1
|
Gallo A, Lipari A, Di Francesco S, Ianuà E, Liperoti R, Cipriani MC, Martone AM, De Candia E, Landi F, Montalto M. Platelets and Neurodegenerative Diseases: Current Knowledge and Future Perspectives. Int J Mol Sci 2024; 25:6292. [PMID: 38927999 PMCID: PMC11203688 DOI: 10.3390/ijms25126292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Platelets have a fundamental role in mediating hemostasis and thrombosis. However, more recently, a new idea is making headway, highlighting the importance of platelets as significant actors in modulating immune and inflammatory responses. In particular, platelets have an important role in the development of vascular amyloid-b-peptide(ab) deposits, known to play a relevant role in Alzheimer's disease (AD) through accumulation and deposition within the frontal cortex and hippocampus in the brain. The involvement of platelets in the pathogenesis of AD opens up the highly attractive possibility of applying antiplatelet therapy for the treatment and/or prevention of AD, but conclusive results are scarce. Even less is known about the potential role of platelets in mild cognitive impairment (MCI). The aim to this brief review is to summarize current knowledge on this topic and to introduce the new perspectives on the possible role of platelet activation as therapeutic target both in AD and MCI.
Collapse
Affiliation(s)
- Antonella Gallo
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (R.L.); (M.C.C.); (A.M.M.); (F.L.); (M.M.)
| | - Alice Lipari
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.D.F.); (E.I.)
| | - Silvino Di Francesco
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.D.F.); (E.I.)
| | - Eleonora Ianuà
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.D.F.); (E.I.)
| | - Rosa Liperoti
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (R.L.); (M.C.C.); (A.M.M.); (F.L.); (M.M.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.D.F.); (E.I.)
| | - Maria Camilla Cipriani
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (R.L.); (M.C.C.); (A.M.M.); (F.L.); (M.M.)
| | - Anna Maria Martone
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (R.L.); (M.C.C.); (A.M.M.); (F.L.); (M.M.)
| | - Erica De Candia
- Haemorrhagic and Thrombotic Diseases Unit, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy;
- Department of Translation Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (R.L.); (M.C.C.); (A.M.M.); (F.L.); (M.M.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.D.F.); (E.I.)
| | - Massimo Montalto
- Department of Geriatrics, Orthopedics and Rheumatology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, 00168 Rome, Italy; (R.L.); (M.C.C.); (A.M.M.); (F.L.); (M.M.)
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy (S.D.F.); (E.I.)
| |
Collapse
|
2
|
da Cruz Rodrigues KC, Kim SC, Uner AA, Hou ZS, Young J, Campolim C, Aydogan A, Chung B, Choi A, Yang WM, Kim WS, Prevot V, Caldarone BJ, Lee H, Kim YB. LRP1 in GABAergic neurons is a key link between obesity and memory function. Mol Metab 2024; 84:101941. [PMID: 38636794 PMCID: PMC11058729 DOI: 10.1016/j.molmet.2024.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
OBJECTIVE Low-density lipoprotein receptor-related protein-1 (LRP1) regulates energy homeostasis, blood-brain barrier integrity, and metabolic signaling in the brain. Deficiency of LRP1 in inhibitory gamma-aminobutyric acid (GABA)ergic neurons causes severe obesity in mice. However, the impact of LRP1 in inhibitory neurons on memory function and cognition in the context of obesity is poorly understood. METHODS Mice lacking LRP1 in GABAergic neurons (Vgat-Cre; LRP1loxP/loxP) underwent behavioral tests for locomotor activity and motor coordination, short/long-term and spatial memory, and fear learning/memory. This study evaluated the relationships between behavior and metabolic risk factors and followed the mice at 16 and 32 weeks of age. RESULTS Deletion of LRP1 in GABAergic neurons caused a significant impairment in memory function in 32-week-old mice. In the spatial Y-maze test, Vgat-Cre; LRP1loxP/loxP mice exhibited decreased travel distance and duration in the novel arm compared with controls (LRP1loxP/loxP mice). In addition, GABAergic neuron-specific LRP1-deficient mice showed a diminished capacity for performing learning and memory tasks during the water T-maze test. Moreover, reduced freezing time was observed in these mice during the contextual and cued fear conditioning tests. These effects were accompanied by increased neuronal necrosis and satellitosis in the hippocampus. Importantly, the distance and duration in the novel arm, as well as the performance of the reversal water T-maze test, negatively correlated with metabolic risk parameters, including body weight, serum leptin, insulin, and apolipoprotein J. However, in 16-week-old Vgat-Cre; LRP1loxP/loxP mice, there were no differences in the behavioral tests or correlations between metabolic parameters and cognition. CONCLUSIONS Our findings demonstrate that LRP1 from GABAergic neurons is important in regulating normal learning and memory. Metabolically, obesity caused by GABAergic LRP1 deletion negatively regulates memory and cognitive function in an age-dependent manner. Thus, LRP1 in GABAergic neurons may play a crucial role in maintaining normal excitatory/inhibitory balance, impacting memory function, and reinforcing the potential importance of LRP1 in neural system integrity.
Collapse
Affiliation(s)
- Kellen Cristina da Cruz Rodrigues
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Seung Chan Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Aaron Aykut Uner
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Zhi-Shuai Hou
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Jennie Young
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Clara Campolim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Ahmet Aydogan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Brendon Chung
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Anthony Choi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Won-Mo Yang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Woojin S Kim
- The University of Sydney, Brain and Mind Centre & School of Medical Sciences, Sydney, NSW, Australia
| | - Vincent Prevot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, Lille, France
| | - Barbara J Caldarone
- Mouse Behavior Core, Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Hyon Lee
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Martín-García D, García-Aranda M, Redondo M. Therapeutic Potential of Clusterin Inhibition in Human Cancer. Cells 2024; 13:665. [PMID: 38667280 PMCID: PMC11049052 DOI: 10.3390/cells13080665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Clusterin (CLU) protein is involved in various pathophysiological processes including carcinogenesis and tumor progression. In recent years, the role of the secretory isoform has been demonstrated in tumor cells, where it inhibits apoptosis and favors the acquisition of resistance to conventional treatments used to treat cancer. To determine the possible therapeutic potential of inhibiting this protein, numerous studies have been carried out in this field. In this article, we present the existing knowledge to date on the inhibition of this protein in different types of cancer and analyze the importance it could have in the development of new therapies targeted against this disease.
Collapse
Affiliation(s)
- Desirée Martín-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| |
Collapse
|
4
|
Zhu D, Zhang S, Wang X, Xiao C, Cui G, Yang X. Secretory Clusterin Inhibits Dopamine Neuron Apoptosis in MPTP Mice by Preserving Autophagy Activity. Neuroscience 2024; 540:38-47. [PMID: 38242280 DOI: 10.1016/j.neuroscience.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Secretory clusterin (sCLU) plays an important role in the research progress of nervous system diseases. However, the physiological function of sCLU in Parkinson's disease (PD) are unclear. The purpose of this study was to examine the effects of sCLU-mediated autophagy on cell survival and apoptosis inhibition in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We found that MPTP administration induced prolonged pole-climbing time, shortened traction time and rotarod time, significantly decreased TH protein expression in the SN tissue of mice. In contrast, sCLU -treated mice took less time to climb the pole and had an extended traction time and rotating rod time. Meanwhile, sCLU intervention induced increased expression of the TH protein in the SN of mice. These results indicated that sCLU intervention could reduce the loss of dopamine neurons in the SN area and alleviate dyskinesia in mice. Furthermore, MPTP led to suppressed viability, enhanced apoptosis, an increased Bax/Bcl-2 ratio, and cleaved caspase-3 in the SN of mice, and these effects were abrogated by sCLU intervention. In addition, MPTP increased the levels of P62 protein, decreased Beclin1 protein, decreased the ratio of LC3B-II/LC3B-I, and decreased the numbers of autophagosomes and autophagolysosomes in the SN tissues of mice. These effects were also abrogated by sCLU intervention. Activation of PI3K/AKT/mTOR signaling with MPTP inhibited autophagy in the SN of MPTP mice; however, sCLU treatment activated autophagy in MPTP-induced PD mice by inhibiting PI3K/AKT/mTOR signaling. These data indicated that sCLU treatment had a neuroprotective effect in an MPTP-induced model of PD.
Collapse
Affiliation(s)
- Dongxue Zhu
- Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shenyang Zhang
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiaoying Wang
- Department of Ultrasound, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Chenghua Xiao
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Guiyun Cui
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xinxin Yang
- Department of Neurology, The Affifiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Institute of Neurological Diseases of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
5
|
Zhao R. Exercise mimetics: a novel strategy to combat neuroinflammation and Alzheimer's disease. J Neuroinflammation 2024; 21:40. [PMID: 38308368 PMCID: PMC10837901 DOI: 10.1186/s12974-024-03031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
Neuroinflammation is a pathological hallmark of Alzheimer's disease (AD), characterized by the stimulation of resident immune cells of the brain and the penetration of peripheral immune cells. These inflammatory processes facilitate the deposition of amyloid-beta (Aβ) plaques and the abnormal hyperphosphorylation of tau protein. Managing neuroinflammation to restore immune homeostasis and decrease neuronal damage is a therapeutic approach for AD. One way to achieve this is through exercise, which can improve brain function and protect against neuroinflammation, oxidative stress, and synaptic dysfunction in AD models. The neuroprotective impact of exercise is regulated by various molecular factors that can be activated in the same way as exercise by the administration of their mimetics. Recent evidence has proven some exercise mimetics effective in alleviating neuroinflammation and AD, and, additionally, they are a helpful alternative option for patients who are unable to perform regular physical exercise to manage neurodegenerative disorders. This review focuses on the current state of knowledge on exercise mimetics, including their efficacy, regulatory mechanisms, progress, challenges, limitations, and future guidance for their application in AD therapy.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
6
|
Téllez T, Martin-García D, Redondo M, García-Aranda M. Clusterin Expression in Colorectal Carcinomas. Int J Mol Sci 2023; 24:14641. [PMID: 37834086 PMCID: PMC10572822 DOI: 10.3390/ijms241914641] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Colorectal cancer is the third most diagnosed cancer, behind only breast and lung cancer. In terms of overall mortality, it ranks second due to, among other factors, problems with screening programs, which means that one of the factors that directly impacts survival and treatment success is early detection of the disease. Clusterin (CLU) is a molecular chaperone that has been linked to tumorigenesis, cancer progression and resistance to anticancer treatments, which has made it a promising drug target. However, it is still necessary to continue this line of research and to adjust the situations in which its use is more favorable. The aim of this paper is to review the current genetic knowledge on the role of CLU in tumorigenesis and cancer progression in general, and discuss its possible use as a therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Teresa Téllez
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (T.T.); (D.M.-G.)
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
| | - Desirée Martin-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (T.T.); (D.M.-G.)
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (T.T.); (D.M.-G.)
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Malaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| |
Collapse
|
7
|
Guo L, Cao J, Hou J, Li Y, Huang M, Zhu L, Zhang L, Lee Y, Duarte ML, Zhou X, Wang M, Liu CC, Martens Y, Chao M, Goate A, Bu G, Haroutunian V, Cai D, Zhang B. Sex specific molecular networks and key drivers of Alzheimer's disease. Mol Neurodegener 2023; 18:39. [PMID: 37340466 PMCID: PMC10280841 DOI: 10.1186/s13024-023-00624-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 05/08/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive and age-associated neurodegenerative disorder that affects women disproportionally. However, the underlying mechanisms are poorly characterized. Moreover, while the interplay between sex and ApoE genotype in AD has been investigated, multi-omics studies to understand this interaction are limited. Therefore, we applied systems biology approaches to investigate sex-specific molecular networks of AD. METHODS We integrated large-scale human postmortem brain transcriptomic data of AD from two cohorts (MSBB and ROSMAP) via multiscale network analysis and identified key drivers with sexually dimorphic expression patterns and/or different responses to APOE genotypes between sexes. The expression patterns and functional relevance of the top sex-specific network driver of AD were further investigated using postmortem human brain samples and gene perturbation experiments in AD mouse models. RESULTS Gene expression changes in AD versus control were identified for each sex. Gene co-expression networks were constructed for each sex to identify AD-associated co-expressed gene modules shared by males and females or specific to each sex. Key network regulators were further identified as potential drivers of sex differences in AD development. LRP10 was identified as a top driver of the sex differences in AD pathogenesis and manifestation. Changes of LRP10 expression at the mRNA and protein levels were further validated in human AD brain samples. Gene perturbation experiments in EFAD mouse models demonstrated that LRP10 differentially affected cognitive function and AD pathology in sex- and APOE genotype-specific manners. A comprehensive mapping of brain cells in LRP10 over-expressed (OE) female E4FAD mice suggested neurons and microglia as the most affected cell populations. The female-specific targets of LRP10 identified from the single cell RNA-sequencing (scRNA-seq) data of the LRP10 OE E4FAD mouse brains were significantly enriched in the LRP10-centered subnetworks in female AD subjects, validating LRP10 as a key network regulator of AD in females. Eight LRP10 binding partners were identified by the yeast two-hybrid system screening, and LRP10 over-expression reduced the association of LRP10 with one binding partner CD34. CONCLUSIONS These findings provide insights into key mechanisms mediating sex differences in AD pathogenesis and will facilitate the development of sex- and APOE genotype-specific therapies for AD.
Collapse
Affiliation(s)
- Lei Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jiqing Cao
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Jianwei Hou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Min Huang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Li Zhu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Larry Zhang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Yeji Lee
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
| | - Mariana Lemos Duarte
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yuka Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Michael Chao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alison Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Vahram Haroutunian
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA
- Alzheimer Disease Research Center Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- James J Peters VA Medical Center, MIRECC, Bronx, NY, 10468, USA
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- James J Peters VA Medical Center, Research & Development, Bronx, NY, 10468, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Alzheimer Disease Research Center Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
8
|
Furtado A, Esgalhado AJ, Duarte AC, Costa AR, Costa-Brito AR, Carro E, Ishikawa H, Schroten H, Schwerk C, Gonçalves I, Arosa FA, Santos CRA, Quintela T. Circadian rhythmicity of amyloid-beta-related molecules is disrupted in the choroid plexus of a female Alzheimer's disease mouse model. J Neurosci Res 2023; 101:524-540. [PMID: 36583371 DOI: 10.1002/jnr.25164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022]
Abstract
The choroid plexus (CP) is part of the blood-cerebrospinal fluid barrier (BCSFB) and was recently described as an important component of the circadian clock system. It is the principal source of cerebrospinal fluid (CSF) and responsible for the synthesis and secretion of various neuroprotective peptides including those involved in amyloid-β (Aβ) transport/degradation, contributing to Aβ homeostasis. Inadequate Aβ metabolic clearance and transport across the BCSFB have been associated with circadian dysfunctions in Alzheimer's disease (AD) patients. To investigate whether AD pathology influences Aβ scavengers circadian expression, we collected CP at different time points from an AD mouse model (APP/PS1) (female and male animals, aged 6- and 12-months-old) and analyzed their mRNA expression by Real-time RT-PCR. Only angiotensin-converting enzyme (Ace) expression in 6-month-old female wild-type mice and transthyretin (Ttr) expression in 12-month-old female wild-type mice presented significant rhythmicity. The circadian rhythmicity of Ace and Ttr, prompt us to analyze the involvement of circadian rhythm in Aβ uptake. A human CP papilloma (HIBCPP) cell line was incubated with Aβ-488 and uptake was evaluated at different time points using flow cytometry. Aβ uptake displayed circadian rhythmicity. Our results suggest that AD might affect Aβ scavengers rhythmicity and that Aβ clearance is a rhythmic process possibly regulated by the rhythmic expression of Aβ scavengers.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - André J Esgalhado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana C Duarte
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal
| | - Ana R Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Costa-Brito
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Eva Carro
- Networked Biomedical Research Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Mannheim Medical Faculty, University of Heidelberg, Childrens Hospital, Mannheim, Germany
| | - Christian Schwerk
- Mannheim Medical Faculty, University of Heidelberg, Childrens Hospital, Mannheim, Germany
| | - Isabel Gonçalves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Fernando A Arosa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,UDI-IPG- Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal
| |
Collapse
|
9
|
Lu Y, Bu FQ, Wang F, Liu L, Zhang S, Wang G, Hu XY. Recent advances on the molecular mechanisms of exercise-induced improvements of cognitive dysfunction. Transl Neurodegener 2023; 12:9. [PMID: 36850004 PMCID: PMC9972637 DOI: 10.1186/s40035-023-00341-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
Physical exercise is of great significance for maintaining human health. Exercise can provide varying degrees of benefits to cognitive function at all stages of life cycle. Currently, with the aging of the world's population and increase of life expectancy, cognitive dysfunction has gradually become a disease of high incidence, which is accompanied by neurodegenerative diseases in elderly individuals. Patients often exhibit memory loss, aphasia and weakening of orientation once diagnosed, and are unable to have a normal life. Cognitive dysfunction largely affects the physical and mental health, reduces the quality of life, and causes a great economic burden to the society. At present, most of the interventions are aimed to maintain the current cognitive level and delay deterioration of cognition. In contrast, exercise as a nonpharmacological therapy has great advantages in its nontoxicity, low cost and universal application. The molecular mechanisms underlying the effect of exercise on cognition are complex, and studies have been extensively centered on neural plasticity, the direct target of exercise in the brain. In addition, mitochondrial stability and energy metabolism are essential for brain status. Meanwhile, the organ-brain axis responds to exercise and induces release of cytokines related to cognition. In this review, we summarize the latest evidence on the molecular mechanisms underlying the effects of exercise on cognition, and point out directions for future research.
Collapse
Affiliation(s)
- Yi Lu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fa-Qian Bu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Fang Wang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Li Liu
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Shuai Zhang
- grid.13291.380000 0001 0807 1581West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Guan Wang
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xiu-Ying Hu
- West China School of Nursing, Sichuan University/Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
An Update on Peripheral Blood Extracellular Vesicles as Biomarkers for Parkinson's Disease Diagnosis. Neuroscience 2023; 511:131-146. [PMID: 36435476 DOI: 10.1016/j.neuroscience.2022.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
Parkinson's disease (PD) is the world's second primary neurodegenerative disease, and the diagnosis and treatment of PD have become mainstream research. Over the past decades, several studies have identified potential biomarkers for diagnosing PD. Among them, extracellular vesicles (EVs) can carry specific biomarkers reflecting the physiological and pathological state of the body. Due to the blood-brain barrier (BBB) limitation, peripheral blood is limited in diagnosing neurodegenerative diseases. With the increasing research on EVs, their ability to pass through BBB indicated that peripheral blood could depict disease status like cerebrospinal fluid (CSF). Peripheral blood is a clinically available sample and has recently been widely used by researchers in various studies. In this review, we summarized previous studies on PD diagnosis biomarkers in peripheral blood EVs and evaluated their diagnostic value. Some EV surface markers were also described, which can extract EVs from specific cell origins. In addition, the combination of several biomarkers demonstrated good diagnostic performance in PD diagnosis compared with a single biomarker, suggesting the focus of future research.
Collapse
|
11
|
Burgelman M, Dujardin P, Vandendriessche C, Vandenbroucke RE. Free complement and complement containing extracellular vesicles as potential biomarkers for neuroinflammatory and neurodegenerative disorders. Front Immunol 2023; 13:1055050. [PMID: 36741417 PMCID: PMC9896008 DOI: 10.3389/fimmu.2022.1055050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/07/2022] [Indexed: 01/21/2023] Open
Abstract
The complement system is implicated in a broad range of neuroinflammatory disorders such as Alzheimer's disease (AD) and multiple sclerosis (MS). Consequently, measuring complement levels in biofluids could serve as a potential biomarker for these diseases. Indeed, complement levels are shown to be altered in patients compared to controls, and some studies reported a correlation between the level of free complement in biofluids and disease progression, severity or the response to therapeutics. Overall, they are not (yet) suitable as a diagnostic tool due to heterogeneity of reported results. Moreover, measurement of free complement proteins has the disadvantage that information on their origin is lost, which might be of value in a multi-parameter approach for disease prediction and stratification. In light of this, extracellular vesicles (EVs) could provide a platform to improve the diagnostic power of complement proteins. EVs are nanosized double membrane particles that are secreted by essentially every cell type and resemble the (status of the) cell of origin. Interestingly, EVs can contain complement proteins, while the cellular origin can still be determined by the presence of EV surface markers. In this review, we summarize the current knowledge and future opportunities on the use of free and EV-associated complement proteins as biomarkers for neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Marlies Burgelman
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Dujardin
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charysse Vandendriessche
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium,*Correspondence: Roosmarijn E. Vandenbroucke,
| |
Collapse
|
12
|
Fu Y, Du Q, Cui T, Lu Y, Niu G. A pan-cancer analysis reveals role of clusterin ( CLU) in carcinogenesis and prognosis of human tumors. Front Genet 2023; 13:1056184. [PMID: 36685863 PMCID: PMC9846084 DOI: 10.3389/fgene.2022.1056184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Clusterin (CLU) is a chaperone-like protein that has been demonstrated to have a direct relationship with cancer occurrence, progression, or metastasis. Clusterin was downregulated in tumor tissues using three datasets of tongue squamous carcinoma from the Gene Expression Omnibus. We further retrieved datasets from The Cancer Genome Atlas and Gene Expression Omnibus to thoroughly investigate the carcinogenic consequences of Clusterin. Our findings revealed that decreased Clusterin expression in malignancies was associated with a worse overall survival prognosis in individuals with multiple tumors; Clusterin gene deep deletions were found in almost all malignancies and were connected to most cancer patient's prognosis, Clusterin DNA methylation level was dependent on tumor type, Clusterin expression was also linked to the invasion of cancer-associated CD8+ T-cells and fibroblasts in numerous cancer forms. Moreover, pathway enrichment analysis revealed that Clusterin primarily regulates biological processes such as cholesterol metabolism, phospholipid binding, and protein-lipid complex formation. Overall, our pan-cancer research suggests that Clusterin expression levels are linked to tumor carcinogenesis and prognosis, which contributes to understanding the probable mechanism of Clusterin in tumorigenesis as well as its clinical prognostic significance.
Collapse
Affiliation(s)
- Yizhe Fu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Stomatology, Beijing Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China
| | - Qiao Du
- Department of Stomatology, Beijing Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China
| | - Tiehan Cui
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuying Lu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Stomatology, Beijing Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China
| | - Guangliang Niu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Stomatology, Beijing Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China,*Correspondence: Guangliang Niu,
| |
Collapse
|
13
|
Bonaterra-Pastra A, Benítez S, Pancorbo O, Rodríguez-Luna D, Vert C, Rovira A, Freijo MM, Tur S, Martínez-Zabaleta M, Cardona Portela P, Vera R, Lebrato-Hernández L, Arenillas JF, Pérez-Sánchez S, Domínguez-Mayoral A, Fàbregas JM, Mauri G, Montaner J, Sánchez-Quesada JL, Hernández-Guillamon M. Association of candidate genetic variants and circulating levels of ApoE/ApoJ with common neuroimaging features of cerebral amyloid angiopathy. Front Aging Neurosci 2023; 15:1134399. [PMID: 37113571 PMCID: PMC10126235 DOI: 10.3389/fnagi.2023.1134399] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Cerebral amyloid angiopathy (CAA) is characterized by the accumulation of amyloid-β (Aβ) in brain vessels and is a main cause of lobar intracerebral hemorrhage (ICH) in the elderly. CAA is associated with magnetic resonance imaging (MRI) markers of small vessel disease (SVD). Since Aβ is also accumulated in Alzheimer's disease (AD) in the brain parenchyma, we aimed to study if several single nucleotide polymorphisms (SNPs) previously associated with AD were also associated with CAA pathology. Furthermore, we also studied the influence of APOE and CLU genetic variants in apolipoprotein E (ApoE) and clusterin/apolipoprotein J (ApoJ) circulating levels and their distribution among lipoproteins. Methods The study was carried out in a multicentric cohort of 126 patients with lobar ICH and clinical suspicion of CAA. Results We observed several SNPs associated with CAA neuroimaging MRI markers [cortical superficial siderosis (cSS), enlarged perivascular spaces in the centrum semiovale (CSO-EPVS), lobar cerebral microbleeds (CMB), white matter hyperintensities (WMH), corticosubcortical atrophy and CAA-SVD burden score]. Concretely, ABCA7 (rs3764650), CLU (rs9331896 and rs933188), EPHA1 (rs11767557), and TREML2 (rs3747742) were significantly associated with a CAA-SVD burden score. Regarding circulating levels of apolipoproteins, protective AD SNPs of CLU [rs11136000 (T) and rs9331896 (C)] were significantly associated with higher HDL ApoJ content in the lobar ICH cohort. APOEε2 carriers presented higher plasma and LDL-associated ApoE levels whereas APOEε4 carriers presented lower plasma ApoE levels. Additionally, we observed that lower circulating ApoJ and ApoE levels were significantly associated with CAA-related MRI markers. More specifically, lower LDL-associated ApoJ and plasma and HDL-associated ApoE levels were significantly associated with CSO-EPVS, lower ApoJ content in HDL with brain atrophy and lower ApoE content in LDL with the extent of cSS. Discussion This study reinforces the relevance of lipid metabolism in CAA and cerebrovascular functionality. We propose that ApoJ and ApoE distribution among lipoproteins may be associated with pathological features related to CAA with higher ApoE and ApoJ levels in HDL possibly enhancing atheroprotective, antioxidative, and anti-inflammatory responses in cerebral β-amyloidosis.
Collapse
Affiliation(s)
- Anna Bonaterra-Pastra
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sònia Benítez
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
- Center for Biomedical Research Network on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Olalla Pancorbo
- Stroke Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | | | - Carla Vert
- Section of Neuroradiology, Department of Radiology, Vall d’Hebron University Hospital, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alex Rovira
- Section of Neuroradiology, Department of Radiology, Vall d’Hebron University Hospital, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M. Mar Freijo
- Neurovascular Group, BioCruces Health Research Institute, Barakaldo, Spain
| | - Silvia Tur
- Department of Neurology, Son Espases University Hospital, Balearic Islands, Spain
| | | | - Pere Cardona Portela
- Department of Neurology, Bellvitge University Hospital, L’Hospitalet de Llobregat, Spain
| | - Rocío Vera
- Stroke Unit, Department of Neurology, Ramón y Cajal University Hospital, Madrid, Spain
| | - Lucia Lebrato-Hernández
- Stroke Unit, Department of Neurology and Neurophysiology, Virgen del Rocío University Hospital, Seville, Spain
| | - Juan F. Arenillas
- Stroke Program, Department of Neurology, Hospital Clínico Universitario, Valladolid, Spain
- Clinical Neurosciences Research Group, Department of Medicine, University of Valladolid, Valladolid, Spain
| | | | | | - Joan Martí Fàbregas
- Stroke Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Gerard Mauri
- Stroke Unit, Department of Neurology, Hospital Universitari Arnau de Vilanova de Lleida, Lleida, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Stroke Research Program, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, Seville, Spain
- Department of Neurology, Virgen Macarena University Hospital, Seville, Spain
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
- Center for Biomedical Research Network on Diabetes and Associated Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Jose Luis Sánchez-Quesada,
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- *Correspondence: Mar Hernández-Guillamon,
| |
Collapse
|
14
|
The Role of Clusterin Transporter in the Pathogenesis of Alzheimer’s Disease at the Blood–Brain Barrier Interface: A Systematic Review. Biomolecules 2022; 12:biom12101452. [PMID: 36291661 PMCID: PMC9599067 DOI: 10.3390/biom12101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is considered a chronic and debilitating neurological illness that is increasingly impacting older-age populations. Some proteins, including clusterin (CLU or apolipoprotein J) transporter, can be linked to AD, causing oxidative stress. Therefore, its activity can affect various functions involving complement system inactivation, lipid transport, chaperone activity, neuronal transmission, and cellular survival pathways. This transporter is known to bind to the amyloid beta (Aβ) peptide, which is the major pathogenic factor of AD. On the other hand, this transporter is also active at the blood–brain barrier (BBB), a barrier that prevents harmful substances from entering and exiting the brain. Therefore, in this review, we discuss and emphasize the role of the CLU transporter and CLU-linked molecular mechanisms at the BBB interface in the pathogenesis of AD.
Collapse
|
15
|
Sen T, Thummer RP. CRISPR and iPSCs: Recent Developments and Future Perspectives in Neurodegenerative Disease Modelling, Research, and Therapeutics. Neurotox Res 2022; 40:1597-1623. [PMID: 36044181 PMCID: PMC9428373 DOI: 10.1007/s12640-022-00564-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022]
Abstract
Neurodegenerative diseases are prominent causes of pain, suffering, and death worldwide. Traditional approaches modelling neurodegenerative diseases are deficient, and therefore, improved strategies that effectively recapitulate the pathophysiological conditions of neurodegenerative diseases are the need of the hour. The generation of human-induced pluripotent stem cells (iPSCs) has transformed our ability to model neurodegenerative diseases in vitro and provide an unlimited source of cells (including desired neuronal cell types) for cell replacement therapy. Recently, CRISPR/Cas9-based genome editing has also been gaining popularity because of the flexibility they provide to generate and ablate disease phenotypes. In addition, the recent advancements in CRISPR/Cas9 technology enables researchers to seamlessly target and introduce precise modifications in the genomic DNA of different human cell lines, including iPSCs. CRISPR-iPSC-based disease modelling, therefore, allows scientists to recapitulate the pathological aspects of most neurodegenerative processes and investigate the role of pathological gene variants in healthy non-patient cell lines. This review outlines how iPSCs, CRISPR/Cas9, and CRISPR-iPSC-based approaches accelerate research on neurodegenerative diseases and take us closer to a cure for neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis, and so forth.
Collapse
Affiliation(s)
- Tirthankar Sen
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| |
Collapse
|
16
|
The Influence of Clusterin Glycosylation Variability on Selected Pathophysiological Processes in the Human Body. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7657876. [PMID: 36071866 PMCID: PMC9441386 DOI: 10.1155/2022/7657876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
The present review gathers together the most important information about variability in clusterin molecular structure, its profile, and the degree of glycosylation occurring in human tissues and body fluids in the context of the utility of these characteristics as potential diagnostic biomarkers of selected pathophysiological conditions. The carbohydrate part of clusterin plays a crucial role in many biological processes such as endocytosis and apoptosis. Many pathologies associated with neurodegeneration, carcinogenesis, metabolic diseases, and civilizational diseases (e.g., cardiovascular incidents and male infertility) have been described as causes of homeostasis disturbance, in which the glycan part of clusterin plays a very important role. The results of the discussed studies suggest that glycoproteomic analysis of clusterin may help differentiate the severity of hippocampal atrophy, detect the causes of infertility with an immune background, and monitor the development of cancer. Understanding the mechanism of clusterin (CLU) action and its binding epitopes may enable to indicate new therapeutic goals. The carbohydrate part of clusterin is considered necessary to maintain its proper molecular conformation, structural stability, and proper systemic and/or local biological activity. Taking into account the wide spectrum of CLU action and its participation in many processes in the human body, further studies on clusterin glycosylation variability are needed to better understand the molecular mechanisms of many pathophysiological conditions. They can also provide the opportunity to find new biomarkers and enrich the panel of diagnostic parameters for diseases that still pose a challenge for modern medicine.
Collapse
|
17
|
Zakharova NV, Bugrova AE, Indeykina MI, Fedorova YB, Kolykhalov IV, Gavrilova SI, Nikolaev EN, Kononikhin AS. Proteomic Markers and Early Prediction of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:762-776. [PMID: 36171657 DOI: 10.1134/s0006297922080089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
Alzheimer's disease (AD) is the most common socially significant neurodegenerative pathology, which currently affects more than 30 million elderly people worldwide. Since the number of patients grows every year and may exceed 115 million by 2050, and due to the lack of effective therapies, early prediction of AD remains a global challenge, solution of which can contribute to the timely appointment of a preventive therapy in order to avoid irreversible changes in the brain. To date, clinical assays for the markers of amyloidosis in cerebrospinal fluid (CSF) have been developed, which, in conjunction with the brain MRI and PET studies, are used either to confirm the diagnosis based on obligate clinical criteria or to predict the risk of AD developing at the stage of mild cognitive impairment (MCI). However, the problem of predicting AD at the asymptomatic stage remains unresolved. In this regard, the search for new protein markers and studies of proteomic changes in CSF and blood plasma are of particular interest and may consequentially identify particular pathways involved in the pathogenesis of AD. Studies of specific proteomic changes in blood plasma deserve special attention and are of increasing interest due to the much less invasive method of sample collection as compared to CSF, which is important when choosing the object for large-scale screening. This review briefly summarizes the current knowledge on proteomic markers of AD and considers the prospects of developing reliable methods for early identification of AD risk factors based on the proteomic profile.
Collapse
Affiliation(s)
- Natalia V Zakharova
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Anna E Bugrova
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Maria I Indeykina
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| | | | | | | | - Evgeny N Nikolaev
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | | |
Collapse
|
18
|
Murray AM, Slinin Y, Tupper DE, Pederson SL, Davey C, Gilbertson DT, Drawz P, Mello R, Hart A, Johansen KL, Reule S, Rossom R, Knopman DS. Kidney-Metabolic Factors Associated with Cognitive Impairment in Chronic Kidney Disease: A Pilot Study. Am J Nephrol 2022; 53:435-445. [PMID: 35483332 PMCID: PMC9361741 DOI: 10.1159/000524166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/11/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The associations of kidney-metabolic biomarkers with cognitive impairment (CI) beyond the estimated glomerular filtration rate (eGFR, in mL/min/1.73 m2) and albuminuria levels are not well understood. In exploratory analysis, our objective was to determine the extent that three kidney-metabolic factors, previously proposed as mechanisms of CI and commonly abnormal in chronic kidney disease (CKD), were associated with prevalent CI in CKD participants, adjusted for kidney function measures. METHODS The study cohort included community-dwelling individuals aged ≥45 years with CKD (eGFR <60), not requiring dialysis, recruited from four health systems. We examined the serum biomarkers bicarbonate (CO2), TNFαR1, and cholesterol as primary exposures. A structured neuropsychological battery conducted by trained staff measured global and domain-specific cognitive performance. Logistic regression analyses estimated the cross-sectional associations between kidney-metabolic measures and global and cognitive domain-specific moderate/severe (Mod/Sev) CI, adjusted for the eGFR, urinary albumin-creatinine ratio (UACR, mg/g), demographics, comorbid conditions, and other kidney-metabolic biomarkers commonly abnormal in CKD. RESULTS Among 436 CKD participants with mean age 70 years, 16% were Black, the mean eGFR was 34, and the median [IQR] UACR was 49 [0.0, 378] mg/g. In adjusted models, increased TNFαR1 was associated with global Mod/Sev CI (odds ratio [95% confidence interval] = 1.40 [1.02, 1.93]; p = 0.04); low bicarbonate (CO2 <20 mEq/L) with Mod/Sev memory impairment (3.04 [1.09, 8.47]; p = 0.03), and each 10-mg/dL lower cholesterol was associated with Mod/Sev executive function/processing speed impairment (1.12 [1.02, 1.23]; p = 0.02). However, after adjustment for multiple comparisons, these associations were no longer significant nor were any other kidney-metabolic factors significant for any CI classification. CONCLUSION In exploratory analyses in a CKD population, three kidney-metabolic factors were associated with CI, but after adjustment for multiple comparisons, were no longer significant. Future studies in larger CKD populations are needed to assess these potential risk factors for CI.
Collapse
Affiliation(s)
- Anne M Murray
- The Berman Center for Outcomes and Clinical Research, Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA.,Division of Geriatrics, Department of Medicine, Hennepin Healthcare, Minneapolis, Minnesota, USA.,Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yelena Slinin
- Kaiser Permanente Fremont Medical Center, Fremont, California, USA
| | - David E Tupper
- Department of Psychology and Neuropsychology, Hennepin Healthcare Minneapolis, Minneapolis, Minnesota, USA.,Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Cynthia Davey
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - David T Gilbertson
- Chronic Disease Research Group, Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
| | - Paul Drawz
- Division of Nephrology and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan Mello
- Division of Nephrology, Department of Medicine, Hennepin Healthcare, Minneapolis, Minnesota, USA
| | - Allyson Hart
- Division of Nephrology, Department of Medicine, Hennepin Healthcare, Minneapolis, Minnesota, USA
| | - Kirsten L Johansen
- Chronic Disease Research Group, Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA.,Division of Nephrology, Department of Medicine, Hennepin Healthcare, Minneapolis, Minnesota, USA
| | - Scott Reule
- Division of Nephrology and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA.,Nephrology Division, Department of Medicine, Minneapolis Veterans Affairs Health Care System, Minneapolis, Minnesota, USA
| | | | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
Deregulated Clusterin as a Marker of Bone Fragility: New Insights into the Pathophysiology of Osteoporosis. Genes (Basel) 2022; 13:genes13040652. [PMID: 35456459 PMCID: PMC9024451 DOI: 10.3390/genes13040652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Clusterin (CLU) is a secreted heterodimeric glycoprotein expressed in all organism fluids as well as in the intracellular matrix that plays key roles in several pathological processes. Its recent involvement in muscle degeneration of osteoporotic patients led to investigation of the role of CLU in bone metabolism, given the biochemical and biomechanical crosstalk of the bone–muscle unit. Quantitative real time-polymerase chain reaction (qRT-PCR) analysis of CLU expression was performed in both osteoblasts and Peripheral Blood Mononuclear Cells (PBMCs) from osteoporotic patients (OP) and healthy individuals (CTR). Furthermore, immunohistochemical analysis on femoral head tissues and enzyme-linked immunosorbent assay (ELISA) in plasma samples were performed to investigate CLU expression pattern. Finally, genotyping of CLU rs11136000 polymorphism has also been performed by qRT-PCR assays to explore a possible association with CLU expression levels. Data obtained showed a significantly increased expression level of secreted CLU isoform in PBMCs and osteoblasts from OP patients. Immunohistochemical analysis confirms the increased expression of CLU in OP patients, both in osteocytes and osteoblasts, while plasma analysis reveals a statistically significant decrease of CLU levels. Unfortunately, no functional association between CLU expression levels and the presence of CLU rs11136000 polymorphism in OP patients was found. These data suggest a potential role played by CLU as a potential biomarker for the diagnosis and prognosis of OP progression.
Collapse
|
20
|
Berdowska I, Matusiewicz M, Krzystek-Korpacka M. HDL Accessory Proteins in Parkinson’s Disease—Focusing on Clusterin (Apolipoprotein J) in Regard to Its Involvement in Pathology and Diagnostics—A Review. Antioxidants (Basel) 2022; 11:antiox11030524. [PMID: 35326174 PMCID: PMC8944556 DOI: 10.3390/antiox11030524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD)—a neurodegenerative disorder (NDD) characterized by progressive destruction of dopaminergic neurons within the substantia nigra of the brain—is associated with the formation of Lewy bodies containing mainly α-synuclein. HDL-related proteins such as paraoxonase 1 and apolipoproteins A1, E, D, and J are implicated in NDDs, including PD. Apolipoprotein J (ApoJ, clusterin) is a ubiquitous, multifunctional protein; besides its engagement in lipid transport, it modulates a variety of other processes such as immune system functionality and cellular death signaling. Furthermore, being an extracellular chaperone, ApoJ interacts with proteins associated with NDD pathogenesis (amyloid β, tau, and α-synuclein), thus modulating their properties. In this review, the association of clusterin with PD is delineated, with respect to its putative involvement in the pathological mechanism and its application in PD prognosis/diagnosis.
Collapse
Affiliation(s)
- Izabela Berdowska
- Correspondence: (I.B.); (M.M.); Tel.: +48-71-784-13-92 (I.B.); +48-71-784-13-70 (M.M.)
| | | | | |
Collapse
|
21
|
Liu Y, Zhang H, Zhong X, Li Z, Zetterberg H, Li L. Isotopic N,N-dimethyl leucine tags for absolute quantification of clusterin and apolipoprotein E in Alzheimer's disease. J Proteomics 2022; 257:104507. [PMID: 35124278 PMCID: PMC8916911 DOI: 10.1016/j.jprot.2022.104507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and one of the leading causes of death in the United States. In the past decades, extensive efforts have been devoted to biomarker discovery for early diagnosis and treatment of AD. Herein, this study aims to quantify clusterin (CLU) and apolipoprotein E (APOE) in blood samples from AD patients and evaluate these two proteins as potential biomarkers in AD diagnosis. In-house synthesized 5-plex isotopic N,N-dimethyl leucine (iDiLeu) tags were used to label target peptide standards at different concentrations to construct standard curves. Our study revealed that the levels of CLU and APOE exhibited clear differences in male vs. female AD groups but not in male vs. female non-AD groups. In contrast, the levels of serum CLU and APOE did not show statistically significant differences in the AD groups and non-AD groups. Principal component analysis (PCA) with CLU and APOE showed some separation between the AD and non-AD participants. Significance: Dissecting CLU and APOE heterogeneity in AD pathogenesis may therefore facilitate delineating the pathological relevance for sex-related pathways, leading to personalized medicine in the future. Collectively, this study introduces a cost-effective absolute quantitative proteomics strategy for target protein quantitation and lays the foundation for future investigation of CLU and APOE as potential biomarkers for AD. SIGNIFICANCE STATEMENT: As blood-based biomarkers for AD diagnosis are cost-effective and introduce less invasiveness, discovery and validation of biomarkers in the blood samples of AD patients have become a hot topic in Alzheimer's and dementia research. Thus far, amyloid β (Aβ), total-tau and phosphorylated tau (p-tau) in blood show great accuracy and specificity in diagnosis of AD. However, the underlying mechanism of AD pathology remains to be elusive and complex. Besides these well studied proteins, many other proteins, such as clusterin (CLU) and apolipoprotein E (APOE) have also been found to be related to AD development. It has been implicated that these two proteins are involved in Aβ clearance and deposition. In this study, we measure the absolute concentrations of these two proteins in blood and shed some light on the potential roles of CLU and APOE in AD pathology. Dissecting CLU and APOE heterogeneity in AD pathogenesis may therefore facilitate delineating the pathological relevance for specific pathways between different genders, leading to personalized medicine in the future. Collectively, this study introduces a cost-effective absolute quantitative proteomics strategy for target protein quantitation and lays the foundation for future investigation of CLU and APOE as potential biomarkers for AD.
Collapse
Affiliation(s)
- Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Xiaofang Zhong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Zihui Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
22
|
Morozova A, Zorkina Y, Abramova O, Pavlova O, Pavlov K, Soloveva K, Volkova M, Alekseeva P, Andryshchenko A, Kostyuk G, Gurina O, Chekhonin V. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci 2022; 23:1217. [PMID: 35163141 PMCID: PMC8835608 DOI: 10.3390/ijms23031217] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
This review is focused on several psychiatric disorders in which cognitive impairment is a major component of the disease, influencing life quality. There are plenty of data proving that cognitive impairment accompanies and even underlies some psychiatric disorders. In addition, sources provide information on the biological background of cognitive problems associated with mental illness. This scientific review aims to summarize the current knowledge about neurobiological mechanisms of cognitive impairment in people with schizophrenia, depression, mild cognitive impairment and dementia (including Alzheimer's disease).The review provides data about the prevalence of cognitive impairment in people with mental illness and associated biological markers.
Collapse
Affiliation(s)
- Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Olga Pavlova
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Konstantin Pavlov
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Kristina Soloveva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Maria Volkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Polina Alekseeva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Alisa Andryshchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Georgiy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, 117152 Moscow, Russia; (A.M.); (O.A.); (K.S.); (M.V.); (P.A.); (A.A.); (G.K.)
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, 119034 Moscow, Russia; (O.P.); (K.P.); (O.G.); (V.C.)
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
23
|
Aldea PL, Rachisan AL, Stanciu BI, Picos A, Picos AM, Delean DI, Stroescu R, Starcea MI, Borzan CM, Elec FI. The Perspectives of Biomarkers in Predicting the Survival of the Renal Graft. Front Pediatr 2022; 10:869628. [PMID: 35722493 PMCID: PMC9204089 DOI: 10.3389/fped.2022.869628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Kidney transplantation (KT) is currently the elective approach for patients with end-stage renal disease. Although it is a safe choice for these patients, the early complications can lead to graft dysfunction. One of the most redoubtable complications is delayed graft function (DGF), having no specific treatment. The effects of DGF on the graft survival are large enough to justify the formulation of specific biological protocols. Therefore, discovering biomarkers of acute impairment in renal transplanted patients is required. Creatinine is a poor marker to establish the kidney injury. Estimated glomerular filtration rate together with creatinine is ready to approximately measure the kidney function. Different serum and urine proteins are being studied as possible predictive biomarkers for delayed graft function. This review will concentrate on recent and existing research which provide insight concerning the contribution of some molecules for the estimation and evaluation of graft function after kidney transplantation. Further studies examining various aspects of DGF after KT are urgently needed to address a hitherto less-known clinical question.
Collapse
Affiliation(s)
- Paul Luchian Aldea
- Department of Community Medicine, Discipline of Public Health and Management, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreea Liana Rachisan
- Department of Mother and Child, Discipline of Pediatrics II, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bogdan Ioan Stanciu
- Department of Radiology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Picos
- Department of Prevention in Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Monica Picos
- Department of Dental Prosthetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Ioan Delean
- Department of Mother and Child, Discipline of Pediatrics II, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ramona Stroescu
- Department of Pediatrics, Victor Babeş University of Medicine and Pharmacy, Timisoara, Romania
| | | | - Cristina Maria Borzan
- Department of Community Medicine, Discipline of Public Health and Management, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Florin Ioan Elec
- Department of Surgical Sciences, Discipline of Urology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
24
|
Uddin MS, Kabir MT, Begum MM, Islam MS, Behl T, Ashraf GM. Exploring the Role of CLU in the Pathogenesis of Alzheimer's Disease. Neurotox Res 2021; 39:2108-2119. [PMID: 32820456 DOI: 10.1007/s12640-020-00271-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a chronic and devastating neurodegenerative disorder that is affecting elderly people at an increasing rate. Clusterin (CLU), an extracellular chaperone, is an ubiquitously expressed protein that can be identified in various body fluids and tissues. Expression of CLU can lead to various processes including suppression of complement system, lipid transport, chaperone function, and also controlling neuronal cell death and cell survival mechanisms. Studies have confirmed that the level of CLU expression is increased in AD. Furthermore, CLU also decreased the toxicity and aggregation of amyloid beta (Aβ). However when the Aβ level was far greater than CLU, then the amyloid generation was increased. CLU was also found to incorporate in the amyloid aggregates, which were more harmful as compared with the Aβ42 aggregates alone. Growing evidence indicates that CLU plays roles in AD pathogenesis via various processes, including aggregation and clearance of Aβ, neuroinflammation, lipid metabolism, Wnt signaling, copper homeostasis, and regulation of neuronal cell cycle and apoptosis. In this article, we represent the critical interaction of CLU and AD based on recent advances. Furthermore, we have also focused on the Aβ-dependent and Aβ-independent mechanisms by which CLU plays a role in AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
The extracellular chaperone Clusterin enhances Tau aggregate seeding in a cellular model. Nat Commun 2021; 12:4863. [PMID: 34381050 PMCID: PMC8357826 DOI: 10.1038/s41467-021-25060-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Spreading of aggregate pathology across brain regions acts as a driver of disease progression in Tau-related neurodegeneration, including Alzheimer’s disease (AD) and frontotemporal dementia. Aggregate seeds released from affected cells are internalized by naïve cells and induce the prion-like templating of soluble Tau into neurotoxic aggregates. Here we show in a cellular model system and in neurons that Clusterin, an abundant extracellular chaperone, strongly enhances Tau aggregate seeding. Upon interaction with Tau aggregates, Clusterin stabilizes highly potent, soluble seed species. Tau/Clusterin complexes enter recipient cells via endocytosis and compromise the endolysosomal compartment, allowing transfer to the cytosol where they propagate aggregation of endogenous Tau. Thus, upregulation of Clusterin, as observed in AD patients, may enhance Tau seeding and possibly accelerate the spreading of Tau pathology. Variants of the extracellular chaperone Clusterin are associated with Alzheimer’s disease (AD) and Clusterin levels are elevated in AD patient brains. Here, the authors show that Clusterin binds to oligomeric Tau, which enhances the seeding capacity of Tau aggregates upon cellular uptake. They also demonstrate that Tau/Clusterin complexes enter cells via the endosomal pathway, resulting in damage to endolysosomes and entry into the cytosol, where they induce the aggregation of endogenous, soluble Tau.
Collapse
|
26
|
Romagnoli T, Ortolani B, Sanz JM, Trentini A, Seripa D, Nora ED, Capatti E, Cervellati C, Passaro A, Zuliani G, Brombo G. Serum Apo J as a potential marker of conversion from mild cognitive impairment to dementia. J Neurol Sci 2021; 427:117537. [PMID: 34147956 DOI: 10.1016/j.jns.2021.117537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Apolipoprotein J (ApoJ) is present in both plasma and tissues, including brain. Growing evidence suggest that this protein may play an early role on the development of the two most common forms of dementia, Alzheimer's disease (AD) and vascular dementia (VD). OBJECTIVE To evaluate whether serum ApoJ levels might be able to predict the progression to AD, VD, or mixed dementia (AD&VD) in individuals with mild cognitive impairment (MCI). METHODS Serum ApoJ was measured in 196 MCI subjects (aged ≥60 years) with a median follow up of 2.9 years. RESULTS One hundred thirty-two of the enrolled MCI subjects converted to dementia. Among these, 45% developed AD, 33% mixed dementia, 13% VD (VD), and 9% other forms of dementia. A significant trend toward a progressive reduction in the incidence of dementia, regardless of the type, from tertile I (83.1%), to tertile II (63.1%), to tertile III (56.1%) was observed (p = 0.003). After adjustment for potential confounders, a twofold increase in the risk of conversion to dementia was found in subjects belonging to tertile I of Apo J compared with tertile III; the risk increased after two years of follow up, while no differences emerged within the first 2 years. CONCLUSIONS Our results suggest that in MCI subjects, low APOJ levels may be associated with increased risk of developing dementia.
Collapse
Affiliation(s)
- Tommaso Romagnoli
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Beatrice Ortolani
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Juana Maria Sanz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; Department of ROMAGNA, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Trentini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; Department of ROMAGNA, University of Ferrara, 44121 Ferrara, Italy.
| | - Davide Seripa
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Edoardo Dalla Nora
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Eleonora Capatti
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Gloria Brombo
- Department of Translational Medicine and for Romagna, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
27
|
Chen Z, Yu Q, Yu Q, Johnson J, Shipman R, Zhong X, Huang J, Asthana S, Carlsson C, Okonkwo O, Li L. In-depth Site-specific Analysis of N-glycoproteome in Human Cerebrospinal Fluid and Glycosylation Landscape Changes in Alzheimer's Disease. Mol Cell Proteomics 2021; 20:100081. [PMID: 33862227 PMCID: PMC8724636 DOI: 10.1016/j.mcpro.2021.100081] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/22/2023] Open
Abstract
As the body fluid that directly interchanges with the extracellular fluid of the central nervous system (CNS), cerebrospinal fluid (CSF) serves as a rich source for CNS-related disease biomarker discovery. Extensive proteome profiling has been conducted for CSF, but studies aimed at unraveling site-specific CSF N-glycoproteome are lacking. Initial efforts into site-specific N-glycoproteomics study in CSF yield limited coverage, hindering further experimental design of glycosylation-based disease biomarker discovery in CSF. In the present study, we have developed an N-glycoproteomic approach that combines enhanced N-glycopeptide sequential enrichment by hydrophilic interaction chromatography (HILIC) and boronic acid enrichment with electron transfer and higher-energy collision dissociation (EThcD) for large-scale intact N-glycopeptide analysis. The application of the developed approach to the analyses of human CSF samples enabled identifications of a total of 2893 intact N-glycopeptides from 511 N-glycosites and 285 N-glycoproteins. To our knowledge, this is the largest site-specific N-glycoproteome dataset reported for CSF to date. Such dataset provides molecular basis for a better understanding of the structure-function relationships of glycoproteins and their roles in CNS-related physiological and pathological processes. As accumulating evidence suggests that defects in glycosylation are involved in Alzheimer's disease (AD) pathogenesis, in the present study, a comparative in-depth N-glycoproteomic analysis was conducted for CSF samples from healthy control and AD patients, which yielded a comparable N-glycoproteome coverage but a distinct expression pattern for different categories of glycoforms, such as decreased fucosylation in AD CSF samples. Altered glycosylation patterns were detected for a number of N-glycoproteins including alpha-1-antichymotrypsin, ephrin-A3 and carnosinase CN1 etc., which serve as potentially interesting targets for further glycosylation-based AD study and may eventually lead to molecular elucidation of the role of glycosylation in AD progression.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA
| | - Qinying Yu
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Jillian Johnson
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Richard Shipman
- Department of Applied Science, University of Wisconsin-Stout, Menomonie, Wisconsin, USA
| | - Xiaofang Zhong
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA
| | - Sanjay Asthana
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Cynthia Carlsson
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Ozioma Okonkwo
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin, USA; School of Pharmacy, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
28
|
Monllor P, Giraldo E, Badia MC, de la Asuncion JG, Alonso MD, Lloret A, Vina J. Serum Levels of Clusterin, PKR, and RAGE Correlate with Amyloid Burden in Alzheimer's Disease. J Alzheimers Dis 2021; 80:1067-1077. [PMID: 33646167 DOI: 10.3233/jad-201443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common form of dementia and biomarkers are essential to help in the diagnosis of this disease. Image techniques and cerebrospinal fluid (CSF) biomarkers are limited in their use because they are expensive or invasive. Thus, the search for blood-borne biomarkers is becoming central to the medical community. OBJECTIVE The main objective of this study is the evaluation of three serum proteins as potential biomarkers in AD patients. METHODS We recruited 27 healthy controls, 19 mild cognitive impairment patients, and 17 AD patients. Using the recent A/T/N classification we split our population into two groups (AD and control). We used ELISA kits to determine Aβ42, tau, and p-tau in CSF and clusterin, PKR, and RAGE in serum. RESULTS The levels of serum clusterin, PKR, and RAGE were statistically different in the AD group compared to controls. These proteins showed a statistically significant correlation with CSF Aβ42. So, they were selected to generate an AD detection model showing an AUC-ROC of 0.971 (CI 95%, 0.931-0.998). CONCLUSION The developed model based on serum biomarkers and other co-variates could reflect the AD core pathology. So far, not one single blood-biomarker has been described, with effectiveness offering high sensitivity and specificity. We propose that the complexity of AD pathology could be reflected in a set of biomarkers also including clinical features of the patients.
Collapse
Affiliation(s)
- Paloma Monllor
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Esther Giraldo
- Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain.,Principe Felipe Research Center, Valencia, Spain
| | | | | | | | - Ana Lloret
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| | - Jose Vina
- Freshage Research Group, Department of Physiology, University of Valencia, CIBERFES-ISCIII, INCLIVA, Valencia, Spain
| |
Collapse
|
29
|
Bryan J, Mandan A, Kamat G, Gottschalk WK, Badea A, Adams KJ, Thompson JW, Colton CA, Mukherjee S, Lutz MW. Likelihood ratio statistics for gene set enrichment in Alzheimer's disease pathways. Alzheimers Dement 2021; 17:561-573. [PMID: 33480182 PMCID: PMC8044005 DOI: 10.1002/alz.12223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The study of Alzheimer's disease (AD) has revealed biological pathways with implications for disease neuropathology and pathophysiology. These pathway-level effects may also be mediated by individual characteristics or covariates such as age or sex. Evaluation of AD biological pathways in the context of interactions with these covariates is critical to the understanding of AD as well as the development of model systems used to study the disease. METHODS Gene set enrichment methods are powerful tools used to interpret gene-level statistics at the level of biological pathways. We introduce a method for quantifying gene set enrichment using likelihood ratio-derived test statistics (gsLRT), which accounts for sample covariates like age and sex. We then use our method to test for age and sex interactions with protein expression levels in AD and to compare the pathway results between human and mouse species. RESULTS Our method, based on nested logistic regressions is competitive with the existing standard for gene set testing in the context of linear models and complex experimental design. The gene sets we identify as having a significant association with AD-both with and without additional covariate interactions-are validated by previous studies. Differences between gsLRT results on mouse and human datasets are observed. DISCUSSION Characterizing biological pathways involved in AD builds on the important work involving single gene drivers. Our gene set enrichment method finds pathways that are significantly related to AD while accounting for covariates that may be relevant to disease development. The method highlights commonalities and differences between human AD and mouse models, which may inform the development of higher fidelity models for the study of AD.
Collapse
Affiliation(s)
- Jordan Bryan
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Arpita Mandan
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Gauri Kamat
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | | | - Alexandra Badea
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Kendra J. Adams
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | | | - Carol A. Colton
- Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
- Departments of Mathematics, Computer Science, and Biostatistics & Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Michael W. Lutz
- Department of Neurology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
30
|
Trujillo-Estrada L, Sanchez-Mejias E, Sanchez-Varo R, Garcia-Leon JA, Nuñez-Diaz C, Davila JC, Vitorica J, LaFerla FM, Moreno-Gonzalez I, Gutierrez A, Baglietto-Vargas D. Animal and Cellular Models of Alzheimer's Disease: Progress, Promise, and Future Approaches. Neuroscientist 2021; 28:572-593. [PMID: 33769131 DOI: 10.1177/10738584211001753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease affecting over 45 million people worldwide. Transgenic mouse models have made remarkable contributions toward clarifying the pathophysiological mechanisms behind the clinical manifestations of AD. However, the limited ability of these in vivo models to accurately replicate the biology of the human disease have precluded the translation of promising preclinical therapies to the clinic. In this review, we highlight several major pathogenic mechanisms of AD that were discovered using transgenic mouse models. Moreover, we discuss the shortcomings of current animal models and the need to develop reliable models for the sporadic form of the disease, which accounts for the majority of AD cases, as well as human cellular models to improve success in translating results into human treatments.
Collapse
Affiliation(s)
- Laura Trujillo-Estrada
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elisabeth Sanchez-Mejias
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raquel Sanchez-Varo
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Antonio Garcia-Leon
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Nuñez-Diaz
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jose Carlos Davila
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Vitorica
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Ines Moreno-Gonzalez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonia Gutierrez
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Baglietto-Vargas
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga-IBIMA, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
31
|
Baidya F, Bohra M, Datta A, Sarmah D, Shah B, Jagtap P, Raut S, Sarkar A, Singh U, Kalia K, Borah A, Wang X, Dave KR, Yavagal DR, Bhattacharya P. Neuroimmune crosstalk and evolving pharmacotherapies in neurodegenerative diseases. Immunology 2021; 162:160-178. [PMID: 32939758 PMCID: PMC7808166 DOI: 10.1111/imm.13264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/20/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegeneration is characterized by gradual onset and limited availability of specific biomarkers. Apart from various aetiologies such as infection, trauma, genetic mutation, the interaction between the immune system and CNS is widely associated with neuronal damage in neurodegenerative diseases. The immune system plays a distinct role in disease progression and cellular homeostasis. It induces cellular and humoral responses, and enables tissue repair, cellular healing and clearance of cellular detritus. Aberrant and chronic activation of the immune system can damage healthy neurons. The pro-inflammatory mediators secreted by chief innate immune components, the complement system, microglia and inflammasome can augment cytotoxicity. Furthermore, these inflammatory mediators accelerate microglial activation resulting in progressive neuronal loss. Various animal studies have been carried out to unravel the complex pathology and ascertain biomarkers for these harmful diseases, but have had limited success. The present review will provide a thorough understanding of microglial activation, complement system and inflammasome generation, which lead the healthy brain towards neurodegeneration. In addition to this, possible targets of immune components to confer a strategic treatment regime for the alleviation of neuronal damage are also summarized.
Collapse
Affiliation(s)
- Falguni Baidya
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Mariya Bohra
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Aishika Datta
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Deepaneeta Sarmah
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Birva Shah
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Priya Jagtap
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Swapnil Raut
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Ankan Sarkar
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Upasna Singh
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Kiran Kalia
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| | - Anupom Borah
- Department of Life Science and BioinformaticsAssam UniversitySilcharAssamIndia
| | - Xin Wang
- Department of NeurosurgeryBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Kunjan R. Dave
- Department of NeurologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Dileep R. Yavagal
- Department of Neurology and NeurosurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Pallab Bhattacharya
- Department of Pharmacology and ToxicologyNational Institute of Pharmaceutical Education and Research, Ahmedabad (NIPER‐A)GandhinagarGujaratIndia
| |
Collapse
|
32
|
Loeffler DA. Modifiable, Non-Modifiable, and Clinical Factors Associated with Progression of Alzheimer's Disease. J Alzheimers Dis 2021; 80:1-27. [PMID: 33459643 DOI: 10.3233/jad-201182] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is an extensive literature relating to factors associated with the development of Alzheimer's disease (AD), but less is known about factors which may contribute to its progression. This review examined the literature with regard to 15 factors which were suggested by PubMed search to be positively associated with the cognitive and/or neuropathological progression of AD. The factors were grouped as potentially modifiable (vascular risk factors, comorbidities, malnutrition, educational level, inflammation, and oxidative stress), non-modifiable (age at clinical onset, family history of dementia, gender, Apolipoprotein E ɛ4, genetic variants, and altered gene regulation), and clinical (baseline cognitive level, neuropsychiatric symptoms, and extrapyramidal signs). Although conflicting results were found for the majority of factors, a positive association was found in nearly all studies which investigated the relationship of six factors to AD progression: malnutrition, genetic variants, altered gene regulation, baseline cognitive level, neuropsychiatric symptoms, and extrapyramidal signs. Whether these or other factors which have been suggested to be associated with AD progression actually influence the rate of decline of AD patients is unclear. Therapeutic approaches which include addressing of modifiable factors associated with AD progression should be considered.
Collapse
Affiliation(s)
- David A Loeffler
- Beaumont Research Institute, Department of Neurology, Beaumont Health, Royal Oak, MI, USA
| |
Collapse
|
33
|
Moezzi SMI, Mozafari N, Fazel-Hoseini SM, Nadimi-Parashkoohi S, Abbasi H, Ashrafi H, Azadi A. Apolipoprotein J in Alzheimer's Disease: Shedding Light on Its Role with Cell Signaling Pathway Perspective and Possible Therapeutic Approaches. ACS Chem Neurosci 2020; 11:4060-4072. [PMID: 33251792 DOI: 10.1021/acschemneuro.0c00637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Apolipoprotein J (ApoJ), or clusterin, is one of the main apolipoproteins in the brain. It is synthesized and released from astrocytes in a healthy brain, and its expression increases in neurodegenerative disorders. Genetic evidence has suggested an association between ApoJ polymorphism and the risk of Alzheimer's disease (AD)-it is now considered the third main genetic risk factor for late-onset AD. However, the role of ApoJ overexpression in the state of disorder, toxicity, or protection is not yet clear. Since ApoJ plays different roles in AD, we review the function of ApoJ using different cell signaling pathways in AD and outline its paradoxical roles in AD. ApoJ helps in amyloid-beta (Aβ) clearance. Vice versa, ApoJ gene knock-out causes fibrillary Aβ reduction and prevents Aβ-induced neuron cell death. Understanding ApoJ, through various cellular signaling pathways, creates a new perspective on AD's cellular principles. The overall message is that ApoJ can be a valuable tool in controlling AD.
Collapse
Affiliation(s)
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sadra Nadimi-Parashkoohi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hosein Abbasi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
34
|
Zhang Q, Ma C, Chin LS, Li L. Integrative glycoproteomics reveals protein N-glycosylation aberrations and glycoproteomic network alterations in Alzheimer's disease. SCIENCE ADVANCES 2020; 6:6/40/eabc5802. [PMID: 33008897 PMCID: PMC7852392 DOI: 10.1126/sciadv.abc5802] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/12/2020] [Indexed: 05/08/2023]
Abstract
Protein N-glycosylation plays critical roles in controlling brain function, but little is known about human brain N-glycoproteome and its alterations in Alzheimer's disease (AD). Here, we report the first, large-scale, site-specific N-glycoproteome profiling study of human AD and control brains using mass spectrometry-based quantitative N-glycoproteomics. The study provided a system-level view of human brain N-glycoproteins and in vivo N-glycosylation sites and identified disease signatures of altered N-glycopeptides, N-glycoproteins, and N-glycosylation site occupancy in AD. Glycoproteomics-driven network analysis showed 13 modules of co-regulated N-glycopeptides/glycoproteins, 6 of which are associated with AD phenotypes. Our analyses revealed multiple dysregulated N-glycosylation-affected processes and pathways in AD brain, including extracellular matrix dysfunction, neuroinflammation, synaptic dysfunction, cell adhesion alteration, lysosomal dysfunction, endocytic trafficking dysregulation, endoplasmic reticulum dysfunction, and cell signaling dysregulation. Our findings highlight the involvement of N-glycosylation aberrations in AD pathogenesis and provide new molecular and system-level insights for understanding and treating AD.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmacology and Chemical Biology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheng Ma
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Lih-Shen Chin
- Department of Pharmacology and Chemical Biology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Lian Li
- Department of Pharmacology and Chemical Biology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
35
|
Alternative Splicing Regulation of an Alzheimer's Risk Variant in CLU. Int J Mol Sci 2020; 21:ijms21197079. [PMID: 32992916 PMCID: PMC7582367 DOI: 10.3390/ijms21197079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/05/2020] [Accepted: 09/17/2020] [Indexed: 02/01/2023] Open
Abstract
Clusterin (CLU) is one of the risk genes most associated with late onset Alzheimer’s disease (AD), and several genetic variants in CLU are associated with AD risk. However, the functional role of known AD risk genetic variants in CLU has been little explored. We investigated the effect of an AD risk variant (rs7982) in the 5th exon of CLU on alternative splicing by using an integrative approach of brain-tissue-based RNA-Seq and whole genome sequencing data from Accelerating Medicines Partnership—Alzheimer’s Disease (AMP-AD). RNA-Seq data were generated from three regions in the temporal lobe of the brain—the temporal cortex, superior temporal gyrus, and parahippocampal gyrus. The rs7982 was significantly associated with intron retention (IR) of the 5th exon of CLU; as the number of alternative alleles (G) increased, the IR rates decreased more significantly in females than in males. Our results suggest a sex-dependent role of rs7982 in AD pathogenesis via splicing regulation.
Collapse
|
36
|
Valenzuela PL, Castillo-García A, Morales JS, de la Villa P, Hampel H, Emanuele E, Lista S, Lucia A. Exercise benefits on Alzheimer's disease: State-of-the-science. Ageing Res Rev 2020; 62:101108. [PMID: 32561386 DOI: 10.1016/j.arr.2020.101108] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/29/2020] [Accepted: 06/06/2020] [Indexed: 01/15/2023]
Abstract
Although there is no unanimity, growing evidence supports the value of regular physical exercise to prevent Alzheimer's disease as well as cognitive decline in affected patients. Together with an introductory summary on epidemiological evidence, the aim of this review is to summarize the current knowledge on the potential biological mechanisms underlying exercise benefits in this condition. Regular physical exercise has proven to be beneficial for traditional cardiovascular risk factors (e.g., reduced vascular flow, diabetes) involved in the pathogenesis of Alzheimer's disease. Exercise also promotes neurogenesis via increases in exercise-induced metabolic factors (e.g., ketone bodies, lactate) and muscle-derived myokines (cathepsin-B, irisin), which in turn stimulate the production of neurotrophins such as brain-derived neurotrophic factor. Finally, regular exercise exerts anti-inflammatory effects and improves the brain redox status, thereby ameliorating the pathophysiological hallmarks of Alzheimer's disease (e.g., amyloid-β deposition). In summary, physical exercise might provide numerous benefits through different pathways that might, in turn, help prevent risk and progression of Alzheimer's disease. More evidence is needed, however, based on human studies.
Collapse
|
37
|
Ha J, Moon MK, Kim H, Park M, Cho SY, Lee J, Lee JY, Kim E. Plasma Clusterin as a Potential Link Between Diabetes and Alzheimer Disease. J Clin Endocrinol Metab 2020; 105:5860166. [PMID: 32561922 DOI: 10.1210/clinem/dgaa378] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/13/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Plasma clusterin, a promising biomarker of Alzheimer disease (AD), has been associated with diabetes mellitus (DM). However, clusterin has not been investigated considering a relationship with both DM and AD. In this study, we aimed to investigate the individual and interactive relationships of plasma clusterin levels with both diseases. DESIGN Cross-sectional observation study. METHODS We classified participants by the severity of cognitive (normal cognition, mild cognitive impairment [MCI], and AD) and metabolic (healthy control, prediabetes, and DM) impairments. We evaluated the cognitive and metabolic functions of the participants with neuropsychological assessments, brain magnetic resonance imaging, and various blood tests, to explore potential relationships with clusterin. RESULTS Plasma clusterin levels were higher in participants with AD and metabolic impairment (prediabetes and DM). A two-way ANCOVA revealed no synergistic, but an additive effect of AD and DM on clusterin. Clusterin was negatively correlated with cognitive scores. It was also associated with metabolic status indicated by glycated hemoglobin A1c (HbA1c), the Homeostatic Model Assessment for Insulin Resistance index, and fasting C-peptide. It showed correlations between medial temporal atrophy and periventricular white matter lesions, indicating neurodegeneration and microvascular insufficiency, respectively. Further mediation analysis to understand the triadic relationship between clusterin, AD, and DM revealed that the association between DM and AD was significant when clusterin is considered as a mediator of their relationship. CONCLUSIONS Clusterin is a promising biomarker of DM as well as of AD. Additionally, our data suggest that clusterin may have a role in linking DM with AD as a potential mediator.
Collapse
Affiliation(s)
- Junghee Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kyong Moon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minsun Park
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Cho
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jimin Lee
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry and Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
38
|
Romero JR, Demissie S, Beiser A, Himali JJ, DeCarli C, Levy D, Seshadri S. Relation of plasma β-amyloid, clusterin, and tau with cerebral microbleeds: Framingham Heart Study. Ann Clin Transl Neurol 2020; 7:1083-1091. [PMID: 32588552 PMCID: PMC7359126 DOI: 10.1002/acn3.51066] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/31/2020] [Accepted: 05/01/2020] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE Cerebral microbleeds (CMBs) are associated with higher risk of stroke and dementia, predating clinical diagnosis by several years. CMB are considered markers of cerebral small vessel disease (CSVD): hypertensive (deep CMB) and cerebral amyloid angiopathy (lobar CMB). We related plasma β-Amyloid (40, 42 and their ratio), clusterin, and tau levels to CMB to elucidate their role as biomarkers for the angiopathies represented by CMB. METHODS Dementia, stroke, and other neurological disease-free Framingham Heart Study participants with available CMB and biomarker measurements were included. We related biomarker levels (standardized for analyses) to CMB presence overall and stratified by brain topography (any, lobar, deep), using multivariable logistic regression analyses. RESULTS CMB were observed in 208 (5.7%) participants (mean age 57 years, 54% women). After multivariable adjustment, Aβ1-40 was associated with any CMB (OR (95%CI) 1.20 (0.99, 1.45) P = 0.062)) and lobar CMB (OR (95%CI) 1.33 (1.05, 1.68) P = 0.019), but not with deep CMB. Log-Aβ1-42 levels were not associated with CMB overall. Clusterin was related to mixed CMB (1.70 [1.05, 2.74], P = 0.031). Tau levels were associated with any CMB (OR (95%CI) 1.26 (1.07, 1.49) P = 0.006), lobar CMB (OR (95%CI) 1.26 (1.05, 1.52) P = 0.013), and with deep CMB (OR (95% CI) 1.46 (1.13, 1.89) P = 0.004). INTERPRETATION We found that plasma Aβ1-40 and Tau are associated with CMB but further studies are needed to confirm their role in hemorrhage prone CSVD represented by CMB and as indicators of ongoing subclinical neuronal injury.
Collapse
Affiliation(s)
- José Rafael Romero
- Department of NeurologyBoston University School of MedicineBostonMassachusetts
- NHLBI’s Framingham Heart StudyFraminghamMassachusetts
| | - Serkalem Demissie
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusetts
| | - Alexa Beiser
- Department of NeurologyBoston University School of MedicineBostonMassachusetts
- NHLBI’s Framingham Heart StudyFraminghamMassachusetts
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusetts
| | - Jayandra J. Himali
- Department of NeurologyBoston University School of MedicineBostonMassachusetts
- NHLBI’s Framingham Heart StudyFraminghamMassachusetts
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusetts
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexas
| | - Charles DeCarli
- Department of NeurologyUniversity of California‐ DavisSacramentoCalifornia
| | - Daniel Levy
- NHLBI’s Framingham Heart StudyFraminghamMassachusetts
- The Population Sciences Branch of the National Heart, Lung, and Blood Institute of the National Institutes of HealthBethesdaMaryland
| | - Sudha Seshadri
- Department of NeurologyBoston University School of MedicineBostonMassachusetts
- NHLBI’s Framingham Heart StudyFraminghamMassachusetts
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusetts
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative DiseasesUniversity of Texas Health Sciences CenterSan AntonioTexas
| |
Collapse
|
39
|
Rahman MA, Hossain S, Abdullah N, Aminudin N. Brain proteomics links oxidative stress with metabolic and cellular stress response proteins in behavioural alteration of Alzheimer's disease model rats. AIMS Neurosci 2020; 6:299-315. [PMID: 32341985 PMCID: PMC7179348 DOI: 10.3934/neuroscience.2019.4.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/28/2019] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) impairs memory and learning related behavioural performances of the affected person. Compared with the controls, memory and learning related behavioural performances of the AD model rats followed by hippocampal proteomics had been observed in the present study. In the eight armed radial maze, altered performance of the AD rats had been observed. Using liquid chromatography coupled tandem mass spectrometry (LC-MS/MS), 822 proteins had been identified with protein threshold at 95.0%, minimum peptide of 2 and peptide threshold at 0.1% FDR. Among them, 329 proteins were differentially expressed with statistical significance (P < 0.05). Among the significantly regulated (P < 0.05) 329 proteins, 289 met the criteria of fold change (LogFC of 1.5) cut off value. Number of proteins linked with AD, oxidative stress (OS) and hypercholesterolemia was 59, 20 and 12, respectively. Number of commonly expressed proteins was 361. The highest amount of proteins differentially expressed in the AD rats were those involved in metabolic processes followed by those linked with OS. Most notable was the perturbed state of the cholesterol metabolizing proteins in the AD group. Current findings suggest that proteins associated with oxidative stress, glucose and cholesterol metabolism and cellular stress response are among the mostly affected proteins in AD subjects. Thus, novel therapeutic approaches targeting these proteins could be strategized to withstand the ever increasing global AD burden.
Collapse
Affiliation(s)
- Mohammad Azizur Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh.,Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Shahdat Hossain
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Noorlidah Abdullah
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Norhaniza Aminudin
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Rao CV, Asch AS, Carr DJJ, Yamada HY. "Amyloid-beta accumulation cycle" as a prevention and/or therapy target for Alzheimer's disease. Aging Cell 2020; 19:e13109. [PMID: 31981470 PMCID: PMC7059149 DOI: 10.1111/acel.13109] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/16/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
The cell cycle and its regulators are validated targets for cancer drugs. Reagents that target cells in a specific cell cycle phase (e.g., antimitotics or DNA synthesis inhibitors/replication stress inducers) have demonstrated success as broad-spectrum anticancer drugs. Cyclin-dependent kinases (CDKs) are drivers of cell cycle transitions. A CDK inhibitor, flavopiridol/alvocidib, is an FDA-approved drug for acute myeloid leukemia. Alzheimer's disease (AD) is another serious issue in contemporary medicine. The cause of AD remains elusive, although a critical role of latent amyloid-beta accumulation has emerged. Existing AD drug research and development targets include amyloid, amyloid metabolism/catabolism, tau, inflammation, cholesterol, the cholinergic system, and other neurotransmitters. However, none have been validated as therapeutically effective targets. Recent reports from AD-omics and preclinical animal models provided data supporting the long-standing notion that cell cycle progression and/or mitosis may be a valid target for AD prevention and/or therapy. This review will summarize the recent developments in AD research: (a) Mitotic re-entry, leading to the "amyloid-beta accumulation cycle," may be a prerequisite for amyloid-beta accumulation and AD pathology development; (b) AD-associated pathogens can cause cell cycle errors; (c) thirteen among 37 human AD genetic risk genes may be functionally involved in the cell cycle and/or mitosis; and (d) preclinical AD mouse models treated with CDK inhibitor showed improvements in cognitive/behavioral symptoms. If the "amyloid-beta accumulation cycle is an AD drug target" concept is proven, repurposing of cancer drugs may emerge as a new, fast-track approach for AD management in the clinic setting.
Collapse
Affiliation(s)
- Chinthalapally V. Rao
- Center for Cancer Prevention and Drug DevelopmentDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Adam S. Asch
- Stephenson Cancer CenterDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Daniel J. J. Carr
- Department of OphthalmologyUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Hiroshi Y. Yamada
- Center for Cancer Prevention and Drug DevelopmentDepartment of MedicineHematology/Oncology SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| |
Collapse
|
41
|
Suresh SN, Chakravorty A, Giridharan M, Garimella L, Manjithaya R. Pharmacological Tools to Modulate Autophagy in Neurodegenerative Diseases. J Mol Biol 2020; 432:2822-2842. [PMID: 32105729 DOI: 10.1016/j.jmb.2020.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
Considerable evidences suggest a link between autophagy dysfunction, protein aggregation, and neurodegenerative diseases. Given that autophagy is a conserved intracellular housekeeping process, modulation of autophagy flux in various model organisms have highlighted its importance for maintaining proteostasis. In postmitotic cells such as neurons, compromised autophagy is sufficient to cause accumulation of ubiquitinated aggregates, neuronal dysfunction, degeneration, and loss of motor coordination-all hallmarks of neurodegenerative diseases. Reciprocally, enhanced autophagy flux augments cellular and organismal health, in addition to extending life span. These genetic studies not-withstanding a plethora of small molecule modulators of autophagy flux have been reported that alleviate disease symptoms in models of neurodegenerative diseases. This review summarizes the potential of such molecules to be, perhaps, one of the first autophagy drugs for treating these currently incurable diseases.
Collapse
Affiliation(s)
- S N Suresh
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Anushka Chakravorty
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Mridhula Giridharan
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Lakshmi Garimella
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India; Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India.
| |
Collapse
|
42
|
Shi X, Xie B, Xing Y, Tang Y. Plasma Clusterin as a Potential Biomarker for Alzheimer’s Disease-A Systematic Review and Meta-analysis. Curr Alzheimer Res 2019; 16:1018-1027. [PMID: 31647395 DOI: 10.2174/1567205016666191024141757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 12/24/2022]
Abstract
Background:
Plasma clusterin has been reported to be associated with the pathology, prevalence,
severity, and rapid clinical progress of Alzheimer’s Disease (AD). However, whether plasma
clusterin can be used as a biomarker of AD is inconsistent and even conflicting.
Objective:
We conducted this study to evaluate the potential of plasma clusterin as the biomarker of AD.
Method:
PubMed, Embase, and Cochrane databases were systematically searched for studies on the relationship
between plasma clusterin levels and AD diagnosis, risk and disease severity. We also compared
the difference in Cerebrospinal Fluid (CSF) clusterin levels between AD and control groups. We
converted and pooled data using standardized mean difference, Pearson linear regression model and the
Cox regression model.
Results:
A total of 17 articles and 7228 individuals, including 1936 AD were included. The quality
ranged from moderate to high. There was no difference in plasma clusterin between AD and control
groups (SMD= 0.19 [-0.10, 0.48], p=0.20). Plasma clusterin levels were not correlated with the risk
(RR=1.03 [0.97-1.09], p=0.31), the MMSE scores (R=0.33 [-0.06, 0.71], p= 0.09), and the integrated
neuropsychological measurements (R=0.21 [-0.20, 0.63], p=0.31) of AD. Additionally, there was no
difference in CSF clusterin between AD and control groups (SMD=1.94 [ -0.49, 4.37], p=0.12).
Conclusion:
Our meta-analysis suggested no relationship between plasma clusterin levels and the diagnosis,
risk, and disease severity of AD and no difference in the CSF clusterin between AD and the control
groups. Overall, there is no evidence to support plasma clusterin as a biomarker of AD based on the
pooled results.
Collapse
Affiliation(s)
- XinRui Shi
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - BeiJia Xie
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Xing
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yi Tang
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
43
|
Regan P, McClean PL, Smyth T, Doherty M. Early Stage Glycosylation Biomarkers in Alzheimer's Disease. MEDICINES 2019; 6:medicines6030092. [PMID: 31484367 PMCID: PMC6789538 DOI: 10.3390/medicines6030092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is of great cause for concern in our ageing population, which currently lacks diagnostic tools to permit accurate and timely diagnosis for affected individuals. The development of such tools could enable therapeutic interventions earlier in the disease course and thus potentially reducing the debilitating effects of AD. Glycosylation is a common, and important, post translational modification of proteins implicated in a host of disease states resulting in a complex array of glycans being incorporated into biomolecules. Recent investigations of glycan profiles, in a wide range of conditions, has been made possible due to technological advances in the field enabling accurate glycoanalyses. Amyloid beta (Aβ) peptides, tau protein, and other important proteins involved in AD pathogenesis, have altered glycosylation profiles. Crucially, these abnormalities present early in the disease state, are present in the peripheral blood, and help to distinguish AD from other dementias. This review describes the aberrant glycome in AD, focusing on proteins implicated in development and progression, and elucidates the potential of glycome aberrations as early stage biomarkers of AD.
Collapse
Affiliation(s)
- Patricia Regan
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland.
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland.
| | - Paula L McClean
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Clinical Translational Research and Innovation Centre, Altnagelvin Area Hospital, Glenshane Road, Derry BT47 6SB, UK
| | - Thomas Smyth
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| | - Margaret Doherty
- Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
- Cellular Health and Toxicology Research Group, Institute of Technology Sligo, Ash Lane, F91 YW50 Sligo, Ireland
| |
Collapse
|
44
|
Wentink A, Nussbaum-Krammer C, Bukau B. Modulation of Amyloid States by Molecular Chaperones. Cold Spring Harb Perspect Biol 2019; 11:a033969. [PMID: 30755450 PMCID: PMC6601462 DOI: 10.1101/cshperspect.a033969] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aberrant protein aggregation is a defining feature of most neurodegenerative diseases. During pathological aggregation, key proteins transition from their native state to alternative conformations, which are prone to oligomerize into highly ordered fibrillar states. As part of the cellular quality control machinery, molecular chaperones can intervene at many stages of the aggregation process to inhibit or reverse aberrant protein aggregation or counteract the toxicity associated with amyloid species. Although the action of chaperones is considered cytoprotective, essential housekeeping functions can be hijacked for the propagation and spreading of protein aggregates, suggesting the cellular protein quality control system constitutes a double-edged sword in neurodegeneration. Here, we discuss the various mechanisms used by chaperones to influence protein aggregation into amyloid fibrils to understand how the interplay of these activities produces specific cellular outcomes and to define mechanisms that may be targeted by pharmacological agents for the treatment of neurodegenerative conditions.
Collapse
Affiliation(s)
- Anne Wentink
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| |
Collapse
|
45
|
Misra A, Chakrabarti SS, Gambhir IS. New genetic players in late-onset Alzheimer's disease: Findings of genome-wide association studies. Indian J Med Res 2019; 148:135-144. [PMID: 30381536 PMCID: PMC6206761 DOI: 10.4103/ijmr.ijmr_473_17] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Late-onset Alzheimer's disease (LOAD) or sporadic AD is the most common form of AD. The precise pathogenetic changes that trigger the development of AD remain largely unknown. Large-scale genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms in multiple genes which are associated with AD; most notably, these are ABCA7, bridging integrator 1(B1N1), triggering receptor expressed on myeloid cells 2 (TREM2), CD33, clusterin (CLU), complement receptor 1 (CRI), ephrin type-A receptor 1 (EPHA1), membrane-spanning 4-domains, subfamily A (MS4A) and phosphatidylinositol binding clathrin assembly protein (PICALM) genes. The proteins coded by the candidate genes participate in a variety of cellular processes such as oxidative balance, protein metabolism, cholesterol metabolism and synaptic function. This review summarizes the major gene loci affecting LOAD identified by large GWASs. Tentative mechanisms have also been elaborated in various studies by which the proteins coded by these genes may exert a role in AD pathogenesis have also been elaborated. The review suggests that these may together affect LOAD pathogenesis in a complementary fashion.
Collapse
Affiliation(s)
- Anamika Misra
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Indrajeet Singh Gambhir
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
46
|
Nordengen K, Kirsebom BE, Henjum K, Selnes P, Gísladóttir B, Wettergreen M, Torsetnes SB, Grøntvedt GR, Waterloo KK, Aarsland D, Nilsson LNG, Fladby T. Glial activation and inflammation along the Alzheimer's disease continuum. J Neuroinflammation 2019; 16:46. [PMID: 30791945 PMCID: PMC6383268 DOI: 10.1186/s12974-019-1399-2] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/07/2019] [Indexed: 02/08/2023] Open
Abstract
Background Neuronal and glial cell interaction is essential for synaptic homeostasis and may be affected in Alzheimer’s disease (AD). We measured cerebrospinal fluid (CSF) neuronal and glia markers along the AD continuum, to reveal putative protective or harmful stage-dependent patterns of activation. Methods We included healthy controls (n = 36) and Aβ-positive (Aβ+) cases (as defined by pathological CSF amyloid beta 1-42 (Aβ42)) with either subjective cognitive decline (SCD, n = 19), mild cognitive impairment (MCI, n = 39), or AD dementia (n = 27). The following CSF markers were measured: a microglial activation marker—soluble triggering receptor expressed on myeloid cells 2 (sTREM2), a marker of microglial inflammatory reaction—monocyte chemoattractant protein-1 (MCP-1), two astroglial activation markers—chitinase-3-like protein 1 (YKL-40) and clusterin, a neuron-microglia communication marker—fractalkine, and the CSF AD biomarkers (Aβ42, phosphorylated tau (P-tau), total tau (T-tau)). Using ANOVA with planned comparisons, or Kruskal-Wallis tests with Dunn’s pairwise comparisons, CSF levels were compared between clinical groups and between stages of biomarker severity using CSF biomarkers for classification based on amyloid pathology (A), tau pathology (T), and neurodegeneration (N) giving rise to the A/T/N score. Results Compared to healthy controls, sTREM2 was increased in SCD (p < .01), MCI (p < .05), and AD dementia cases (p < .001) and increased in AD dementia compared to MCI cases (p < .05). MCP-1 was increased in MCI (p < .05) and AD dementia compared to both healthy controls (p < .001) and SCD cases (p < .01). YKL-40 was increased in dementia compared to healthy controls (p < .01) and MCI (p < .05). All of the CSF activation markers were increased in subjects with pathological CSF T-tau (A+T−N+ and A+T+N+), compared to subjects without neurodegeneration (A−T−N− and A+T−N−). Discussion Microglial activation as indicated by increased sTREM2 is present already at the preclinical SCD stage; increased MCP-1 and astroglial activation markers (YKL-40 and clusterin) were noted only at the MCI and AD dementia stages, respectively, and in Aβ+ cases (A+) with pathological T-tau (N+). Possible different effects of early and later glial activation need to be explored. Electronic supplementary material The online version of this article (10.1186/s12974-019-1399-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kaja Nordengen
- Department of Neurology, Akershus University Hospital, P.B. 1000, N-1478, Lørenskog, Norway.
| | - Bjørn-Eivind Kirsebom
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway.,Department of Psychology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kristi Henjum
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, P.B. 1000, N-1478, Lørenskog, Norway
| | - Berglind Gísladóttir
- Department of Neurology, Akershus University Hospital, P.B. 1000, N-1478, Lørenskog, Norway.,Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, Oslo, Norway
| | - Marianne Wettergreen
- Department of Neurology, Akershus University Hospital, P.B. 1000, N-1478, Lørenskog, Norway.,Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, Oslo, Norway
| | - Silje Bøen Torsetnes
- Department of Neurology, Akershus University Hospital, P.B. 1000, N-1478, Lørenskog, Norway.,Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, Oslo, Norway
| | - Gøril Rolfseng Grøntvedt
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Knut K Waterloo
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
| | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lars N G Nilsson
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, P.B. 1000, N-1478, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| |
Collapse
|
47
|
Sapkota S, Dixon RA. A Network of Genetic Effects on Non-Demented Cognitive Aging: Alzheimer's Genetic Risk (CLU + CR1 + PICALM) Intensifies Cognitive Aging Genetic Risk (COMT + BDNF) Selectively for APOEɛ4 Carriers. J Alzheimers Dis 2019; 62:887-900. [PMID: 29480189 DOI: 10.3233/jad-170909] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Trajectories of complex neurocognitive phenotypes in preclinical aging may be produced differentially through selective and interactive combinations of genetic risk. OBJECTIVE We organize three possible combinations into a "network" of genetic risk indices derived from polymorphisms associated with normal and impaired cognitive aging, as well as Alzheimer's disease (AD). Specifically, we assemble and examine three genetic clusters relevant to non-demented cognitive trajectories: 1) Apolipoprotein E (APOE), 2) a Cognitive Aging Genetic Risk Score (CA-GRS; Catechol-O-methyltransferase + Brain-derived neurotrophic factor), and 3) an AD-Genetic Risk Score (AD-GRS; Clusterin + Complement receptor 1 + Phosphatidylinositol-binding clathrin assembly protein). METHOD We use an accelerated longitudinal design (n = 634; age range = 55-95 years) to test whether AD-GRS (low versus high) moderates the effect of increasing CA-GRS risk on executive function (EF) performance and change as stratified by APOE status (ɛ4+ versus ɛ4-). RESULTS APOEɛ4 carriers with high AD-GRS had poorer EF performance at the centering age (75 years) and steeper 9-year decline with increasing CA-GRS but this association was not present in APOEɛ4 carriers with low AD-GRS. CONCLUSIONS APOEɛ4 carriers with high AD-GRS are at elevated risk of cognitive decline when they also possess higher CA-GRS risk. Genetic risk from both common cognitive aging and AD-related indices may interact in intensification networks to differentially predict (1) level and trajectories of EF decline and (2) potential selective vulnerability for transitions into impairment and dementia.
Collapse
Affiliation(s)
- Shraddha Sapkota
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Roger A Dixon
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.,Department of Psychology, University of Alberta, Edmonton, Canada
| |
Collapse
|
48
|
Katsumata Y, Nelson PT, Estus S, Fardo DW. Translating Alzheimer's disease-associated polymorphisms into functional candidates: a survey of IGAP genes and SNPs. Neurobiol Aging 2019; 74:135-146. [PMID: 30448613 PMCID: PMC6331247 DOI: 10.1016/j.neurobiolaging.2018.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/24/2018] [Accepted: 10/14/2018] [Indexed: 12/12/2022]
Abstract
The International Genomics of Alzheimer's Project (IGAP) is a consortium for characterizing the genetic landscape of Alzheimer's disease (AD). The identified and/or confirmed 19 single-nucleotide polymorphisms (SNPs) associated with AD are located on non-coding DNA regions, and their functional impacts on AD are as yet poorly understood. We evaluated the roles of the IGAP SNPs by integrating data from many resources, based on whether the IGAP SNP was (1) a proxy for a coding SNP or (2) associated with altered mRNA transcript levels. For (1), we confirmed that 12 AD-associated coding common SNPs and five nonsynonymous rare variants are in linkage disequilibrium with the IGAP SNPs. For (2), the IGAP SNPs in CELF1 and MS4A6A were associated with expression of their neighboring genes, MYBPC3 and MS4A6A, respectively, in blood. The IGAP SNP in DSG2 was an expression quantitative trait loci (eQTL) for DLGAP1 and NETO1 in the human frontal cortex. The IGAP SNPs in ABCA7, CD2AP, and CD33 each acted as eQTL for AD-associated genes in brain. Our approach for identifying proxies and examining eQTL highlighted potentially impactful, novel gene regulatory phenomena pertinent to the AD phenotype.
Collapse
Affiliation(s)
- Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Peter T. Nelson
- Department of Pathology, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Steven Estus
- Department of Physiology, University of Kentucky, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | | | - David W. Fardo
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
49
|
Yang C, Wang H, Li C, Niu H, Luo S, Guo X. Association between clusterin concentration and dementia: a systematic review and meta-analysis. Metab Brain Dis 2019; 34:129-140. [PMID: 30291488 DOI: 10.1007/s11011-018-0325-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Studies have showed that high clusterin (CLU) concentration was associated with increased risk of dementia. However, the results based on small samples remained controversial. The aim of our study was to determine the relationship between CLU concentration and the late-life cognitive outcomes including mild cognitive impairment (MCI), Alzheimer's disease (AD), vascular dementia (VAD), Parkinson's disease related dementia (PDD), Lewy body dementia (DLB) and frontotemporal dementia (FTD). A comprehensive search was conducted to screen the eligible studies in online database PubMed, Web of Science and Embase from 1950 to January 2017 according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) checklist. The CLU concentration data in brain tissue, cerebrospinal fluid (CSF), serum and plasma was collected to determine the strength of this association. The results were presented with standard difference of the mean (SDM) with 95% confidence intervals (CIs). A total of 28 studies were identified to calculate the association between CLU concentration and dementia. The results showed that the CLU concentration in the plasma (SDM = 0.73, 95% CI 0.26-1.19, P = 0.002) and brain tissue (SDM = 0.71, 95% CI 0.10-1.32, P = 0.022) was increased in dementia compared to normal control. Subgroup analysis showed that the plasma CLU concentration was significantly increased only in the AD group (SDM = 1.85, 95% CI 0.84-2.85, P < 0.001), but not in MCI or other dementias. No association was found between serum and CSF clusterin concentration and dementia. This meta-analysis indicates that high CLU concentration in the plasma and brain is associated with dementia, especially in AD.
Collapse
Affiliation(s)
- Caiping Yang
- Department of Neurology, Hospital of Zhuozhou, Zhuozhou, 072750, Hebei, China
| | - Hai Wang
- Department of Neurology, Hospital of Zhuozhou, Zhuozhou, 072750, Hebei, China
| | - Chaojiu Li
- The Middle School Attached to Northwestern Polytechnical University, Xi'an, 710068, China
| | - Huiyan Niu
- Department of Neurology, Hospital of Zhuozhou, Zhuozhou, 072750, Hebei, China
| | - Shunkui Luo
- Department of Endocrinology and Metabolism, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Xingzhi Guo
- Department of Endocrinology and Metabolism, the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China.
| |
Collapse
|
50
|
Perrotte M, Le Page A, Fournet M, Le Sayec M, Rassart É, Fulop T, Ramassamy C. Blood-based redox-signature and their association to the cognitive scores in MCI and Alzheimer's disease patients. Free Radic Biol Med 2019; 130:499-511. [PMID: 30445127 DOI: 10.1016/j.freeradbiomed.2018.10.452] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/22/2018] [Accepted: 10/31/2018] [Indexed: 01/08/2023]
Abstract
Oxidative stress plays a pivotal and early role in the pathophysiology of Alzheimer's disease (AD). There is convincing evidence that oxidative alterations in AD and in mild cognitive impairment (MCI) patients are not limited to the brain but are extended to the blood compartment. However, the oxidative pattern in plasma is still inconclusive. Moreover, their potential association with the clinical scores MMSE (Mini-Mental State Examination) and MoCA (Montreal Cognitive Assessment) is poorly investigated. The aim of our study was to establish a pattern of blood-based redox alterations in prodromal AD and their evolution during the progression of the disease. Our results showed a reduction in the total antioxidant capacity (TAC) and an increase of the stress-response proteins apolipoprotein J (ApoJ) and Klotho in MCI subjects. For the first time, we evidenced circulating-proteasome activity. We found that the alteration of the circulating-proteasome activity is associated with the accumulation of oxidized proteins in plasma form early AD. Interestingly, the TAC, the levels of vitamin D and the activity of proteasome were positively associated to the clinical scores MMSE and MoCA. The levels of protein carbonyls and of ApoJ were negatively associated to the MMSE and MoCA scores. The levels of apolipoprotein D (ApoD) were not different between groups. Interestingly, the receiver operating characteristic (ROC) curves analysis indicated that these redox markers provide a fair classification of different groups with high accuracy. Overall, our results strengthen the notion that some specific oxidative markers could be considered as non-invasive blood-based biomarkers for an early MCI diagnosis and AD progression.
Collapse
Affiliation(s)
- Morgane Perrotte
- INRS-Institut Armand-Frappier, Laval, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels, Laval University, Québec, Canada
| | - Aurélie Le Page
- Department of Medicine, Geriatric Division, Research Center on Aging, Université de Sherbrooke, QC, Canada
| | | | | | - Éric Rassart
- Université Québec à Montréal, Dept. Sciences biologiques, QC, Canada
| | - Tamas Fulop
- Department of Medicine, Geriatric Division, Research Center on Aging, Université de Sherbrooke, QC, Canada
| | - Charles Ramassamy
- INRS-Institut Armand-Frappier, Laval, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels, Laval University, Québec, Canada.
| |
Collapse
|