1
|
Zhou C, Zhao D, Wu C, Wu Z, Zhang W, Chen S, Zhao X, Wu S. Role of histone deacetylase inhibitors in non-neoplastic diseases. Heliyon 2024; 10:e33997. [PMID: 39071622 PMCID: PMC11283006 DOI: 10.1016/j.heliyon.2024.e33997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Background Epigenetic dysregulation has been implicated in the development and progression of a variety of human diseases, but epigenetic changes are reversible, and epigenetic enzymes and regulatory proteins can be targeted using small molecules. Histone deacetylase inhibitors (HDACis), as a class of epigenetic drugs, are widely used to treat various cancers and other diseases involving abnormal gene expression. Results Specially, HDACis have emerged as a promising strategy to enhance the therapeutic effect of non-neoplastic conditions, including neurological disorders, cardiovascular diseases, renal diseases, autoimmune diseases, inflammatory diseases, infectious diseases and rare diseases, along with their related mechanisms. However, their clinical efficacy has been limited by drug resistance and toxicity. Conclusions To date, most clinical trials of HDAC inhibitors have been related to the treatment of cancer rather than the treatment of non-cancer diseases, for which experimental studies are gradually underway. Discussions regarding non-neoplastic diseases often concentrate on specific disease types. Therefore, this review highlights the development of HDACis and their potential therapeutic applications in non-neoplastic diseases, either as monotherapy or in combination with other drugs or therapies.
Collapse
Affiliation(s)
- Chunxiao Zhou
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Dengke Zhao
- Harbin Medical University, Harbin, 150000, China
| | - Chunyan Wu
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Zhimin Wu
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Wen Zhang
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Shilv Chen
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Xindong Zhao
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Shaoling Wu
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| |
Collapse
|
2
|
Foret MK, Orciani C, Welikovitch LA, Huang C, Cuello AC, Do Carmo S. Early oxidative stress and DNA damage in Aβ-burdened hippocampal neurons in an Alzheimer's-like transgenic rat model. Commun Biol 2024; 7:861. [PMID: 39004677 PMCID: PMC11247100 DOI: 10.1038/s42003-024-06552-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Oxidative stress is a key contributor to AD pathology. However, the earliest role of pre-plaque neuronal oxidative stress, remains elusive. Using laser microdissected hippocampal neurons extracted from McGill-R-Thy1-APP transgenic rats we found that intraneuronal amyloid beta (iAβ)-burdened neurons had increased expression of genes related to oxidative stress and DNA damage responses including Ercc2, Fancc, Sod2, Gsr, and Idh1. DNA damage was further evidenced by increased neuronal levels of XPD (Ercc2) and γH2AX foci, indicative of DNA double stranded breaks (DSBs), and by increased expression of Ercc6, Rad51, and Fen1, and decreased Sirt6 in hippocampal homogenates. We also found increased expression of synaptic plasticity genes (Grin2b (NR2B), CamkIIα, Bdnf, c-fos, and Homer1A) and increased protein levels of TOP2β. Our findings indicate that early accumulation of iAβ, prior to Aβ plaques, is accompanied by incipient oxidative stress and DSBs that may arise directly from oxidative stress or from maladaptive synaptic plasticity.
Collapse
Affiliation(s)
- Morgan K Foret
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Chiara Orciani
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | - Chunwei Huang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Department of Pharmacology, Oxford University, Oxford, UK.
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Yu L, Li Y, Song S, Zhang Y, Wang Y, Wang H, Yang Z, Wang Y. The dual role of sirtuins in cancer: biological functions and implications. Front Oncol 2024; 14:1384928. [PMID: 38947884 PMCID: PMC11211395 DOI: 10.3389/fonc.2024.1384928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Sirtuins are pivotal in orchestrating numerous cellular pathways, critically influencing cell metabolism, DNA repair, aging processes, and oxidative stress. In recent years, the involvement of sirtuins in tumor biology has garnered substantial attention, with a growing body of evidence underscoring their regulatory roles in various aberrant cellular processes within tumor environments. This article delves into the sirtuin family and its biological functions, shedding light on their dual roles-either as promoters or inhibitors-in various cancers including oral, breast, hepatocellular, lung, and gastric cancers. It further explores potential anti-tumor agents targeting sirtuins, unraveling the complex interplay between sirtuins, miRNAs, and chemotherapeutic drugs. The dual roles of sirtuins in cancer biology reflect the complexity of targeting these enzymes but also highlight the immense therapeutic potential. These advancements hold significant promise for enhancing clinical outcomes, marking a pivotal step forward in the ongoing battle against cancer.
Collapse
Affiliation(s)
- Lu Yu
- Department of Respiratory, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanjiao Li
- Department of Pharmacy, Qionglai Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yalin Zhang
- School of Medicine, University of Electronic Science and Technology of China, Center of Critical Care Medicine, Sichuan Academy of Medical Sciences, Chengdu, China
- Center of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Wang
- Center of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailian Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science, Nanning, China
| | - Zhengteng Yang
- Department of Medicine, The First Affiliated Hospital of Guangxi University of Traditional Medicine, Nanning, China
| | - Yi Wang
- Center of Critical Care Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science, Nanning, China
| |
Collapse
|
4
|
Sharma C, Mazumder A. A Comprehensive Review on Potential Molecular Drug Targets for the Management of Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2024; 24:45-56. [PMID: 38305393 DOI: 10.2174/0118715249263300231116062740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 10/04/2023] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is an onset and incurable neurodegenerative disorder that has been linked to various genetic, environmental, and lifestyle factors. Recent research has revealed several potential targets for drug development, such as the prevention of Aβ production and removal, prevention of tau hyperphosphorylation, and keeping neurons alive. Drugs that target numerous ADrelated variables have been developed, and early results are encouraging. This review provides a concise map of the different receptor signaling pathways associated with Alzheimer's Disease, as well as insight into drug design based on these pathways. It discusses the molecular mechanisms of AD pathogenesis, such as oxidative stress, aging, Aβ turnover, thiol groups, and mitochondrial activities, and their role in the disease. It also reviews the potential drug targets, in vivo active agents, and docking studies done in AD and provides prospects for future drug development. This review intends to provide more clarity on the molecular processes that occur in Alzheimer's patient's brains, which can be of use in diagnosing and preventing the condition.
Collapse
Affiliation(s)
- Chanchal Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida-201306, Uttar Pradesh, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida-201306, Uttar Pradesh, India
| |
Collapse
|
5
|
Wu T, Qu Y, Xu S, Wang Y, Liu X, Ma D. SIRT6: A potential therapeutic target for diabetic cardiomyopathy. FASEB J 2023; 37:e23099. [PMID: 37462453 DOI: 10.1096/fj.202301012r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
The abnormal lipid metabolism in diabetic cardiomyopathy can cause myocardial mitochondrial dysfunction, lipotoxicity, abnormal death of myocardial cells, and myocardial remodeling. Mitochondrial homeostasis and normal lipid metabolism can effectively slow down the development of diabetic cardiomyopathy. Recent studies have shown that SIRT6 may play an important role in the pathological changes of diabetic cardiomyopathy such as myocardial cell death, myocardial hypertrophy, and myocardial fibrosis by regulating mitochondrial oxidative stress and glucose and lipid metabolism. Therefore, understanding the function of SIRT6 and its role in the pathogenesis of diabetic cardiomyopathy is of great significance for exploring and developing new targets and drugs for the treatment of diabetic cardiomyopathy. This article reviews the latest findings of SIRT6 in the pathogenesis of diabetic cardiomyopathy, focusing on the regulation of mitochondria and lipid metabolism by SIRT6 to explore potential clinical treatments.
Collapse
Affiliation(s)
- Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiwei Qu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengjie Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Xue Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dufang Ma
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
6
|
Su S, Chen G, Gao M, Zhong G, Zhang Z, Wei D, Luo X, Wang Q. Kai-Xin-San protects against mitochondrial dysfunction in Alzheimer's disease through SIRT3/NLRP3 pathway. Chin Med 2023; 18:26. [PMID: 36918872 PMCID: PMC10012453 DOI: 10.1186/s13020-023-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/07/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Kai-Xin-San (KXS) has been reported to have a good curative impact on dementia. The purpose of the study was to determine whether KXS might ameliorate cognitive deficits in APP/PS1 mice and to evaluate its neuroprotective mechanism. METHODS APP/PS1 mice were employed as an AD animal model; Aβ1-42 and KXS-containing serum were used in HT22 cells. Four different behavioral tests were used to determine the cognitive ability of mice. Nissl staining was utilized to detect hippocampal neuron changes. ROS, SOD, and MDA were used to detect oxidative stress levels. Transmission electron microscopy and Western blot were used to evaluate mitochondrial morphology, mitochondrial division, and fusion state. Western blotting and immunofluorescence identified PSD95, BDNF, NGF, SYN, SIRT3, and NLRP3 inflammasome levels. RESULTS The results indicated that KXS protected APP/PS1 mice against cognitive impairments. KXS suppressed neuronal apoptosis and oxidative stress among APP/PS1 mice. KXS and KXS-containing serum improved mitochondrial dysfunction and synaptic and neurotrophic factors regarding APP/PS1 mice. In addition, KXS and KXS-containing serum enhanced mitochondrial SIRT3 expression and reduced NLRP3 inflammasome expression in APP/PS1 mice. CONCLUSION KXS improves cognitive dysfunction among APP/PS1 mice via regulating SIRT3-mediated neuronal cell apoptosis. These results suggested that KXS was proposed as a neuroprotective agent for AD progression.
Collapse
Affiliation(s)
- ShiJie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gongcan Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minghuang Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zerong Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongyun Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
7
|
Ziętara P, Dziewięcka M, Augustyniak M. Why Is Longevity Still a Scientific Mystery? Sirtuins-Past, Present and Future. Int J Mol Sci 2022; 24:728. [PMID: 36614171 PMCID: PMC9821238 DOI: 10.3390/ijms24010728] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The sirtuin system consists of seven highly conserved regulatory enzymes responsible for metabolism, antioxidant protection, and cell cycle regulation. The great interest in sirtuins is associated with the potential impact on life extension. This article summarizes the latest research on the activity of sirtuins and their role in the aging process. The effects of compounds that modulate the activity of sirtuins were discussed, and in numerous studies, their effectiveness was demonstrated. Attention was paid to the role of a caloric restriction and the risks associated with the influence of careless sirtuin modulation on the organism. It has been shown that low modulators' bioavailability/retention time is a crucial problem for optimal regulation of the studied pathways. Therefore, a detailed understanding of the modulator structure and potential reactivity with sirtuins in silico studies should precede in vitro and in vivo experiments. The latest achievements in nanobiotechnology make it possible to create promising molecules, but many of them remain in the sphere of plans and concepts. It seems that solving the mystery of longevity will have to wait for new scientific discoveries.
Collapse
Affiliation(s)
| | | | - Maria Augustyniak
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, ul. Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
8
|
Watroba M, Szukiewicz D. Sirtuins promote brain homeostasis, preventing Alzheimer’s disease through targeting neuroinflammation. Front Physiol 2022; 13:962769. [PMID: 36045741 PMCID: PMC9420839 DOI: 10.3389/fphys.2022.962769] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Both basic pathomechanisms underlying Alzheimer’s disease and some premises for stipulating a possible preventive role of some sirtuins, especially SIRT1 and SIRT3, protective against Alzheimer’s disease-related pathology, are discussed in this article. Sirtuins can inhibit some processes that underlie Alzheimer’s disease-related molecular pathology (e.g., neuroinflammation, neuroinflammation-related oxidative stress, Aβ aggregate deposition, and neurofibrillary tangle formation), thus preventing many of those pathologic alterations at relatively early stages of their development. Subsequently, the authors discuss in details which mechanisms of sirtuin action may prevent the development of Alzheimer’s disease, thus promoting brain homeostasis in the course of aging. In addition, a rationale for boosting sirtuin activity, both with allosteric activators and with NAD+ precursors, has been presented.
Collapse
|
9
|
Anoush M, Pourmansouri Z, Javadi R, GhorbanPour B, Sharafi A, Mohamadpour H, jafari anarkooli I, Andalib S. Clavulanic Acid: A Novel Potential Agent in Prevention and Treatment of Scopolamine-Induced Alzheimer's Disease. ACS OMEGA 2022; 7:13861-13869. [PMID: 35559146 PMCID: PMC9088895 DOI: 10.1021/acsomega.2c00231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 05/13/2023]
Abstract
Background and Aim: Alzheimer's disease (AD) is the most common form of dementia in the elderly. It is characterized as a multifaced disorder with a greater genetic contribution. The contribution of many genes such as BDNF, Sirtuin 6, and Seladin 1 has been reported in the pathogenesis of AD. Current therapies include acetylcholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists, which are only temporarily beneficial. Therefore, it seems that more studies should be conducted to determine the exact mechanisms of drugs to deal with the diseases' multifactorial features that we face. Methods: In this study, 42 adult rats were randomly divided into 7 groups and received drugs intraperitoneally and orally according to the protocol as follows: scopolamine group, clavulanic acid group, memantine group, scopolamine + memantine group, clavulanic acid pre- and post-treatment, and normal saline group. The Morris water maze method was performed to evaluate the spatial memory of animals, and the terminal deoxynucleotidyl transferase dUTP nick end labeling assay and real-time polymerase chain reaction were performed to study neuronal cell apoptosis and gene expression, respectively. Results: Significant differences were observed in the spatial memory of rats that received clavulanic acid prophylactically compared to the Alzheimer's model on the day of the test. Moreover, the results obtained during the training showed that both memantine and clavulanic acid improved spatial memory by increasing the time of rats present in the platform position and by reducing the swimming time in the scopolamine-induced Alzheimer's group. Besides, rats that received clavulanic acid and memantine had a greater percentage of healthy cells in comparison with the scopolamine-induced Alzheimer's group; however, the results were more significant for clavulanic acid. Furthermore, the expressions of BDNF, Seladin 1, and Sirtuin 6 as neuroprotective target genes were modified after clavulanic acid and memantine administrations; similarly, the results obtained from clavulanic acid were more significant. Conclusion: The results show that the administration of clavulanic acid before and after the use of scopolamine can reduce the percentage of apoptotic cells in the hippocampus and also improve the parameters related to learning and spatial memory; however, its effect in the prophylactic state was stronger. The results obtained from memantine revealed that it has neuroprotective potency against AD; however, clavulanic acid had a greater effect. Also, with increased expression of the neuroprotective genes, clavulanic acid could be considered as an option in the upcoming preclinical and clinical research about Alzheimer's disease.
Collapse
Affiliation(s)
- Mahdieh Anoush
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Zeinab Pourmansouri
- Department
of Pharmacology, School of Medicine, Zanjan
University of Medical Sciences, Zanjan 4515613191, Iran
| | - Rafi Javadi
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Benyamin GhorbanPour
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Ali Sharafi
- Zanjan
Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Hamed Mohamadpour
- Department
of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Iraj jafari anarkooli
- Department
of Biology and Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
| | - Sina Andalib
- Department
of Pharmacology and toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4515613191, Iran
- Phone: +98(241)-427-3637.
Fax: +98(241)-427-3639. E-mail: ,
| |
Collapse
|
10
|
Bogolepova A, Makhnovich E, Kovalenko E, Osinovskaya N. Potential biomarkers of early diagnosis of Alzheimer’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:7-14. [DOI: 10.17116/jnevro20221220917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Martínez-Iglesias O, Naidoo V, Cacabelos N, Cacabelos R. Epigenetic Biomarkers as Diagnostic Tools for Neurodegenerative Disorders. Int J Mol Sci 2021; 23:13. [PMID: 35008438 PMCID: PMC8745005 DOI: 10.3390/ijms23010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetics is the study of heritable changes in gene expression that occur without alterations to the DNA sequence, linking the genome to its surroundings. The accumulation of epigenetic alterations over the lifespan may contribute to neurodegeneration. The aim of the present study was to identify epigenetic biomarkers for improving diagnostic efficacy in patients with neurodegenerative diseases. We analyzed global DNA methylation, chromatin remodeling/histone modifications, sirtuin (SIRT) expression and activity, and the expression of several important neurodegeneration-related genes. DNA methylation, SIRT expression and activity and neuregulin 1 (NRG1), microtubule-associated protein tau (MAPT) and brain-derived neurotrophic factor (BDNF) expression were reduced in buffy coat samples from patients with neurodegenerative disorders. Our data suggest that these epigenetic biomarkers may be useful in clinical practical for the diagnosis, surveillance, and prognosis of disease activity in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, 15165 Corunna, Spain; (V.N.); (N.C.); (R.C.)
| | | | | | | |
Collapse
|
12
|
Singh-Mallah G, Kawamura T, Ardalan M, Chumak T, Svedin P, Arthur PG, James C, Hagberg H, Sandberg M, Mallard C. N-Acetyl Cysteine Restores Sirtuin-6 and Decreases HMGB1 Release Following Lipopolysaccharide-Sensitized Hypoxic-Ischemic Brain Injury in Neonatal Mice. Front Cell Neurosci 2021; 15:743093. [PMID: 34867200 PMCID: PMC8634142 DOI: 10.3389/fncel.2021.743093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation and neonatal hypoxia-ischemia (HI) are important etiological factors of perinatal brain injury. However, underlying mechanisms remain unclear. Sirtuins are a family of nicotinamide adenine dinucleotide (NAD)+-dependent histone deacetylases. Sirtuin-6 is thought to regulate inflammatory and oxidative pathways, such as the extracellular release of the alarmin high mobility group box-1 (HMGB1). The expression and role of sirtuin-6 in neonatal brain injury are unknown. In a well-established model of neonatal brain injury, which encompasses inflammation (lipopolysaccharide, LPS) and hypoxia-ischemia (LPS+HI), we investigated the protein expression of sirtuin-6 and HMGB1, as well as thiol oxidation. Furthermore, we assessed the effect of the antioxidant N-acetyl cysteine (NAC) on sirtuin-6 expression, nuclear to cytoplasmic translocation, and release of HMGB1 in the brain and blood thiol oxidation after LPS+HI. We demonstrate reduced expression of sirtuin-6 and increased release of HMGB1 in injured hippocampus after LPS+HI. NAC treatment restored sirtuin-6 protein levels, which was associated with reduced extracellular HMGB1 release and reduced thiol oxidation in the blood. The study suggests that early reduction in sirtuin-6 is associated with HMGB1 release, which may contribute to neonatal brain injury, and that antioxidant treatment is beneficial for the alleviation of these injurious mechanisms.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Takuya Kawamura
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Maryam Ardalan
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Tetyana Chumak
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Peter G Arthur
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - Christopher James
- School of Molecular Sciences, University of Western Australia, Perth, WA, Australia
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Tayanloo-Beik A, Kiasalari Z, Roghani M. Paeonol Ameliorates Cognitive Deficits in Streptozotocin Murine Model of Sporadic Alzheimer's Disease via Attenuation of Oxidative Stress, Inflammation, and Mitochondrial Dysfunction. J Mol Neurosci 2021; 72:336-348. [PMID: 34797511 DOI: 10.1007/s12031-021-01936-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Intracerebroventricular (ICV) microinjection of diabetogenic drug streptozotocin (STZ) in rodents consistently produces a model of sporadic Alzheimer's disease (sAD) which is characterized by tau pathology and concomitant cognitive decline, insulin resistance, neuroinflammation, oxidative stress, and mitochondrial malfunction. Paeonol is an active phenolic component in some medicinal plants like Cortex Moutan with neuroprotective efficacy via exerting anti-inflammatory and anti-oxidative effects. This study was conducted to assess beneficial effect of paeonol in amelioration of cognitive deficits in ICV STZ rat model of sAD. STZ (3 mg/kg) was microinjected into the lateral ventricles on days 0 and 2, and paeonol was given p.o. at two doses of 25 (low) or 100 (high) mg/kg from day 0 (post-surgery) till day 24 post-STZ. Cognitive performance was evaluated in different tasks, and oxidative stress- and inflammation-related parameters were measured in addition to immunohistochemical assessment of glial fibrillary acidic protein (GFAP) as a marker of astrocytes. Paeonol at the higher dose ameliorated cognitive deficits in Barnes maze, novel object recognition (NOR) task, Y maze, and passive avoidance test. In addition, paeonol partially reversed hippocampal malondialdehyde (MDA), reactive oxygen species (ROS), total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase, glutathione reductase, tumor necrosis factor α (TNFα), interleukin 6 (IL-6), mitochondrial membrane potential (MMP), myeloperoxidase (MPO), and acetylcholinesterase (AChE) activity. Paeonol treatment was also associated with lower hippocampal immunoreactivity for GFAP. This study showed that paeonol can alleviate cognitive disturbances in ICV STZ rat model of sAD via ameliorating neuroinflammation, oxidative stress, mitochondrial dysfunction, and also through its attenuation of astrogliosis.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Department of Biology, School of Basic Sciences, Shahed University, Tehran, Iran
| | - Zahra Kiasalari
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
14
|
Fernando KKM, Wijayasinghe YS. Sirtuins as Potential Therapeutic Targets for Mitigating Neuroinflammation Associated With Alzheimer's Disease. Front Cell Neurosci 2021; 15:746631. [PMID: 34630044 PMCID: PMC8492950 DOI: 10.3389/fncel.2021.746631] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, which is associated with memory deficit and global cognitive decline. Age is the greatest risk factor for AD and, in recent years, it is becoming increasingly appreciated that aging-related neuroinflammation plays a key role in the pathogenesis of AD. The presence of β-amyloid plaques and neurofibrillary tangles are the primary pathological hallmarks of AD; defects which can then activate a cascade of molecular inflammatory pathways in glial cells. Microglia, the resident macrophages in the central nervous system (CNS), are the major triggers of inflammation; a response which is typically intended to prevent further damage to the CNS. However, persistent microglial activation (i.e., neuroinflammation) is toxic to both neurons and glia, which then leads to neurodegeneration. Growing evidence supports a central role for sirtuins in the regulation of neuroinflammation. Sirtuins are NAD+-dependent protein deacetylases that modulate a number of cellular processes associated with inflammation. This review examines the latest findings regarding AD-associated neuroinflammation, mainly focusing on the connections among the microglial molecular pathways of inflammation. Furthermore, we highlight the biology of sirtuins, and their role in neuroinflammation. Suppression of microglial activity through modulation of the sirtuin activity has now become a key area of research, where progress in therapeutic interventions may slow the progression of Alzheimer's disease.
Collapse
|
15
|
Nebbioso M, Lambiase A, Armentano M, Tucciarone G, Sacchetti M, Greco A, Alisi L. Diabetic retinopathy, oxidative stress, and sirtuins: an in depth look in enzymatic patterns and new therapeutic horizons. Surv Ophthalmol 2021; 67:168-183. [PMID: 33864872 DOI: 10.1016/j.survophthal.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in the world. DR represents the most common microvascular complication of diabetes, and its incidence is constantly rising. The complex interactions between inflammation, oxidative stress, and the production of free oxygen radicals caused by prolonged exposure to hyperglycemia determine the development of DR. Sirtuins (SIRTs) are a recently discovered class of 7 histone deacetylases involved in cellular senescence, regulation of cell cycle, metabolic pathways, and DNA repair. SIRTs participate in the progress of several pathologies such as cancer, neurodegeneration, and metabolic diseases. In DR sirtuins 1,3,5, and 6 play an important role as they regulate the activation of the inflammatory response, insulin sensibility, and both glycolysis and gluconeogenesis. A wide spectrum of direct and indirect activators of SIRTs pathways (e.g., antagomiR, resveratrol, or glycyrrhizin) is currently being developed to treat the inflammatory cascade occurring in DR. We focus on the main metabolic and inflammatory pathways involving SIRTs and DR, as well as recent evidence on SIRTs activators that may be employed as novel therapeutic approaches to DR.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Alessandro Lambiase
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy.
| | - Marta Armentano
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Giosuè Tucciarone
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Marta Sacchetti
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Ludovico Alisi
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
16
|
Poltronieri P, Celetti A, Palazzo L. Mono(ADP-ribosyl)ation Enzymes and NAD + Metabolism: A Focus on Diseases and Therapeutic Perspectives. Cells 2021; 10:cells10010128. [PMID: 33440786 PMCID: PMC7827148 DOI: 10.3390/cells10010128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Mono(ADP-ribose) transferases and mono(ADP-ribosyl)ating sirtuins use NAD+ to perform the mono(ADP-ribosyl)ation, a simple form of post-translational modification of proteins and, in some cases, of nucleic acids. The availability of NAD+ is a limiting step and an essential requisite for NAD+ consuming enzymes. The synthesis and degradation of NAD+, as well as the transport of its key intermediates among cell compartments, play a vital role in the maintenance of optimal NAD+ levels, which are essential for the regulation of NAD+-utilizing enzymes. In this review, we provide an overview of the current knowledge of NAD+ metabolism, highlighting the functional liaison with mono(ADP-ribosyl)ating enzymes, such as the well-known ARTD10 (also named PARP10), SIRT6, and SIRT7. To this aim, we discuss the link of these enzymes with NAD+ metabolism and chronic diseases, such as cancer, degenerative disorders and aging.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni 7, 73100 Lecce, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Sergio Pansini 5, 80131 Naples, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Tommaso de Amicis 95, 80145 Naples, Italy
- Correspondence: (P.P.); (A.C.); (L.P.)
| |
Collapse
|
17
|
Raj S, Dsouza LA, Singh SP, Kanwal A. Sirt6 Deacetylase: A Potential Key Regulator in the Prevention of Obesity, Diabetes and Neurodegenerative Disease. Front Pharmacol 2020; 11:598326. [PMID: 33442387 PMCID: PMC7797778 DOI: 10.3389/fphar.2020.598326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022] Open
Abstract
Sirtuins, NAD + dependent proteins belonging to class III histone deacetylases, are involved in regulating numerous cellular processes including cellular stress, insulin resistance, inflammation, mitochondrial biogenesis, chromatin silencing, cell cycle regulation, transcription, and apoptosis. Of the seven mammalian sirtuins present in humans, Sirt6 is an essential nuclear sirtuin. Until recently, Sirt6 was thought to regulate chromatin silencing, but new research indicates its role in aging, diabetes, cardiovascular disease, lipid metabolism, neurodegenerative diseases, and cancer. Various murine models demonstrate that Sirt6 activation is beneficial in alleviating many disease conditions and increasing lifespan, showing that Sirt6 is a critical therapeutic target in the treatment of various disease conditions in humans. Sirt6 also regulates the pathogenesis of multiple diseases by acting on histone proteins and non-histone proteins. Endogenous and non-endogenous modulators regulate both activation and inhibition of Sirt6. Few Sirt6 specific non-endogenous modulators have been identified. Hence the identification of Sirt6 specific modulators may have potential therapeutic roles in the diseases described above. In this review, we describe the development of Sirt6, the role it plays in the human condition, the functional role and therapeutic importance in disease processes, and specific modulators and molecular mechanism of Sirt6 in the regulation of metabolic homeostasis, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Swapnil Raj
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Liston Augustine Dsouza
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shailendra Pratap Singh
- Department of Biomedical Engineering, School of Engineering and Technology, Central University of Rajasthan, Kishangarh, India
| | - Abhinav Kanwal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| |
Collapse
|
18
|
Pukhalskaia AE, Dyatlova AS, Linkova NS, Kozlov KL, Kvetnaia TV, Koroleva MV, Kvetnoy IM. Sirtuins as Possible Predictors of Aging and Alzheimer's Disease Development: Verification in the Hippocampus and Saliva. Bull Exp Biol Med 2020; 169:821-824. [PMID: 33098511 DOI: 10.1007/s10517-020-04986-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Verification of signaling molecules in the saliva is a non-invasive method of diagnosis and evaluation of treatment effectiveness in different pathologies. Sirtuins (SIRT), proteins from NAD-dependent histone deacetylases, are supposed to be involved in the pathogenesis of Alzheimerэs disease. Age-related decrease in sirtuins expression induces many pathophysiological processes that could lead to neurodegeneration. We studied the expression of SIRT1, SIRT3, SIRT5, and SIRT6 in the hippocampus and saliva of humans without neurological pathologies and in patients with Alzheimer's disease of elderly and senile age. In elderly and senile patients, the expression of SIRT1, SIRT3, and SIRT6 in the hippocampus and saliva was 1.5-4.9-fold reduced in comparison with healthy individuals of the corresponding age. In healthy senile persons, the expression of SIRT6 in the hippocampus and saliva was 2.5-4.5-fold lower than in healthy elderly individuals. Measurement of SIRT1, SIRT3, and SIRT6 concentration in the saliva can be used as an additional method for intravital non-invasive diagnosis of Alzheimer's disease in patients of advanced age. SIRT6 concentration in the saliva can be recommended as a marker for assessment of the rate of aging.
Collapse
Affiliation(s)
- A E Pukhalskaia
- Department of Biogerontology, St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| | - A S Dyatlova
- Department of Biogerontology, St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| | - N S Linkova
- Department of Biogerontology, St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia.
- Department of Therapy, Geriatrics, and Anti-Aging Medicine, Academy of Postgraduate Education, Federal Research and Clinical Center of Federal Medical-Biological Agency of the Russian Federation, Moscow, Russia.
| | - K L Kozlov
- Department of Biogerontology, St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| | - T V Kvetnaia
- Department of Biogerontology, St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| | - M V Koroleva
- Department of Therapy, Geriatrics, and Anti-Aging Medicine, Academy of Postgraduate Education, Federal Research and Clinical Center of Federal Medical-Biological Agency of the Russian Federation, Moscow, Russia
| | - I M Kvetnoy
- Department of Biogerontology, St. Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| |
Collapse
|
19
|
Farooqi AA, Fayyaz S, Poltronieri P, Calin G, Mallardo M. Epigenetic deregulation in cancer: Enzyme players and non-coding RNAs. Semin Cancer Biol 2020; 83:197-207. [PMID: 32738290 DOI: 10.1016/j.semcancer.2020.07.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Data obtained from cutting-edge research have shown that deregulated epigenetic marks are critical hallmarks of cancer. Rapidly emerging scientific evidence has helped in developing a proper understanding of the mechanisms leading to control of cellular functions, from changes in chromatin accessibility, transcription and translation, and in post-translational modifications. Firstly, mechanisms of DNA methylation and demethylation are introduced, as well as modifications of DNA and RNA, with particular focus on N6-methyladenosine (m6A), discussing the effects of these modifications in normal cells and in malignancies. Then, chromatin modifying proteins and remodelling complexes are discussed. Many enzymes and accessory proteins in these complexes have been found mutated or have undergone differential splicing, leading to defective protein complexes. Epigenetic mechanisms acting on nucleosomes by polycomb repressive complexes and on chromatin by SWI/SNF complexes on nucleosome assembly/disassembly, as well as main mutated genes linked to cancers, are reviewed. Among enzymes acting on histones and other proteins erasing the reversible modifications are histone deacetylases (HDACs). Sirtuins are of interest since most of these enzymes not only deacylate histones and other proteins, but also post-translationally modify proteins adding a Mono-ADP-ribose (MAR) moiety. MAR can be read by MACRO-domain containing proteins such as histone MacroH2A1, with specific function in chromatin assembly. Finally, recent advances are presented on non-coding RNAs with a scaffold function, prospecting their role in assembly of chromatin modifying complexes, recruiting enzyme players to chromatin regions. Lastly, the imbalance in metabolites production due to mitochondrial dysfunction is presented, with the potential of these metabolites to inhibit enzymes, either writers, readers or erasers of epitranscriptome marks. In the perspectives, studies are overwied on drugs under development aiming to limit excessive enzyme activities and to reactivate chromatin modifying complexes, for therapeutic application. This knowledge may lead to novel drugs and personalised medicine for cancer patients.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Department of Molecular Oncology, Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 44000, Pakistan.
| | | | - Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni Km 7, 73100 Lecce, Italy.
| | - George Calin
- Department of Experimental Therapeutics, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, "Federico II" via Pansini 5, Napoli, Italy.
| |
Collapse
|
20
|
Liu J, Liu D. Sirtuin 6 protects human retinal pigment epithelium cells from LPS-induced inflammation and apoptosis partly by regulating autophagy. Biosci Biotechnol Biochem 2020; 84:2062-2068. [PMID: 32619399 DOI: 10.1080/09168451.2020.1788377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lipopolysaccharides (LPS)-induced retinal inflammation is an important factor in retinal diseases. This study was aimed to investigate the effect of Sirt6 on LPS-induced retinal injury. ARPE-19 cells were incubated with LPS to induce inflammation. The cell viability was determined using CCK-8 assay. The mRNA level and protein expression of corresponding genes was detected using qRT-PCR and western blot, respectively. The production of inflammatory cytokines was measured using ELISA kit. The levels of oxidative stress-related factors were measured using their detection kits. Cell apoptosis was observed using TUNEL assay. The results showed that Sirt6 was downregulated after LPS treatment. Sirt6 strengthened LPS-induced autophagy by promoting the expression of LC3II/I, beclin1 and ATG5. Sirt6 treatment significantly inhibited LPS-induced inflammation, oxidative stress and cell apoptosis, which was then partly abolished by 3 MA. These results suggest Sirt6 to be an important regulator for LPS-induced inflammation, oxidative stress, and apoptosis partly by regulating cell autophagy.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Ophthalmology, Jinzhou He Eye Specialist Hospital , Jinzhou, P.R. China.,Department of Ophthalmology, The First Affiliated Hospital of Jinzhou Medical University , Jinzhou, P.R. China
| | - Dan Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinzhou Medical University , Jinzhou, P.R. China
| |
Collapse
|
21
|
The effect of baicalein-loaded Y-shaped miktoarm copolymer on spatial memory and hippocampal expression of DHCR24, SELADIN and SIRT6 genes in rat model of Alzheimer. Int J Pharm 2020; 586:119546. [PMID: 32544519 DOI: 10.1016/j.ijpharm.2020.119546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
In the present study, we successfully synthesized nanocarriers (NCs) based on Y-shaped miktoarm copolymers, Poly Ethylene Glycol-Lysine-(Poly Caprolactone)2 (PEG-Lys-PCL2), which were loaded by baicalein (B) through the nanoprecipitation process to assess their in-vitro and in-vivo properties. We applied various methods and measurements including proton nuclear magnetic resonance (HNMR), dynamic light scattering (DLS), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), MTT assay, hemolysis test, lethal dose, real-time PCR, and Morris water maze. The results of DLS indicated that the size and zeta potential of the obtained NCs and B-loaded NCs were acceptable. Also, in-vivo and in-vitro biocompatibility examinations proved that miktoarm-based NCs were safe, and all rats treated with miktoarm-based NCs did not exhibit any remarkable weight loss during the experiment. The results of the Morris water maze (in-vivo test) revealed that the normal saline-treated group, as well as B-miktoarm + Scopolamine (M + B + S) and B-miktoarm-Tween80 + Scopolamine (M + B + T + S) pretreatment groups, spent more time in the target quadrant. Thus, this experiment showed that pretreatment of rats with M + B + S and M + B + T + S had the most effects on spatial memory. According to quantitative PCR analysis, we hypothesized that, in comparison with other experimental groups, pretreatment of rats with M + B + T + S could be more effective in preventing cholinergic dysfunction, brain oxidative stress and cognitive deficits which cause by Scopolamine HBr. This outcome may be partially due to the upregulation of DHCR24, SELADIN, and SIRT6 in entire of the hippocampal region of normal saline-treated and M + B + T + S pretreatment groups. These results may be because mimicking the cell membrane structure would be an excellent feature for miktoarm, and partial coating of Tween-80 can play a critical role for PEG-Lys-PCL2-based NCs in crossing the brain cell membrane, and they can easily be uptaken by the cells. Eventually, all of the obtained data confirmed that PEG-Lys-PCL2 miktoarm star copolymers are suitable for delivering therapeutic agents to the brain for the treatment of Alzheimer's disease (AD). Also, it seems that baicalein should be taken into account as a potent compound for the treatment of AD.
Collapse
|
22
|
Contributions of DNA Damage to Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21051666. [PMID: 32121304 PMCID: PMC7084447 DOI: 10.3390/ijms21051666] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of neurodegenerative disease. Its typical pathology consists of extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles. Mutations in the APP, PSEN1, and PSEN2 genes increase Aβ production and aggregation, and thus cause early onset or familial AD. Even with this strong genetic evidence, recent studies support AD to result from complex etiological alterations. Among them, aging is the strongest risk factor for the vast majority of AD cases: Sporadic late onset AD (LOAD). Accumulation of DNA damage is a well-established aging factor. In this regard, a large amount of evidence reveals DNA damage as a critical pathological cause of AD. Clinically, DNA damage is accumulated in brains of AD patients. Genetically, defects in DNA damage repair resulted from mutations in the BRAC1 and other DNA damage repair genes occur in AD brain and facilitate the pathogenesis. Abnormalities in DNA damage repair can be used as diagnostic biomarkers for AD. In this review, we discuss the association, the causative potential, and the biomarker values of DNA damage in AD pathogenesis.
Collapse
|
23
|
Alzheimer's disease: Key developments support promising perspectives for therapy. Pharmacol Res 2019; 146:104316. [PMID: 31260730 DOI: 10.1016/j.phrs.2019.104316] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/15/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's is the neurodegenerative disease affecting the largest number of patients in the world. In spite of the intense research of the last decades, progress about its knowledge and therapy was limited. In particular, various cytotoxic processes remained debated, while the few drugs approved for therapy were of only marginal relevance. Recent studies have identified key aspects of the disease, such as the mechanisms governing the development of pathology. In order to operate the Aβ peptide, known as the key factor, requires a complex assembled by its high affinity binding to PrPc, a cell surface prion protein, and mGluR5, a metabotropic glutamate receptor. Aβ and its associates bind also phosphorylated tau transferred to the extracellular space, with final activation of intracellular cytotoxic signals. Pathology is further affected by factors (including genes, receptors and their agonists) and by glial cells governing (via vesicles, cytokines and enzymes) cell immunology, inflammation and oxidative stress. Concomitant to pathology studies, strong attempts have been made for the development of new, effective therapies. Critical for this are biomarkers, by which Alzheimer's patients are recognized even before appearance of their symptoms. The question was whether patients take advantage from drugs not yet approved. The latter, first identified in mice, were found effective also in men, however only before appearance or at early stage of the disease. In other words, the drugs not yet approved induce effective protection of patients still healthy or in a preliminary stage of the disease. In contrast, developed Alzheimer's disease is practically irreversible.
Collapse
|
24
|
Wu X, Tian H, Xue L, Wang L. SIRT6 abrogation promotes adrenocortical carcinoma through activation of NF-κB signaling. Mol Cell Biochem 2019; 458:1-10. [PMID: 30989475 DOI: 10.1007/s11010-019-03525-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/15/2019] [Indexed: 02/05/2023]
Abstract
As an uncommon malignancy in the adrenal gland, adrenocortical carcinoma (ACC) is characterized by thorny diagnosis and poor clinical outcome, necessitating innovative treatment strategies. Sirtuin 6 (SIRT6), a tumor suppressor, modulates aerobic glycolysis of malignant cells and has an impact on tumorigenesis. This study focused on investigating SIRT6 expression in ACC and how it generates cancer phenotypes. SIRT6 expression was inhibited in ACC tissues according to western blotting, real-time polymerase chain reaction, and immunohistochemistry. MTT assay, TUNEL assay, and flow cytometry were performed to evaluate the contribution of SIRT6 to cell invasion, proliferation, death, and migration. It was shown that SIRT6 knockdown promoted cell invasion, proliferation, and migration, and inhibited cell death. Moreover, it was found that SIRT6 knockdown upregulated TLR4 and reinforced phosphorylation of the nuclear transcription factor-kappa B (NF-κB) subunit p65 as well as inhibitor of nuclear factor kappa-B kinase. Additionally, SIRT6 knockdown significantly enhanced expression of calcitonin gene-related peptide as well as transient receptor potential vanilloid subtype 1. It also reinforced reactive oxygen species generation. Overall, our research findings demonstrate that SIRT6 serves as a tumor suppressor via regulation of the NF-κB pathway, which could offer an innovative strategy to treat ACC.
Collapse
Affiliation(s)
- Xueyi Wu
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Haoming Tian
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, China.
| | - Long Xue
- Department of Intensive Medicine, Women and Children's Hospital of Sichuan Province, Chengdu, 610043, China
| | - Lizhi Wang
- Department of Eugenics, Women and Children's Hospital of Sichuan Province, Chengdu, 610043, China
| |
Collapse
|
25
|
Cacabelos R, Carril JC, Cacabelos N, Kazantsev AG, Vostrov AV, Corzo L, Cacabelos P, Goldgaber D. Sirtuins in Alzheimer's Disease: SIRT2-Related GenoPhenotypes and Implications for PharmacoEpiGenetics. Int J Mol Sci 2019; 20:ijms20051249. [PMID: 30871086 PMCID: PMC6429449 DOI: 10.3390/ijms20051249] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022] Open
Abstract
Sirtuins (SIRT1-7) are NAD+-dependent protein deacetylases/ADP ribosyltransferases with important roles in chromatin silencing, cell cycle regulation, cellular differentiation, cellular stress response, metabolism and aging. Sirtuins are components of the epigenetic machinery, which is disturbed in Alzheimer’s disease (AD), contributing to AD pathogenesis. There is an association between the SIRT2-C/T genotype (rs10410544) (50.92%) and AD susceptibility in the APOEε4-negative population (SIRT2-C/C, 34.72%; SIRT2-T/T 14.36%). The integration of SIRT2 and APOE variants in bigenic clusters yields 18 haplotypes. The 5 most frequent bigenic genotypes in AD are 33CT (27.81%), 33CC (21.36%), 34CT (15.29%), 34CC (9.76%) and 33TT (7.18%). There is an accumulation of APOE-3/4 and APOE-4/4 carriers in SIRT2-T/T > SIRT2-C/T > SIRT2-C/C carriers, and also of SIRT2-T/T and SIRT2-C/T carriers in patients who harbor the APOE-4/4 genotype. SIRT2 variants influence biochemical, hematological, metabolic and cardiovascular phenotypes, and modestly affect the pharmacoepigenetic outcome in AD. SIRT2-C/T carriers are the best responders, SIRT2-T/T carriers show an intermediate pattern, and SIRT2-C/C carriers are the worst responders to a multifactorial treatment. In APOE-SIRT2 bigenic clusters, 33CC carriers respond better than 33TT and 34CT carriers, whereas 24CC and 44CC carriers behave as the worst responders. CYP2D6 extensive metabolizers (EM) are the best responders, poor metabolizers (PM) are the worst responders, and ultra-rapid metabolizers (UM) tend to be better responders that intermediate metabolizers (IM). In association with CYP2D6 genophenotypes, SIRT2-C/T-EMs are the best responders. Some Sirtuin modulators might be potential candidates for AD treatment.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Juan C Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Natalia Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Aleksey G Kazantsev
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Alex V Vostrov
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Lola Corzo
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Pablo Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain.
| | - Dmitry Goldgaber
- Department of Psychiatry and Behavioral Science, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
26
|
Lu K, Yu S, Sun D, Xing H, An J, Kong C, Yu M, Zhu Y. Scientometric Analysis of SIRT6 Studies. Med Sci Monit 2018; 24:8357-8371. [PMID: 30457131 PMCID: PMC6256847 DOI: 10.12659/msm.913644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background SIRT6 is a molecule of significant interest in the field of epigenetics. This review of the literature aimed to explore research hotspots and other bibliometric features of SIRT6 by applying several bibliometric analysis tools and by establishing a comprehensive scientometric analysis model of SIRT6. Material/Methods The research sample included 441 articles related to SIRT6 obtained from the Web of Science core collection. Bicomb software was used to extract high frequency keywords, and then a binary matrix and a co-word matrix were constructed. We used Gcluto for double clustering, EXCEL for strategic coordinate building, Citespace software for co-citation analysis, CitNetExplorer for citation analysis, and Vosviewer for journal and term analysis. Results Research hotspots and the base knowledge of SIRT6 were determined by co-word and co-citation network analysis. The strategic coordinates approach was used to assess the research prospects of each hotspot and the connections between these hotspots. The distribution of disciplines and journals was determined and both a term density map and a dual-map were constructed by application of different tools. Conclusions SIRT6’s regulation of chromatin, lifespan, DNA damage, and metabolism make up the most important SIRT6 intellectual basis from the past 10 years. SIRT6 study has concentrated on the effects of this molecule on tumors and shown promising trends in understanding neural diseases. However, there has been little analysis of how SIRT6 effects are part of more complex systems. Work by Motoslavsky (2006) represents a milestone in SIRT6 research, and the studies by Kawahara 2009 and Kim 2010 are key in the knowledge transmission of SIRT6 research.
Collapse
Affiliation(s)
- Kaining Lu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University And Northeastern University, Shenyang, Liaoning, China (mainland)
| | - Shan Yu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Dan Sun
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University And Northeastern University, Shenyang, Liaoning, China (mainland)
| | - Haotian Xing
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University And Northeastern University, Shenyang, Liaoning, China (mainland)
| | - Jun An
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University And Northeastern University, Shenyang, Liaoning, China (mainland)
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University And Northeastern University, Shenyang, Liaoning, China (mainland)
| | - Meng Yu
- Department of Laboratory Animal Science, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China (mainland).,Joint Laboratory of Artificial Intelligence and Precision Medicine of China Medical University And Northeastern University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
27
|
Wei Y, Xie Z, Bi J, Zhu Z. Anti-inflammatory effects of bone marrow mesenchymal stem cells on mice with Alzheimer's disease. Exp Ther Med 2018; 16:5015-5020. [PMID: 30542456 PMCID: PMC6257159 DOI: 10.3892/etm.2018.6857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/13/2018] [Indexed: 12/28/2022] Open
Abstract
Anti-inflammatory effects of bone marrow mesenchymal stem cells (BMSCs) on mice with Alzheimer's disease (AD) were investigated. Twenty amyloid precursor protein (APP)/presenilin-1 (PS1) double transgenic mice were randomly divided into two groups: the AD control group and the stem cell treatment group. The normal control group consisted of 10 non-transgenic mice. The stem cell treatment group was injected with BMSCs, and the two control groups were given the same volume of normal saline. The Morris water maze test was used to compare the memory function of mice, and the relative expression levels of β-site APP cleaving enzyme 1 (BACE1) and α-2-macroglobulin (A2M) genes were detected by fluorescence quantitative polymerase chain reaction (qPCR). Amyloid β (Aβ)1–42 content in brain tissues of mice and inflammatory cytokines, interleukin (IL)-1, IL-2, IL-10, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ) were detected using enzyme-linked immunosorbent assay (ELISA). Compared with that in the AD control group, the escape latency in the water maze in the stem cell treatment group was shortened, the time of crossing the ring for the first time was decreased, but the frequency of crossing the ring was increased (P<0.05). Aβ1–42 content in the AD control group was higher than that in the stem cell treatment group and the normal control group (P<0.05). The relative expression level of BACE1 gene in the stem cell treatment group was lower than that in the AD control group (P<0.05), but that of A2M gene was increased (P<0.05). At 14 days after treatment, the contents of IL-1, IL-2, TNF-α and IFN-γ in blood in the stem cell treatment group were lower than those in the AD control group (P<0.05). Human BMSCs can ameliorate the symptoms of AD by decreasing the levels of inflammatory cytokines and regulating the expression of Aβ-related genes.
Collapse
Affiliation(s)
- Yan Wei
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhaohong Xie
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jianzhong Bi
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhengyu Zhu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|