutely in the blast-exposed mice. At 7 days post blast, cognitive and behavioral tests revealed significantly decreased performance at both 4 and 7 m distance from the blast (5.5 and 2.5 PSI, respectively). At 30 days post-blast, clear differences were found in animals at both distances in the object recognition test, and in the 7 m group in the Y maze test. Using MRI, T1 weighted images showed an increased BBB permeability 1 month post-blast. DTI analysis showed an increase in fractional anisotropy (FA) and a decrease in radial diffusivity. These changes correlated with sites of up-regulation of manganese superoxide dismutase 2 in neurons and CXC-motif chemokine receptor 3 around blood vessels in fiber tracts. These results may represent brain axonal and myelin abnormalities. Cellular and biochemical studies are underway in order to further correlate the blast-induced cognitive and behavioral changes and to identify possible underlying mechanisms that may help develop treatment- and neuroprotective modalities.
Collapse
Affiliation(s)
- Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Baratz R, Tweedie D, Rubovitch V, Luo W, Yoon JS, Hoffer BJ, Greig NH, Pick CG. Tumor necrosis factor-α synthesis inhibitor, 3,6'-dithiothalidomide, reverses behavioral impairments induced by minimal traumatic brain injury in mice. J Neurochem 2011; 118:1032-42. [PMID: 21740439 PMCID: PMC3397686 DOI: 10.1111/j.1471-4159.2011.07377.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mild traumatic brain injury (mTBI) patients do not show clear structural brain defects and, in general, do not require hospitalization, but frequently suffer from long-lasting cognitive, behavioral and emotional difficulties. Although there is no current effective treatment or cure for mTBI, tumor necrosis factor-alpha (TNF-α), a cytokine fundamental in the systemic inflammatory process, represents a potential drug target. TNF-α levels increase after mTBI and may induce or exacerbate secondary damage to brain tissue. The present study evaluated the efficacy of the experimental TNF-α synthesis inhibitor, 3,6'-dithiothalidomide, on recovery of mice from mTBI in a closed head weight-drop model that induces an acute elevation in brain TNF-α and an impairment in cognitive performance, as assessed by the Y-maze, by novel object recognition and by passive avoidance paradigms at 72 h and 7 days after injury. These impairments were fully ameliorated in mice that received a one time administration of 3,6'-dithiothalidomide at either a low (28 mg/kg) or high (56 mg/kg) dose provided either 1 h prior to injury, or at 1 or 12 h post-injury. Together, these results implicate TNF-α as a drug target for mTBI and suggests that 3,6'-dithiothalidomide may act as a neuroprotective drug to minimize impairment.
Collapse
Affiliation(s)
- Renana Baratz
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - David Tweedie
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Weiming Luo
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jeong Seon Yoon
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Barry J. Hoffer
- Cellular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nigel H. Greig
- Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
39
|
Edut S, Rubovitch V, Schreiber S, Pick CG. The intriguing effects of ecstasy (MDMA) on cognitive function in mice subjected to a minimal traumatic brain injury (mTBI). Psychopharmacology (Berl) 2011; 214:877-89. [PMID: 21120456 DOI: 10.1007/s00213-010-2098-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 11/04/2010] [Indexed: 01/19/2023]
Abstract
RATIONALE The use of ecstasy (MDMA) among young adults has dramatically increased over the years. Since MDMA may impair the users' driving ability, the risk of being involved in a motor vehicle accident (MVA) is notably increased. Minimal traumatic brain injury (mTBI) a common consequence of MVAs-produces short- and long-term physical, cognitive, and emotional impairments. OBJECTIVES To investigate the effects of an acute dose of MDMA in mice subjected to closed head mTBI. METHODS Mice received 10 mg/kg MDMA 1 h prior to the induction of mTBI. Behavioral tests were conducted 7 and 30 days post-injury. In addition to the behavioral tests, phosphorylation of IGF-1R, ERK, and levels of tyrosine hydroxylase (TH) were measured. RESULTS mTBI mice showed major cognitive impairments in all cognitive tests conducted. No additional impairments were seen if mTBI was preceded by one dose of MDMA. On the contrary, a beneficial effect was seen in these mice. The western blot analysis of TH revealed a significant decrease in the mTBI mice. These decreases were reversed in mice that were subjected to MDMA prior to the trauma. CONCLUSIONS The presence of MDMA at the time of mTBI minimizes the alteration of visual and spatial memory of the injured mice. The IGF-1R pathway was activated due to mTBI and MDMA but was not the main contributor to the cognitive improvements. MDMA administration inverted the TH decreases seen after injury. We believe this may be the major cause of the cognitive improvements seen in these mice.
Collapse
Affiliation(s)
- Shahaf Edut
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel.
| | | | | | | |
Collapse
|
40
|
Smith BA, Gammon ST, Xiao S, Wang W, Chapman S, McDermott R, Suckow MA, Johnson JR, Piwnica-Worms D, Gokel GW, Smith BD, Leevy WM. In vivo optical imaging of acute cell death using a near-infrared fluorescent zinc-dipicolylamine probe. Mol Pharm 2011; 8:583-90. [PMID: 21323375 DOI: 10.1021/mp100395u] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cell death is a fundamental biological process that is present in numerous disease pathologies. Fluorescent probes that detect cell death have been developed for a myriad of research applications ranging from microscopy to in vivo imaging. Here we describe a synthetic near-infrared (NIR) conjugate of zinc(II)-dipicolylamine (Zn²+-DPA) for in vivo imaging of cell death. Chemically induced in vivo models of myopathy were established using an ionphore, ethanol, or ketamine as cytotoxins. The Zn²+-DPA fluorescent probe or corresponding control was subsequently injected, and whole animal fluorescence imaging demonstrated probe uptake at the site of muscle damage, which was confirmed by ex vivo and histological analyses. Further, a comparative study with a NIR fluorescent conjugate Annexin V showed less intense uptake at the site of muscle damage and high accumulation in the bladder. The results indicate that the fluorescent Zn²+-DPA conjugate is an effective probe for in vivo cell death detection and in some cases may be an appropriate alternative to fluorescent Annexin V conjugates.
Collapse
Affiliation(s)
- Bryan A Smith
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
PKC activator therapeutic for mild traumatic brain injury in mice. Neurobiol Dis 2010; 41:329-37. [PMID: 20951803 DOI: 10.1016/j.nbd.2010.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/25/2010] [Accepted: 10/02/2010] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is a frequent consequence of vehicle, sport and war related injuries. More than 90% of TBI patients suffer mild injury (mTBI). However, the pathologies underlying the disease are poorly understood and treatment modalities are limited. We report here that in mice, the potent PKC activator bryostatin1 protects against mTBI induced learning and memory deficits and reduction in pre-synaptic synaptophysin and post-synaptic spinophylin immunostaining. An effective treatment has to start within the first 8h after injury, and includes 5 × i.p. injections over a period of 14 days. The treatment is dose dependent. Exploring the effects of the repeated bryostatin1 treatment on the processing of the amyloid precursor protein, we found that the treatment induced an increase in the putative α-secretase ADAM10 and a reduction in β-secretase activities. Both these effects could contribute towards a reduction in β-amyloid production. These results suggest that bryostatin1 protects against mTBI cognitive and synaptic sequela by rescuing synapses, which is possibly mediated by an increase in ADAM10 and a decrease in BACE1 activity. Since bryostatin1 has already been extensively used in clinical trials as an anti-cancer drug, its potential as a remedy for the short- and long-term TBI sequelae is quite promising.
Collapse
|
42
|
Baratz R, Rubovitch V, Frenk H, Pick CG. The influence of alcohol on behavioral recovery after mTBI in mice. J Neurotrauma 2010; 27:555-63. [PMID: 20001584 DOI: 10.1089/neu.2009.0891] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the United States 258,000 people were injured in 2004 in motor vehicle accidents that were caused by drivers under the influence of alcohol. The majority of these drivers were binge drinkers, most notably young people who tend to drink heavily during the weekends, but rarely drink alcohol during the week. Since a large proportion of the injuries involved head injuries, the present study aimed at investigating the influence of binge alcohol drinking on mild traumatic brain injury (mTBI) in an animal model. Mice had access to 0%, 7.5%, 15%, or 30% alcohol solutions for 48 consecutive hours once a week for 4 weeks as the sole source of fluids (the remaining time they drank water). Three experiments were done. For the first one (alcohol-mTBI-alcohol) the animals were subjected to a controlled mTBI injury by applying a closed-head weight drop, or a sham procedure. After the mTBI/sham-mTBI the animals got alcohol and /water for the same regimen for 4 additional weeks. In the second experiment (alcohol only) after the 4 weeks of drinking blood samples were collected, at the same time as the animals that underwent sham-mTBI or mTBI procedures. In the third experiment (mTBI-alcohol) the mice were subjected to mTBI/sham-mTBI without any treatment, and after mTBI they had alcohol for 4 weeks in the same regimen as in the previous experiments. At the end of the pharmacological treatment all animals were assessed using different behavioral tests. mTBI mice exhibited lower memory ability in the Y-maze, higher anxiety in the elevated plus maze, and lower retention in the passive avoidance test than sham-mTBI animals. Alcohol reversed these effects at all doses. The results suggest that alcohol drinking before trauma might have a protective effect on recovery from brain trauma, but not if consumed after the trauma.
Collapse
Affiliation(s)
- Renana Baratz
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
43
|
|
44
|
Rubovitch V, Edut S, Sarfstein R, Werner H, Pick CG. The intricate involvement of the Insulin-like growth factor receptor signaling in mild traumatic brain injury in mice. Neurobiol Dis 2010; 38:299-303. [PMID: 20138993 DOI: 10.1016/j.nbd.2010.01.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 12/28/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) was suggested as a potential neuroprotective treatment for traumatic brain injury (TBI) induced damage (cognitive as well as cellular). The main goal of the present study was to evaluate the role of the IGF-1R activation in spatial memory outcome following mild traumatic brain injury. mTBI-induced phosphorylation of IGF-1R, AKT and ERK1/2, in mice hippocampus, which was inhibited when mice were pretreated with the selective IGF-1R inhibitor AG1024. IGF-1 administration prevented spatial memory deficits following mTBI. Surprisingly, blocking the IGF-1R signaling in mTBI mice did not augment the spatial memory deficit. In addition, this data imply an intriguing and complex role of the IGF-1 signaling axis in the cellular and behavioral events following mTBI.
Collapse
Affiliation(s)
- Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | | |
Collapse
|