1
|
Tamang R, Mehata AK, Singh V, Muthu MS, Koch B. "Sustainable synthesis of Camellia sinensis-mediated silver nanoparticles (CsAgNP) and their anticancer mechanisms in breast cancer cells". BIOMATERIALS ADVANCES 2024; 166:214072. [PMID: 39454417 DOI: 10.1016/j.bioadv.2024.214072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
The present investigation focuses on synthesizing eco-friendly and cost-effective silver nanoparticles (CsAgNP) utilizing Camellia sinensis ethanolic extract (CsE) as a reducing agent and investigating the potential enhancement in its anticancer efficacy as compared to CsE. The CsAgNP formation was confirmed through the color change from pale green to dark brown and further validated using UV-visible spectroscopy in the 400-450 nm range. The optimal CsAgNP synthesis parameters include 1:4 ratio of CsE: 1 mM AgNO3, 60 min of duration and 50 °C reaction temperature. The morphology and the size of nanoparticles were estimated using AFM, SEM and TEM where the results showed a smooth topography with a size <100 nm. The CsAgNP crystalline form was confirmed through SAED pictures and silver's presence confirmed through EDX analysis. FTIR study ascertained the capping agents and distortion in functional groups compared to CsE. The anticancer potency of CsAgNP and crude extract (CsE) was assessed against the T-47D breast cancer cells by MTT assay. CsAgNP displayed strong activity towards T-47D cells (IC50 8 μg/ml) compared to CsE and relatively low activity towards the normal HEK-293 cells. Further, fluorescence microscopy and flow cytometry data revealed that the CsAgNP promotes apoptosis and also induces G2-M phase cell cycle arrest. Furthermore, CsAgNP treatment decreases p53 and Bcl-2 protein expression, while increasing Bax, Cytochrome c and Caspase-3 levels, indicating mitochondrial-mediated apoptotic pathway activation. Thus, our research aims to investigate the potential of using Camellia sinensis to synthesize CsAgNP, a potent drug delivery system, to enhance anticancer effectiveness and advance cancer therapy in the future.
Collapse
Affiliation(s)
- Rupen Tamang
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, IIT-BHU, Varanasi 221005, India
| | - Virendra Singh
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, IIT-BHU, Varanasi 221005, India
| | - Biplob Koch
- Genotoxicology and Cancer Biology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Almatroudi A. Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications. Pharmaceutics 2024; 16:1232. [PMID: 39339268 PMCID: PMC11435049 DOI: 10.3390/pharmaceutics16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Silver nanoparticles (AgNPs) are leading the way in nanotechnological innovation, combining the captivating properties of silver with the accuracy of nanoscale engineering, thus revolutionizing material science. Three main techniques arise within the alchemical domains of AgNP genesis: chemical, physical, and biological synthesis. Each possesses its distinct form of magic for controlling size, shape, and scalability-key factors necessary for achieving expertise in the practical application of nanoparticles. The story unravels, describing the careful coordination of chemical reduction, the environmentally sensitive charm of green synthesis utilizing plant extracts, and the precise accuracy of physical techniques. AgNPs are highly praised in the field of healthcare for their powerful antibacterial characteristics. These little warriors display a wide-ranging attack against bacteria, fungi, parasites, and viruses. Their critical significance in combating hospital-acquired and surgical site infections is highly praised, serving as a beacon of hope in the fight against the challenging problem of antibiotic resistance. In addition to their ability to kill bacteria, AgNPs are also known to promote tissue regeneration and facilitate wound healing. The field of cancer has also observed the adaptability of AgNPs. The review documents their role as innovative carriers of drugs, specifically designed to target cancer cells with accuracy, minimizing harm to healthy tissues. Additionally, it explores their potential as cancer therapy or anticancer agents capable of disrupting the growth of tumors. In the food business, AgNPs are utilized to enhance the durability of packing materials and coatings by infusing them with their bactericidal properties. This results in improved food safety measures and a significant increase in the duration that products can be stored, thereby tackling the crucial issue of food preservation. This academic analysis recognizes the many difficulties that come with the creation and incorporation of AgNPs. This statement pertains to the evaluation of environmental factors and the effort to enhance synthetic processes. The review predicts future academic pursuits, envisioning progress that will enhance the usefulness of AgNPs and increase their importance from being new to becoming essential within the realms of science and industry. Besides, AgNPs are not only a subject of scholarly interest but also a crucial component in the continuous effort to tackle some of the most urgent health and conservation concerns of contemporary society. This review aims to explore the complex process of AgNP synthesis and highlight their numerous uses, with a special focus on their growing importance in the healthcare and food business sectors. This review invites the scientific community to explore the extensive possibilities of AgNPs in order to fully understand and utilize their potential.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
3
|
Mohanty P, Singh PK, Lenka B, Adhya TK, Verma SK, Ayreen Z, Patro S, Sarkar B, Mohapatra RK, Mishra S. Biofabricated nanomaterials in sustainable agriculture: insights, challenges and prospects. Biofabrication 2024; 16:042003. [PMID: 38981495 DOI: 10.1088/1758-5090/ad60f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
One ever-evolving and ever-demanding critical human endeavour is the provision of food security for the growing world population. This can be done by adopting sustainable agriculture through horizontal (expanding the arable land area) and vertical (intensifying agriculture through sound technological approaches) interventions. Customized formulated nanomaterials have numerous advantages. With their specialized physico-chemical properties, some nanoparticulated materials improve the plant's natural development and stress tolerance and some others are good nanocarriers. Nanocarriers in agriculture often coat chemicals to form composites having utilities with crop productivity enhancement abilities, environmental management (such as ecotoxicity reduction ability) and biomedicines (such as the ability to control and target the release of useful nanoscale drugs). Ag, Fe, Zn, TiO2, ZnO, SiO2and MgO nanoparticles (NPs), often employed in advanced agriculture, are covered here. Some NPs used for various extended purposes in modern farming practices, including disease diagnostics and seed treatment are also covered. Thus, nanotechnology has revolutionized agrotechnology, which holds promise to transform agricultural (ecosystems as a whole to ensure food security in the future. Considering the available literature, this article further probes the emergent regulatory issues governing the synthesis and use of nanomaterials in the agriculture sector. If applied responsibly, nanomaterials could help improve soil health. This article provides an overview of the nanomaterials used in the distribution of biomolecules, to aid in devising a safer and eco-friendly sustainable agriculture strategy. Through this, agri-systems that depend on advanced farming practices might function more effectively and enhance agri-productivity to meet the food demand of the rising world population.
Collapse
Affiliation(s)
- Pratikhya Mohanty
- Bioenergy Lab, School of Biotechnology, KIIT Deemed to be University, Campus 11, Bhubaneswar, Odisha 751 024, India
| | - Puneet Kumar Singh
- Bioenergy Lab, School of Biotechnology, KIIT Deemed to be University, Campus 11, Bhubaneswar, Odisha 751 024, India
| | - Basundhara Lenka
- Bioenergy Lab, School of Biotechnology, KIIT Deemed to be University, Campus 11, Bhubaneswar, Odisha 751 024, India
| | - Tapan K Adhya
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha 751 024, India
| | - Suresh K Verma
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha 751 024, India
| | - Zobia Ayreen
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha 751 024, India
| | - Shilpita Patro
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha 751 024, India
| | - Biplab Sarkar
- Indian Institute of Agricultural Biotechnology, ICAR-IIAB, Garhkhantanga, Ranchi, Jharkhand 834 003, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar 758 002, Odisha, India
| | - Snehasish Mishra
- Bioenergy Lab, School of Biotechnology, KIIT Deemed to be University, Campus 11, Bhubaneswar, Odisha 751 024, India
| |
Collapse
|
4
|
France-Lanord A, Menon S, Lam J. Harvesting nucleating structures in nanoparticle crystallization: The example of gold, silver, and iron. J Chem Phys 2024; 161:044108. [PMID: 39046348 DOI: 10.1063/5.0200850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024] Open
Abstract
The thermodynamics and kinetics of nanoparticle crystallization, as opposed to bulk phases, may be influenced by surface and size effects. We investigate the importance of such factors in the crystallization process of gold, silver, and iron nanodroplets using numerical simulations in the form of molecular dynamics combined with path sampling. This modeling strategy is targeted at obtaining representative ensembles of structures located at the transition state of the crystallization process. A structural analysis of the transition state ensembles reveals that both the average size and location of the critical nucleation cluster are influenced by surface and nanoscale size effects. Furthermore, we also show that transition state structures in smaller nanodroplets exhibit a more ordered liquid phase, and differentiating between a well-ordered critical cluster and its surrounding disordered liquid phase becomes less evident. All in all, these findings demonstrate that crystallization mechanisms in nanoparticles go beyond the assumptions of classical nucleation theory.
Collapse
Affiliation(s)
- Arthur France-Lanord
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, F-75005 Paris, France
| | - Sarath Menon
- Max-Planck-Institut für Eisenforschung GmbH, D-40237 Düsseldorf, Germany
| | - Julien Lam
- Univ. Lille, CNRS, INRA, ENSCL, UMR 8207, UMET, Unité Matériaux et Transformations, F 59000 Lille, France
- Centre d'élaboration des Matériaux et d'Etudes Structurales, CNRS (UPR 8011), 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4, France
| |
Collapse
|
5
|
Malik MA, Wani AH, Bhat MY, Siddiqui S, Alamri SAM, Alrumman SA. Fungal-mediated synthesis of silver nanoparticles: a novel strategy for plant disease management. Front Microbiol 2024; 15:1399331. [PMID: 39006753 PMCID: PMC11239364 DOI: 10.3389/fmicb.2024.1399331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Various traditional management techniques are employed to control plant diseases caused by bacteria and fungi. However, due to their drawbacks and adverse environmental effects, there is a shift toward employing more eco-friendly methods that are less harmful to the environment and human health. The main aim of the study was to biosynthesize silver Nanoparticles (AgNPs) from Rhizoctonia solani and Cladosporium cladosporioides using a green approach and to test the antimycotic activity of these biosynthesized AgNPs against a variety of pathogenic fungi. The characterization of samples was done by using UV-visible spectroscopy, SEM (scanning electron microscopy), FTIR (fourier transmission infrared spectroscopy), and XRD (X-ray diffractometry). During the study, the presence of strong plasmon absorbance bands at 420 and 450 nm confirmed the AgNPs biosynthesis by the fungi Rhizoctonia solani and Cladosporium cladosporioides. The biosynthesized AgNPs were 80-100 nm in size, asymmetrical in shape and became spherical to sub-spherical when aggregated. Assessment of the antifungal activity of the silver nanoparticles against various plant pathogenic fungi was carried out by agar well diffusion assay. Different concentration of AgNPs, 5 mg/mL 10 mg/mL and 15 mg/mL were tested to know the inhibitory effect of fungal plant pathogens viz. Aspergillus flavus, Penicillium citrinum, Fusarium oxysporum, Fusarium metavorans, and Aspergillus aflatoxiformans. However, 15 mg/mL concentration of the AgNPs showed excellent inhibitory activity against all tested fungal pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.
Collapse
Affiliation(s)
- Mansoor Ahmad Malik
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Abdul Hamid Wani
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Mohd Yaqub Bhat
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Saad A M Alamri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sulaiman A Alrumman
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
6
|
Sandhu ZA, Raza MA, Alqurashi A, Sajid S, Ashraf S, Imtiaz K, Aman F, Alessa AH, Shamsi MB, Latif M. Advances in the Optimization of Fe Nanoparticles: Unlocking Antifungal Properties for Biomedical Applications. Pharmaceutics 2024; 16:645. [PMID: 38794307 PMCID: PMC11124843 DOI: 10.3390/pharmaceutics16050645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, nanotechnology has achieved a remarkable status in shaping the future of biological applications, especially in combating fungal diseases. Owing to excellence in nanotechnology, iron nanoparticles (Fe NPs) have gained enormous attention in recent years. In this review, we have provided a comprehensive overview of Fe NPs covering key synthesis approaches and underlying working principles, the factors that influence their properties, essential characterization techniques, and the optimization of their antifungal potential. In addition, the diverse kinds of Fe NP delivery platforms that command highly effective release, with fewer toxic effects on patients, are of great significance in the medical field. The issues of biocompatibility, toxicity profiles, and applications of optimized Fe NPs in the field of biomedicine have also been described because these are the most significant factors determining their inclusion in clinical use. Besides this, the difficulties and regulations that exist in the transition from laboratory to experimental clinical studies (toxicity, specific standards, and safety concerns) of Fe NPs-based antifungal agents have been also summarized.
Collapse
Affiliation(s)
- Zeshan Ali Sandhu
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Muhammad Asam Raza
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Abdulmajeed Alqurashi
- Department of Biology, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
| | - Samavia Sajid
- Department of Chemistry, Faculty of Science, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Sufyan Ashraf
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Kainat Imtiaz
- Department of Chemistry, Faculty of Science, Hafiz Hayat Campus, University of Gujrat, Gujrat 50700, Pakistan; (Z.A.S.); (S.A.); (K.I.)
| | - Farhana Aman
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan;
| | - Abdulrahman H. Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Monis Bilal Shamsi
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases (CGID), Taibah University, Madinah 42353, Saudi Arabia;
- Department Basic Medical Sciences, College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
7
|
Chavarría-Fernández SM, Jiménez-Alvarado R, Santos-López EM, Hernández-Hernandez AA, Cariño-Cortés R. Iron nanoparticles as food additives and food supplements, regulatory and legislative perspectives. Food Sci Biotechnol 2024; 33:1295-1305. [PMID: 38585565 PMCID: PMC10992046 DOI: 10.1007/s10068-024-01518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 04/09/2024] Open
Abstract
Recently, the use of nanotechnology in food has gained great interest. Iron nanoparticles with unique chemical, physical and structural properties allow their potential use mainly as iron fortifiers, colorants and antimicrobial agents. However, in the market we can find only supplements and food colorants based on iron nanoparticles. Their use in food fortification has so far been focused only on in vitro and in vivo experimental studies, since the toxicological evaluation of these studies has so far been the basis for the proposals of laws and regulations, which are still in an early stage of development. Therefore, the aim of this work was to summarize the use of the different forms of iron nanoparticles (oxides, oxyhydroxides, phosphates, pyrophosphates and sulfates) as food additives and supplements and to resume the perspectives of legislation regarding the use of these types of nanoparticles in the food industry.
Collapse
Affiliation(s)
- Sara Madai Chavarría-Fernández
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda la Concepción s/n, 42160 San Agustin Tlaxiaca, Hidalgo México
| | - Rubén Jiménez-Alvarado
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av Universidad km. 1. Ex Hacienda de Aquetzalpa AP 32, 43600 Tulancingo de Bravo, Hidalgo México
| | - Eva María Santos-López
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5 Colonia Carboneras, 42184 Mineral de la Reforma, Hidalgo México
| | - Aldahir Alberto Hernández-Hernandez
- Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av Universidad km. 1. Ex Hacienda de Aquetzalpa AP 32, 43600 Tulancingo de Bravo, Hidalgo México
| | - Raquel Cariño-Cortés
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda la Concepción s/n, 42160 San Agustin Tlaxiaca, Hidalgo México
| |
Collapse
|
8
|
Hosny M, Mubarak MF, El-Sheshtawy HS, Hosny R. Break oily water emulsion during petroleum enhancing production processes using green approach for the synthesis of SnCuO@FeO nanocomposite from microorganisms. Sci Rep 2024; 14:8406. [PMID: 38600150 PMCID: PMC11006871 DOI: 10.1038/s41598-024-56495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
The aim of this work was to synthesize a green nanoparticle SnCuO@FeO nanocomposite core-shell to break oily water emulsions during petroleum-enhancing production processes as an alternative to chemical and physical processes. In this study, eight bacterial isolates (MHB1-MHB8) have been isolated from tree leaves, giant reeds, and soil samples. The investigation involved testing bacterial isolates for their ability to make FeO nanoparticles and choosing the best producers. The selected isolate (MHB5) was identified by amplification and sequencing of the 16S rRNA gene as Bacillus paramycoides strain OQ878685. MHB5 produced the FeO nanoparticles with the smallest particle size (78.7 nm) using DLS. XRD, FTIR, and TEM were used to characterize the biosynthesized nanoparticles. The jar experiment used SnCuO@FeO with different ratios of Sn to CuO (1:1, 2:1, and 3:1) to study the effect of oil concentration, retention time, and temperature. The most effective performance was observed with a 1:1 ratio of Sn to CuO, achieving an 85% separation efficiency at a concentration of 5 mg/L, for a duration of 5 min, and at a temperature of 373 K. Analysis using kinetic models indicates that the adsorption process can be accurately described by both the pseudo-first-order and pseudo-second-order models. This suggests that the adsorption mechanism likely involves a combination of film diffusion and intraparticle diffusion. Regarding the adsorption isotherm, the Langmuir model provides a strong fit for the data, while the D-R model indicates that physical interactions primarily govern the adsorption mechanism. Thermodynamic analysis reveals a ∆H value of 18.62 kJ/mol, indicating an exothermic adsorption process. This suggests that the adsorption is a favorable process, as energy is released during the process. Finally, the synthesized green SnCuO@FeO nanocomposite has potential for use in advanced applications in the oil and gas industry to help the industry meet regulatory compliance, lower operation costs, reduce environmental impact, and enhance production efficiency.
Collapse
Affiliation(s)
- M Hosny
- Processes Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt
| | - Mahmoud F Mubarak
- Petroleum Applications Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt.
| | - H S El-Sheshtawy
- Processes Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt.
| | - R Hosny
- Production Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt
| |
Collapse
|
9
|
Yesmin S, Mahiuddin M, Nazmul Islam ABM, Karim KMR, Saha P, Khan MAR, Ahsan HM. Piper chaba Stem Extract Facilitated the Synthesis of Iron Oxide Nanoparticles as an Adsorbent to Remove Congo Red Dye. ACS OMEGA 2024; 9:10727-10737. [PMID: 38463303 PMCID: PMC10918656 DOI: 10.1021/acsomega.3c09557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
In this study, a straightforward, eco-friendly, and facile method for synthesizing iron oxide nanoparticles (IONPs) utilizing Piper chaba steam extract as a reducing and stabilizing agent has been demonstrated. The formation of stable IONPs coated with organic moieties was confirmed from UV-vis, FTIR, and EDX spectroscopy and DLS analysis. The produced IONPs are sufficiently crystalline to be superparamagnetic having a saturation magnetization value of 58 emu/g, and their spherical form and size of 9 nm were verified by XRD, VSM, SEM, and TEM investigations. In addition, the synthesized IONPs exhibited notable effectiveness in the removal of Congo Red (CR) dye with a maximum adsorption capacity of 88 mg/g. The adsorption kinetics followed pseudo-second-order kinetics, meaning the adsorption of CR on IONPs is mostly controlled by chemisorption. The adsorption isotherms of CR on the surface of IONPs follow the Langmuir isotherm model, indicating the monolayer adsorption on the homogeneous surface of IONPs through adsorbate-adsorbent interaction. The IONPs have revealed good potential for their reusability, with the adsorption efficiency remaining at about 85% after five adsorption-desorption cycles. The large-scale, safe, and cost-effective manufacturing of IONPs is made possible by this environmentally friendly process.
Collapse
Affiliation(s)
| | - Md. Mahiuddin
- Chemistry Discipline, Khulna University, Khulna9208, Bangladesh
| | | | | | - Prianka Saha
- Chemistry Discipline, Khulna University, Khulna9208, Bangladesh
| | | | - Habib Md. Ahsan
- Chemistry Discipline, Khulna University, Khulna9208, Bangladesh
| |
Collapse
|
10
|
Flieger J, Pasieczna-Patkowska S, Żuk N, Panek R, Korona-Głowniak I, Suśniak K, Pizoń M, Franus W. Characteristics and Antimicrobial Activities of Iron Oxide Nanoparticles Obtained via Mixed-Mode Chemical/Biogenic Synthesis Using Spent Hop ( Humulus lupulus L.) Extracts. Antibiotics (Basel) 2024; 13:111. [PMID: 38391497 PMCID: PMC10886061 DOI: 10.3390/antibiotics13020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Iron oxide nanoparticles (IONPs) have many practical applications, ranging from environmental protection to biomedicine. IONPs are being investigated due to their high potential for antimicrobial activity and lack of toxicity to humans. However, the biological activity of IONPs is not uniform and depends on the synthesis conditions, which affect the shape, size and surface modification. The aim of this work is to synthesise IONPs using a mixed method, i.e., chemical co-precipitation combined with biogenic surface modification, using extracts from spent hops (Humulus lupulus L.) obtained as waste product from supercritical carbon dioxide hop extraction. Different extracts (water, dimethyl sulfoxide (DMSO), 80% ethanol, acetone, water) were further evaluated for antioxidant activity based on the silver nanoparticle antioxidant capacity (SNPAC), total phenolic content (TPC) and total flavonoid content (TFC). The IONPs were characterised via UV-vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and Fourier-transform infrared (FT-IR) spectroscopy. Spent hop extracts showed a high number of flavonoid compounds. The efficiency of the solvents used for the extraction can be classified as follows: DMSO > 80% ethanol > acetone > water. FT-IR/ATR spectra revealed the involvement of flavonoids such as xanthohumol and/or isoxanthohumol, bitter acids (i.e., humulones, lupulones) and proteins in the surface modification of the IONPs. SEM images showed a granular, spherical structure of the IONPs with diameters ranging from 81.16 to 142.5 nm. Surface modification with extracts generally weakened the activity of the IONPs against the tested Gram-positive and Gram-negative bacteria and yeasts by half. Only the modification of IONPs with DMSO extract improved their antibacterial properties against Gram-positive bacteria (Staphylococcus epidermidis, Staphylococcus aureus, Micrococcus luteus, Enterococcus faecalis, Bacillus cereus) from a MIC value of 2.5-10 mg/mL to 0.313-1.25 mg/mL.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Sylwia Pasieczna-Patkowska
- Faculty of Chemistry, Department of Chemical Technology, Maria Curie Skłodowska University, Pl. Maria Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Natalia Żuk
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Rafał Panek
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1 St., 20-093 Lublin, Poland
| | - Katarzyna Suśniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1 St., 20-093 Lublin, Poland
| | - Magdalena Pizoń
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Franus
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| |
Collapse
|
11
|
Rambaran N, Naidoo Y, Mohamed F, Chenia HY, Baijnath H. Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata. PLANTS (BASEL, SWITZERLAND) 2024; 13:168. [PMID: 38256722 PMCID: PMC10821412 DOI: 10.3390/plants13020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024]
Abstract
The rise in antibiotic resistance (AR) poses an imminent threat to human health. Nanotechnology, together with mechanisms such as quorum sensing (QS), which relies on communication between bacterial cells, may decrease the selective pressure for AR. Thus, this study aimed to investigate the effectiveness of silver nanoparticles (AgNPs) synthesized at room temperature (Rt) and 80 °C using Embelia ruminata leaf, stem-bark, and fruit extracts as antibacterial and anti-QS agents. The phytosynthesized AgNPs solutions were subjected to various characterization assays and assessed for their antibacterial activities. Quantitative QS assays were performed using Chromobacterium subtsugae CV017 and Chromobacterium violaceum ATCC 12472. Synthesized AgNPs were spherical-to-near-spherical in shape, poly-dispersed, and crystalline, with a size range of 21.06-32.15 nm. Fruit AgNPs showed stronger antibacterial activity than AgNPs from other plant organs against selected bacterial strains. In the QS assays, fruit 80 °C AgNPs demonstrated the most significant violacein inhibition in an assay performed using the short-chain acyl homoserine lactone CV017 biosensor, while the leaf and fruit Rt AgNPs demonstrated the most violacein inhibition in an assay performed using the long-chain acyl homoserine lactone ATCC 12472 biosensor. The investigations carried out in this study lay the groundwork for future innovative research into antibacterial and anti-QS strategies using E. ruminata.
Collapse
Affiliation(s)
- Neervana Rambaran
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| | - Yougasphree Naidoo
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| | - Farzana Mohamed
- Microbiology Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (F.M.); (H.Y.C.)
| | - Hafizah Y. Chenia
- Microbiology Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (F.M.); (H.Y.C.)
| | - Himansu Baijnath
- Biological Sciences Department, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa; (Y.N.); (H.B.)
| |
Collapse
|
12
|
Hadi N, Nakhaeitazreji S, Kakian F, Hashemizadeh Z, Ebrahiminezhad A, Chong JWR, Berenjian A, Show PL. Superior Performance of Iron-Coated Silver Nanoparticles and Cefoxitin as an Antibiotic Composite Against Methicillin-Resistant Staphylococcus aureus (MRSA): A Population Study. Mol Biotechnol 2023:10.1007/s12033-023-00957-y. [PMID: 37957480 DOI: 10.1007/s12033-023-00957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
The synergistic effects of antimicrobial nanostructures with antibiotics present a promising solution for overcoming resistance in methicillin-resistant Staphylococcus aureus (MRSA). Previous studies have introduced iron as a novel coating for silver nanoparticles (AgNPs) to enhance both economic efficiency and potency against S. aureus. However, there are currently no available data on the potential of these novel nanostructures to reverse MRSA resistance. To address this gap, a population study was conducted within the MRSA community, collecting a total of 48 S. aureus isolates from skin lesions. Among these, 21 isolates (43.75%) exhibited cefoxitin resistance as determined by agar disk diffusion assay. Subsequently, a PCR test confirmed the presence of the mecA gene in 20 isolates, verifying them as MRSA. These results highlight the cefoxitin disk diffusion susceptibility test as an accurate screening method for predicting mecA-mediated resistance in MRSA. Synergy tests were performed on cefoxitin, serving as a marker antibiotic, and iron-coated AgNPs (Fe@AgNPs) in a combination study using the checkerboard assay. The average minimal inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) of cefoxitin were calculated as 11.55 mg/mL and 3.61 mg/mL, respectively. The findings indicated a synergistic effect (FIC index < 0.5) between Fe@AgNPs and cefoxitin against 90% of MRSA infections, while an additive effect (0.5 ≤ FIC index ≤ 1) could be expected in 10% of infections. These results suggest that Fe@AgNPs could serve as an economically viable candidate for co-administration with antibiotics to reverse resistance in MRSA infections within skin lesions. Such findings may pave the way for the development of future treatment strategies against MRSA infections.
Collapse
Affiliation(s)
- Nahal Hadi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Nakhaeitazreji
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshad Kakian
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hashemizadeh
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Jun Wei Roy Chong
- Faculty of Science and Engineering, Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Aydin Berenjian
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Nakhaeitazreji S, Hadi N, Taghizadeh SM, Moradi N, Kakian F, Hashemizadeh Z, Berenjian A, Ebrahiminezhad A. Green Synthesized Iron-Coated Silver Nanoparticles: Economic Bimetallic Nanoparticles Potential Against Methicillin-Resistance Staphylococcus aureus. Mol Biotechnol 2023; 65:1704-1714. [PMID: 36757629 DOI: 10.1007/s12033-022-00650-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/28/2022] [Indexed: 02/10/2023]
Abstract
Iron coating was introduced as one of the novel techniques to improve physicochemical and biological properties of silver nanoparticles (AgNPs). In the current experiment, impact of iron coating on the antimicrobial potency of AgNPs was investigated against methicillin-resistance Staphylococcus aureus (MRSA). To obtain more accurate data about the antimicrobial potency of examined nanostructures, the experiment was done on the 10 isolates of MRSA which were isolated from skin lesions. AgNPs and iron-coated AgNPs (Fe@AgNPs) were fabricated based on a green one-pot reaction procedure. Minimal inhibitory concentration (MIC) of Fe@AgNPs was not significantly different with MIC of AgNPs against eight out of 10 examined MRSA isolates. Also, by iron coating a reduction in the minimal inhibitory concentration (MIC) of AgNPs was observed against two MRSA isolates. The average MIC of AgNPs against 10 MRSA isolates was calculated to be 2.16 ± 0.382 mg/mL and this value was reduced to 1.70 ± 0.638 mg/mL for Fe@AgNPs. However, this difference was not considered significant statistically (P-value > 0.05). From productivity point of view, it was found that iron coating would improve the productivity of the synthesis reaction more than fivefold. Productivity of AgNPs was calculated to be 1.02 ± 0.07 g/L, meanwhile this value was 5.25 ± 0.05 g/L for Fe@AgNPs. Iron coating may provide another economic benefit to reduce final price of AgNPs. It is obvious that the price of a particular nanostructure made of silver and iron is significantly lower than that of pure silver. These findings can be considered for the fabrication of economic and potent antimicrobial nanoparticles.
Collapse
Affiliation(s)
- Sedigheh Nakhaeitazreji
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahal Hadi
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Nahid Moradi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshad Kakian
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Hashemizadeh
- Department of Bacteriology and Virology, School of Medicine, Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science and Engineering, The University of Waikato, Hamilton, 3240, New Zealand
- Department of Agricultural and Biological Engineering, 221 Agricultural Engineering Building, Pennsylvania State University, University Park, PA, 16802, USA
| | | |
Collapse
|
14
|
De Souza APN, Sánchez DR, Alzamora M, Colaço MV, de Souza MAV, De Gois JS, Senra JD, Carvalho NMF. Outstanding adsorption capacity of iron oxide synthesized with extract of açaí berry residue: kinetic, isotherm, and thermodynamic study for dye removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109423-109437. [PMID: 37775630 DOI: 10.1007/s11356-023-29872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/10/2023] [Indexed: 10/01/2023]
Abstract
Contamination of water by toxic dyes is a serious environmental problem. Adsorbents prepared by an environmentally safe route have stood out for application in pollutant removal. Herein, iron oxide-based nanomaterial composed of Fe(III)-OOH and Fe(II/III) bound to proanthocyanidins, with particles in the order of 20 nm, was prepared by green synthesis assisted by extract of açaí (Euterpe oleracea Mart.) berry seeds from an agro-industrial residue. The nanomaterial was applied in the adsorption of cationic dyes. Screening tests were carried out for methylene blue (MB), resulting in an outstanding maximum adsorption capacity of 531.8 mg g-1 at 343 K, pH 10, 180 min. The kinetics followed a pseudo-second-order model and the isotherm of Fritz-Schülnder provided the best fit. Thermodynamic data show an endothermic process with entropy increase, typical of chemisorption. The proposed mechanism is based on the multilayer formation over a heterogeneous adsorbent surface, with chemical and electrostatic interactions of MB with the iron oxide nanoparticles and with the proanthocyanidins. The high adsorption efficiency was attributed to the network formed by the polymeric proanthocyanidins that entangled and protected the iron oxide nanoparticles, which allowed the reuse of the nanomaterial for seven cycles without loss of adsorption efficiency.
Collapse
Affiliation(s)
- Ana Paula Nazar De Souza
- Instituto de Química, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, IQ, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Dalber R Sánchez
- Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/no, Gragoatá, Niterói, RJ, 24210-346, Brazil
| | - Mariella Alzamora
- Campus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, 19593, Santa Cruz da Serra, Duque de Caxias, RJ, 25240-005, Brazil
| | - Marcos Vinicius Colaço
- Instituto de Física, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Pavilhão João Lyra Filho, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Marcelo Augusto Vieira de Souza
- Instituto de Química, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, IQ, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Jefferson Santos De Gois
- Instituto de Química, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, IQ, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Jaqueline Dias Senra
- Instituto de Química, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, IQ, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil
| | - Nakédia M F Carvalho
- Instituto de Química, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, IQ, Maracanã, Rio de Janeiro, RJ, 20550-013, Brazil.
| |
Collapse
|
15
|
Pathak J, Pandey B, Singh P, Kumar R, Kaushik S, Sahu IP, Thakur TK, Kumar A. Exploring the Paradigm of Phyto-Nanofabricated Metal Oxide Nanoparticles: Recent Advancements, Applications, and Challenges. Mol Biotechnol 2023:10.1007/s12033-023-00799-8. [PMID: 37436581 DOI: 10.1007/s12033-023-00799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
The development of nanotechnology, in particular metal oxide nanoparticles, has captured immense scientific attention in the global arena due to their unique properties leading to their unique diverse applications. But the use of toxic precursors and high operational cost make existing methodologies inefficient for synthesising metal oxide nanoparticles (MONPs). Biogenic synthesis of MONPs has been hailed as a more sustainable approach for the synthesis of NPs due to its alignment with the principles of green chemistry. Microorganisms (bacteria, yeast, algae), animal sources (silk, fur, etc.), and plants are effective, low-cost, and eco-friendly means of synthesizing MONPs since they possess a high bio-reduction abilities to produce NPs of various shapes and sizes. The current review encompasses recent advancements in the field of plant-mediated MONP synthesis and characterisation. The detailed evaluation of various synthesis processes and parameters, key influencing factors affecting the synthesis efficiency and product morphology, practical applications with insight into the associated limitations and challenges presents a valuable database that will be helpful in developing alternative prospects and potential engineering applications.
Collapse
Affiliation(s)
- Jigyasa Pathak
- Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Bhamini Pandey
- Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Poonam Singh
- Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India.
| | - Ravinder Kumar
- Department of Chemistry, Gurukul Kangari Vishwavidyalaya, Haridwar, Uttarakhand, 249404, India
| | - Sandeep Kaushik
- Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Ishwar Prasad Sahu
- Department of Physics, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Tarun Kumar Thakur
- Department of Environmental Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
16
|
Zhang N, Reguyal F, Praneeth S, Sarmah AK. A novel green synthesized magnetic biochar from white tea residue for the removal of Pb(II) and Cd(II) from aqueous solution: Regeneration and sorption mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121806. [PMID: 37172772 DOI: 10.1016/j.envpol.2023.121806] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
A novel biochar-based magnetic nanocomposite (GSMB) was prepared from white tea waste via green synthesis method. The sorption properties and regeneration of GSMB were studied using Pb(II) and Cd(II) to better understand its ability in heavy metal recovery. The adsorption kinetics data were modelled using pseudo-first order, pseudo-second order, Elovich and intraparticle diffusion models, while Pb(II) and Cd(II) isotherms were modelled with Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models. Results showed that Pb(II) adsorption was well described by pseudo-second order while the Elovich model best described the Cd(II) adsorption trend, indicating the sorption of Pb(II) and Cd(II) onto GSMB were dominated by chemisoprtion than physisorption. Langmuir model gave the best fit to Pb(II) sorption, and the Cd(II) adsorption was well described by Temkin model. The maximum adsorption capacity of Pb(II) and Cd(II) onto GSMB were 81.6 mg/g and 38.6 mg/g, respectively. Scanning electron microscope coupled with energy dispersive x-ray, X-ray diffraction and Fourier transform infrared spectroscopy analyses revealed that iron oxides played a key role during adsorption process and the adsorption mechanisms include surface electrostatic attraction and surface complexation for both metals. Among the five regenerating agents studied, 0.1 M EDTA-2Na was favoured for the desorption of Pb(II) onto GMSB. The findings from the regeneration studies revealed ∼54% of Pb(II) adsorption capacity was remained after three sorption-desorption cycles implying the adsorbent could potentially be further reused.
Collapse
Affiliation(s)
- Na Zhang
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Febelyn Reguyal
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Sai Praneeth
- Department of Civil & Environmental Engineering, Wayne State University, Detroit, MI, 48202, USA
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand; School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Nedlands, WA, 6009, Australia.
| |
Collapse
|
17
|
Liu L, Li Y, Al-Huqail AA, Ali E, Alkhalifah T, Alturise F, Ali HE. Green synthesis of Fe 3O 4 nanoparticles using Alliaceae waste (Allium sativum) for a sustainable landscape enhancement using support vector regression. CHEMOSPHERE 2023; 334:138638. [PMID: 37100254 DOI: 10.1016/j.chemosphere.2023.138638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 06/02/2023]
Abstract
The synthesis of metal nanoparticles using green chemistry methods has gained significant attention in the field of landscape enhancement. Researchers have paid close attention to the development of very effective green chemistry approaches for the production of metal nanoparticles (NPs). The primary goal is to create an environmentally sustainable technique for generating NPs. At the nanoscale, ferro- and ferrimagnetic minerals such as magnetite exhibit superparamagnetic properties (Fe3O4). Magnetic nanoparticles (NPs) have received increased interest in nanoscience and nanotechnology due to their physiochemical properties, small particle size (1-100 nm), and low toxicity. Biological resources such as bacteria, algae, fungus, and plants have been used to manufacture affordable, energy-efficient, non-toxic, and ecologically acceptable metallic NPs. Despite the growing demand for Fe3O4 nanoparticles in a variety of applications, typical chemical production processes can produce hazardous byproducts and trash, resulting in significant environmental implications. The purpose of this study is to look at the ability of Allium sativum, a member of the Alliaceae family recognized for its culinary and medicinal benefits, to synthesize Fe3O4 NPs. Extracts of Allium sativum seeds and cloves include reducing sugars like glucose, which may be used as decreasing factors in the production of Fe3O4 NPs to reduce the requirement for hazardous chemicals and increase sustainability. The analytic procedures were carried out utilizing machine learning as support vector regression (SVR). Furthermore, because Allium sativum is widely accessible and biocompatible, it is a safe and cost-effective material for the manufacture of Fe3O4 NPs. Using the regression indices metrics of root mean square error (RMSE) and coefficient of determination (R2), the X-ray diffraction (XRD) study revealed the lighter, smoother spherical forms of NPs in the presence of aqueous garlic extract and 70.223 nm in its absence. The antifungal activity of Fe3O4 NPs against Candida albicans was investigated using a disc diffusion technique but exhibited no impact at doses of 200, 400, and 600 ppm. This characterization of the nanoparticles helps in understanding their physical properties and provides insights into their potential applications in landscape enhancement.
Collapse
Affiliation(s)
- Lisha Liu
- Chongqing Creation Vocational College, Chongqing, 402160, China
| | - Yuanhua Li
- Chongqing Creation Vocational College, Chongqing, 402160, China.
| | - Arwa A Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Elimam Ali
- Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Tamim Alkhalifah
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - Fahad Alturise
- Department of Computer, College of Science and Arts in Ar Rass, Qassim University, Ar Rass, Qassim, Saudi Arabia
| | - H Elhosiny Ali
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
18
|
Shahriarinour M, Divsar F, Mehdipour A, Youseftabar-Miri L, Barkhordri V. Antibacterial Properties of Cobalt Ferrite Magnetic Nanoparticles Loaded on Date Palm Pollen Against Multidrug-Resistant Bacteria. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-023-07811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
19
|
Biocatalysis as a Green Approach for Synthesis of Iron Nanoparticles—Batch and Microflow Process Comparison. Catalysts 2023. [DOI: 10.3390/catal13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
There is a growing need for production of iron particles due to their possible use in numerous systems (e.g., electrical, magnetic, catalytic, biological and others). Although severe reaction conditions and heavy solvents are frequently used in production of nanoparticles, green synthesis has arisen as an eco-friendly method that uses biological catalysts. Various precursors are combined with biological material (such as enzymes, herbal extracts, biomass, bacteria or yeasts) that contain chemicals from the main or secondary metabolism that can function as catalysts for production of nanoparticles. In this work, batch (“one-pot”) biosynthesis of iron nanoparticles is reviewed, as well as the possibilities of using microfluidic systems for continuous biosynthesis of iron nanoparticles, which could overcome the limitations of batch synthesis.
Collapse
|
20
|
Redwan N, Tsegaye D, Abebe B. Synthesis of iron-magnetite nanocomposites for hexavalent chromium sorption. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
21
|
Ajlouni AW, Hamdan EH, Alshalawi RAE, Shaik MR, Khan M, Kuniyil M, Alwarthan A, Ansari MA, Khan M, Alkhathlan HZ, Shaik JP, Adil SF. Green Synthesis of Silver Nanoparticles Using Aerial Part Extract of the Anthemis pseudocotula Boiss. Plant and Their Biological Activity. Molecules 2022; 28:molecules28010246. [PMID: 36615440 PMCID: PMC9822267 DOI: 10.3390/molecules28010246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Green syntheses of metallic nanoparticles using plant extracts as effective sources of reductants and stabilizers have attracted decent popularity due to their non-toxicity, environmental friendliness and rapid nature. The current study demonstrates the ecofriendly, facile and inexpensive synthesis of silver nanoparticles (AP-AgNPs) using the extract of aerial parts of the Anthemis pseudocotula Boiss. plant (AP). Herein, the aerial parts extract of AP performed a twin role of a reducing as well as a stabilizing agent. The green synthesized AP-AgNPs were characterized by several techniques such as XRD, UV-Vis, FT-IR, TEM, SEM and EDX. Furthermore, the antimicrobial and antibiofilm activity of as-prepared AP-AgNPs were examined by a standard two-fold microbroth dilution method and tissue culture plate methods, respectively, against several Gram-negative and Gram-positive bacterial strains and fungal species such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), multidrug-resistant Pseudomonas aeruginosa (MDR-PA) and Acinetobacter baumannii (MDR-AB), methicillin-resistant S. aureus (MRSA) and Candida albicans (C. albicans) strains. The antimicrobial activity results clearly indicated that the Gram-negative bacteria MDR-PA was most affected by AgNPs as compared to other Gram-negative and Gram-positive bacteria and fungi C. albicans. Whereas, in the case of antibiofilm activity, it has been found that AgNPs at 0.039 mg/mL, inhibit biofilms formation of Gram-negative bacteria i.e., MDR-PA, E. coli, and MDR-AB by 78.98 ± 1.12, 65.77 ± 1.05 and 66.94 ± 1.35%, respectively. On the other hand, at the same dose (i.e., 0.039 mg/mL), AP-AgNPs inhibits biofilm formation of Gram-positive bacteria i.e., MRSA, S. aureus and fungi C. albicans by 67.81 ± 0.99, 54.61 ± 1.11 and 56.22 ± 1.06%, respectively. The present work indicates the efficiency of green synthesized AP-AgNPs as good antimicrobial and antibiofilm agents against selected bacterial and fungal species.
Collapse
Affiliation(s)
- Abdul-Wali Ajlouni
- Physics Department, College of Applied Sciences, Umm Al-Qura University (UQU), Makkah 21955, Saudi Arabia
| | - Eman H. Hamdan
- Quality Assurance Supervisor, Salehiya Medical Company, Riyadh 12242, Saudi Arabia
| | - Rasha Awwadh Eid Alshalawi
- Laboratory Specialist Poison Control and Forensic Chemistry Center in Riyadh, Ministry of Health, Riyadh 13211, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (M.R.S.); (M.K.); (S.F.A.); Tel.: +966-11-4670439 (S.F.A.)
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mufsir Kuniyil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alwarthan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (M.R.S.); (M.K.); (S.F.A.); Tel.: +966-11-4670439 (S.F.A.)
| | - Hamad Z. Alkhathlan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jilani P. Shaik
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (M.R.S.); (M.K.); (S.F.A.); Tel.: +966-11-4670439 (S.F.A.)
| |
Collapse
|
22
|
Nandhini G, Shobana MK. Influence of phytochemicals with iron oxide nanoparticles for biomedical applications: a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Selvaraj R, Pai S, Vinayagam R, Varadavenkatesan T, Kumar PS, Duc PA, Rangasamy G. A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. CHEMOSPHERE 2022; 308:136331. [PMID: 36087731 DOI: 10.1016/j.chemosphere.2022.136331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Nanotechnology is considered the budding discipline in various fields of science and technology. In this review, the various synthesis methods of iron and iron oxide nanoparticles were summarised with more emphasis on green synthesis - a sustainable and eco-friendly method. The mechanism of green synthesis of these nanomaterials was reviewed in recent literature. The magnetic properties of these nanomaterials were briefed which makes them unique in the family of nanomaterials. An overview of various removal methods for the pollutants such as dye, heavy metals, and emerging contaminants using green synthesized iron and iron oxide nanoparticles is discussed. The mechanism of pollutant removal methods like Fenton-like degradation, photocatalytic degradation, and adsorption techniques was also detailed. The review is concluded with the challenges and possible future aspects of these nanomaterials for various environmental applications.
Collapse
Affiliation(s)
- Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shraddha Pai
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Thivaharan Varadavenkatesan
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ponnusamy Senthil Kumar
- Green Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Pham Anh Duc
- Faculty of Safety Engineering, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Gayathri Rangasamy
- University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
24
|
D. NAGAJOTHİ M, MAHESWARİ J. Biosynthesis and Characterization of Co3O4NPs Utilizing Prickly Pear Fruit Extract and its Biological Activities. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.993633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In the current research, there is a low level of research and information about the interaction of cobalt oxide nanoparticles (Co3O4NPs) in biological systems. This research creates a very simple and cost-effective preparation of cobalt oxide nanoparticles by using prickly pear fruit extract as a reducing agent, which may be further used for biological applications like antimicrobial, antioxidant, DNA interaction and in-vitro anticancer activity. The use of prickly pear fruit extract acts as a good reducing agent and is responsible for easy preparation and reducing the toxicity of cobalt oxide nanoparticles. The fabricated biogenic nanoparticles were confirmed by microscopic and spectroscopic analytical techniques like Ultra Violet-Visible spectrometer, Fourier transforms infrared spectrometer (FTIR), X-ray Diffraction Method (XRD), Energy-dispersive X-ray spectroscopy (EDS), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The average size of the synthesized nanoparticles is 36.24 nm. In the MTT assay, the prepared cobalt oxide NPs haspotential mechanisms of cytotoxicity and in-vitro anticancer activity in Hepatocellular carcinoma cancer cells (HepG2). The microbial activities like antibacterial and antifungal studies of the biosynthesized nanoparticles were performed by the Disc method. The Co3O4NPs with DNA interaction were examined by UV-Visible and fluorescence spectroscopic methods. The binding constant value of biogenic Co3O4NPs with CT-DNA was observed by UV-Visible spectroscopy with a result of 2.57x105mol-1. The binding parameters and quenching constants were observed by fluorescence spectroscopic methods having values of Ksv=7.1x103, kq=7.1x108, Ka=3.47.1x105, n=0.9119. From the findings, Co3O4NPs may be utilized as a medicinal aid for their antibacterial, antifungal, antioxidant, DNA binding and in-vitro anticancer activities.
Collapse
|
25
|
Figueiredo AQ, Rodrigues CF, Fernandes N, de Melo-Diogo D, Correia IJ, Moreira AF. Metal-Polymer Nanoconjugates Application in Cancer Imaging and Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3166. [PMID: 36144953 PMCID: PMC9503975 DOI: 10.3390/nano12183166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Metallic-based nanoparticles present a unique set of physicochemical properties that support their application in different fields, such as electronics, medical diagnostics, and therapeutics. Particularly, in cancer therapy, the plasmonic resonance, magnetic behavior, X-ray attenuation, and radical oxygen species generation capacity displayed by metallic nanoparticles make them highly promising theragnostic solutions. Nevertheless, metallic-based nanoparticles are often associated with some toxicological issues, lack of colloidal stability, and establishment of off-target interactions. Therefore, researchers have been exploiting the combination of metallic nanoparticles with other materials, inorganic (e.g., silica) and/or organic (e.g., polymers). In terms of biological performance, metal-polymer conjugation can be advantageous for improving biocompatibility, colloidal stability, and tumor specificity. In this review, the application of metallic-polymer nanoconjugates/nanohybrids as a multifunctional all-in-one solution for cancer therapy will be summarized, focusing on the physicochemical properties that make metallic nanomaterials capable of acting as imaging and/or therapeutic agents. Then, an overview of the main advantages of metal-polymer conjugation as well as the most common structural arrangements will be provided. Moreover, the application of metallic-polymer nanoconjugates/nanohybrids made of gold, iron, copper, and other metals in cancer therapy will be discussed, in addition to an outlook of the current solution in clinical trials.
Collapse
Affiliation(s)
- André Q. Figueiredo
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Carolina F. Rodrigues
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Natanael Fernandes
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ilídio J. Correia
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - André F. Moreira
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CPIRN-UDI/IPG—Centro de Potencial e Inovação em Recursos Naturais, Unidade de Investigação para o Desenvolvimento do Interior do Instituto Politécnico da Guarda, Avenida Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal
| |
Collapse
|
26
|
Biological Applications of Ball-Milled Synthesized Biochar-Zinc Oxide Nanocomposite Using Zea mays L. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165333. [PMID: 36014570 PMCID: PMC9412314 DOI: 10.3390/molecules27165333] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Nanotechnology is one of the vital and quickly developing areas and has several uses in various commercial zones. Among the various types of metal oxide-based nanoparticles, zinc oxide nanoparticles (ZnO NPs) are frequently used because of their effective properties. The ZnO nanocomposites are risk-free and biodegradable biopolymers, and they are widely being applied in the biomedical and therapeutics fields. In the current study, the biochar-zinc oxide (MB-ZnO) nanocomposites were prepared using a solvent-free ball-milling technique. The prepared MB-ZnO nanocomposites were characterized through scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray powder diffraction (XRD), and thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and ultraviolet–visible (UV) spectroscopy. The MB-ZnO particles were measured as 43 nm via the X-ray line broadening technique by applying the Scherrer equation at the highest peak of 36.36°. The FTIR spectroscope results confirmed MB-ZnO’s formation. The band gap energy gap values of the MB-ZnO nanocomposites were calculated as 2.77 eV by using UV–Vis spectra. The MB-ZnO nanocomposites were tested in various in vitro biological assays, including biocompatibility assays against the macrophages and RBCs and the enzymes’ inhibition potential assay against the protein kinase, alpha-amylase, cytotoxicity assays of the leishmanial parasites, anti-inflammatory activity, antifungal activity, and antioxidant activities. The maximum TAC (30.09%), TRP (36.29%), and DPPH radicals’ scavenging potential (49.19%) were determined at the maximum dose of 200 µg/mL. Similarly, the maximum activity at the highest dose for the anti-inflammatory (76%), at 1000 μg/mL, alpha-amylase inhibition potential (45%), at 1000 μg/mL, antileishmanial activity (68%), at 100 μg/mL, and antifungal activity (73 ± 2.1%), at 19 mg/mL, was perceived, respectively. It did not cause any potential harm during the biocompatibility and cytotoxic assay and performed better during the anti-inflammatory and antioxidant assay. MB-ZnO caused moderate enzyme inhibition and was more effective against pathogenic fungus. The results of the current study indicated that MB-ZnO nanocomposites could be applied as effective catalysts in various processes. Moreover, this research provides valuable and the latest information to the readers and researchers working on biopolymers and nanocomposites.
Collapse
|
27
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Liew RK, Nguyen DTC, Tran TV. Recent advances on botanical biosynthesis of nanoparticles for catalytic, water treatment and agricultural applications: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154160. [PMID: 35231528 DOI: 10.1016/j.scitotenv.2022.154160] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Green synthesis of nanoparticles using plant extracts minimizes the usage of toxic chemicals or energy. Here, we concentrate on the green synthesis of nanoparticles using natural compounds from plant extracts and their applications in catalysis, water treatment and agriculture. Polyphenols, flavonoid, rutin, quercetin, myricetin, kaempferol, coumarin, and gallic acid in the plant extracts engage in the reduction and stabilization of green nanoparticles. Ten types of nanoparticles involving Ag, Au, Cu, Pt, CuO, ZnO, MgO, TiO2, Fe3O4, and ZrO2 with emphasis on their formation mechanism are illuminated. We find that green nanoparticles serve as excellent, and recyclable catalysts for reduction of nitrophenols and synthesis of organic compounds with high yields of 83-100% and at least 5 recycles. Many emerging pollutants such as synthetic dyes, antibiotics, heavy metal and oils are effectively mitigated (90-100%) using green nanoparticles. In agriculture, green nanoparticles efficiently immobilize toxic compounds in soil. They are also sufficient nanopesticides to kill harmful larvae, and nanoinsecticides against dangerous vectors of pathogens. As potential nanofertilizers and nanoagrochemicals, green nanoparticles will open a revolution in green agriculture for sustainable development.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Viet Nam
| | - Rock Keey Liew
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; NV WESTERN PLT, No. 208B, Jalan Macalister, Georgetown 10400, Pulau Pinang, Malaysia
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
28
|
Bio-inspired Synthesis of Metal and Metal Oxide Nanoparticles: The Key Role of Phytochemicals. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02276-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
PARMANIK A, BOSE A, GHOSH B. Research advancement on magnetic iron oxide nanoparticles and their potential biomedical applications. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2022. [DOI: 10.23736/s2724-542x.21.02830-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Prema P, Nguyen VH, Venkatachalam K, Murugan JM, Ali HM, Salem MZM, Ravindran B, Balaji P. Hexavalent chromium removal from aqueous solutions using biogenic iron nanoparticles: Kinetics and equilibrium study. ENVIRONMENTAL RESEARCH 2022; 205:112477. [PMID: 34863690 DOI: 10.1016/j.envres.2021.112477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Green mediated biosynthesis of iron oxide nanoparticles utilising Rosa indica flower petal extracts (RIFP-FeONPs) was used in this investigation. The RIFP-FeONPs were evaluated by the UV-Visible Spectroscopy, FTIR, SEM, EDX, XRD, Zeta potentials, and DLS, and been engaged than for the elimination of Cr (VI) from the contaminated environments. At 269 nm, the RIFP-FeONPs surface plasmon vibration bands were observed, which attributed to the Fe3+. XRD patterns of RIFP-FeONPs depicted the intense diffraction peak of face-centered cubic (fcc) iron at a 2θ value of 45.33° from the (311) lattice plane indisputably revealed that the particles are constituted of pure iron. The fabricated nanomaterials are spherical and polydisperse with a diameter of 70-120 nm, and various agglomeration clusters are attributable to intermolecular interaction. Zeta potential measurement and particle size distribution of RIFP-FeONPs showed a mean average size of 115.5 ± 29 nm and a polydispersity index (PDI) of 0.420. The study aims to analyse the appropriateness of RIFP-FeONPs for removing hexavalent chromium from the aqueous environment and the application of adsorption isotherm and statistical models in the experiment. The sorption of Cr (VI) on RIFP-FeONPs was observed to fit well with the isothermal models (R2 = 0.98). The linear correlation between processing parameters and time demonstrated that the adsorption efficiency of Cr (VI) well correlated with the pseudo-first order kinetic model and isothermal adsorption with the Langmuir and Freundlich isothermal models, so that the RIFP-FeONPs could be a prospective nanosorbent for hexavalent chromium removal from industrial waste.
Collapse
Affiliation(s)
- P Prema
- Department of Zoology, VHN Senthikumara Nadar College (Autonomous), Virudhunagar, Tamilnadu, India
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University Surat Thani Campus, Makham Tia, Mueang, Surat Thani, 84000, Thailand
| | - J M Murugan
- PG and Research Centre in Biotechnology, MGR College, Hosur, India
| | - Hayssam M Ali
- Department of Botany and Microbiology College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Z M Salem
- Department of Forestry and Wood Technology, Faculty of Agriculture (EL-Shatby), Alexandria University, Alexandria, 21545, Egypt
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do, 16227, Republic of Korea
| | - P Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, India.
| |
Collapse
|
31
|
Himalayan Fern Cheilanthes bicolor Mediated Fabrication and Characterization of Iron Nanoparticles with Antimicrobial Potential. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Akhtar N, Ilyas N, Meraj TA, Pour-Aboughadareh A, Sayyed RZ, Mashwani ZUR, Poczai P. Improvement of Plant Responses by Nanobiofertilizer: A Step towards Sustainable Agriculture. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:965. [PMID: 35335778 PMCID: PMC8949119 DOI: 10.3390/nano12060965] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022]
Abstract
Drastic changes in the climate and ecosystem due to natural or anthropogenic activities have severely affected crop production globally. This concern has raised the need to develop environmentally friendly and cost-effective strategies, particularly for keeping pace with the demands of the growing population. The use of nanobiofertilizers in agriculture opens a new chapter in the sustainable production of crops. The application of nanoparticles improves the growth and stress tolerance in plants. Inoculation of biofertilizers is another strategy explored in agriculture. The combination of nanoparticles and biofertilizers produces nanobiofertilizers, which are cost-effective and more potent and eco-friendly than nanoparticles or biofertilizers alone. Nanobiofertilizers consist of biofertilizers encapsulated in nanoparticles. Biofertilizers are the preparations of plant-based carriers having beneficial microbial cells, while nanoparticles are microscopic (1-100 nm) particles that possess numerous advantages. Silicon, zinc, copper, iron, and silver are the commonly used nanoparticles for the formulation of nanobiofertilizer. The green synthesis of these nanoparticles enhances their performance and characteristics. The use of nanobiofertilizers is more effective than other traditional strategies. They also perform their role better than the common salts previously used in agriculture to enhance the production of crops. Nanobiofertilizer gives better and more long-lasting results as compared to traditional chemical fertilizers. It improves the structure and function of soil and the morphological, physiological, biochemical, and yield attributes of plants. The formation and application of nanobiofertilizer is a practical step toward smart fertilizer that enhances growth and augments the yield of crops. The literature on the formulation and application of nanobiofertilizer at the field level is scarce. This product requires attention, as it can reduce the use of chemical fertilizer and make the soil and crops healthy. This review highlights the formulation and application of nanobiofertilizer on various plant species and explains how nanobiofertilizer improves the growth and development of plants. It covers the role and status of nanobiofertilizer in agriculture. The limitations of and future strategies for formulating effective nanobiofertilizer are mentioned.
Collapse
Affiliation(s)
- Nosheen Akhtar
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.A.); (Z.-u.-R.M.)
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.A.); (Z.-u.-R.M.)
| | | | - Alireza Pour-Aboughadareh
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj P.O. Box 3183964653, Iran;
| | - R. Z. Sayyed
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Tashkent Region, Tashkent 111208, Uzbekistan;
| | - Zia-ur-Rehman Mashwani
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (N.A.); (Z.-u.-R.M.)
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
33
|
Puiatti GA, de Carvalho JP, de Matos AT, Lopes RP. Green synthesis of Fe 0 nanoparticles using Eucalyptus grandis leaf extract: Characterization and application for dye degradation by a (Photo)Fenton-like process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114828. [PMID: 35278918 DOI: 10.1016/j.jenvman.2022.114828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/12/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Zero-valent iron nanoparticles (EGnZVI) were synthesized using Eucalyptus grandis (EG) leaf extract as a reducing/stabilizing agent. The studied materials (EG leaves, extract and EGnZVI) were characterized using the XRD, FTIR, Raman spectroscopy, SEM, TEM/EDS techniques. The results indicate that several organic compounds, including phenolics, present in the EG leaves were successfully extracted and incorporated into the structure of the material, possibly promoting the capping and stabilization of the formed zero-valent iron particles. The EGnZVI presented low crystallinity, varied size (50-500 nm), approximately spherical shape, and formed aggregates. The EGnZVI were utilized in the removal of the Direct Red 80 (DR80), an azo dye. The effects of the temperature (15-35 °C), initial DR80 concentration (10-250 mg L-1), initial pH (2.5-8.5), the doses of H2O2 (0.5-5 mmol L-1) and EGnZVI (0.2-10 mg L-1), and the incidence of UV-light were evaluated. The EGnZVI did not present reactivity towards the DR80 in the absence of H2O2. However, in the presence of H2O2, the EGnZVI was highly efficient at removing the DR80 at slightly acidic pH0 values (4 and 5.5). Under these pH0 conditions, the EGnZVI/Fenton process proved to be more effective than the classic homogenous Fenton. Finally, in the presence of the UV-light, the process was highly efficient throughout the studied pH0 interval, with increased removal rates. Therefore, the nZVI/Fenton process, using the synthesized material, presents itself as a promising alternative for the degradation of organic pollutants, and the incidence of UV light can considerably improve its efficiency.
Collapse
Affiliation(s)
- Gustavo Alves Puiatti
- Department of Environmental and Sanitary Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-010, Brazil.
| | - Jéssica Passos de Carvalho
- Department of Chemistry, Federal University of Viçosa, Av. Peter Henry Rolfs, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Antonio Teixeira de Matos
- Department of Environmental and Sanitary Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais, 31270-010, Brazil
| | - Renata Pereira Lopes
- Department of Chemistry, Federal University of Viçosa, Av. Peter Henry Rolfs, Viçosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
34
|
Prema P, Veeramanikandan V, Rameshkumar K, Gatasheh MK, Hatamleh AA, Balasubramani R, Balaji P. Statistical optimization of silver nanoparticle synthesis by green tea extract and its efficacy on colorimetric detection of mercury from industrial waste water. ENVIRONMENTAL RESEARCH 2022; 204:111915. [PMID: 34419472 DOI: 10.1016/j.envres.2021.111915] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
For the optimization of silver nanoparticle production, a central composite design was used with three parameters: AgNO3 concentration, green tea extract concentration, and temperature at three different levels. The size of the synthesized silver nanoparticle, its UV absorbance, zeta potential, and polydispersity index were set as the response parameters. Silver nanoparticles obtained in the optimization process were characterized and its efficacy on colorimetric detection of mercury was evaluated. The response variables were significant for the factors analyzed, and each variable had a significant model (P < 0.05). The ideal conditions were: 1 mM AgNO3, 0.5% green tea extract, and 80 °C temperature. To analyze the produced AgNPs under certain ideal conditions, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used. The UV-visible spectra of AgNPs revealed an absorption maxima at 424 nm. The XRD pattern reveals a significant diffraction peak at 38.25°, 44.26°, 64.43°, and 77.49°, which corresponds to the (111), (200), (220), and (311) planes of polycrystalline face-centered cubic (fcc) silver, respectively. The TEM and SEM analyses confirmed that the particles were spherical, and dynamic light scattering study determined the average diameter of AgNPs to be 77.4 nm. The AgNPs have a zeta potential of -62.6 mV, as determined by the zeta sizer analysis. The AgNPs detects mercury at a micromolar concentration. Furthermore, the environmentally friendly generated AgNPs were used to detect mercury in a colorimetric method that was effectively employed for analytical detection of Hg2+ ions in an aqueous environment for the purpose of practical application.
Collapse
Affiliation(s)
- P Prema
- Department of Zoology, V.H.N. Senthikumara Nadar College (Autonomous), Virudhunagar, Tamilnadu, India
| | | | - K Rameshkumar
- Department of Zoology, Vivekananda College (Autonomous), Madurai, Tamil Nadu, India
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ravindran Balasubramani
- Department of Environmental Energy & Engineering, Kyonggi University, Suwon-si, Gyeonggi-do, 16227, South Korea
| | - P Balaji
- PG and Research Centre in Biotechnology, MGR College, Hosur, India.
| |
Collapse
|
35
|
Bergal A, Matar GH, Andaç M. Olive and green tea leaf extracts mediated green synthesis of silver nanoparticles (AgNPs): comparison investigation on characterizations and antibacterial activity. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00958-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Martínez-Molina EC, Freile-Pelegrín Y, Ovando-Chacón SL, Gutiérrez-Miceli FA, Ruiz-Cabrera MÁ, Grajales-Lagunes A, Luján-Hidalgo MC, Abud-Archila M. Development and characterization of alginate-based edible film from Sargassum fluitans incorporated with silver nanoparticles obtained by green synthesis. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01156-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Malik AR, Aziz MH, Atif M, Irshad MS, Ullah H, Gia TN, Ahmed H, Ahmad S, Botmart T. Lime peel extract induced NiFe2O4 NPs: Synthesis to applications and oxidative stress mechanism for anticancer, antibiotic activity. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
38
|
Supported silver nanoparticles over alginate-modified magnetic nanoparticles: Synthesis, characterization and treat the human lung carcinoma. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Ahmad KS, Yaqoob S, Gul MM. Dynamic green synthesis of iron oxide and manganese oxide nanoparticles and their cogent antimicrobial, environmental and electrical applications. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
The scientific community is inclined towards addressing environmental and energy concerns through sustainable means. Conventional processes such as chemical synthesis, involve the usage of environmentally harmful ligands and high tech facilities, which are time-consuming, expensive, energy-intensive, and require extreme conditions for synthesis. Plant-based synthesis is valuable and sustainable for the ecosystem. The use of plant-based precursors for nanoparticle synthesis eliminates the menace of toxic waste contamination. The present review elucidates that the plant based synthesized iron oxide and manganese oxide nanoparticles have tremendous and exceptional applications in various fields such as antimicrobial and antioxidative domains, environmental, electrical and sensing properties. Hence, the literature reviewed explains that plant based synthesis of nanoparticles is an adept and preferred technique. These important transition oxide metal nanoparticles have great applicability in ecological, environmental science as well as electrochemistry and sensing technology. Both these metal oxides display a stable and adaptable nature, which can be functionalized for a specific application, thus exhibiting great potential for efficiency. The current review epitomizes all the latest reported work on the synthesis of iron and manganese oxide nanoparticles through a greener approach along with explaining various significant applications keeping in view the concept of sustainability.
Collapse
Affiliation(s)
- Khuram Shahzad Ahmad
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 , Rawalpindi , Pakistan
| | - Sidra Yaqoob
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 , Rawalpindi , Pakistan
| | - Mahwash Mahar Gul
- Department of Environmental Sciences , Fatima Jinnah Women University , The Mall, 46000 , Rawalpindi , Pakistan
| |
Collapse
|
40
|
Biogenic production of silver nanoparticles from milk of Capra aegagrus hircus and mechanism of antibacterial activity on different bacteria. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02095-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Biosynthesis of Silver Nanoparticles Using Lavandula stoechas and an Enhancement of Its Antibacterial Activity with Antibiotics. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Aragaw TA, Bogale FM, Aragaw BA. Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101280] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4135. [PMID: 34361329 PMCID: PMC8347950 DOI: 10.3390/ma14154135] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Natural extracts are the source of many antioxidant substances. They have proven useful not only as supplements preventing diseases caused by oxidative stress and food additives preventing oxidation but also as system components for the production of metallic nanoparticles by the so-called green synthesis. This is important given the drastically increased demand for nanomaterials in biomedical fields. The source of ecological technology for producing nanoparticles can be plants or microorganisms (yeast, algae, cyanobacteria, fungi, and bacteria). This review presents recently published research on the green synthesis of nanoparticles. The conditions of biosynthesis and possible mechanisms of nanoparticle formation with the participation of bacteria are presented. The potential of natural extracts for biogenic synthesis depends on the content of reducing substances. The assessment of the antioxidant activity of extracts as multicomponent mixtures is still a challenge for analytical chemistry. There is still no universal test for measuring total antioxidant capacity (TAC). There are many in vitro chemical tests that quantify the antioxidant scavenging activity of free radicals and their ability to chelate metals and that reduce free radical damage. This paper presents the classification of antioxidants and non-enzymatic methods of testing antioxidant capacity in vitro, with particular emphasis on methods based on nanoparticles. Examples of recent studies on the antioxidant activity of natural extracts obtained from different species such as plants, fungi, bacteria, algae, lichens, actinomycetes were collected, giving evaluation methods, reference antioxidants, and details on the preparation of extracts.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Ryszard Maciejewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| |
Collapse
|
44
|
Rajakaruna TB, Udawatte CP, Chandrajith R, Rajapakse RMG. Formulation of Iron Oxide and Oxy-hydroxide Nanoparticles from Ilmenite Sand through a Low-Temperature Process. ACS OMEGA 2021; 6:17824-17830. [PMID: 34308017 PMCID: PMC8296008 DOI: 10.1021/acsomega.1c00938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
In our previous publication, we published a simple, low-cost, and environmentally friendly process for the breaking down of the ilmenite lattice using rotary autoclaving, separation of titanium and iron components, and the conversion of the titanium component to amorphous TiO2 and phase-specific titanium dioxide nanorods. Here, the separated iron component was converted into iron oxide (magnetite and hematite) and iron oxy-hydroxide (akaganeite, β-FeOOH) nanoparticles. The process flow diagram is presented to explain the steps involved. The materials synthesized are fully characterized by X-ray diffractogram (XRD), scanning electron microscopy coupled with energy-dispersive X-ray analysis (SEM-EDAX), and Fourier transform infrared (FT-IR), and it is shown that they contain 100% pure iron oxide and iron oxy-hydroxide nanoparticles without any detectable impurities. All of the chemical reactions involved in this process, which contribute to the mechanism of the process, are given. So far, such a low-cost, environmentally friendly, and low-temperature process has not been documented, and the process can be scaled-up for mass production of these nanomaterials used in various technological applications.
Collapse
Affiliation(s)
| | - Chandana P. Udawatte
- Department
of Physical Sciences and Technology, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, 70140 Belihuloya, Sri Lanka
| | - Rohana Chandrajith
- Department
of Geology, Faculty of Science, University
of Peradeniya, Peradeniya 20400 Sri Lanka
| | | |
Collapse
|
45
|
El-Gendy NS, Nassar HN. Biosynthesized magnetite nanoparticles as an environmental opulence and sustainable wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145610. [PMID: 33609818 DOI: 10.1016/j.scitotenv.2021.145610] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
This review emphasizes the win-win one-pot valorization process of different waste biomass that composed of many biological macromolecules (e.g. polysaccharides, polyphenols, carbohydrates, lipids, enzymes, proteins, etc.) and other biomolecules (e.g. alkaloids, terpenoids, tannins, phenolics, carotenoids, amino acids, sugars, vitamins, etc.) into biofunctionalized magnetite (Fe3O4) nanoparticles (BMNPs). It illustrates the sustainable recruitment of microbial intra- and extra-cellular metabolites, proteins, and/or enzymes in the biosynthesis of BMNPs. It elucidates the environmental affluence of such sustainable, cost-effective, and ecofriendly BMNPs as an antimicrobial agent for water disinfection, photo-degrader, and adsorbent for different xenobiotics, organic and inorganic water pollutants. It confers the future environmental aspects of BMNPs in biofuels production from lipids and lignocellulosic wastes, biosensors manufacturing and bio-upgrading of petroleum fractions, etc. It discusses the circular economy, challenges, and opportunities for scaling up the zero-waste green synthesis of MNPs. Nevertheless, imminent investigations are still needed to elucidate the exact rule of biological macro- and micro- molecules in BMNPs synthesis and mechanisms involved in its microbicidal and photodegradation activities. Accentuated researches are more required on the toxicity and/or biosafety of the green synthesized BMNPs to humans and other non-target organisms to ensure its eco-safety upon environmental applications.
Collapse
Affiliation(s)
- Nour Sh El-Gendy
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO 11727, Egypt; Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza PO 12566, Egypt; Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza PO 12588, Egypt.
| | - Hussein N Nassar
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO 11727, Egypt; Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza PO 12588, Egypt; Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza PO 12566, Egypt
| |
Collapse
|
46
|
Extracts of Pelargonium hortorum: A natural and efficient fluid for fast and eco-friendly biosynthesis of CeO2 nanoparticles for antioxidant and photocatalytic applications. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Mahdavi B, Paydarfard S, Rezaei‐Seresht E, Baghayeri M, Nodehi M. Green synthesis of NiONPs using
Trigonella subenervis
extract and its applications as a highly efficient electrochemical sensor, catalyst, and antibacterial agent. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Behnam Mahdavi
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| | - Sogand Paydarfard
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| | - Esmail Rezaei‐Seresht
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| | - Marzieh Nodehi
- Department of Chemistry, Faculty of Science Hakim Sabzevari University Sabzevar 9617976487 Iran
| |
Collapse
|
48
|
Hernández-Díaz JA, Garza-García JJ, Zamudio-Ojeda A, León-Morales JM, López-Velázquez JC, García-Morales S. Plant-mediated synthesis of nanoparticles and their antimicrobial activity against phytopathogens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1270-1287. [PMID: 32869290 DOI: 10.1002/jsfa.10767] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/15/2020] [Accepted: 08/31/2020] [Indexed: 05/02/2023]
Abstract
Nanotechnology is an emerging science with a wide array of applications involving the synthesis and manipulation of materials with dimensions in the range of 1-100 nm. Nanotechnological applications include diverse fields such as pharmaceuticals, medicine, the environment, food processing and agriculture. Regarding the latter, applications are mainly focused on plant growth and crop protection against plagues and diseases. In recent years, the biogenic reduction of elements such as Ag, Au, Cu, Cd, Al, Se, Zn, Ce, Ti and Fe with plant extracts has become one of the most accepted techniques for obtaining nanoparticles (NPs), as it is considered an ecological and cost-effective process without the use of chemical contaminants. The objective of this work was to review NPs synthesized by green chemistry using vegetable extracts, as well as their use as antimicrobial agents against phytopathogenic fungi and bacteria. Given the need for alternatives to control and integrate management of phytopathogens, this review is relevant to agriculture, although this technology is barely exploited in this field. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- José A Hernández-Díaz
- Department of Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | - Jorge Jo Garza-García
- Department of Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | | | - Janet M León-Morales
- Department of Plant Biotechnology, CONACYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | - Julio C López-Velázquez
- Department of Plant Biotechnology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| | - Soledad García-Morales
- Department of Plant Biotechnology, CONACYT - Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico
| |
Collapse
|
49
|
Gao G, Wang H, Zhou J, Rao P, Ke L, Lin JJ, Sun Pan B, Zhang Y, Wang Q. Isolation and Characterization of Bioactive Proteoglycan-Lipid Nanoparticles from Freshwater Clam ( Corbicula fluminea Muller) Soup. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1610-1618. [PMID: 33501827 DOI: 10.1021/acs.jafc.0c02402] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanoparticles can be prepared by several sophisticated processes but until now, it cannot be prepared by simple home cooking. Here, we report that two incidental food nanoparticles (iFNPs) consisting of proteoglycans and phytosterols were isolated from soup made from freshwater clam (Corbicula fluminea Muller), a renowned folk remedy for liver problems in China and other parts of East Asia. These two bioactive iFNPs were obtained and characterized by anionic exchange chromatography coupled with multi-angle laser light scattering measurement. Their hydrodynamic diameters and ζ-potentials were 50 ± 0.2 nm and -28.0 mV and 67 ± 0.4 nm and -9.96 mV, respectively. FT-IR revealed that the proteoglycans in the particles contained α-type heteropolysaccharides. Both iFNPs were resistant to pH changes and separation by mechanical force but responsive to temperature changes. They effectively inhibited cholesterol uptake in vitro, which resonates with the traditional belief that freshwater clam soup provides hepatoprotective benefits. This study suggests that these two proteoglycan-lipid iFNPs are the active moieties and offers a supramolecular structure-based approach to study the function of such complex matrices derived from food.
Collapse
Affiliation(s)
- Guanzhen Gao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Huiqin Wang
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jianwu Zhou
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Pingfan Rao
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lijing Ke
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Jen Lin
- Department of Food Science, National Taiwan Ocean University, Keelung City 202, Taiwan
| | - Bonnie Sun Pan
- Department of Food Science, National Taiwan Ocean University, Keelung City 202, Taiwan
| | - Yue Zhang
- Food Nutrition Sciences Centre, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
50
|
Green synthesis of iron oxide/cellulose magnetic recyclable nanocomposite and its evaluation in ciprofloxacin removal from aqueous solutions. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02028-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|