1
|
Anandi L, Garcia J, Ros M, Janská L, Liu J, Carmona-Fontaine C. Direct visualization of emergent metastatic features within an ex vivo model of the tumor microenvironment. Life Sci Alliance 2025; 8:e202403053. [PMID: 39419548 PMCID: PMC11487089 DOI: 10.26508/lsa.202403053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Ischemic conditions such as hypoxia and nutrient starvation, together with interactions with stromal cells, are critical drivers of metastasis. These conditions arise deep within tumor tissues, and thus, observing nascent metastases is exceedingly challenging. We thus developed the 3MIC-an ex vivo model of the tumor microenvironment-to study the emergence of metastatic features in tumor cells in a 3-dimensional (3D) context. Here, tumor cells spontaneously create ischemic-like conditions, allowing us to study how tumor spheroids migrate, invade, and interact with stromal cells under different metabolic conditions. Consistent with previous data, we show that ischemia increases cell migration and invasion, but the 3MIC allowed us to directly observe and perturb cells while they acquire these pro-metastatic features. Interestingly, our results indicate that medium acidification is one of the strongest pro-metastatic cues and also illustrate using the 3MIC to test anti-metastatic drugs on cells experiencing different metabolic conditions. Overall, the 3MIC can help dissecting the complexity of the tumor microenvironment for the direct observation and perturbation of tumor cells during the early metastatic process.
Collapse
Affiliation(s)
- Libi Anandi
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Jeremy Garcia
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Manon Ros
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Libuše Janská
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Josephine Liu
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Carlos Carmona-Fontaine
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
2
|
Zhang S, Fan Y, Cao X, Deng C, Xu J, Zhou Q, Li Y, Yin Y, Chen H. Treadmill exercise improves cerebral ischemia injury by regulating microglia polarization via downregulation of MMP12. Int Immunopharmacol 2024; 142:113210. [PMID: 39340990 DOI: 10.1016/j.intimp.2024.113210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/24/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUD Exercise training is the main strategy for stroke rehabilitation, and it has shown that shifting microglia toward M2 phenotype is beneficial for the recovery of neurological function after stroke. The mechanisms governing exercise training and inflammatory response after cerebral ischemia remain largely unexplored. Herein, the aim of this study was to investigate the role of exercise training in immune response after cerebral ischemia. METHODS The transient middle cerebral artery occlusion (MCAO) rat model and primary microglia under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions were used to mimic the ischemic stroke in vivo and in vitro respectively. Treadmill exercise with gradually increased intensity was initiated the second day after MCAO for a maximum of 14 days. The beam balance test, forelimb placement test, cornering test, modified adhesive removal test were used to assess the behavioral recovery. The right peri-infarct cortex was taken from 3 rats per group for RNA sequencing (RNA-seq) analysis. Real-time PCR, western blot, immunofluorescence, and phagocytosis assay was performed after MCAO and/or OGD/R. RESULTS Treadmill exercise could significantly improve behavioral outcomes and reduce the infarct volumes. In addition, treadmill exercise switched microglia polarization toward M2 phenotype (Iba+/CD206+) in the peri-infarct cortex, and significantly increased the levels of anti-inflammatory factors (TGF-β, IL10, Arg-1, CD206) and decreased a pool of pro-inflammatory factors (IL-1β, IL-6, TNF-α, iNOS, CD68) in the peri-infarct areas. RNA-seq analysis and further studies demonstrated that exercise training could significantly reduce the expression of MMP12. Through further immunofluorescence co-labeling analysis, we found that treadmill exercise predominantly reduced the expression of MMP-12 in microglia but not in neuron after MCAO. In primary microglia after OGD/R, MMP12 inhibition switched microglia polarization toward to M2 phenotype, increased the expression of M2 markers, and enhanced its phagocytic capacities. CONCLUSIONS Our data demonstrate that treadmill exercise could improve the inflammatory microenvironment in the brain after ischemic stroke, which may be caused by inhibition of MMP12 expression. MMP12 suppression in primary microglia could remodel microglia immune functions. In summary, this study may provide novel insights into the immune mechanism of exercise training for stroke and suggests potential targets for therapeutic approaches.
Collapse
Affiliation(s)
- Song Zhang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China
| | - Yuanteng Fan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xiaojian Cao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China
| | - Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China
| | - Qiuzhi Zhou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China
| | - Yatao Yin
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China.
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Techonology, Wuhan, China.
| |
Collapse
|
3
|
Nilsson I, Su EJ, Fredriksson L, Sahlgren BH, Bagoly Z, Moessinger C, Stefanitsch C, Ning FC, Zeitelhofer M, Muhl L, Lawrence ALE, Scotney PD, Lu L, Samén E, Ho H, Keep RF, Medcalf RL, Lawrence DA, Eriksson U. Thrombolysis exacerbates cerebrovascular injury after ischemic stroke via a VEGF-B dependent effect on adipose lipolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617532. [PMID: 39416206 PMCID: PMC11483068 DOI: 10.1101/2024.10.11.617532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cerebrovascular injuries leading to edema and hemorrhage after ischemic stroke are common. The mechanisms underlying these events and how they are connected to known risk factors for poor outcome, like obesity and diabetes, is relatively unknown. Herein we demonstrate that increased adipose tissue lipolysis is a dominating risk factor for the development of a compromised cerebrovasculature in ischemic stroke. Reducing adipose lipolysis by VEGF-B antagonism improved vascular integrity by reducing ectopic cerebrovascular lipid deposition. Thrombolytic therapy in ischemic stroke using tissue plasminogen activator (tPA) leads to increased risk of hemorrhagic complications, substantially limiting the use of thrombolytic therapy. We provide evidence that thrombolysis with tPA promotes adipose tissue lipolysis, leading to a rise in plasma fatty acids and lipid accumulation in the ischemic cerebrovasculature after stroke. VEGF-B blockade improved the efficacy and safety of thrombolysis suggesting the potential use of anti-VEGF-B therapy to extend the therapeutic window for stroke management.
Collapse
Affiliation(s)
- Ingrid Nilsson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
- These authors contributed equally
- Lead contact: (I.N.)
| | - Enming J. Su
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- These authors contributed equally
| | - Linda Fredriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin Heller Sahlgren
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Zsuzsa Bagoly
- MTA-DE Lendület “Momentum” Hemostasis and Stroke Research Group, Department of Laboratory Medicine, Division of Clinical Laboratory Sciences, Faculty of Medicine, University of Debrecen, Hungary
| | - Christine Moessinger
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christina Stefanitsch
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Frank Chenfei Ning
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lars Muhl
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Lisa E. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Li Lu
- Karolinska Experimental Research and Imaging Centre, Karolinska University Hospital, Stockholm, Sweden
| | - Erik Samén
- Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Heidi Ho
- Australian Centre for Blood Diseases, Monash University, Melbourne 3004, Victoria, Australia
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Robert L. Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne 3004, Victoria, Australia
| | - Daniel A. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Shadman J, Panahpour H, Alipour MR, Salimi A, Shahabi P, Azar SS. Investigating the therapeutic effects of nimodipine on vasogenic cerebral edema and blood-brain barrier impairment in an ischemic stroke rat model. Neuropharmacology 2024; 257:110054. [PMID: 38950691 DOI: 10.1016/j.neuropharm.2024.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Vasogenic brain edema, a potentially life-threatening consequence following an acute ischemic stroke, is a major clinical problem. This research aims to explore the therapeutic benefits of nimodipine, a calcium channel blocker, in mitigating vasogenic cerebral edema and preserving blood-brain barrier (BBB) function in an ischemic stroke rat model. In this research, animals underwent the induction of ischemic stroke via a 60-min blockage of the middle cerebral artery and treated with a nonhypotensive dose of nimodipine (1 mg/kg/day) for a duration of five days. The wet/dry method was employed to identify cerebral edema, and the Evans blue dye extravasation technique was used to assess the permeability of the BBB. Furthermore, immunofluorescence staining was utilized to assess the protein expression levels of matrix metalloproteinase-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1). The study also examined mitochondrial function by evaluating mitochondrial swelling, succinate dehydrogenase (SDH) activity, the collapse of mitochondrial membrane potential (MMP), and the generation of reactive oxygen species (ROS). Post-stroke administration of nimodipine led to a significant decrease in cerebral edema and maintained the integrity of the BBB. The protective effects observed were associated with a reduction in cell apoptosis as well as decreased expression of MMP-9 and ICAM-1. Furthermore, nimodipine was observed to reduce mitochondrial swelling and ROS levels while simultaneously restoring MMP and SDH activity. These results suggest that nimodipine may reduce cerebral edema and BBB breakdown caused by ischemia/reperfusion. This effect is potentially mediated through the reduction of MMP-9 and ICAM-1 levels and the enhancement of mitochondrial function.
Collapse
Affiliation(s)
- Javad Shadman
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hamdollah Panahpour
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | | | - Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saied Salimpour Azar
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
5
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
6
|
Ravi V, Osouli Meinagh S, Bavarsad Shahripour R. Reviewing migraine-associated pathophysiology and its impact on elevated stroke risk. Front Neurol 2024; 15:1435208. [PMID: 39148704 PMCID: PMC11324503 DOI: 10.3389/fneur.2024.1435208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Migraine affects up to 20 percent of the global population and ranks as the second leading cause of disability worldwide. In parallel, ischemic stroke stands as the second leading cause of mortality and the third leading cause of disability worldwide. This review aims to elucidate the intricate relationship between migraine and stroke, highlighting the role of genetic, vascular, and hormonal factors. Epidemiological evidence shows a positive association between migraine, particularly with aura, and ischemic stroke (IS), though the link to hemorrhagic stroke (HS) remains inconclusive. The shared pathophysiology between migraine and stroke includes cortical spreading depression, endothelial dysfunction, and genetic predispositions, such as mutations linked to conditions like CADASIL and MELAS. Genetic studies indicate that common loci may predispose individuals to both migraine and stroke, while biomarkers such as endothelial microparticles and inflammatory cytokines offer insights into the underlying mechanisms. Additionally, hormonal influences, particularly fluctuations in estrogen levels, significantly impact migraine pathogenesis and stroke risk, highlighting the need for tailored interventions for women. The presence of a patent foramen ovale (PFO) in migraineurs further complicates their risk profile, with device closure showing promise in reducing stroke occurrence. Furthermore, white matter lesions (WMLs) are frequently observed in migraine patients, suggesting potential cognitive and stroke risks. This review hopes to summarize the links between migraine and its associated conditions and ischemic stroke, recognizing the profound implications for clinical management strategies for both disorders. Understanding the complex relationship between migraine and ischemic stroke holds the key to navigating treatment options and preventive interventions to enhance overall patient outcomes.
Collapse
Affiliation(s)
- Vikas Ravi
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Sima Osouli Meinagh
- Department of Neurology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Owjfard M, Rahimian Z, Karimi F, Borhani-Haghighi A, Mallahzadeh A. A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke. Heliyon 2024; 10:e34121. [PMID: 39082038 PMCID: PMC11284444 DOI: 10.1016/j.heliyon.2024.e34121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Stroke is the second leading cause of death and the third leading cause of disability worldwide. Globally, 68 % of all strokes are ischemic, with 32 % being hemorrhagic. Ischemic stroke (IS) poses significant challenges globally, necessitating the development of effective therapeutic strategies. IS is among the deadliest illnesses. Major functions are played by neuroimmunity, inflammation, and oxidative stress in the multiple intricate pathways of IS. Secondary brain damage is specifically caused by the early pro-inflammatory activity that follows cerebral ischemia, which is brought on by excessive activation of local microglia and the infiltration of circulating monocytes and macrophages. Resveratrol, a natural polyphenol found in grapes and berries, has shown promise as a neuroprotective agent in IS. This review offers a comprehensive overview of resveratrol's neuroprotective role in IS, focusing on its mechanisms of action and therapeutic potential. Resveratrol exerts neuroprotective effects by activating nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) pathways. SIRT1 activation by resveratrol triggers the deacetylation and activation of downstream targets like peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and forkhead box protein O (FOXO), regulating mitochondrial biogenesis, antioxidant defense, and cellular stress response. Consequently, resveratrol promotes cellular survival and inhibits apoptosis in IS. Moreover, resveratrol activates the NRF2 pathway, a key mediator of the cellular antioxidant response. Activation of NRF2 through resveratrol enhances the expression of antioxidant enzymes, like heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), which neutralize reactive oxygen species and mitigate oxidative stress in the ischemic brain. Combined, the activation of SIRT1 and NRF2 pathways contributes to resveratrol's neuroprotective effects by reducing oxidative stress, inflammation, and apoptosis in IS. Preclinical studies demonstrate that resveratrol improves functional outcomes, reduces infarct size, regulates cerebral blood flow and preserves neuronal integrity. Gaining a comprehensive understanding of these mechanisms holds promise for the development of targeted therapeutic interventions aimed at promoting neuronal survival and facilitating functional recovery in IS patients and to aid future studies in this matter.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahimian
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Arashk Mallahzadeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Lee GA, Chang YW, Lai JH, Chang TH, Huang SW, Yang CH, Shen TA, Lin WL, Wu YC, Tseng LW, Tseng SH, Chen YC, Chiang YH, Chen CY. CCN1 Is a Therapeutic Target for Reperfused Ischemic Brain Injury. Transl Stroke Res 2024:10.1007/s12975-024-01279-0. [PMID: 39028413 DOI: 10.1007/s12975-024-01279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Ischemic stroke can lead to systemic inflammation, which can activate peripheral immune cells, causing neuroinflammation and brain injury. Meningeal lymphatics play a crucial role in transporting solutes and immune cells out of the brain and draining them into cervical lymph nodes (CLNs). However, the role of meningeal lymphatics in regulating systemic inflammation during the reperfusion stage after ischemia is not well understood. In this study, we demonstrated that brain infarct size, neuronal loss, and the effector function of inflammatory macrophage subsets were reduced after ischemia-reperfusion and disruption of meningeal lymphatics. Spatial memory function was improved in the late stage of ischemic stroke following meningeal lymphatic disruption. Brain-infiltrating immune cells, including neutrophils, monocytes, and T and natural killer cells, were reduced after cerebral ischemia-reperfusion and meningeal lymphatic disruption. Single-cell RNA sequencing analysis revealed that meningeal lymphatic disruption reprogrammed the transcriptome profile related to chemotaxis and leukocyte migration in CLN lymphatic endothelial cells (LECs), and it also decreased chemotactic CCN1 expression in floor LECs. Replenishment of CCN1 through intraventricular injection increased brain infarct size and neuronal loss, while restoring numbers of macrophages/microglia in the brains of meningeal lymphatic-disrupted mice after ischemic stroke. Blocking CCN1 in cerebrospinal fluid reduced brain infarcts and improves spatial memory function after ischemia-reperfusion injury. In summary, this study indicates that CCN1-mediated detrimental inflammation was alleviated after cerebral ischemia-reperfusion injury and meningeal lymphatic disruption. CCN1 represents a novel therapeutic target for inhibiting systemic inflammation in the brain-CLN axis after ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Gilbert Aaron Lee
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Child Development Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Wei Chang
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jing-Huei Lai
- Core Laboratory of Neuroscience, Office of R&D, Taipei Medical University, Taipei, Taiwan
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Shiu-Wen Huang
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ting-An Shen
- Bioinformatics Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Wan-Li Lin
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ying-Chieh Wu
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Li-Wen Tseng
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Sung-Hui Tseng
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Chieh Chen
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Core Laboratory of Neuroscience, Office of R&D, Taipei Medical University, Taipei, Taiwan
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yu Chen
- Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing Street, Taipei, 110, Taiwan.
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Bani-Sadr A, Mechtouff L, Hermier M, Eker OF, Rascle L, de Bourguignon C, Boutelier T, Martin A, Tommasino E, Ong E, Fontaine J, Cho TH, Derex L, Nighoghossian N, Berthezene Y. Cerebral collaterals are associated with pre-treatment brain-blood barrier permeability in acute ischemic stroke patients. Eur Radiol 2024:10.1007/s00330-024-10830-4. [PMID: 38861162 DOI: 10.1007/s00330-024-10830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024]
Abstract
INTRODUCTION To investigate the relationship between collaterals and blood-brain barrier (BBB) permeability on pre-treatment MRI in a cohort of acute ischemic stroke (AIS) patients treated with thrombectomy. METHODS We conducted a retrospective analysis of the HIBISCUS-STROKE cohort, a single-center observational study that enrolled patients treated with thrombectomy from 2016 to 2022. Dynamic-susceptibility MRIs were post-processed to generate K2 maps with arrival-time correction, which were co-registered with apparent diffusion coefficient (ADC) maps. The 90th percentile of K2 was extracted from the infarct core-defined by an ADC ≤ 620 × 10-6 mm2/s with manual adjustments-and expressed as a percentage change compared to the contralateral white matter. Collaterals were assessed using pre-thrombectomy digital subtraction arteriography with an ASITN/SIR score < 3 defining poor collaterals. RESULTS Out of 249 enrolled, 101 (40.6%) were included (median age: 72.0 years, 52.5% of males, median NIHSS score at admission: 15.0). Patients with poor collaterals (n = 44) had worse NIHSS scores (median: 16.0 vs 13.0, p = 0.04), larger infarct core volumes (median: 43.7 mL vs 9.5 mL, p < 0.0001), and higher increases in K2 (median: 346.3% vs 152.7%, p = 0.003). They were less likely to achieve successful recanalization (21/44 vs 51/57, p < 0.0001) and experienced more frequent hemorrhagic transformation (16/44 vs 9/57, p = 0.03). On multiple variable analysis, poor collaterals were associated with larger infarct cores (odds ratio (OR) = 1.12, 95% confidence interval (CI): [1.07, 1.17], p < 0.0001) and higher increases in K2 (OR = 6.63, 95% CI: [2.19, 20.08], p = 0.001). CONCLUSION Poor collaterals are associated with larger infarct cores and increased BBB permeability at admission MRI. CLINICAL RELEVANCE STATEMENT Poor collaterals are associated with a larger infarct core and increased BBB permeability at admission MRI of AIS patients treated with thrombectomy. These findings may have translational interests for extending thrombolytic treatment eligibility and developing neuroprotective strategies. KEY POINTS In AIS, collaterals and BBB disruption have been both linked to hemorrhagic transformation. Poor collaterals were associated with larger ischemic cores and increased BBB permeability on pre-treatment MRI. These findings could contribute to hemorrhagic transformation risk stratification, thereby refining clinical decision-making for reperfusion therapies.
Collapse
Affiliation(s)
- Alexandre Bani-Sadr
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, Bron, France.
- CREATIS Laboratory, CNRS UMR 5220, INSERM U1294, Claude Bernard Lyon I University, Villeurbanne, France.
| | - Laura Mechtouff
- Stroke Department, East Group Hospital, Hospices Civils de Lyon, Bron, France
- CarMeN Laboratory, INSERM U1060/INRA U1397, Claude Bernard Lyon I University, Bron, France
| | - Marc Hermier
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, Bron, France
| | - Omer F Eker
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, Bron, France
- CREATIS Laboratory, CNRS UMR 5220, INSERM U1294, Claude Bernard Lyon I University, Villeurbanne, France
| | - Lucie Rascle
- Stroke Department, East Group Hospital, Hospices Civils de Lyon, Bron, France
| | | | | | - Anna Martin
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, Bron, France
| | - Emanuele Tommasino
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, Bron, France
| | - Elodie Ong
- Stroke Department, East Group Hospital, Hospices Civils de Lyon, Bron, France
| | - Julia Fontaine
- Stroke Department, East Group Hospital, Hospices Civils de Lyon, Bron, France
| | - Tae-Hee Cho
- Stroke Department, East Group Hospital, Hospices Civils de Lyon, Bron, France
- CarMeN Laboratory, INSERM U1060/INRA U1397, Claude Bernard Lyon I University, Bron, France
| | - Laurent Derex
- Stroke Department, East Group Hospital, Hospices Civils de Lyon, Bron, France
| | - Norbert Nighoghossian
- Stroke Department, East Group Hospital, Hospices Civils de Lyon, Bron, France
- CarMeN Laboratory, INSERM U1060/INRA U1397, Claude Bernard Lyon I University, Bron, France
| | - Yves Berthezene
- Department of Neuroradiology, East Group Hospital, Hospices Civils de Lyon, Bron, France
- CREATIS Laboratory, CNRS UMR 5220, INSERM U1294, Claude Bernard Lyon I University, Villeurbanne, France
| |
Collapse
|
10
|
Tancreda G, Ravera S, Panfoli I. Exploring the Therapeutic Potential: Bioactive Molecules and Dietary Interventions in Multiple Sclerosis Management. Curr Issues Mol Biol 2024; 46:5595-5613. [PMID: 38921006 PMCID: PMC11202103 DOI: 10.3390/cimb46060335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system, the etiology of which is still unclear. Its hallmarks are inflammation and axonal damage. As a disease primarily impacting younger individuals, the social cost of MS is high. It has been proposed that environmental factors, smoking, and dietary habits acting on a genetic susceptibility play a role in MS. Recent studies indicate that diet can significantly influence the onset and progression of MS. This review delves into the impact of natural bioactive molecules on MS development and explores the dietary interventions that hold promise in managing the disease. Dietary patterns, including ketogenic and Mediterranean diets, are discussed. Theories about the potential mechanistic associations beneath the noted effects are also proposed. Several dietary components and patterns demonstrated the potential for a significant impact on MS. However, extensive prospective clinical trials are necessary to fully understand the role of natural bioactive molecules as disease modifiers in MS.
Collapse
Affiliation(s)
- Gabriele Tancreda
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Isabella Panfoli
- Department of Pharmacy (DIFAR), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
11
|
Lam CHI, Zuo B, Chan HHL, Leung TW, Abokyi S, Catral KPC, Tse DYY. Coenzyme Q10 eyedrops conjugated with vitamin E TPGS alleviate neurodegeneration and mitochondrial dysfunction in the diabetic mouse retina. Front Cell Neurosci 2024; 18:1404987. [PMID: 38863499 PMCID: PMC11165046 DOI: 10.3389/fncel.2024.1404987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness and vision impairment worldwide and represents one of the most common complications among diabetic patients. Current treatment modalities for DR, including laser photocoagulation, intravitreal injection of corticosteroid, and anti-vascular endothelial growth factor (VEGF) agents, target primarily vascular lesions. However, these approaches are invasive and have several limitations, such as potential loss of visual function, retinal scars and cataract formation, and increased risk of ocular hypertension, vitreous hemorrhage, retinal detachment, and intraocular inflammation. Recent studies have suggested mitochondrial dysfunction as a pivotal factor leading to both the vascular and neural damage in DR. Given that Coenzyme Q10 (CoQ10) is a proven mitochondrial stabilizer with antioxidative properties, this study investigated the effect of CoQ10 eyedrops [in conjunction with vitamin E d-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS)] on DR-induced neurodegeneration using a type 2 diabetes mouse model (C57BLKsJ-db/db mice). Utilizing a comprehensive electroretinography protocol, supported by immunohistochemistry, our results revealed that topical application of CoQ10 eyedrops conjugated with vitamin E TPGS produced a neuroprotective effect against diabetic-induced neurodegeneration by preserving the function and histology of various retinal neural cell types. Compared to the control group, mice treated with CoQ10 exhibited thicker outer and inner nuclear layers, higher densities of photoreceptor, cone cell, and rod-bipolar cell dendritic boutons, and reduced glial reactivity and microglial cell density. Additionally, the CoQ10 treatment significantly alleviated retinal levels of MMP-9 and enhanced mitochondrial function. These findings provide further insight into the role of mitochondrial dysfunction in the development of DR and suggest CoQ10 eyedrops, conjugated with vitamin E TPGS, as a potential complementary therapy for DR-related neuropathy.
Collapse
Affiliation(s)
- Christie Hang-I Lam
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research Limited, Shatin, Hong Kong SAR, China
| | - Bing Zuo
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Henry Ho-Lung Chan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research Limited, Shatin, Hong Kong SAR, China
| | - Tsz-Wing Leung
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | | | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research Limited, Shatin, Hong Kong SAR, China
- Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
12
|
Galindo AN, Frey Rubio DA, Hettiaratchi MH. Biomaterial strategies for regulating the neuroinflammatory response. MATERIALS ADVANCES 2024; 5:4025-4054. [PMID: 38774837 PMCID: PMC11103561 DOI: 10.1039/d3ma00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/07/2024] [Indexed: 05/24/2024]
Abstract
Injury and disease in the central nervous system (CNS) can result in a dysregulated inflammatory environment that inhibits the repair of functional tissue. Biomaterials present a promising approach to tackle this complex inhibitory environment and modulate the mechanisms involved in neuroinflammation to halt the progression of secondary injury and promote the repair of functional tissue. In this review, we will cover recent advances in biomaterial strategies, including nanoparticles, hydrogels, implantable scaffolds, and neural probe coatings, that have been used to modulate the innate immune response to injury and disease within the CNS. The stages of inflammation following CNS injury and the main inflammatory contributors involved in common neurodegenerative diseases will be discussed, as understanding the inflammatory response to injury and disease is critical for identifying therapeutic targets and designing effective biomaterial-based treatment strategies. Biomaterials and novel composites will then be discussed with an emphasis on strategies that deliver immunomodulatory agents or utilize cell-material interactions to modulate inflammation and promote functional tissue repair. We will explore the application of these biomaterial-based strategies in the context of nanoparticle- and hydrogel-mediated delivery of small molecule drugs and therapeutic proteins to inflamed nervous tissue, implantation of hydrogels and scaffolds to modulate immune cell behavior and guide axon elongation, and neural probe coatings to mitigate glial scarring and enhance signaling at the tissue-device interface. Finally, we will present a future outlook on the growing role of biomaterial-based strategies for immunomodulation in regenerative medicine and neuroengineering applications in the CNS.
Collapse
Affiliation(s)
- Alycia N Galindo
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - David A Frey Rubio
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
| | - Marian H Hettiaratchi
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene OR USA
- Department of Chemistry and Biochemistry, University of Oregon Eugene OR USA
| |
Collapse
|
13
|
Huang JA, Wu YH, Chen PL, Weng YC, Chiang IC, Huang YT, Chou WH. MMP-9 upregulation may predict hemorrhagic transformation after endovascular thrombectomy. Front Neurol 2024; 15:1400270. [PMID: 38798706 PMCID: PMC11119322 DOI: 10.3389/fneur.2024.1400270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Background Hemorrhagic transformation (HT) is a serious complication after endovascular thrombectomy (EVT) for patients with acute ischemic stroke (AIS). We analyzed the plasma levels of MMP-9 before and after EVT and assessed the temporal changes of MMP-9 that may be associated with, and therefore predict, HT after EVT. Methods We enrolled 30 AIS patients who received EVT, and 16 (53.3%) developed HT. The levels of MMP-9 in plasma collected from the arteries of AIS patients before and immediately after EVT were measured using ELISA. The percent change in MMP-9 after EVT (after/before) was calculated and compared between patients with and without HT. Results The median age of the AIS patients was 70 years, and 13 patients (43.3%) were men. The median National Institutes of Health Stroke Scale (NIHSS) scores of patients with HT were 18 on admission and 18 after EVT. The median NIHSS scores of patients without HT were 17 on admission and 11 after EVT. Patients with HT demonstrated significantly greater percentage increases in arterial MMP-9 levels after EVT. Conclusion Patients with AIS who developed HT had significantly increased arterial MMP-9 levels after EVT, suggesting that the upregulation of MMP-9 following EVT could serve as a predictive biomarker for HT.
Collapse
Affiliation(s)
- Jin-An Huang
- Department of Neurology, Neurological Institute Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Health Business Administration, Hungkuang University, Taichung, Taiwan
| | - Yu-Hsuan Wu
- Department of Neurology, Neurological Institute Taichung Veterans General Hospital, Taichung, Taiwan
| | - Po-Lin Chen
- Department of Neurology, Neurological Institute Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chinn Weng
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - I-Chen Chiang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Ting Huang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Hai Chou
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
14
|
Veeravalli KK. Implications of MMP-12 in the pathophysiology of ischaemic stroke. Stroke Vasc Neurol 2024; 9:97-107. [PMID: 37336584 PMCID: PMC11103161 DOI: 10.1136/svn-2023-002363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
This article focuses on the emerging role of matrix metalloproteinase-12 (MMP-12) in ischaemic stroke (IS). MMP-12 expression in the brain increases dramatically in animal models of IS, and its suppression reduces brain damage and promotes neurological, sensorimotor and cognitive functional outcomes. Thus, MMP-12 could represent a potential target for the management of IS. This article provides an overview of MMP-12 upregulation in the brain following IS, its deleterious role in the post-stroke pathogenesis (blood-brain barrier disruption, inflammation, apoptosis and demyelination), possible molecular interactions and mechanistic insights, its involvement in post-ischaemic functional deficits and recovery as well as the limitations, perspectives, challenges and future directions for further research. Prior to testing any MMP-12-targeted therapy in patients with acute IS, additional research is needed to establish the effectiveness of MMP-12 suppression against IS in older animals and in animals with comorbidities. This article also examines the clinical implications of suppressing MMP-12 alone or in combination with MMP-9 for extending the currently limited tissue plasminogen activator therapy time window. Targeting of MMP-12 is expected to have a profound influence on the therapeutic management of IS in the future.
Collapse
Affiliation(s)
- Krishna Kumar Veeravalli
- Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| |
Collapse
|
15
|
Nowaczewska-Kuchta A, Ksiazek-Winiarek D, Szpakowski P, Glabinski A. The Role of Neutrophils in Multiple Sclerosis and Ischemic Stroke. Brain Sci 2024; 14:423. [PMID: 38790402 PMCID: PMC11118671 DOI: 10.3390/brainsci14050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammation plays an important role in numerous central nervous system (CNS) disorders. Its role is ambiguous-it can induce detrimental effects, as well as repair and recovery. In response to injury or infection, resident CNS cells secrete numerous factors that alter blood-brain barrier (BBB) function and recruit immune cells into the brain, like neutrophils. Their role in the pathophysiology of CNS diseases, like multiple sclerosis (MS) and stroke, is highly recognized. Neutrophils alter BBB permeability and attract other immune cells into the CNS. Previously, neutrophils were considered a homogenous population. Nowadays, it is known that various subtypes of these cells exist, which reveal proinflammatory or immunosuppressive functions. The primary goal of this review was to discuss the current knowledge regarding the important role of neutrophils in MS and stroke development and progression. As the pathogenesis of these two disorders is completely different, it gives the opportunity to get insight into diverse mechanisms of neutrophil involvement in brain pathology. Our understanding of the role of neutrophils in CNS diseases is still evolving as new aspects of their activity are being unraveled. Neutrophil plasticity adds another level to their functional complexity and their importance for CNS pathophysiology.
Collapse
Affiliation(s)
| | | | | | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland; (A.N.-K.); (D.K.-W.); (P.S.)
| |
Collapse
|
16
|
Owjfard M, Rahmani N, Mallahzadeh A, Bayat M, Borhani-Haghighi A, Karimi F, Namavar MR. Mechanism of action and neuroprotective role of nicorandil in ischemic stroke. Heliyon 2024; 10:e26640. [PMID: 38434007 PMCID: PMC10906150 DOI: 10.1016/j.heliyon.2024.e26640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Nicorandil is a dual mechanism anti-anginal agent that acts as a nitric oxide (NO) donor and a potassium (K+) channel opener. Recent studies have evaluated the effect of nicorandil on ischemic stroke. Neurons have a low tolerance to hypoxia and therefore the brain tissue is significantly vulnerable to ischemia. Current approved treatments for ischemic stroke are tissue plasminogen activators and clot retrieval methods. The narrow therapeutic time window and lack of efficacy in restoring the dying neurons urge researchers to develop an alternative approach. In the terminal stages of anoxia, K+ channels induce hyperpolarization in various types of neuronal cells, leading to decreased neuronal activity and the preservation of the brain's energy. Nicorandil can open these K+ channels and sustain the hyperpolarization phase, which may have a neuroprotective effect during hypoxia. Additionally, we review how nicorandil can improve overall stroke outcomes through its anti-inflammatory, anti-oxidative, and edema-reducing effects. One of the major components evaluated in stroke patients is blood pressure. Studies have demonstrated that the effect of nicorandil on blood pressure is related to both its K+ channel opening and NO donating mechanisms. Since both hypertension and hypotension need correction before stroke intervention, it's crucial to consider the role of nicorandil and its impact on blood pressure. Previously published studies indicate that the right dosage of nicorandil can improve cerebral blood flow without significant changes in hemodynamic profiles. In this review, we discuss how nicorandil may contribute to better stroke outcomes based on previously published literature and laboratory findings.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Rahmani
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arashk Mallahzadeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Mohammad Reza Namavar
- Histomorphometry & Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Li Y, Chen J, Quan X, Chen Y, Han Y, Chen J, Yang L, Xu Y, Shen X, Wang R, Zhao Y. Extracellular Vesicles Maintain Blood-Brain Barrier Integrity by the Suppression of Caveolin-1/CD147/VEGFR2/MMP Pathway After Ischemic Stroke. Int J Nanomedicine 2024; 19:1451-1467. [PMID: 38371456 PMCID: PMC10874237 DOI: 10.2147/ijn.s444009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/08/2024] [Indexed: 02/20/2024] Open
Abstract
Background Ischemic stroke (IS) causes tragic death and disability worldwide. However, effective therapeutic interventions are finite. After IS, blood-brain barrier (BBB) integrity is disrupted, resulting in deteriorating neurological function. As a novel therapeutic, extracellular vesicles (EVs) have shown ideal restorative effects on BBB integrity post-stroke; however, the definite mechanisms remain ambiguous. In the present study, we investigated the curative effects and the mechanisms of EVs derived from bone marrow mesenchymal stem cells and brain endothelial cells (BMSC-EVs and BEC-EVs) on BBB integrity after acute IS. Methods EVs were isolated from BMSCs and BECs, and we investigated the therapeutic effect in vitro oxygen-glucose deprivation (OGD) insulted BECs model and in vivo rat middle cerebral artery occlusion (MCAo) model. The cell monolayer leakage, tight junction expression, and metalloproteinase (MMP) activity were evaluated, and rat brain infarct volume and neurological function were also analyzed. Results The administration of two kinds of EVs not only enhanced ZO-1 and Occludin expressions but also reduced the permeability and the activity of MMP-2/9 in OGD-insulted BECs. The amelioration of the cerebral infarction, BBB leakage, neurological function deficits, and the increasing ZO-1 and Occludin levels, as well as MMP activity inhibition was observed in MCAo rats. Additionally, the increased levels of Caveolin-1, CD147, vascular endothelial growth factor receptor 2 (VEGFR2), and vascular endothelial growth factor A (VEGFA) in isolated brain microvessels were downregulated after EVs treatment. In vitro, the employment of Caveolin-1 and CD147 siRNA partly suppressed the expressions of VEGFR2, VEGFA and MMP-2/9 activity and reduced the leakage of OGD insulted BECs and enhanced ZO-1 and Occludin expressions. Conclusion Our study firstly demonstrates that BEC and BMSC-EVs administrations maintain BBB integrity via the suppression of Caveolin-1/CD147/VEGFR2/MMP pathway after IS, and the efficacy of BMSC-EVs is superior to that of BEC-EVs.
Collapse
Affiliation(s)
- Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Jiali Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Xingping Quan
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Ying Chen
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Jinfen Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Li Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, People’s Republic of China
| | - Xu Shen
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Ruibing Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People’s Republic of China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau SAR, People’s Republic of China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People’s Republic of China
| |
Collapse
|
18
|
He Q, Wang Y, Fang C, Feng Z, Yin M, Huang J, Ma Y, Mo Z. Advancing stroke therapy: A deep dive into early phase of ischemic stroke and recanalization. CNS Neurosci Ther 2024; 30:e14634. [PMID: 38379112 PMCID: PMC10879038 DOI: 10.1111/cns.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Ischemic stroke, accounting for the majority of stroke events, significantly contributes to global morbidity and mortality. Vascular recanalization therapies, namely intravenous thrombolysis and mechanical thrombectomy, have emerged as critical interventions, yet their success hinges on timely application and patient-specific factors. This review focuses on the early phase pathophysiological mechanisms of ischemic stroke and the nuances of recanalization. It highlights the dual role of neutrophils in tissue damage and repair, and the critical involvement of the blood-brain barrier (BBB) in stroke outcomes. Special emphasis is placed on ischemia-reperfusion injury, characterized by oxidative stress, inflammation, and endothelial dysfunction, which paradoxically exacerbates cerebral damage post-revascularization. The review also explores the potential of targeting molecular pathways involved in BBB integrity and inflammation to enhance the efficacy of recanalization therapies. By synthesizing current research, this paper aims to provide insights into optimizing treatment protocols and developing adjuvant neuroprotective strategies, thereby advancing stroke therapy and improving patient outcomes.
Collapse
Affiliation(s)
- Qianyan He
- Department of Neurology, Stroke CenterThe First Hospital of Jilin UniversityJilinChina
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Yueqing Wang
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Cheng Fang
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Ziying Feng
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Meifang Yin
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Juyang Huang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityShenzhenGuangdongChina
| | - Yinzhong Ma
- Institute of Biomedicine and BiotechnologyShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenGuangdongChina
| | - Zhizhun Mo
- Emergency Department, Shenzhen Traditional Chinese Medicine HospitalThe Fourth Clinical Medical College of Guangzhou University of Chinese MedicineShenzhenGuangdongChina
| |
Collapse
|
19
|
Tian Y, Tao K, Li S, Chen X, Wang R, Zhang M, Zhai Z. Identification of m6A-Related Biomarkers in Systemic Lupus Erythematosus: A Bioinformation-Based Analysis. J Inflamm Res 2024; 17:507-526. [PMID: 38298525 PMCID: PMC10829513 DOI: 10.2147/jir.s439779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Background Systemic Lupus Erythematosus (SLE), a prototypical autoimmune disorder, presents a challenge due to the absence of reliable biomarkers for discerning organ-specific damage within SLE. A growing body of evidence underscores the pivotal involvement of N6-methyladenosine (m6A) in the etiology of autoimmune conditions. Methods The datasets, which primarily encompassed the expression profiles of m6A regulatory genes, were retrieved from the Gene Expression Omnibus (GEO) repository. The optimal model, selected from either Random Forest (RF) or Support Vector Machine (SVM), was employed for the development of a predictive nomogram model. To identify pivotal genes associated with SLE, a comprehensive screening process was conducted utilizing LASSO, SVM-RFE, and RF techniques. Within the realm of SLE susceptibility, Weighted Gene Co-expression Network Analysis (WGCNA) was harnessed to delineate relevant modules and hub genes. Additionally, MeRIP-qPCR assays were performed to elucidate key genes correlated with m6A targets. Furthermore, a Mendelian randomization study was conducted based on genome-wide association studies to assess the causative influence of MMP9 on ischemic stroke (IS), which is not only a severe cerebrovascular event but also a common complication of SLE. Results Twelve m6A regulatory genes was identified, demonstrating statistical significance (p < 0.05) and utilized for constructing a nomogram model using the RF algorithm. EPSTI1, USP18, HP, and MMP9, as the hub genes, were identified. MMP9 uniquely correlates with m6A modification and was causally linked to an increased risk of IS, as indicated by our inverse variance weighting analysis showing an odds ratio of 1.0134 (95% CI=1.0004-1.0266, p = 0.0440). Conclusion Our study identified twelve m6A regulators, shedding light on the molecular mechanisms underlying SLE risk genes. Importantly, our analysis established a causal relationship between MMP9, a key m6A-related gene, and ischemic stroke, a common complication of SLE, thereby providing critical insights for presymptomatic diagnostic approaches.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Kang Tao
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Shifei Li
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xiaoqiang Chen
- Department of Dermatology, General Hospital of Central Theater Command, Wuhan, People’s Republic of China
| | - Rupeng Wang
- Department of Dermatology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People’s Republic of China
| | - Mingwang Zhang
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Zhifang Zhai
- Department of Dermatology, The First Affiliated Hospital, Army Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
20
|
Xia Y, Wehrli J, Abivardi A, Hostiuc M, Kleim B, Bach DR. Attenuating human fear memory retention with minocycline: a randomized placebo-controlled trial. Transl Psychiatry 2024; 14:28. [PMID: 38233395 PMCID: PMC10794420 DOI: 10.1038/s41398-024-02732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
Pavlovian fear conditioning is widely used as a pre-clinical model to investigate methods for prevention and treatment of anxiety and stress-related disorders. In this model, fear memory consolidation is thought to require synaptic remodeling, which is induced by signaling cascades involving matrix metalloproteinase 9 (MMP-9). Here we investigated the effect of the tetracycline antibiotic minocycline, an inhibitor of MMP-9, on fear memory retention. We conducted a pre-registered, randomized, double-blind, placebo-controlled trial in N = 105 healthy humans (N = 70 female), using a configural fear conditioning paradigm. We administered a single dose of minocycline before configural fear memory acquisition and assessed fear memory retention seven days later in a recall test. To index memory retention, we pre-registered fear-potentially startle (FPS) as our primary outcome, and pupil dilation as the secondary outcome. As control indices of memory acquisition, we analyzed skin conductance responses (SCR) and pupil dilation. We observed attenuated retention of configural fear memory in individuals treated with minocycline compared to placebo, as measured by our primary outcome. In contrast, minocycline did not affect fear memory acquisition or declarative contingency memory. Our findings provide in-vivo evidence for the inhibition of fear memory consolidation by minocycline. This could motivate further research into primary prevention, and given the short uptake time of minocycline, potentially also secondary prevention of PTSD after trauma.
Collapse
Affiliation(s)
- Yanfang Xia
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Transdisciplinary Research Area Life and Health, Hertz Chair for Artificial Intelligence and Neuroscience, University of Bonn, Bonn, Germany.
| | - Jelena Wehrli
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aslan Abivardi
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Madalina Hostiuc
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Birgit Kleim
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Transdisciplinary Research Area Life and Health, Hertz Chair for Artificial Intelligence and Neuroscience, University of Bonn, Bonn, Germany.
- Wellcome Centre for Human Neuroimaging & Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK.
| |
Collapse
|
21
|
Didwischus N, Guduru A, Badylak SF, Modo M. In vitro dose-dependent effects of matrix metalloproteinases on ECM hydrogel biodegradation. Acta Biomater 2024; 174:104-115. [PMID: 38081445 PMCID: PMC10775082 DOI: 10.1016/j.actbio.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023]
Abstract
Matrix metalloproteinases (MMPs) cause proteolysis of extracellular matrix (ECM) in tissues affected by stroke. However, little is known about how MMPs degrade ECM hydrogels implanted into stroke cavities to regenerate lost tissue. To establish a structure-function relationship between different doses of individual MMPs and isolate their effects in a controlled setting, an in vitro degradation assay quantified retained urinary bladder matrix (UBM) hydrogel mass as a measure of degradation across time. A rheological characterization indicated that lower ECM concentrations (<4 mg/mL) did not cure completely at 37 °C and had a high fraction of mobile proteins that were easily washed-out. Hydrolysis by dH2O caused a steady 2 % daily decrease in hydrogel mass over 14 days. An acceleration of degradation to 6 % occurred with phosphate buffered saline and artificial cerebrospinal fluid. MMPs induced a dose-dependent increase and within 14 days almost completely (>95 %) degraded the hydrogel. MMP-9 exerted the most significant biodegradation, compared to MMP-3 and -2. To model the in vivo exposure of hydrogel to MMPs, mixtures of MMP-2, -3, and -9, present in the cavity at 14-, 28-, or 90-days post-stroke, revealed that 14- and 28-days mixtures achieved an equivalent biodegradation, but a 90-days mixture exhibited a slower degradation. These results revealed that hydrolysis, in addition to proteolysis, exerts a major influence on the degradation of hydrogels. Understanding the mechanisms of ECM hydrogel biodegradation is essential to determine the therapeutic window for bioscaffold implantation after a stroke, and they are also key to determine optimal degradation kinetics to support tissue regeneration. STATEMENT OF SIGNIFICANCE: After implantation into a stroke cavity, extracellular matrix (ECM) hydrogel promotes tissue regeneration through the degradation of the bioscaffold. However, the process of degradation of an ECM hydrogel remains poorly understood. We here demonstrated in vitro under highly controlled conditions that hydrogel degradation is very dependent on its protein concentration. Lower protein concentration hydrogels were weaker in rheological measurements and particularly susceptible to hydrolysis. The proteolytic degradation of tissue ECM after a stroke is caused by matrix metalloproteinases (MMPs). A dose-dependent MMP-driven biodegradation of ECM hydrogel exceeded the effects of hydrolysis. These results highlight the importance of in vitro testing of putative causes of degradation to gain a better understanding of how these factors affect in vivo biodegradation.
Collapse
Affiliation(s)
- Nadine Didwischus
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arun Guduru
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michel Modo
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Sunny A, James RR, Menon SR, Rayaroth S, Daniel A, Thompson NA, Tharakan B. Matrix Metalloproteinase-9 inhibitors as therapeutic drugs for traumatic brain injury. Neurochem Int 2024; 172:105642. [PMID: 38008261 DOI: 10.1016/j.neuint.2023.105642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality among young adults and the elderly. In the United States, TBI is responsible for around 30 percent of all injuries brought on by injuries in general. Vasogenic cerebral edema due to blood-brain barrier (BBB) dysfunction and the associated elevation of intracranial pressure (ICP) are some of the major causes of secondary injuries following traumatic brain injury. Matrix metalloproteinase-9 (MMP-9) is a therapeutic target for being an enzyme that degrades the proteins that make up a part of the microvascular basal lamina as well as inter-endothelial tight junctions of the blood-brain barrier. MMP-9-mediated BBB dysfunctions and the compromise of the BBB is a major pathway that leads the development of vasogenic cerebral edema, elevation of ICP, poor cerebral perfusion and brain herniation following traumatic brain injury. That makes MMP-9 an effective therapeutic target and endogenous or exogenous MMP-9 inhibitors as therapeutic drugs for preventing secondary brain damage after traumatic brain injury. Although our understanding of the mechanisms that underlie the primary and secondary stages of damage following a TBI has significantly improved in recent years, such information has not yet resulted in the successful development of novel pharmacological treatment options for traumatic brain injury. Recent pre-clinical and/or clinical studies have demonstrated that there are several compounds with specific or non-specific MMP-9 inhibitory properties either directly binding and inhibiting MMP-9 or by indirectly inhibiting MMP-9, with potential as therapeutic agents for traumatic brain injury. This article reviews the efficacy of several such medications and potential agents that include endogenous and exogeneous compounds that are at various levels of research and development. MMP-9-based therapeutic drug development has enormous potential in the pharmacological treatment of cerebral edema and/or neuronal injury resulting from traumatic brain injury.
Collapse
Affiliation(s)
- Angel Sunny
- Icahn School of Medicine at Mount Sinai, Elmhurst, NY, USA
| | | | | | | | - Abhijith Daniel
- Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, India
| | - Namita Ann Thompson
- Pushpagiri Institute of Medical Sciences and Research Centre, Thiruvalla, India
| | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
23
|
Salama AM, Elmahy RA, Ibrahim HA, Amer AIM, Eltantawy AF, Elgendy DI. Effects of metformin on parasitological, pathological changes in the brain and liver and immunological aspects during visceral toxocariasis in mice. Parasitol Res 2023; 122:3213-3231. [PMID: 37874393 PMCID: PMC10667394 DOI: 10.1007/s00436-023-08011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
There are currently insufficient anthelmintic medications available for the treatment of toxocariasis. For instance, Albendazole (ABZ) is the preferred medication, but its effectiveness against tissue-dwelling parasites is limited. In addition, Metformin (MTF) is a widely used oral antidiabetic medication that is considered to be safe for treatment. This study aimed to investigate any potential effects of MTF, alone or in combination with ABZ, on mice infections caused by Toxocara canis (T. canis). The efficacy of the treatment was assessed in the acute and chronic phases of the infection by larval recovery and histopathological, immunohistochemical, and biochemical studies. The results showed that combined therapy significantly reduced larval counts in the liver, brain, and muscles and ameliorated hepatic and brain pathology. It reduced oxidative stress and TGF-β mRNA expression and increased FGF21 levels in the liver. It decreased TNF-α levels and MMP-9 expression in the brain. In addition, it increased serum levels of IL-12 and IFN-γ and decreased serum levels of IL-4 and IL-10. In the acute and chronic phases of the infection, the combined treatment was more effective than ABZ alone. In conclusion, this study highlights the potential role of MTF as an adjuvant in the treatment of experimental T. canis infection when administered with ABZ.
Collapse
Affiliation(s)
- Amina M Salama
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rasha A Elmahy
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Hoda A Ibrahim
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Asmaa Fawzy Eltantawy
- Medical Pharmacology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina I Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
24
|
Sun X, Liu Z, Zhou L, Ma R, Zhang X, Wang T, Fu F, Wang Y. Escin avoids hemorrhagic transformation in ischemic stroke by protecting BBB through the AMPK/Cav-1/MMP-9 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155071. [PMID: 37716034 DOI: 10.1016/j.phymed.2023.155071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Hemorrhagic transformation (HT) seriously affects the clinical application of recombinant tissue plasminogen activator (rt-PA). The main strategy for combating HT is to keep the blood-brain barrier (BBB) stable. Escin is the active ingredient of Aesculus hippocastanum and a natural mixture of triterpene saponins, and may play a part in mitigation of HT. PURPOSE This study sought to investigate the effect of Escin in improving rt-PA-induced HT, explore possible mechanisms, and provide new ideas for the treatment of clinical HT. STUDY DESIGN AND METHODS In in vivo experiments, transient middle cerebral artery occlusion (tMCAO) was undertaken in 6-week-old and 12-month-old mice, and rt-PA was administered to induce HT injury. The inhibitory effect of Escin on HT and its protective effect on neurobehavior, the BBB, and cerebrovascular endothelial cells was determined. In in vitro experiments, bEnd.3 cells were injured by oxygen-glucose deprivation/reperfusion (OGD/R) and rt-PA. The protective effect of Escin was measured by the CCK8 assay, release of lactate dehydrogenase (LDH), and expression of tight junction (TJ) proteins. In mechanistic studies, the effect of Escin on the adenosine monophosphate-activated kinase / caveolin-1 / matrix metalloprotease-9 (AMPK/Cav-1/MMP-9) pathway was investigated by employing AMPK inhibitor and Cav-1 siRNA. RESULTS In mice suffering from ischemia, rt-PA caused HT as well as damage to the BBB and cerebrovascular endothelial cells. Escin reduced the infarct volume, cerebral hemorrhage, improved neurobehavioral deficits, and maintained BBB integrity in rt-PA-treated tMCAO mice while attenuating bEnd.3 cells damage caused by rt-PA and OGD/R injury. Under physiological and pathological conditions, Escin increased the expression of p-AMPK and Cav-1, leading to decreased expression of MMP-9, which further attenuated damage to cerebrovascular endothelial cells, and these effects were verified with AMPK inhibitor and Cav-1 siRNA. CONCLUSION We revealed important details of how Escin protects cerebrovascular endothelial cells from HT, these effects were associated with the AMPK/Cav-1/MMP-9 pathway. This study provides experimental foundation for the development of new drugs to mitigate rt-PA-induced HT and the discovery of new clinical application for Escin.
Collapse
Affiliation(s)
- Xiaohui Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Zhaofeng Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Lin Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Runchen Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Xiaofan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China
| | - Yunjie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Qingquan Road 30, Yantai, Shandong 264005, PR China.
| |
Collapse
|
25
|
Rahman Z, Ghuge S, Dandekar MP. Partial blood replacement ameliorates middle cerebral artery occlusion generated neurological aberrations by intervening TLR4 and NLRP3 cascades in rats. Metab Brain Dis 2023; 38:2339-2354. [PMID: 37402080 DOI: 10.1007/s11011-023-01259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Acute ischemic stroke is a catastrophic medical condition that causes severe disability and mortality if the sufferer escapes treatment within a stipulated timeframe. While timely intervention with clot-bursting agents like tissue-plasminogen activators abrogates some post-stroke neurologic deficits, no neuroprotective therapy is yet promisingly addresses the post-recanalization neuroinflammation in post-stroke survivors. Herein, we investigated the effect of partial blood replacement therapy (BRT), obtained from healthy and treadmill-trained donor rats, on neurological deficits, and peripheral and central inflammatory cascades using the ischemia-reperfusion animal paradigm. The cerebral ischemia-reperfusion was induced in rats by occlusion of the middle cerebral artery (MCAO) for 90 min, followed by reperfusion. Rats underwent MCAO surgery displayed remarkable sensorimotor and motor deficits in rotarod, foot fault, adhesive removal, and paw whisker tests till 5 days post-surgery. These behavior abnormalities were ameliorated in the BRT-recipient MCAO rats. BRT also reduced the infarct volume and neuronal death in the ipsilateral hemisphere revealed by TTC and cresyl violet staining compared to the MCAO group. Rats received BRT infusion exhibited the reduced expression of glial fibrillary acidic protein, ionized calcium-binding adaptor molecule-1 (Iba-1), and MyD88 on day 5 post-MCAO in immunohistochemistry and immunofluorescent assays. Moreover, elevated levels of toll-like receptor 4 (TLR4) and mRNA expression of IL-1β, TNF-α, matrix metalloproteinase-9 and NLRP3, and decreased levels of zonula occludens-1 in MCAO rats, were reversed following BRT. These findings suggest that the partial BRT may rescind MCAO-induced neurological dysfunctions and cerebral injury by intervening in the TLR4 and NLRP3 pathways in rats.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Shubham Ghuge
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
26
|
Chu MC, Mao WC, Wu HF, Chang YC, Lu TI, Lee CW, Chung YJ, Hsieh TH, Chang HS, Chen YF, Lin CH, Tang CW, Lin HC. Transient plasticity response is regulated by histone deacetylase inhibitor in oxygen-glucose deprivation condition. Pharmacol Rep 2023; 75:1200-1210. [PMID: 37695500 DOI: 10.1007/s43440-023-00525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND The pathological form of synaptic plasticity, ischemic long-term potentiation (iLTP), induced by oxygen and glucose deprivation (OGD), is implicated in the acute phase of stroke with the potentiation of N-methyl-D-aspartate receptor (NMDAR). While there has been widespread attention on the excitatory system, a recent study reported that γ-aminobutyric acid (GABA)ergic system is also involved in iLTP. Valproic acid (VPA), a histone deacetylase inhibitor, protects against ischemic damage. However, whether VPA regulates early phase plasticity in ischemic stroke remains unknown. The present study aims to investigate the potential role and mechanism of VPA in ischemic stroke. METHODS A brief exposure of OGD on the hippocampal slices and the induction of photothrombotic ischemia (PTI) were used as ex vivo and in vivo models of ischemic stroke, respectively. RESULTS Using extracellular recordings, iLTP was induced in the hippocampal Schaffer collateral pathway following OGD exposure. VPA treatment abolished hippocampal iLTP via GABAA receptor enhancement and extracellular signal-regulated kinase (ERK) phosphorylation. Administration of VPA reduced brain infarct volume and motor dysfunction in mice with PTI. Moreover, VPA protected against ischemic injury by upregulating the GABAergic system and ERK phosphorylation, as well as by reducing of matrix metalloproteinase in a PTI-induced ischemic stroke model. CONCLUSIONS Together, this study revealed the protection of VPA in ex vivo OGD-induced pathological form of neuroplasticity and in vivo PTI-induced brain damage and motor dysfunction through rescuing GABAergic deficiency and the pathological hallmarks of ischemia.
Collapse
Affiliation(s)
- Ming-Chia Chu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Chang Mao
- Department of Psychiatry, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Han-Fang Wu
- Department of Optometry, MacKay Medical College, New Taipei City, Taiwan
| | - Yun-Chi Chang
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-I Lu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Wei Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yueh-Jung Chung
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaoshiung Medical University, Kaoshiung, Taiwan
| | - Yih-Fung Chen
- School of Pharmacy, College of Pharmacy, Kaoshiung Medical University, Kaoshiung, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaoshiung Medical University, Kaoshiung, Taiwan
| | - Chia-Hsien Lin
- Department of Health Industry Management, Kainan University, Taoyuan, Taiwan
| | - Chih-Wei Tang
- Department of Neurology, Far Eastern Memorial Hospital, New Taipei City, Taiwan.
| | - Hui-Ching Lin
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, Taiwan.
| |
Collapse
|
27
|
Yan J, Huang L, Feng J, Yang X. The Recent Applications of PLGA-Based Nanostructures for Ischemic Stroke. Pharmaceutics 2023; 15:2322. [PMID: 37765291 PMCID: PMC10535132 DOI: 10.3390/pharmaceutics15092322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
With the accelerated development of nanotechnology in recent years, nanomaterials have become increasingly prevalent in the medical field. The poly (lactic acid-glycolic acid) copolymer (PLGA) is one of the most commonly used biodegradable polymers. It is biocompatible and can be fabricated into various nanostructures, depending on requirements. Ischemic stroke is a common, disabling, and fatal illness that burdens society. There is a need for further improvement in the diagnosis and treatment of this disease. PLGA-based nanostructures can facilitate therapeutic compounds' passage through the physicochemical barrier. They further provide both sustained and controlled release of therapeutic compounds when loaded with drugs for the treatment of ischemic stroke. The clinical significance and potential of PLGA-based nanostructures can also be seen in their applications in cell transplantation and imaging diagnostics of ischemic stroke. This paper summarizes the synthesis and properties of PLGA and reviews in detail the recent applications of PLGA-based nanostructures for drug delivery, disease therapy, cell transplantation, and the imaging diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurology, Fushun Central Hospital, Fushun 113000, China;
| | - Lei Huang
- Department of Cardiac Function, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xue Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
28
|
Gomes PR, Rocha MD, Lira JA, Coelho FA, Alves EH, Nascimento HM, Oliveira SM, Carmo RR, Araújo HT, Silva FR, Vasconcelos DF. Salivary biomarkers present in patients with periodontitis without clinical distinction: findings from a meta-analysis. Med Oral Patol Oral Cir Bucal 2023; 28:e457-e466. [PMID: 37026605 PMCID: PMC10499340 DOI: 10.4317/medoral.25876] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND A new classification for periodontitis has been adopted in clinical practice. However, there are still discussions regarding this new classification and difficulties in its adoption, both by professionals and researchers. Thus, this study aimed to evaluate which salivary biomarkers are present in periodontitis, following the new classification of periodontal diseases through meta-analysis. MATERIAL AND METHODS A literature search was carried out in the scientific databases: PubMed, Scielo and Google scholar to select studies. The selection of studies was followed by two authors upon reading of the title, abstract and full text. The necessary data were collected and statistical analyses were performed using the Review Manager statistical software version 5.4, with calculation of Mean Difference, heterogeneity (I²) and funnel plot with P < 0.05. RESULTS After following the selection criteria, 9 articles were selected for comparison. The studies address the presence of biomarkers in the saliva of patients with periodontitis and their possible use in the monitoring and diagnosis of the disease. For the meta-analytic comparison, a sample size of 1,983 individuals was used. Statistical analyses showed that nitric oxide, IL-6, IL-1B and osteoprotegerin are substances that are significantly present in patients with periodontitis (P < 0.05). CONCLUSIONS IL-6, nitric oxide, IL-1B, TNF-α and osteoprotegerin are among the most present biomarkers in patients with periodontitis, and may be used in the future as a monitoring of periodontal disease. The present study also revealed that there was no statistically significant difference in the concentration of these biomarkers for clinical distinction from periodontitis.
Collapse
Affiliation(s)
- P-R Gomes
- Laboratory of Histological Analysis and Preparation (LAPHis) Federal University of Parnaiba Delta (UFDPar) Av. São Sebastião, nº 2819 - Nossa Sra. de Fátima Parnaíba - Piauí, CEP: 64202-020, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bani-Sadr A, Mechtouff L, De Bourguignon C, Mauffrey A, Boutelier T, Cho TH, Cappucci M, Ameli R, Hermier M, Derex L, Nighoghossian N, Berthezene Y. Blood-Brain Barrier Permeability and Kinetics of Inflammatory Markers in Acute Stroke Patients Treated With Thrombectomy. Neurology 2023; 101:e502-e511. [PMID: 37290975 PMCID: PMC10401692 DOI: 10.1212/wnl.0000000000207460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/13/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to investigate the relationship between baseline blood-brain barrier (BBB) permeability and the kinetics of circulating inflammatory markers in a cohort of acute ischemic stroke (AIS) patients treated with mechanical thrombectomy. METHODS The CoHort of Patients to Identify Biological and Imaging markerS of CardiovascUlar Outcomes in Stroke includes AIS patients treated with mechanical thrombectomy after admission MRI and undergoing a sequential assessment of circulating inflammatory markers. Baseline dynamic susceptibility perfusion MRI was postprocessed with arrival time correction to provide K2 maps reflecting BBB permeability. After coregistration of apparent diffusion coefficient and K2 maps, the 90th percentile of K2 value was extracted within baseline ischemic core and expressed as a percentage change compared with contralateral normal-appearing white matter. Population was dichotomized according to the median K2 value. Univariable and multiple variable logistic regression analyses were performed to investigate factors associated with increased pretreatment BBB permeability in the whole population and in patients with symptom onset <6 hours. RESULTS In the whole population (n = 105 patients, median K2 = 1.59), patients with an increased BBB permeability had higher serum levels of matrix metalloproteinase (MMP)-9 at H48 (p = 0.02), a higher C-reactive protein (CRP) serum level at H48 (p = 0.01), poorer collateral status (p = 0.01), and a larger baseline ischemic core (p < 0.001). They were more likely to have hemorrhagic transformation (p = 0.008), larger final lesion volume (p = 0.02), and worst neurologic outcome at 3 months (p = 0.04). The multiple variable logistic regression indicated that an increased BBB permeability was associated only with ischemic core volume (odds ratio [OR] 1.04, 95% CI 1.01-1.06, p < 0.0001). Restricting analysis to patients with symptom onset <6 hours (n = 72, median K2 = 1.27), participants with an increased BBB permeability had higher serum levels of MMP-9 at H0 (p = 0.005), H6 (p = 0.004), H24 (p = 0.02), and H48 (p = 0.01), higher CRP levels at H48 (p = 0.02), and a larger baseline ischemic core (p < 0.0001). The multiple variable logistic analysis showed that increased BBB permeability was independently associated with higher H0 MMP-9 levels (OR 1.33, 95% CI 1.12-1.65, p = 0.01) and a larger ischemic core (OR 1.27, 95% CI 1.08-1.59, p = 0.04). DISCUSSION In AIS patients, increased BBB permeability is associated with a larger ischemic core. In the subgroup of patients with symptom onset <6 hours, increased BBB permeability is independently associated with higher H0 MMP-9 levels and a larger ischemic core.
Collapse
Affiliation(s)
- Alexandre Bani-Sadr
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France.
| | - Laura Mechtouff
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Charles De Bourguignon
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Aela Mauffrey
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Timothe Boutelier
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Tae-Hee Cho
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Matteo Cappucci
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Roxana Ameli
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Marc Hermier
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Laurent Derex
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Norbert Nighoghossian
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| | - Yves Berthezene
- From the Hospices Civils de Lyon (A.B.-S., L.M., C.D.B., T.-H.C., M.C., R.A., M.H., L.D., N.N., Y.B.); and Olea Medical (A.M., T.B.), La Ciotat, France
| |
Collapse
|
30
|
Lai JQ, Chen XR, Lin S, Chen CN, Zheng XX. Progress in research on the role of clinical nutrition in treating traumatic brain injury affecting the neurovascular unit. Nutr Rev 2023; 81:1051-1062. [PMID: 36409999 DOI: 10.1093/nutrit/nuac099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
The neurovascular unit (NVU) is composed of neurons, glial cells, and blood vessels. NVU dysfunction involves the processes of neuroinflammation, and microcirculatory disturbances, as well as neuronal injury after traumatic brain injury (TBI). Traditional anti-inflammatory drugs have limited efficacy in improving the prognosis of TBI. Thus, treatments that target NVU dysfunction may provide a breakthrough. A large number of clinical studies have shown that the nutritional status of patients with TBI was closely related to their conditions and prognoses. Nutrient complexes and complementary therapies for the treatment of TBI are therefore being implemented in many preclinical studies. Importantly, the mechanism of action for this treatment may be related to repair of NVU dysfunction by ensuring adequate omega-3 fatty acids, curcumin, resveratrol, apigenin, vitamins, and minerals. These nutritional supplements hold promise for translation to clinical therapy. In addition, dietary habits also play an important role in the rehabilitation of TBI. Poor dietary habits may worsen the pathology and prognosis of TBI. Adjusting dietary habits, especially with a ketogenic diet, may improve outcomes in patients with TBI. This article discusses the impact of clinical nutrition on NVU dysfunction after TBI, focusing on nutritional complexes and dietary habits.
Collapse
Affiliation(s)
- Jin-Qing Lai
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China. Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiang-Rong Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China. Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Shu Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China. Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China. Neuroendocrinology Group, Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Chun-Nuan Chen
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xuan-Xuan Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
31
|
Gao Y, Li Y, Feng S, Gu L. Bibliometric and visualization analysis of matrix metalloproteinases in ischemic stroke from 1992 to 2022. Front Neurosci 2023; 17:1206793. [PMID: 37483355 PMCID: PMC10357507 DOI: 10.3389/fnins.2023.1206793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) are important players in the complex pathophysiology of ischemic stroke (IS). Recent studies have shown that tremendous progress has been made in the research of MMPs in IS. However, a comprehensive bibliometric analysis is lacking in this research field. This study aimed to introduce the research status as well as hotspots and explore the field of MMPs in IS from a bibliometric perspective. Methods This study collected 1,441 records related to MMPs in IS from 1979 to 2022 in the web of science core collection (WoSCC) database, among them the first paper was published in 1992. CiteSpace, VOSviewer, and R package "bibliometrix" software were used to analyze the publication type, author, institution, country, keywords, and other relevant data in detail, and made descriptive statistics to provide new ideas for future clinical and scientific research. Results The change in the number of publications related to MMPs in IS can be divided into three stages: the first stage was from 1992 to 2012, when the number of publications increased steadily; the second stage was from 2013 to 2017, when the number of publications was relatively stable; the third stage was from 2018 to 2022, when the number of publications began to decline. The United States and China, contributing more than 64% of publications, were the main drivers for research in this field. Universities in the United States were the most active institutions and contributed the most publications. STROKE is the most popular journal in this field with the largest publications as well as the most co-cited journal. Rosenberg GA was the most prolific writer and has the most citations. "Clinical," "Medical," "Neurology," "Immunology" and "Biochemistry molecular biology" were the main research areas of MMPs in IS. "Molecular regulation," "Metalloproteinase-9 concentration," "Clinical translation" and "Cerebral ischemia-reperfusion" are the primary keywords clusters in this field. Conclusion This is the first bibliometric study that comprehensively mapped out the knowledge structure and development trends in the research field of MMPs in IS in recent 30 years, which will provide a reference for scholars studying this field.
Collapse
|
32
|
Owjfard M, Karimi F, Mallahzadeh A, Nabavizadeh SA, Namavar MR, Saadi MI, Hooshmandi E, Salehi MS, Zafarmand SS, Bayat M, Karimlou S, Borhani-Haghighi A. Mechanism of action and therapeutic potential of dimethyl fumarate in ischemic stroke. J Neurosci Res 2023. [PMID: 37183360 DOI: 10.1002/jnr.25202] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
Dimethyl fumarate (DMF) is an immunomodulatory drug currently approved for the treatment of multiple sclerosis and psoriasis. Its benefits on ischemic stroke outcomes have recently come to attention. To date, only tissue plasminogen activators (tPAs) and clot retrieval methods have been approved by the FDA for the treatment of ischemic stroke. Ischemic conditions lead to inflammation through diverse mechanisms, and recanalization can worsen the state. DMF and the nuclear factor erythroid-derived 2-related factor 2 (Nrf2) pathway it regulates seem to be important in postischemic inflammation, and animal studies have demonstrated that the drug improves overall stroke outcomes. Although the exact mechanism is still unknown, studies indicate that these beneficial impacts are due to the modulation of immune responses, blood-brain barrier permeability, and hemodynamic adjustments. One major component evaluated before, during, and after tPA therapy in stroke patients is blood pressure (BP). Recent studies have found that DMF may impact BP. Both hypotension and hypertension need correction before treatment, which may delay the appropriate intervention. Since BP management is crucial in managing stroke patients, it is important to consider DMF's role in this matter. That being said, it seems further investigations on DMF may lead to an alternative approach for stroke patients. In this article, we discuss the mechanistic roles of DMF and its potential role in stroke based on previously published literature and laboratory findings.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | | | - Arashk Mallahzadeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Nabavizadeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Karimlou
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
33
|
Ji Y, Gao Q, Ma Y, Wang F, Tan X, Song D, Hoo RLC, Wang Z, Ge X, Han H, Guo F, Chang J. An MMP-9 exclusive neutralizing antibody attenuates blood-brain barrier breakdown in mice with stroke and reduces stroke patient-derived MMP-9 activity. Pharmacol Res 2023; 190:106720. [PMID: 36893823 DOI: 10.1016/j.phrs.2023.106720] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Rapid upregulation of matrix metalloproteinase 9 (MMP-9) leads to blood-brain barrier (BBB) breakdown following stroke, but no MMP-9 inhibitors have been approved in clinic largely due to their low specificities and side effects. Here, we explored the therapeutic potential of a human IgG monoclonal antibody (mAb), L13, which was recently developed with exclusive neutralizing specificity to MMP-9, nanomolar potency, and biological function, using mouse stroke models and stroke patient samples. We found that L13 treatment at the onset of reperfusion following cerebral ischemia or after intracranial hemorrhage (ICH) significantly reduced brain tissue injury and improved the neurological outcomes of mice. Compared to control IgG, L13 substantially attenuated BBB breakdown in both types of stroke model by inhibiting MMP-9 activity-mediated degradations of basement membrane and endothelial tight junction proteins. Importantly, these BBB-protective and neuroprotective effects of L13 in wild-type mice were comparable to Mmp9 genetic deletion and fully abolished in Mmp9 knockout mice, highlighting the in vivo target specificity of L13. Meanwhile, ex vivo co-incubation with L13 significantly neutralized the enzymatic activities of human MMP-9 in the sera of ischemic and hemorrhagic stroke patients, or in the peri-hematoma brain tissues from hemorrhagic stroke patients. Overall, we demonstrated that MMP-9 exclusive neutralizing mAbs constitute a potential feasible therapeutic approach for both ischemic and hemorrhagic stroke.
Collapse
Affiliation(s)
- Yabin Ji
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiang Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China; Department of Neurosurgery, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Yinzhong Ma
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fang Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Xixi Tan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Neurology, Yangjiang People's Hospital, Yangjiang 529500, China
| | - Dengpan Song
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China
| | - Ruby L C Hoo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Zening Wang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Hongjie Han
- Department of Neurosurgery, Pingdingshan Second People's Hospital, Pingdingshan 467000, China
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450001, China.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
34
|
Ma P, Huang N, Tang J, Zhou Z, Xu J, Chen Y, Zhang M, Huang Q, Cheng Y. The TRPM4 channel inhibitor 9-phenanthrol alleviates cerebral edema after traumatic brain injury in rats. Front Pharmacol 2023; 14:1098228. [PMID: 36865920 PMCID: PMC9971592 DOI: 10.3389/fphar.2023.1098228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Cerebral edema (CE) exerts an important effect on brain injury after traumatic brain injury (TBI). Upregulation of transient receptor potential melastatin 4 (TRPM4) in vascular endothelial cells (ECs) results in damage to capillaries and the blood-brain barrier (BBB), which is critical for the development of CE. Many studies have shown that 9-phenanthrol (9-PH) effectively inhibits TRPM4. The current study aimed to investigate the effect of 9-PH on reducing CE after TBI. In this experiment, we observed that 9-PH markedly reduced brain water content, BBB disruption, proliferation of microglia and astrocytes, neutrophil infiltration, neuronal apoptosis and neurobehavioral deficits. At the molecular level, 9-PH significantly inhibited the protein expression of TRPM4 and MMP-9, alleviated the expression of apoptosis-related molecules and inflammatory cytokines, such as Bax, TNF-α and IL-6, near injured tissue, and diminished serum SUR1 and TRPM4 levels. Mechanistically, treatment with 9-PH inhibited activation of the PI3K/AKT/NF-kB signaling pathway, which was reported to be involved in the expression of MMP-9. Taken together, the results of this study indicate that 9-PH effectively reduces CE and alleviates secondary brain injury partly through the following possible mechanisms: ①9-PH inhibits TRPM4-mediated Na + influx and reduces cytotoxic CE; ②9-PH hinders the expression and activity of MMP-9 by inhibiting the TRPM4 channel and decreases disruption of the BBB, thereby preventing vasogenic cerebral edema. ③9-PH reduces further inflammatory and apoptotic damage to tissues.
Collapse
Affiliation(s)
- Ping Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zunjie Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Chen
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maoxin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Qin Huang, ; Yuan Cheng,
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Qin Huang, ; Yuan Cheng,
| |
Collapse
|
35
|
Yu W, Gong E, Liu B, Zhou L, Che C, Hu S, Zhang Z, Liu J, Shi J. Hydrogel-mediated drug delivery for treating stroke. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
36
|
Wu ZD, Feng Y, Ma ZX, Liu Z, Xiong HH, Zhou ZP, Ouyang LS, Xie FK, Tang YM. MicroRNAs: protective regulators for neuron growth and development. Neural Regen Res 2023; 18:734-745. [DOI: 10.4103/1673-5374.353481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
37
|
Lang X, Liu J, Zhang G, Feng X, Dan W. Knowledge Mapping of Drug Repositioning's Theme and Development. Drug Des Devel Ther 2023; 17:1157-1174. [PMID: 37096060 PMCID: PMC10122475 DOI: 10.2147/dddt.s405906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023] Open
Abstract
Background In recent years, the emergence of new diseases and resistance to known diseases have led to increasing demand for new drugs. By means of bibliometric analysis, this paper studied the relevant articles on drug repositioning in recent years and analyzed the current research foci and trends. Methodology The Web of Science database was searched to collect all relevant literature on drug repositioning from 2001 to 2022. These data were imported into CiteSpace and bibliometric online analysis platforms for bibliometric analysis. The processed data and visualized images predict the development trends in the research field. Results The quality and quantity of articles published after 2011 have improved significantly, with 45 of them cited more than 100 times. Articles posted by journals from different countries have high citation values. Authors from other institutions have also collaborated to analyze drug rediscovery. Keywords found in the literature include molecular docking (N=223), virtual screening (N=170), drug discovery (N=126), machine learning (N=125), and drug-target interaction (N=68); these words represent the core content of drug repositioning. Conclusion The key focus of drug research and development is related to the discovery of new indications for drugs. Researchers are starting to retarget drugs after analyzing online databases and clinical trials. More and more drugs are being targeted at other diseases to treat more patients, based on saving money and time. It is worth noting that researchers need more financial and technical support to complete drug development.
Collapse
Affiliation(s)
- Xiaona Lang
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Jinlei Liu
- Cardiology Department, Guang ‘anmen Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, People’s Republic of China
| | - Guangzhong Zhang
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Xin Feng
- Pharmacy Department, Tianjin Hospital, Tianjin, People’s Republic of China
| | - Wenchao Dan
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Wenchao Dan, Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China, Tel +86 13652001152, Email
| |
Collapse
|
38
|
Zhang Y, Zhao X, Zhang Y, Zeng F, Yan S, Chen Y, Li Z, Zhou D, Liu L. The role of circadian clock in astrocytes: From cellular functions to ischemic stroke therapeutic targets. Front Neurosci 2022; 16:1013027. [PMID: 36570843 PMCID: PMC9772621 DOI: 10.3389/fnins.2022.1013027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence suggests that astrocytes, the abundant cell type in the central nervous system (CNS), play a critical role in maintaining the immune response after cerebral infarction, regulating the blood-brain barrier (BBB), providing nutrients to the neurons, and reuptake of glutamate. The circadian clock is an endogenous timing system that controls and optimizes biological processes. The central circadian clock and the peripheral clock are consistent, controlled by various circadian components, and participate in the pathophysiological process of astrocytes. Existing evidence shows that circadian rhythm controls the regulation of inflammatory responses by astrocytes in ischemic stroke (IS), regulates the repair of the BBB, and plays an essential role in a series of pathological processes such as neurotoxicity and neuroprotection. In this review, we highlight the importance of astrocytes in IS and discuss the potential role of the circadian clock in influencing astrocyte pathophysiology. A comprehensive understanding of the ability of the circadian clock to regulate astrocytes after stroke will improve our ability to predict the targets and biological functions of the circadian clock and gain insight into the basis of its intervention mechanism.
Collapse
Affiliation(s)
- Yuxing Zhang
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xin Zhao
- The Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhang
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fukang Zeng
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyang Yan
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yao Chen
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhong Li
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Desheng Zhou
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,Desheng Zhou,
| | - Lijuan Liu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,*Correspondence: Lijuan Liu,
| |
Collapse
|
39
|
Zhao B, Yin Q, Fei Y, Zhu J, Qiu Y, Fang W, Li Y. Research progress of mechanisms for tight junction damage on blood-brain barrier inflammation. Arch Physiol Biochem 2022; 128:1579-1590. [PMID: 32608276 DOI: 10.1080/13813455.2020.1784952] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammation in the central nervous system (CNS) contributes to disease pathologies by disrupting the integrity of the blood-brain barrier (BBB). Tight junctions (TJ) are a key component of the BBB. Following hypoxic-ischaemic or mechanical injury to the brain, inflammatory mediators are released such as cytokines, chemokines, and growth factors. Simultaneously, matrix metalloproteinases (MMPs) are released which can degrade TJ proteins. Subsequently, the function and morphology of the BBB are disrupted, which allows immune cells an opportunity to enter into the brain parenchyma. This review summarises the information on the role of TJ protein families in the BBB and provides a comprehensive summary of the mechanisms whereby inflammation breaks down the BBB by increasing degradation of TJ proteins.
Collapse
Affiliation(s)
- Bo Zhao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Qiyang Yin
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yuxiang Fei
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jianping Zhu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yanying Qiu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yunman Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
40
|
Are South African Wild Foods the Answer to Rising Rates of Cardiovascular Disease? DIVERSITY 2022. [DOI: 10.3390/d14121014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rising burden of cardiovascular disease in South Africa gives impetus to managerial changes, particularly to the available foods in the market. Since there are many economically disadvantaged groups in urban societies who are at the forefront of the CVD burden, initiatives to make healthier foods available should focus on affordability in conjunction with improved phytochemical diversity to incentivize change. The modern obesogenic diet is deficient in phytochemicals that are protective against the metabolic products of sugar metabolism, i.e., inflammation, reactive oxygen species and mitochondrial fatigue, whereas traditional southern African food species have high phytochemical diversity and are also higher in soluble dietary fibres that modulate the release of sugars from starches, nurture the microbiome and produce digestive artefacts that are prophylactic against cardiovascular disease. The examples of indigenous southern African food species with high horticultural potential that can be harvested sustainably to feed a large market of consumers include: Aloe marlothii, Acanthosicyos horridus, Adansonia digitata, Aloe ferox, Amaranthus hybridus, Annesorhiza nuda, Aponogeton distachyos, Bulbine frutescens, Carpobrotus edulis, Citrullus lanatus, Dioscorea bulbifera, Dovyalis caffra, Eleusine coracana, Lagenaria siceraria, Mentha longifolia, Momordica balsamina, Pelargonium crispum, Pelargonium sidoides, Pennisetum glaucum, Plectranthus esculentus, Schinziophyton rautanenii, Sclerocarya birrea, Solenostemon rotundifolius, Talinum caffrum, Tylosema esculentum, Vigna unguiculata and Vigna subterranea. The current review explains the importance of phytochemical diversity in the human diet, it gives a lucid explanation of phytochemical groups and links the phytochemical profiles of these indigenous southern African foods to their protective effects against cardiovascular disease.
Collapse
|
41
|
Achón Buil B, Tackenberg C, Rust R. Editing a gateway for cell therapy across the blood-brain barrier. Brain 2022; 146:823-841. [PMID: 36397727 PMCID: PMC9976985 DOI: 10.1093/brain/awac393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Stem cell therapy has been shown to improve stroke outcomes in animal models and is currently advancing towards clinical practice. However, uncertainty remains regarding the optimal route for cell delivery to the injured brain. Local intracerebral injections are effective in precisely delivering cells into the stroke cavity but carry the risk of damaging adjacent healthy tissue. Systemic endovascular injections, meanwhile, are minimally invasive, but most injected cells do not cross CNS barriers and become mechanically trapped in peripheral organs. Although the blood-brain barrier and the blood-CSF barrier tightly limit the entrance of cells and molecules into the brain parenchyma, immune cells can cross these barriers especially under pathological conditions, such as stroke. Deciphering the cell surface signature and the molecular mechanisms underlying this pathophysiological process holds promise for improving the targeted delivery of systemic injected cells to the injured brain. In this review, we describe experimental approaches that have already been developed in which (i) cells are either engineered to express cell surface proteins mimicking infiltrating immune cells; or (ii) cell grafts are preconditioned with hypoxia or incubated with pharmacological agents or cytokines. Modified cell grafts can be complemented with strategies to temporarily increase the permeability of the blood-brain barrier. Although these approaches could significantly enhance homing of stem cells into the injured brain, cell entrapment in off-target organs remains a non-negligible risk. Recent developments in safety-switch systems, which enable the precise elimination of transplanted cells on the administration of a drug, represent a promising strategy for selectively removing stem cells stuck in untargeted organs. In sum, the techniques described in this review hold great potential to substantially improve efficacy and safety of future cell therapies in stroke and may be relevant to other brain diseases.
Collapse
Affiliation(s)
- Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ruslan Rust
- Correspondence to: Ruslan Rust Institute for Regenerative Medicine Wagistrasse 12, 8952 Schlieren Zurich, Switzerland E-mail:
| |
Collapse
|
42
|
Li R, Zhao M, Yao D, Zhou X, Lenahan C, Wang L, Ou Y, He Y. The role of the astrocyte in subarachnoid hemorrhage and its therapeutic implications. Front Immunol 2022; 13:1008795. [PMID: 36248855 PMCID: PMC9556431 DOI: 10.3389/fimmu.2022.1008795] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is an important public health concern with high morbidity and mortality worldwide. SAH induces cell death, blood−brain barrier (BBB) damage, brain edema and oxidative stress. As the most abundant cell type in the central nervous system, astrocytes play an essential role in brain damage and recovery following SAH. This review describes astrocyte activation and polarization after SAH. Astrocytes mediate BBB disruption, glymphatic–lymphatic system dysfunction, oxidative stress, and cell death after SAH. Furthermore, astrocytes engage in abundant crosstalk with other brain cells, such as endothelial cells, neurons, pericytes, microglia and monocytes, after SAH. In addition, astrocytes also exert protective functions in SAH. Finally, we summarize evidence regarding therapeutic approaches aimed at modulating astrocyte function following SAH, which could provide some new leads for future translational therapy to alleviate damage after SAH.
Collapse
Affiliation(s)
- Rong Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Ling Wang
- Department of Operating room, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yue He,
| |
Collapse
|
43
|
Song X, Liu J, Wang Y, Zheng L, Liu M. Serum microRNA miR-491-5p/miR-206 Is Correlated with Poor Outcomes/Spontaneous Hemorrhagic Transformation after Ischemic Stroke: A Case Control Study. Brain Sci 2022; 12:brainsci12080999. [PMID: 36009063 PMCID: PMC9405583 DOI: 10.3390/brainsci12080999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022] Open
Abstract
Background: It is unclear whether miR-491-5p, miR-206, miR-21-5p or miR-3123 are associated with functional outcomes and hemorrhagic transformation (HT) after acute ischemic stroke (AIS). In this study, we aimed to investigate the correlation between these four microRNAs and functional outcomes, as well as spontaneous HT after AIS; Methods: We included 215 AIS patients and retrospectively assayed for miR-21-5p, miR-206, miR-3123 and miR-491-5p levels in serum. Poor functional outcome was defined as a modified Rankin Scale score ≥ 3. Spontaneous HT referred to hemorrhage detected in follow-up brain imaging but not on admission, without reperfusion therapies. Logistic regression, generalized additive model and 2-piecewise regression model were used to explore the independent, non-linear correlation between miRNA expression levels and outcomes; Results: We included 215 AIS patients. Higher miR-491-5p level independently reduced the risk of poor functional outcomes at 1 year (OR 0.90, 95% CI 0.82–0.98, corrected p value = 0.044). Higher miR-206 level significantly increased the risk of spontaneous HT (OR 1.64, 95% CI 1.17–2.30, corrected p value = 0.016). There was a nonlinear correlation found between miR-491-5p level and 1 year outcome with an inflection point of 2.180, while an approximately linear correlation was observed with an inflection point of 2.037 between miR-206 level and spontaneous HT; Conclusions: Higher serum miR-491-5p level independently reduced risk of 1-year poor functional outcome of AIS patients. Higher serum miR-206 level independently increased the risk of spontaneous HT in AIS patients. These two miRNAs may be as the potential biomarkers for improving prognosis after AIS.
Collapse
Affiliation(s)
- Xindi Song
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China; (X.S.); (J.L.); (Y.W.)
| | - Junfeng Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China; (X.S.); (J.L.); (Y.W.)
| | - Yanan Wang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China; (X.S.); (J.L.); (Y.W.)
| | - Lukai Zheng
- Institute for Stroke and Dementia Research, Ludwig Maximilian University Hospital of Munich (KUM), 81377 Munich, Germany;
| | - Ming Liu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital of Sichuan University, Chengdu 610041, China; (X.S.); (J.L.); (Y.W.)
- Correspondence:
| |
Collapse
|
44
|
Neuroprotective Effects of Chlorogenic Acid in a Mouse Model of Intracerebral Hemorrhage Associated with Reduced Extracellular Matrix Metalloproteinase Inducer. Biomolecules 2022; 12:biom12081020. [PMID: 35892330 PMCID: PMC9332591 DOI: 10.3390/biom12081020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Chlorogenic acid (CGA) has been reported to have various biological activities, such as anti-inflammatory, anti-oxidant and anti-apoptosis effects. However, the role of CGA in intracerebral hemorrhage (ICH) and the underlying mechanisms remain undiscovered. The current study aims to investigate the effect of CGA on neuroinflammation and neuronal apoptosis after inhibition of EMMPRIN in a collagenase-induced ICH mouse model. Dose optimization data showed that intraperitoneal administration of CGA (30 mg/kg) significantly attenuated neurological impairments and reduced brain water content at 24 h and 72 h compared with ICH mice given vehicle. Western blot and immunofluorescence analyses revealed that CGA remarkably decreased the expression of extracellular matrix metalloproteinase inducer (EMMPRIN) in perihematomal areas at 72 h after ICH. CGA also reduced the expression of matrix metalloproteinases-2/9 (MMP-2/9) at 72 h after ICH. CGA diminished Evans blue dye extravasation and reduced the loss of zonula occludens-1 (ZO-1) and occludin. CGA-treated mice had fewer activated Iba-1-positive microglia and MPO-positive neutrophils. Finally, CGA suppressed cell death around the hematoma and reduced overall brain injury. These outcomes highlight that CGA treatment confers neuroprotection in ICH likely by inhibiting expression of EMMPRIN and MMP-2/9, and alleviating neuroinflammation, blood–brain barrier (BBB) disruption, cell death and brain injury.
Collapse
|
45
|
Wang J, Zhang J, Ye Y, Xu Q, Li Y, Feng S, Xiong X, Jian Z, Gu L. Peripheral Organ Injury After Stroke. Front Immunol 2022; 13:901209. [PMID: 35720359 PMCID: PMC9200619 DOI: 10.3389/fimmu.2022.901209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023] Open
Abstract
Stroke is a disease with high incidence, mortality and disability rates. It is also the main cause of adult disability in developed countries. Stroke is often caused by small emboli on the inner wall of the blood vessels supplying the brain, which can lead to arterial embolism, and can also be caused by cerebrovascular or thrombotic bleeding. With the exception of recombinant tissue plasminogen activator (rt-PA), which is a thrombolytic drug used to recanalize the occluded artery, most treatments have been demonstrated to be ineffective. Stroke can also induce peripheral organ damage. Most stroke patients have different degrees of injury to one or more organs, including the lung, heart, kidney, spleen, gastrointestinal tract and so on. In the acute phase of stroke, severe inflammation occurs in the brain, but there is strong immunosuppression in the peripheral organs, which greatly increases the risk of peripheral organ infection and aggravates organ damage. Nonneurological complications of stroke can affect treatment and prognosis, may cause serious short-term and long-term consequences and are associated with prolonged hospitalization and increased mortality. Many of these complications are preventable, and their adverse effects can be effectively mitigated by early detection and appropriate treatment with various medical measures. This article reviews the pathophysiological mechanism, clinical manifestations and treatment of peripheral organ injury after stroke.
Collapse
Affiliation(s)
- Jin Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiehua Zhang
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi Feng
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
46
|
He T, Yang GY, Zhang Z. Crosstalk of Astrocytes and Other Cells during Ischemic Stroke. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060910. [PMID: 35743941 PMCID: PMC9228674 DOI: 10.3390/life12060910] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
Stroke is a leading cause of death and long-term disability worldwide. Astrocytes structurally compose tripartite synapses, blood–brain barrier, and the neurovascular unit and perform multiple functions through cell-to-cell signaling of neurons, glial cells, and vasculature. The crosstalk of astrocytes and other cells is complicated and incompletely understood. Here we review the role of astrocytes in response to ischemic stroke, both beneficial and detrimental, from a cell–cell interaction perspective. Reactive astrocytes provide neuroprotection through antioxidation and antiexcitatory effects and metabolic support; they also contribute to neurorestoration involving neurogenesis, synaptogenesis, angiogenesis, and oligodendrogenesis by crosstalk with stem cells and cell lineage. In the meantime, reactive astrocytes also play a vital role in neuroinflammation and brain edema. Glial scar formation in the chronic phase hinders functional recovery. We further discuss astrocyte enriched microRNAs and exosomes in the regulation of ischemic stroke. In addition, the latest notion of reactive astrocyte subsets and astrocytic activity revealed by optogenetics is mentioned. This review discusses the current understanding of the intimate molecular conversation between astrocytes and other cells and outlines its potential implications after ischemic stroke. “Neurocentric” strategies may not be sufficient for neurological protection and recovery; future therapeutic strategies could target reactive astrocytes.
Collapse
Affiliation(s)
- Tingting He
- Department of Neurology, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China;
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
- Correspondence: (G.-Y.Y.); (Z.Z.); Tel.: +86-21-62933186 (G.-Y.Y.); Fax: +86-21-62932302 (G.-Y.Y.)
| |
Collapse
|
47
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
48
|
Liu Y, Bai Q, Yong VW, Xue M. EMMPRIN Promotes the Expression of MMP-9 and Exacerbates Neurological Dysfunction in a Mouse Model of Intracerebral Hemorrhage. Neurochem Res 2022; 47:2383-2395. [PMID: 35608790 DOI: 10.1007/s11064-022-03630-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 04/02/2022] [Accepted: 05/07/2022] [Indexed: 12/23/2022]
Abstract
Extracellular matrix metalloproteinase inducer (EMMPRIN) has been shown to be a vital inflammatory mediator in several neurological and neurodegenerative diseases. However, the role of EMMPRIN in intracerebral hemorrhage (ICH) remains unexplored. In this study, we aimed to exploit a highly selective monoclonal anti-EMMPRIN antibody to functionally inhibit EMMPRIN activity and thus that of MMPs as the downstream effector. To induce ICH pathology, adult C57BL/6 male mice were injected with collagenase type VII or saline as control into the right basal ganglia and were euthanized at different time points. The anti-EMMPRIN monoclonal antibody was intravenously injected once daily for 3 days to block the expression of EMMPRIN initiating at 4 h post-ICH. Western blot and immunofluorescence analysis results revealed that EMMPRIN expression was significantly increased surrounding the hematoma at 3 and 7 d time points after ICH when compared to the saline treated control group. EMMPRIN expression was co-localized with GFAP (astrocytes) and Iba1 (microglia) at 3 d time point post-ICH, but not in the control group mice. The co-localization of EMMPRIN with CD31 in endothelial cells occurred in both groups and was higher in the ICH brain. However, EMMPRIN expression was not detected in neurons from either group. The inhibition of EMMPRIN reduced the expression of MMP-9, the number of infiltrated neutrophils, the degree of brain injury and promoted neurological recovery after ICH. In conclusion, EMMPRIN could mediate the upregulation of MMP-9 and exacerbate neurological dysfunction in a mouse model of experimental ICH. Furthermore, blocking EMMPRIN reduced brain injury and subsequently promoted neurological recovery in ICH mice brains. These outcomes highlight that inhibition of EMMPRIN can be a potential therapeutic intervention strategy to regulate MMP-9's pathological roles during ICH.
Collapse
Affiliation(s)
- Yang Liu
- Departments of Cerebrovascular Diseases and Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.,Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Qian Bai
- Departments of Cerebrovascular Diseases and Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China.,Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
| | - Mengzhou Xue
- Departments of Cerebrovascular Diseases and Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China. .,Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China.
| |
Collapse
|
49
|
Li H, Sheng Z, Khan S, Zhang R, Liu Y, Zhang Y, Yong VW, Xue M. Matrix Metalloproteinase-9 as an Important Contributor to the Pathophysiology of Depression. Front Neurol 2022; 13:861843. [PMID: 35370878 PMCID: PMC8971905 DOI: 10.3389/fneur.2022.861843] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are physiologically expressed in the central nervous system in neurons, astrocytes and microglia, and their aberrant elevation contributes to a number of diseases. Amongst the MMP members, MMP−9 has generated considerable attention because of its possible involvement in inflammatory responses, blood-brain barrier permeability, the regulation of perineuronal nets, demyelination, and synaptic long-term potentiation. Emerging evidence indicate an association between MMP−9 and the syndrome of depression. This review provides an updated and comprehensive summary of the probable roles of MMP−9 in depression with an emphasis on the mechanisms and potential of MMP−9 as a biomarker of depression.
Collapse
Affiliation(s)
- Hongmin Li
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Zhaofu Sheng
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ruiyi Zhang
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yan Zhang
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- *Correspondence: V. Wee Yong
| | - Mengzhou Xue
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
- Mengzhou Xue
| |
Collapse
|
50
|
Zhang H, Xie Q, Hu J. Neuroprotective Effect of Physical Activity in Ischemic Stroke: Focus on the Neurovascular Unit. Front Cell Neurosci 2022; 16:860573. [PMID: 35317197 PMCID: PMC8934401 DOI: 10.3389/fncel.2022.860573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 01/03/2023] Open
Abstract
Cerebral ischemia is one of the major diseases associated with death or disability among patients. To date, there is a lack of effective treatments, with the exception of thrombolytic therapy that can be administered during the acute phase of ischemic stroke. Cerebral ischemia can cause a variety of pathological changes, including microvascular basal membrane matrix, endothelial cell activation, and astrocyte adhesion, which may affect signal transduction between the microvessels and neurons. Therefore, researchers put forward the concept of neurovascular unit, including neurons, axons, astrocytes, microvasculature (including endothelial cells, basal membrane matrix, and pericyte), and oligodendrocytes. Numerous studies have demonstrated that exercise can produce protective effects in cerebral ischemia, and that exercise may protect the integrity of the blood-brain barrier, promote neovascularization, reduce neuronal apoptosis, and eventually lead to an improvement in neurological function after cerebral ischemia. In this review, we summarized the potential mechanisms on the effect of exercise on cerebral ischemia, by mainly focusing on the neurovascular unit, with the aim of providing a novel therapeutic strategy for future treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Hui Zhang
- School of Physical Education, Nanchang University, Nanchang, China
| | - Qi Xie
- Inpatient Department, Jiangxi Provincial People’s Hospital, Nanchang, China
| | - Juan Hu
- Yu Quan dao Health Center, Jiangxi Provincial People’s Hospital, Nanchang, China
- *Correspondence: Juan Hu,
| |
Collapse
|