1
|
Aldali F, Deng C, Nie M, Chen H. Advances in therapies using mesenchymal stem cells and their exosomes for treatment of peripheral nerve injury: state of the art and future perspectives. Neural Regen Res 2025; 20:3151-3171. [PMID: 39435603 PMCID: PMC11881730 DOI: 10.4103/nrr.nrr-d-24-00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024] Open
Abstract
"Peripheral nerve injury" refers to damage or trauma affecting nerves outside the brain and spinal cord. Peripheral nerve injury results in movements or sensation impairments, and represents a serious public health problem. Although severed peripheral nerves have been effectively joined and various therapies have been offered, recovery of sensory or motor functions remains limited, and efficacious therapies for complete repair of a nerve injury remain elusive. The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function. Mesenchymal stem cells, as large living cells responsive to the environment, secrete various factors and exosomes. The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins, microRNA, and messenger RNA derived from parent mesenchymal stem cells. Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function, offering solutions to changes associated with cell-based therapies. Despite ongoing investigations, mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage. A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation. This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury, exploring the underlying mechanisms. Subsequently, it provides an overview of the current status of mesenchymal stem cell and exosome-based therapies in clinical trials, followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes. Finally, the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes, offering potential solutions and guiding future directions.
Collapse
Affiliation(s)
- Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mingbo Nie
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Yuan X, Yao X, Zeng Y, Wang J, Ren W, Wang T, Li X, Yang L, Yang X, Meng J. The Impact of the Competition on miRNA, Proteins, and Metabolites in the Blood Exosomes of the Yili Horse. Genes (Basel) 2025; 16:224. [PMID: 40004554 PMCID: PMC11855450 DOI: 10.3390/genes16020224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
PURPOSE Horse racing may cause stress-induced physiological changes and tissue damage in horses, but the changes in miRNA expression, protein expression, and metabolic substances in the plasma exosomes of the Yili horse after racing are still unclear. This study detected miRNA, protein expression, and metabolic substances in the plasma exosomes of Yili horses before and after competition, providing new insights for post-race recovery and care of Yili horses. METHOD Eight three-year-old Yili horses that had undergone training were selected as the research subjects, with four horses that had not competed as the control group and four horses that had participated in the competition for half an hour as the training group. Extract whole blood and separate plasma from two groups of horses, and then extract plasma exosomes; MiRNAs, proteins, and metabolites in extracellular vesicles were detected and analyzed using miRNAomics, proteomics, and metabolomics. P Result: After the competition, the levels of miRNAs related to the cytoplasm and nucleus in Yili horse plasma exosomes increased, and miRNAs related to the transcription and transcriptional regulation of biological processes significantly increased. The levels of proteins related to the cytoplasm and nucleus also increased, and the levels of proteins related to cell signaling function increased, carbohydrates and their metabolites were significantly reduced. CONCLUSIONS The competition process causes significant changes in the miRNA, proteomics, and metabolomics of plasma exosomes in the Yili horses, which are mainly related to metabolic regulation.
Collapse
Affiliation(s)
- Xinxin Yuan
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (X.Y.); (Y.Z.); (J.W.); (W.R.); (T.W.); (X.L.); (L.Y.); (X.Y.)
| | - Xinkui Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (X.Y.); (Y.Z.); (J.W.); (W.R.); (T.W.); (X.L.); (L.Y.); (X.Y.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Yaqi Zeng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (X.Y.); (Y.Z.); (J.W.); (W.R.); (T.W.); (X.L.); (L.Y.); (X.Y.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Jianwen Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (X.Y.); (Y.Z.); (J.W.); (W.R.); (T.W.); (X.L.); (L.Y.); (X.Y.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Wanlu Ren
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (X.Y.); (Y.Z.); (J.W.); (W.R.); (T.W.); (X.L.); (L.Y.); (X.Y.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| | - Tongliang Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (X.Y.); (Y.Z.); (J.W.); (W.R.); (T.W.); (X.L.); (L.Y.); (X.Y.)
| | - Xueyan Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (X.Y.); (Y.Z.); (J.W.); (W.R.); (T.W.); (X.L.); (L.Y.); (X.Y.)
| | - Lipin Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (X.Y.); (Y.Z.); (J.W.); (W.R.); (T.W.); (X.L.); (L.Y.); (X.Y.)
| | - Xixi Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (X.Y.); (Y.Z.); (J.W.); (W.R.); (T.W.); (X.L.); (L.Y.); (X.Y.)
| | - Jun Meng
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (X.Y.); (X.Y.); (Y.Z.); (J.W.); (W.R.); (T.W.); (X.L.); (L.Y.); (X.Y.)
- Xinjiang Key Laboratory of Equine Breeding and Exercise Physiology, Urumqi 830052, China
| |
Collapse
|
3
|
Arif S, Qazi TJ, Quan Z, Ni J, Li Z, Qiu Y, Qing H. Extracellular vesicle-packed microRNAs profiling in Alzheimer's disease: The molecular intermediary between pathology and diagnosis. Ageing Res Rev 2025; 104:102614. [PMID: 39626853 DOI: 10.1016/j.arr.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
MicroRNAs (miRNAs), referring to a type of non-coding RNAs functioning in various biological processes, participate in the pathophysiology of Alzheimer's disease (AD) through increasing amyloid-beta (Aβ) production, enhancing Tau phosphorylation, and inducing neuroinflammation. Meanwhile, extracellular vesicles (EVs) have been suggested as promising carriers of AD biomarkers as they possess the ability to transmit information from cerebral tissue to peripheral blood. Inspired by the above findings, we in this review systematically generalized the roles of miRNAs in AD and explored the potential of EV-packed miRNA as biomarkers for early diagnosis of AD. Through the detailed investigation, this review may highlight the promise of EV-packed miRNAs in advancing our understanding of AD, and underscore the imperative needs of further studies on their diagnostic potential.
Collapse
Affiliation(s)
- Sandila Arif
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Talal Jamil Qazi
- The Department of Biomedical Engineering, Balochistan University of Engineering & Technology, Khuzdar 89120, Pakistan
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhaohan Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yunjie Qiu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| |
Collapse
|
4
|
Bavafa A, Izadpanahi M, Hosseini E, Hajinejad M, Abedi M, Forouzanfar F, Sahab-Negah S. Exosome: an overview on enhanced biogenesis by small molecules. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03762-9. [PMID: 39862264 DOI: 10.1007/s00210-024-03762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Exosomes are extracellular vesicles that received attention for their potential use in the treatment of various injuries. They communicate intercellularly by transferring genetic and bioactive molecules from parent cells. Although exosomes hold immense promise for treating neurodegenerative and oncological diseases, their actual clinical use is very limited because of their biogenesis and secretion. Recent studies have shown that small molecules can significantly enhance exosome biogenesis, thereby remarkably improving yield, functionality, and therapeutic effects. These molecules modulate critical pathways toward optimum exosome production in a mode that is either ESCRT dependent or ESCRT independent. Improved exosome biogenesis may provide new avenues for targeted cancer therapy, neuroprotection in neurodegenerative diseases, and regenerative medicine in wound healing. This review explores the role of small molecules in enhancing exosome biogenesis and secretion, highlights their underlying mechanisms, and discusses emerging clinical applications. By addressing current challenges and focusing on translational opportunities, this study provides a foundation for advancing cell-free therapies in regenerative medicine and beyond.
Collapse
Affiliation(s)
- Amir Bavafa
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Izadpanahi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Hosseini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Hajinejad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Abedi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
5
|
Ebrahimi F, Kumari A, Ghadami S, Al Abdullah S, Dellinger K. The Potential for Extracellular Vesicles in Nanomedicine: A Review of Recent Advancements and Challenges Ahead. Adv Biol (Weinh) 2024:e2400623. [PMID: 39739455 DOI: 10.1002/adbi.202400623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Indexed: 01/02/2025]
Abstract
Extracellular vesicles (EVs) have emerged as promising tools in diagnostics and therapy for chronic diseases, including cancer and Alzheimer's. Small EVs, also called exosomes, are lipid-bound particles (≈30-150 nm) that play a role in healthy and pathophysiological interactions, including intercellular communication, by transporting bioactive molecules, including proteins, lipids, and nucleic acids. Their ability to cross biological barriers, such as the blood-brain barrier, makes them ideal candidates for targeted therapeutic interventions. In the context of chronic diseases, exosomes can be engineered to deliver active agents, including small molecules and siRNAs to specific target cells, providing a novel approach to precision medicine. Moreover, exosomes show great promise as repositories for diagnostic biomarkers. Their cargo can reflect the physiological and pathological status of the parent cells, making them valuable indicators of disease progression and response to treatment. This paper presents a comprehensive review of the application of exosomes in four chronic diseases: cancer, cardiovascular disease, neurodegenerative disease, and orthopedic disease, which significantly impact global public health due to their high prevalence and associated morbidity and mortality rates. Furthermore, the potential of exosomes as valuable tools for theranostics and disease management is highlighted. Finally, the challenges associated with exosomes and their demonstrated potential for advancing future nanomedicine applications are discussed.
Collapse
Affiliation(s)
- Farbod Ebrahimi
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Anjali Kumari
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Samaneh Ghadami
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC, 27401, USA
| |
Collapse
|
6
|
Wang L, Zhang X, Yang Z, Wang B, Gong H, Zhang K, Lin Y, Sun M. Extracellular vesicles: biological mechanisms and emerging therapeutic opportunities in neurodegenerative diseases. Transl Neurodegener 2024; 13:60. [PMID: 39643909 PMCID: PMC11622582 DOI: 10.1186/s40035-024-00453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles originating from different cells within the brain. The pathophysiological role of EVs in neurodegenerative diseases is progressively acknowledged. This field has advanced from basic biological research to essential clinical significance. The capacity to selectively enrich specific subsets of EVs from biofluids via distinctive surface markers has opened new avenues for molecular understandings across various tissues and organs, notably in the brain. In recent years, brain-derived EVs have been extensively investigated as biomarkers, therapeutic targets, and drug-delivery vehicles for neurodegenerative diseases. This review provides a brief overview of the characteristics and physiological functions of the various classes of EVs, focusing on the biological mechanisms by which various types of brain-derived EVs mediate the occurrence and development of neurodegenerative diseases. Concurrently, novel therapeutic approaches and challenges for the use of EVs as delivery vehicles are delineated.
Collapse
Affiliation(s)
- Ling Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyan Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyi Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongyang Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Lin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
7
|
Zare H, Kasdorf MM, Bakhshian Nik A. Microfluidics in neural extracellular vesicles characterization for early Alzheimer's disease diagnosis. Mol Cell Neurosci 2024; 132:103982. [PMID: 39631514 DOI: 10.1016/j.mcn.2024.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024] Open
Abstract
Dementia is a general term for conditions impairing cognitive abilities including perception, reasoning, attention, judgment, memory, and daily brain function. Early diagnosis of Alzheimer's disease (AD), the most common form of dementia, using neural extracellular vesicles (nEVs) is the focus of the current study. These nEVs carry AD biomarkers including β-amyloid proteins and phosphorylated tau proteins. The novelty of this review lies in developing a microfluidic perspective by introducing the techniques using a microfluidic platform for early diagnosis of AD. A microfluidic device can detect small sample sizes with significantly low concentrations. These devices combine nEV isolation, enrichment, and detection, which makes them ideal candidates for early AD diagnosis.
Collapse
Affiliation(s)
- Hossein Zare
- Chemical and Biochemical Engineering Department, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
8
|
Martinez J, Ingram N, Kapur N, Jayne DG, Beales PA. Vesicle-based formulations for pain treatment: a narrative review. Pain Rep 2024; 9:e1196. [PMID: 39399306 PMCID: PMC11469894 DOI: 10.1097/pr9.0000000000001196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 10/15/2024] Open
Abstract
Pain, a complex and debilitating condition, necessitates innovative therapeutic strategies to alleviate suffering and enhance patients' quality of life. Vesicular systems hold the potential to enhance precision of drug localisation and release, prolong the duration of therapeutic action and mitigate adverse events associated with long-term pharmacotherapy. This review critically assesses the current state-of-the-art in vesicle-based formulations (liposomes, polymersomes, ethosomes, and niosomes) for pain management applications. We highlight formulation engineering strategies used to optimise drug pharmacokinetics, present preclinical findings of experimental delivery systems, and discuss the clinical evidence for the benefits of clinically approved formulations. We present the challenges and outlook for future improvements in long-acting anaesthetic and analgesic formulation development.
Collapse
Affiliation(s)
- Juan Martinez
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
- Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Nicola Ingram
- Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - David G. Jayne
- Leeds Institute for Medical Research, University of Leeds, Leeds, West Yorkshire, United Kingdom
- The John Goligher Colorectal Surgery Unit, St. James's University Hospital, Leeds Teaching Hospital Trust, Leeds, West Yorkshire, United Kingdom
| | - Paul A. Beales
- School of Chemistry, University of Leeds, Leeds, West Yorkshire, United Kingdom
| |
Collapse
|
9
|
Bastari G, Solar Fernandez V, Muzzi M, Moreno S, Marino M, Fiocchetti M. Neuroglobin-enriched secretome provides neuroprotection against hydrogen peroxide and mitochondrial toxin-induced cellular stress. Cell Stress 2024; 8:99-111. [PMID: 39600400 PMCID: PMC11589466 DOI: 10.15698/cst2024.11.300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/30/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Aberrant response to physiological cell stress is part of the mechanisms underlying the development of diverse human diseases, including neuropathologies. Neuroglobin (NGB), an intracellular monomeric globin, has gained attention for its role in endogenous stress response pathways in neuroprotection. To date, evidence supports the concept of NGB as an inducible protein, triggered by physiological and pathological stimuli via transcriptional and/or post-transcriptional mechanisms, offering cell-autonomous neuroprotective functions under various cellular stresses. Notably, recent evidence suggests the extracellular occurrence of NGB. We aimed to explore whether NGB redistribution in the cell microenvironment may serve in transmitting resilience capability in a model with neuronal characteristics. Results obtained in SH-SY5Y demonstrated that intracellular NGB upregulation is associated with the promotion of the extracellular release of the globin. Additionally, cell secretome from NGB-overexpressing cells, characterized by globin accumulation, exhibits protective effects against oxidative stress and mitochondrial toxicity, as evidenced by reduced apoptosis and preserved mitochondrial structure. These findings shed light on the potential significance of extracellular NGB as part of a common cell response to physiological and stress conditions and as a factor promoting cell resilience. Furthermore, the potential for neuroprotection of extracellular NGB paves the way for future therapeutic opportunities.
Collapse
Affiliation(s)
- Giovanna Bastari
- Department of Science, Section Biomedical Sciences and Technology, University Roma Tre, V.le G. MarconiRome, 00146Italy
| | - Virginia Solar Fernandez
- Department of Science, Section Biomedical Sciences and Technology, University Roma Tre, V.le G. MarconiRome, 00146Italy
- Present address: Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Arturo Duperier, 4, 28029 Madrid, Spain; Department of Biochemistry, School of Medicine, Universidad Autonóma de Madrid, 28029 Madrid, Spain
| | - Maurizio Muzzi
- Department of Science, Section Molecular, Cellular, Environmental and Evolutionary Biology, LIMERome, 00146Italy
- Department of Bioscience and Territory, University of MolisePesche, 86090Italy
| | - Sandra Moreno
- Department of Science, Section Molecular, Cellular, Environmental and Evolutionary Biology, LIMERome, 00146Italy
- IRCCS Fondazione Santa LuciaRome, 00179Italy
| | - Maria Marino
- Department of Science, Section Biomedical Sciences and Technology, University Roma Tre, V.le G. MarconiRome, 00146Italy
- IRCCS Fondazione Santa LuciaRome, 00179Italy
| | - Marco Fiocchetti
- Department of Science, Section Biomedical Sciences and Technology, University Roma Tre, V.le G. MarconiRome, 00146Italy
- IRCCS Fondazione Santa LuciaRome, 00179Italy
| |
Collapse
|
10
|
Wang JL, Huang QM, Hu DX, Zhang WJ. Therapeutic effect of exosomes derived from Schwann cells in the repair of peripheral nerve injury. Life Sci 2024; 357:123086. [PMID: 39357794 DOI: 10.1016/j.lfs.2024.123086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Peripheral nerve injury (PNI) can cause nerve demyelination, neuronal apoptosis, axonal atrophy, inflammatory infiltration, glial scar formation, and other pathologies that can lead to sensory and motor dysfunction and seriously affect the psychosomatic health of patients. There is currently no effective treatment method, so exploring a promising treatment method is of great significance. Several studies have revealed the therapeutic roles of Schwann cells (SCs) and their exosomes in nerve injury repair. Exosomes are extracellular nanovesicles secreted by cells that act as key molecules in intercellular communication. Progress has been made in understanding the role of exosomes derived from SCs (SC-EXOs) in peripheral nerve regeneration, including the promotion of axonal regeneration and myelin formation, anti-inflammation, vascular regeneration, neuroprotection, and neuroregulation. Therefore, in this paper, we summarize the functional characteristics of SC-EXOs and discuss their potential therapeutic effects on PNI repair as well as some existing problems and future challenges.
Collapse
Affiliation(s)
- Jia-Ling Wang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Qi-Ming Huang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
11
|
Saikia B, Dhanushkodi A. Engineered exosome therapeutics for neurodegenerative diseases. Life Sci 2024; 356:123019. [PMID: 39209250 DOI: 10.1016/j.lfs.2024.123019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
An increase in life expectancy comes with a higher risk for age-related neurological and cognitive dysfunctions. Given the psycho-socioeconomic burden due to unhealthy aging in the coming decades, the United Nations has declared 2021-2030 as a decade of healthy aging. In this line, multipotent mesenchymal stromal cell-based therapeutics received special interest from the research community. Based on decades of research on cell therapy, a consensus has emerged that the therapeutic effects of cell therapy are due to the paracrine mechanisms rather than cell replacement. Exosomes, a constituent of the secretome, are nano-sized vesicles that have been a focus of intense research in recent years as a possible therapeutic agent or as a cargo to deliver drugs of interest into the central nervous system to induce neurogenesis, reduce neuroinflammation, confer neuroregeneration/neuroprotection, and improve cognitive and motor functions. In this review, we have discussed the neuroprotective properties of exosomes derived from adult mesenchymal stem cells, with a special focus on the role of exosomal miRNAs. We also reviewed various strategies to improve exosome production and their content for better therapeutic effects. Further, we discussed the utilization of ectomesenchymal stem cells like dental pulp stem cells and their exosomes in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Biplob Saikia
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, India
| | - Anandh Dhanushkodi
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
12
|
Miya MB, Ashutosh, Maulishree, Chandra Gupta P, Pathak V, Mishra R, Chaturvedi P, Kalani A. Therapeutic effects of OXY- Exo Aloe in diabetic wound injury. Biochem Biophys Res Commun 2024; 731:150398. [PMID: 39032360 DOI: 10.1016/j.bbrc.2024.150398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Delayed wound healing are common complications for diabetic patients. In light of chronic hypoxia's delay in wound healing, it is hypothesized that providing a better oxygen environment at the wound site will promote diabetic wound healing. OXY-ExoAloe is an innovative and effective therapy prepared from exosome-like vesicles of aloe vera gel, ginger juice and neem fruit sap. A combination of three herbal, oxygen-delivering and medicinally valued plants was standardized to determine if the combination had the desired effect. Interestingly, when we used OXY-ExoAloe at a particular ratio on a diabetic wound, the herbal therapy speeded up wound healing by reducing swelling, and the severity of the wound. Further, our data suggests that OXY-ExoAloe promoted wound healing by increasing wound oxygenation, reducing inflammation, cytokine production, and matrix remodeling. It is also safe and effective, with no reported side effects.
Collapse
Affiliation(s)
- Mumtaj Bano Miya
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Ashutosh
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Maulishree
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Prakash Chandra Gupta
- Toxicology Lab, School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Vandana Pathak
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Rajeev Mishra
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Pankaj Chaturvedi
- Department of Physiology, University of Louisville, Louisville, 40202, KY, USA
| | - Anuradha Kalani
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India; Department of Physiology, University of Louisville, Louisville, 40202, KY, USA.
| |
Collapse
|
13
|
Drayson OGG, Montay-Gruel P, Limoli CL. Radiomics approach for identifying radiation-induced normal tissue toxicity in the lung. Sci Rep 2024; 14:24256. [PMID: 39415029 PMCID: PMC11484882 DOI: 10.1038/s41598-024-75993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
The rapidly evolving field of radiomics has shown that radiomic features are able to capture characteristics of both tumor and normal tissue that can be used to make accurate and clinically relevant predictions. In the present study we sought to determine if radiomic features can characterize the adverse effects caused by normal tissue injury as well as identify if human embryonic stem cell (hESC) derived extracellular vesicle (EV) treatment can resolve certain adverse complications. A cohort of 72 mice (n = 12 per treatment group) were exposed to X-ray radiation to the whole lung (3 × 8 Gy) or to the apex of the right lung (3 × 12 Gy), immediately followed by retro-orbital injection of EVs. Cone-Beam Computed Tomography images were acquired before and 2 weeks after treatment. In total, 851 radiomic features were extracted from the whole lungs and < 20 features were selected to train and validate a series of random forest classification models trained to predict radiation status, EV status and treatment group. It was found that all three classification models achieved significantly high prediction accuracies on a validation subset of the dataset (AUCs of 0.91, 0.86 and 0.80 respectively). In the locally irradiated lung, a significant difference between irradiated and unirradiated groups as well as an EV sparing effect were observed in several radiomic features that were not seen in the unirradiated lung (including wavelet-LLH Kurtosis, wavelet HLL Large Area High Gray Level Emphasis, and Gray Level Non-Uniformity). Additionally, a radiation difference was not observed in a secondary comparison cohort, but there was no impact of imaging machine parameters on the radiomic signature of unirradiated mice. Our data demonstrate that radiomics has the potential to identify radiation-induced lung injury and could be applied to predict therapeutic efficacy at early timepoints.
Collapse
Affiliation(s)
- Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA.
- Dept. of Radiation Oncology, University of California, Irvine, CA, 92617-2695, USA.
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA
- Antwerp Research in Radiation Oncology (AReRO), Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA
| |
Collapse
|
14
|
Zhu H, Wang N, Chang Y, Zhang Y, Jiang S, Ren X, Yuan M, Chang H, Jin WN. Extracellular vesicles bearing serum amyloid A1 exacerbate neuroinflammation after intracerebral haemorrhage. Stroke Vasc Neurol 2024:svn-2024-003525. [PMID: 39357895 DOI: 10.1136/svn-2024-003525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Intracerebral haemorrhage (ICH) elicits a robust inflammatory response, which significantly contributes to secondary brain damage. Extracellular vesicles (EVs) play a pivotal role in intercellular communication by transporting immune-regulatory proteins. However, the precise contribution of these EV-carried proteins to neuroinflammation following ICH remains elusive. Here, we identified proteins dysregulated in EVs and further studied the EVs-enriched Serum amyloid A 1 (SAA1) to understand its role in neuroinflammation and ICH injury. METHODS We used mass spectrometry to analyse the EV protein cargo isolated from plasma samples of 30 ICH patients and 30 healthy controls. To validate the function of the dysregulated protein SAA1, an ICH mouse model was conducted to assess the effects of SAA1 neutralisation on brain oedema, neurological function and infiltration of peripheral leucocytes. RESULTS 49 upregulated proteins and 12 downregulated proteins were observed in EVs from ICH patients compared with controls. Notably, SAA1 demonstrated a significant increase in EVs associated with ICH. We observed that exogenous SAA1 stimulation led to an augmentation in the population of microglia and astrocytes, exacerbating neuroinflammation. Neutralising SAA1 with an anti-SAA1 monoclonal antibody (mAb) diminished the prevalence of proinflammatory microglia and the infiltration of peripheral leucocytes, which ameliorates brain oedema and neurological function in ICH mice. CONCLUSION Our findings provide compelling evidence implicating EVs and their cargo proteins in ICH pathogenesis. SAA1 emerges as a potential therapeutic target for mitigating neuroinjury and neuroinflammation following ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ningning Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingying Chang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Shihe Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Xiaoping Ren
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Meng Yuan
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Haoxiao Chang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| | - Wei-Na Jin
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Beijing, China
| |
Collapse
|
15
|
Ozceylan O, Sezgin-Bayindir Z. Current Overview on the Use of Nanosized Drug Delivery Systems in the Treatment of Neurodegenerative Diseases. ACS OMEGA 2024; 9:35223-35242. [PMID: 39184484 PMCID: PMC11340000 DOI: 10.1021/acsomega.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
Neurodegenerative diseases, encompassing conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, prion disease, and Huntington's disease, present a growing health concern as human life expectancy increases. Despite this, effective treatments to halt disease progression remain elusive due to various factors, including challenges in drug delivery across physiological barriers like the blood-brain barrier and patient compliance issues leading to treatment discontinuation. In response, innovative treatment approaches leveraging noninvasive techniques with higher patient compliance are emerging as promising alternatives. This Review aims to synthesize current treatment options and the challenges encountered in managing neurodegenerative diseases, while also exploring innovative treatment modalities. Specifically, noninvasive strategies such as intranasal administration and nanosized drug delivery systems are gaining prominence for their potential to enhance treatment efficacy and patient adherence. Nanosized drug delivery systems, including liposomes, polymeric micelles, and nanoparticles, are evaluated within the context of outstanding studies. The advantages and disadvantages of these approaches are discussed, providing insights into their therapeutic potential and limitations. Through this comprehensive examination, this Review contributes to the ongoing discourse surrounding the development of effective treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ozlem Ozceylan
- Graduate
School of Health Sciences, Ankara University, 06110 Ankara, Turkey
- Turkish
Medicines and Medical Devices Agency (TMMDA), 06520 Ankara, Turkey
| | - Zerrin Sezgin-Bayindir
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| |
Collapse
|
16
|
Ren H, Wang M, Ma X, An L, Guo Y, Ma H. METTL3 in cancer-associated fibroblasts-derived exosomes promotes the proliferation and metastasis and suppresses ferroptosis in colorectal cancer by eliciting ACSL3 m6A modification. Biol Direct 2024; 19:68. [PMID: 39160584 PMCID: PMC11331890 DOI: 10.1186/s13062-024-00511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) have been reported that can affect cancer cell proliferation, metastasis, ferroptosis, and immune escape. METTL3-mediated N6-methyladenine (m6A) modification is involved in the tumorigenesis of colorectal cancer (CRC). Herein, we investigated whether METTL3-dependent m6A in CAFs-derived exosomes (exo) affected CRC progression. METHODS qRT-PCR and western blotting analyses detected levels of mRNAs and proteins. Cell proliferation and metastasis were evaluated using MTT, colony formation, transwell, and wound healing assays, respectively. Cell ferroptosis was assessed by detecting cell viability and the levels of Fe+, reactive oxygen species, and glutathione after erastin treatment. Exosomes were isolated from CAFs by ultracentrifugation. The m6A modification profile was determined by methylated RNA immunoprecipitation assay and the interaction between METTL3 and ACSL3 (acyl-CoA synthetase 3) was verified using dual-luciferase reporter assay. Animal models were established for in vivo analysis. RESULTS CAFs promoted CRC cell proliferation and metastasis, and suppressed cell ferroptosis. METTL3 was enriched in CAFs and was packaged into exosomes. The m6A modification and METTL3 expression were increased in CRC samples. Knockdown of METTL3 in CAFs-exo suppressed CRC cell proliferation and metastasis, and induced cell ferroptosis. Mechanistically, METTL3 induced ACSL3 m6A modification and stabilized its expression. The anticancer effects mediated by METTL3-silenced CAFs-exo could be rescued by ACSL3 overexpression. Moreover, in vivo assay also showed that CAFs-exo with decreased METTL3 could hinder CRC growth and metastasis in mice models. CONCLUSION CAFs promoted the proliferation and metastasis, and restrained the ferroptosis in CRC by exosomal METTL3-elicited ACSL3 m6A modification.
Collapse
Affiliation(s)
- Hongtao Ren
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, No. 57, Siwu Road, Xi'an City, Shaanxi, 710004, China
| | - Mincong Wang
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, No. 57, Siwu Road, Xi'an City, Shaanxi, 710004, China
| | - Xiulong Ma
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, No. 57, Siwu Road, Xi'an City, Shaanxi, 710004, China
| | - Lei An
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, No. 57, Siwu Road, Xi'an City, Shaanxi, 710004, China
| | - Yuyan Guo
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, No. 57, Siwu Road, Xi'an City, Shaanxi, 710004, China
| | - Hongbing Ma
- Department of Radiotherapy, Second Affiliated Hospital of Xi'an Jiaotong University, No. 57, Siwu Road, Xi'an City, Shaanxi, 710004, China.
| |
Collapse
|
17
|
Xin GD, Liu XY, Fan XD, Zhao GJ. Exosomes repairment for sciatic nerve injury: a cell-free therapy. Stem Cell Res Ther 2024; 15:214. [PMID: 39020385 PMCID: PMC11256477 DOI: 10.1186/s13287-024-03837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
Sciatic nerve injury (SNI) is a common type of peripheral nerve injury typically resulting from trauma, such as contusion, sharp force injuries, drug injections, pelvic fractures, or hip dislocations. It leads to both sensory and motor dysfunctions, characterized by pain, numbness, loss of sensation, muscle atrophy, reduced muscle tone, and limb paralysis. These symptoms can significantly diminish a patient's quality of life. Following SNI, Wallerian degeneration occurs, which activates various signaling pathways, inflammatory factors, and epigenetic regulators. Despite the availability of several surgical and nonsurgical treatments, their effectiveness remains suboptimal. Exosomes are extracellular vesicles with diameters ranging from 30 to 150 nm, originating from the endoplasmic reticulum. They play a crucial role in facilitating intercellular communication and have emerged as highly promising vehicles for drug delivery. Increasing evidence supports the significant potential of exosomes in repairing SNI. This review delves into the pathological progression of SNI, techniques for generating exosomes, the molecular mechanisms behind SNI recovery with exosomes, the effectiveness of combining exosomes with other approaches for SNI repair, and the changes and future outlook for utilizing exosomes in SNI recovery.
Collapse
Affiliation(s)
- Guang-Da Xin
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Xue-Yan Liu
- Cardiology Department, China-Japan Union Hospital of Jilin Universit, Changchun, Jilin Province, 130000, China
| | - Xiao-Di Fan
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China
| | - Guan-Jie Zhao
- Nephrology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, 130000, China.
| |
Collapse
|
18
|
Ashique S, Kumar N, Mishra N, Muthu S, Rajendran RL, Chandrasekaran B, Obeng BF, Hong CM, Krishnan A, Ahn BC, Gangadaran P. Unveiling the role of exosomes as cellular messengers in neurodegenerative diseases and their potential therapeutic implications. Pathol Res Pract 2024; 260:155451. [PMID: 39002435 DOI: 10.1016/j.prp.2024.155451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Exosomes are a subgroup of extracellular vesicles that function as transmitters, allowing cells to communicate more effectively with each other. However, exosomes may have both beneficial and harmful impacts on central nervous system disorders. Hence, the fundamental molecular mechanisms of the origin of illness and its progression are currently being investigated. The involvement of exosomes in the origin and propagation of neurodegenerative illness has been demonstrated recently. Exosomes provide a representation of the intracellular environment since they include various essential bioactive chemicals. The latest studies have demonstrated that exosomes transport several proteins. Additionally, these physiological vesicles are important in the regeneration of nervous tissue and the healing of neuronal lesions. They also offer a microenvironment to stimulate the conformational variation of concerning proteins for aggregation, resulting in neurodegenerative diseases. The biosynthesis, composition, and significance of exosomes as extracellular biomarkers in neurodegenerative disorders are discussed in this article, with a particular emphasis on their neuroprotective effects.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal 713212, India; Research Scholar, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, Madhya Pradesh 474005, India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore, Tamil Nadu 641045, India; Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | | | - Brenya Francis Obeng
- Faculty of Science, College of Health and Allied Sciences, School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, the Republic of Korea
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, the Republic of Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea.
| |
Collapse
|
19
|
Davidson CL, Vengoji R, Jain M, Batra SK, Shonka N. Biological, diagnostic and therapeutic implications of exosomes in glioma. Cancer Lett 2024; 582:216592. [PMID: 38092145 PMCID: PMC10832613 DOI: 10.1016/j.canlet.2023.216592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/11/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024]
Abstract
Despite therapeutic advances, overall survival in glioblastoma is dismal. To optimize progress, a more detailed understanding of glioma's molecular, cellular, and intercellular pathophysiology is needed. Recent investigation has revealed a vital role for exosomes in inter-cellular signaling, tumor cell support, and regulation of the tumor microenvironment. Exosomes carry miRNAs, lncRNAs, mRNAs, proteins, immune regulatory molecules, nucleic acids, and lipids; however, the composition of exosome cargo is variable depending on the cell of origin. Specific exosomal miRNA contents such as miR-21, miR-301a, miR-151a, miR-148a, and miR-5096 are altered in high-grade glioma. Unique proteomic, genomic, and miRNA signatures of tumor exosomes have been associated with disease pathobiology, temozolomide resistance, immunosuppression, and tumor proliferation. Exosomes hold promise for tissue diagnostic glioma diagnosis and monitoring response to therapy. This review summarizes the current understanding of exosomes, their crucial role in glioma pathology, and future directions for their use in diagnosis and treatment. METHODS: The MEDLINE/PubMed database was reviewed for papers written in English and publication dates of 1981-2023, using the search string "Exosome", "Extracellular vesicles", "Glioma", "Exosomes in glioma".
Collapse
Affiliation(s)
- Caroline L Davidson
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| |
Collapse
|
20
|
Civelek E, Kabatas S, Savrunlu EC, Diren F, Kaplan N, Ofluoğlu D, Karaöz E. Effects of exosomes from mesenchymal stem cells on functional recovery of a patient with total radial nerve injury: A pilot study. World J Stem Cells 2024; 16:19-32. [PMID: 38292440 PMCID: PMC10824039 DOI: 10.4252/wjsc.v16.i1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses. Currently, there is a lack of effective pharmacological interventions for nerve damage, despite the existence of several small compounds, peptides, hormones, and growth factors that have been suggested as potential enhancers of neuron regeneration. Despite the objective of achieving full functional restoration by surgical intervention, the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries. AIM To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage. METHODS A male individual, aged 24, who is right-hand dominant and an immigrant, arrived with an injury caused by a knife assault. The cut is located on the left arm, specifically below the elbow. The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage. The sural autograft was utilized for repair, followed by the application of 1 mL of mesenchymal stem cell-derived exosome, comprising 5 billion microvesicles. This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway. The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing. RESULTS The duration of the patient's follow-up period was 180 d. An increasing Tinel's sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting. Upon the conclusion of the 6-mo post-treatment period, an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve. This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale. The results indicated that the level of improvement in motor function was classified as M5, denoting an excellent outcome. Additionally, the level of improvement in sensory function was classified as S3+, indicating a good outcome. It is noteworthy that these assessments were conducted in the absence of physical therapy. At the 10th wk post-injury, despite the persistence of substantial axonal damage, the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography (EMG). In contrast to the preceding. EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up, indicating ongoing regeneration. CONCLUSION Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage, as well as the experimental and therapy approaches delineated in this investigation, holds the potential to catalyze future clinical progress.
Collapse
Affiliation(s)
- Erdinç Civelek
- Department of Neurosurgery, University of Health Sciences, Gaziosmanpaşa Training and Research Hospital, Gaziosmanpaşa 34255, Istanbul, Turkey.
| | - Serdar Kabatas
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Gaziosmanpaşa 34255, Istanbul, Turkey
- Center for Stem Cell & Gene Therapy Research and Practice, University of Health Sciences Turkey, Gaziosmanpaşa 34255, Istanbul, Turkey
| | - Eyüp Can Savrunlu
- Department of Neurosurgery, Nevşehir State Hospital, Nevşehir 50300, Turkey
| | - Furkan Diren
- Department of Neurosurgery, University of Health Sciences Turkey, Gaziosmanpaşa Training and Research Hospital, Gaziosmanpaşa 34255, Istanbul, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Istanbul Rumeli University, Çorlu Reyap Hospital, Çorlu 59860, Tekirdağ, Turkey
| | - Demet Ofluoğlu
- Department of Physical Medicine and Rehabilitation, Ofluoğlu Klinik, Göztepe 34728, Istanbul, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell), Beşiktaş 34340, Istanbul, Turkey
- Department of Histology and Embryology, Istinye University, Faculty of Medicine, Zeytinburnu 34010, Istanbul, Turkey
- Istinye University, Center for Stem Cell and Tissue Engineering Research and Practice, Beşiktaş 34340, Istanbul, Turkey
| |
Collapse
|
21
|
García-Gracia M, Moreno-Martinez L, Hernaiz A, Usón S, Moral J, Sanz-Rubio D, Zaragoza P, Palacio J, Rosado B, Osta R, García-Belenguer S, Martín Burriel I. Analysis of Plasma-Derived Exosomal MicroRNAs as Potential Biomarkers for Canine Idiopathic Epilepsy. Animals (Basel) 2024; 14:252. [PMID: 38254420 PMCID: PMC10812621 DOI: 10.3390/ani14020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Epilepsy is one of the most prevalent complex neurological diseases in both the canine and human species, with the idiopathic form as its most common diagnosis. MicroRNAs (miRNAs) are small, noncoding RNA molecules that play a role in gene regulation processes and appear to be a promising biological target for convulsion control. These molecules have been reported as constituents of the internal content of exosomes, which are small extracellular vesicles released by cells. In this study, exosome samples were isolated from the plasma of 23 dogs, including 9 dogs with epilepsy responsive to treatment, 6 dogs with drug-resistant epilepsy, and 8 control dogs. Plasma exosomes were then characterized by electron transmission microscopy, nanoparticle tracking analysis, and dot blotting. Afterwards, the microRNA-enriched RNA content of exosomes was isolated, and miRNA quantification was performed by quantitative real-time PCR. Seven circulating miRNAs that have been previously described in the literature as potential diagnostic or prognostic biomarkers for epilepsy were evaluated. We observed significant differences in miR-16 (p < 0.001), miR-93-5p (p < 0.001), miR-142 (p < 0.001), miR-574 (p < 0.01), and miR-27 (p < 0.05) levels in dogs with refractory epilepsy compared to the control group. In drug-sensitive epileptic dogs, miR-142 (p < 0.01) showed significant differences compared to healthy dogs. Moreover, distinct levels of miR-16 (p < 0.05), miR-93-5p (p < 0.01), miR-132 (p < 0.05), and miR-574 (p < 0.05) were also found between drug-sensitive and drug-resistant epileptic dogs. Our results present plasma-circulating exosomes as an advantageous source of epileptic biomarkers, highlighting the potential of miRNAs as prognostic and diagnostic biomarkers of canine idiopathic epilepsy.
Collapse
Affiliation(s)
- Mireya García-Gracia
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain (L.M.-M.); (A.H.); (P.Z.); (R.O.)
| | - Laura Moreno-Martinez
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain (L.M.-M.); (A.H.); (P.Z.); (R.O.)
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Adelaida Hernaiz
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain (L.M.-M.); (A.H.); (P.Z.); (R.O.)
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sebastián Usón
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain (L.M.-M.); (A.H.); (P.Z.); (R.O.)
| | - Jon Moral
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain (J.P.); (B.R.); (S.G.-B.)
- Hospital Veterinario de la Universidad de Zaragoza (HVUZ), 50013 Zaragoza, Spain
| | - David Sanz-Rubio
- Precision Medicine in Respiratory Diseases (PRES) Group, Unidad de Investigación Traslacional, Instituto de Investigación Sanitaria de Aragón-IISA, Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain;
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain (L.M.-M.); (A.H.); (P.Z.); (R.O.)
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jorge Palacio
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain (J.P.); (B.R.); (S.G.-B.)
- Hospital Veterinario de la Universidad de Zaragoza (HVUZ), 50013 Zaragoza, Spain
| | - Belén Rosado
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain (J.P.); (B.R.); (S.G.-B.)
- Hospital Veterinario de la Universidad de Zaragoza (HVUZ), 50013 Zaragoza, Spain
| | - Rosario Osta
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain (L.M.-M.); (A.H.); (P.Z.); (R.O.)
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sylvia García-Belenguer
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet, 177, 50013 Zaragoza, Spain (J.P.); (B.R.); (S.G.-B.)
- Hospital Veterinario de la Universidad de Zaragoza (HVUZ), 50013 Zaragoza, Spain
| | - Inmaculada Martín Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain (L.M.-M.); (A.H.); (P.Z.); (R.O.)
- Instituto Agroalimentario de Aragón IA2 (UNIZAR-CITA), 50013 Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IISA), 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
22
|
Golmakani H, Azimian A, Golmakani E. Newly discovered functions of miRNAs in neuropathic pain: Transitioning from recent discoveries to innovative underlying mechanisms. Mol Pain 2024; 20:17448069231225845. [PMID: 38148597 PMCID: PMC10851769 DOI: 10.1177/17448069231225845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 12/28/2023] Open
Abstract
Neuropathic pain is a widespread clinical issue caused by somatosensory nervous system damage, affecting numerous individuals. It poses considerable economic and public health challenges, and managing it can be challenging due to unclear underlying mechanisms. Nevertheless, emerging evidence suggests that neurogenic inflammation and neuroinflammation play a role in developing pain patterns. Emerging evidence suggests that neurogenic inflammation and neuroinflammation play significant roles in developing neuropathic pain within the nervous system. Increased/decreased miRNA expression patterns could affect the progression of neuropathic and inflammatory pain by controlling nerve regeneration, neuroinflammation, and the expression of abnormal ion channels. However, our limited knowledge of miRNA targets hinders a complete grasp of miRNA's functions. Meanwhile, exploring exosomal miRNA, a recently uncovered role, has significantly advanced our comprehension of neuropathic pain's pathophysiology in recent times. In this review, we present a comprehensive overview of the latest miRNA studies and explore the possible ways miRNAs might play a role in the development of neuropathic pain.
Collapse
Affiliation(s)
- Hasan Golmakani
- Department of Pediatrics, Faculty of Medicine, Mashhad Azad University, Mashhad, Iran
| | - Amir Azimian
- Department of Pathobiology and Laboratory Sciences, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ebrahim Golmakani
- Department of Anesthesiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Amina SJ, Azam T, Dagher F, Guo B. A review on the use of extracellular vesicles for the delivery of drugs and biological therapeutics. Expert Opin Drug Deliv 2024; 21:45-70. [PMID: 38226932 DOI: 10.1080/17425247.2024.2305115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
INTRODUCTION Exosomes, a type of extracellular vesicles, are effective tools for delivering small-molecule drugs and biological therapeutics into cells and tissues. Surface modifications with targeting ligands ensure precise delivery to specific cells, minimizing accumulation in healthy organs and reducing the side effects. This is a rapidly growing area in drug delivery research and this review aims to comprehensively discuss the recent advances in the field. AREA COVERED Recent studies have presented compelling evidence supporting the application of exosomes as efficient delivery vehicles that escape endosome trapping, achieving effective in vivo delivery in animal models. This review provides a systemic discussion on the exosome-based delivery technology, with topics covering exosome purification, surface modification, and targeted delivery of various cargos ranging from siRNAs, miRNAs, and proteins, to small molecule drugs. EXPERT OPINION Exosome-based gene and drug delivery has low toxicity and low immunogenicity. Surface modifications of the exosomes can effectively avoid endosome trapping and increase delivery efficiency. This exciting technology can be applied to improve the treatments for a wide variety of diseases.
Collapse
Affiliation(s)
- Sundus Jabeen Amina
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Tasmia Azam
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Bin Guo
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| |
Collapse
|
24
|
Teymouri S, Pourhajibagher M, Bahador A. Exosomes: Friends or Foes in Microbial Infections? Infect Disord Drug Targets 2024; 24:e170124225730. [PMID: 38317472 DOI: 10.2174/0118715265264388231128045954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 02/07/2024]
Abstract
The use of new approaches is necessary to address the global issue of infections caused by drug-resistant pathogens. Antimicrobial photodynamic therapy (aPDT) is a promising approach that reduces the emergence of drug resistance, and no resistance has been reported thus far. APDT involves using a photosensitizer (PS), a light source, and oxygen. The mechanism of aPDT is that a specific wavelength of light is directed at the PS in the presence of oxygen, which activates the PS and generates reactive oxygen species (ROS), consequently causing damage to microbial cells. However, due to the PS's poor stability, low solubility in water, and limited bioavailability, it is necessary to employ drug delivery platforms to enhance the effectiveness of PS in photodynamic therapy (PDT). Exosomes are considered a desirable carrier for PS due to their specific characteristics, such as low immunogenicity, innate stability, and high ability to penetrate cells, making them a promising platform for drug delivery. Additionally, exosomes also possess antimicrobial properties, although in some cases, they may enhance microbial pathogenicity. As there are limited studies on the use of exosomes for drug delivery in microbial infections, this review aims to present significant points that can provide accurate insights.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran
| |
Collapse
|
25
|
Wang YY, Cheng J, Liu YD, Wang YP, Yang QW, Zhou N. Exosome-based regenerative rehabilitation: A novel ice breaker for neurological disorders. Biomed Pharmacother 2023; 169:115920. [PMID: 37995565 DOI: 10.1016/j.biopha.2023.115920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Neurological disorders affect a large population, often leading to different levels of disability and resulting in decreased quality of life. Due to the limited recovery obtained from surgical procedures and other medical approaches, a large number of patients with prolonged dysfunction receive neurorehabilitation protocols to improve their neural plasticity and regeneration. However, the poor neural regeneration ability cannot effectively rebuild the tissue integrity and neural functional networks; consequently, the prognoses of neurorehabilitation remain undetermined. To increase the chances of neural regeneration and functional recovery for patients with neurological disorders, regenerative rehabilitation was introduced with combined regenerative medicine and neurorehabilitation protocols to repair neural tissue damage and create an optimized biophysical microenvironment for neural regeneration potential. With the deepening of exosome research, an increasing number of studies have found that the systemic therapeutic effects of neurorehabilitation approaches are mediated by exosomes released by physically stimulated cells, which provides new insight into rehabilitative mechanisms. Meanwhile, exosome therapy also serves as an alternative cell-free therapy of regenerative medicine that is applied in partnership with neurorehabilitation approaches and formulates exosome-based neurological regenerative rehabilitation. In this study, we review the current state of exosome-associated neurorehabilitation. On the one hand, we focus on presenting the varied mediating effects of exosomes in neurorehabilitation protocols of specific neurological pathologies; on the other hand, we discuss the diverse combinations of exosome therapies and neurorehabilitation approaches in the field of neurological regenerative rehabilitation, aiming to increase the awareness of exosome research and applications in the rehabilitation of neurological disorders.
Collapse
Affiliation(s)
- Yuan-Yi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jin Cheng
- Department of Sport Medicine, Peking University Third Hospital, Beijing, China
| | - Ya-Dong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi-Peng Wang
- Department of Orthopedics, Peking Union Medical College Hospital, Beijing, China.
| | - Qi-Wei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Henan Province, China.
| |
Collapse
|
26
|
Wang Y, Shi G, Huang TCT, Li J, Long Z, Reisdorf R, Shin AY, Amadio P, Behfar A, Zhao C, Moran SL. Enhancing Functional Recovery after Segmental Nerve Defect Using Nerve Allograft Treated with Plasma-Derived Exosome. Plast Reconstr Surg 2023; 152:1247-1258. [PMID: 36912739 DOI: 10.1097/prs.0000000000010389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
BACKGROUND Nerve injuries can result in detrimental functional outcomes. Currently, autologous nerve graft offers the best outcome for segmental peripheral nerve injury. Allografts are alternatives, but do not have comparable results. This study evaluated whether plasma-derived exosome can improve nerve regeneration and functional recovery when combined with decellularized nerve allografts. METHODS The effect of exosomes on Schwann cell proliferation and migration were evaluated. A rat model of sciatic nerve repair was used to evaluate the effect on nerve regeneration and functional recovery. A fibrin sealant was used as the scaffold for exosome. Eighty-four Lewis rats were divided into autograft, allograft, and allograft with exosome groups. Gene expression of nerve regeneration factors was analyzed on postoperative day 7. At 12 and 16 weeks, rats were subjected to maximum isometric tetanic force and compound muscle action potential. Nerve specimens were then analyzed by means of histology and immunohistochemistry. RESULTS Exosomes were readily taken up by Schwann cells that resulted in improved Schwann cell viability and migration. The treated allograft group had functional recovery (compound muscle action potential, isometric tetanic force) comparable to that of the autograft group. Similar results were observed in gene expression analysis of nerve regenerating factors. Histologic analysis showed no statistically significant differences between treated allograft and autograft groups in terms of axonal density, fascicular area, and myelin sheath thickness. CONCLUSIONS Plasma-derived exosome treatment of decellularized nerve allograft may provide comparable clinical outcomes to that of an autograft. This can be a promising strategy in the future as an alternative for segmental peripheral nerve repair. CLINICAL RELEVANCE STATEMENT Off-the-shelf exosomes may improve recovery in nerve allografts.
Collapse
Affiliation(s)
- Yicun Wang
- From the Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University
- Division of Plastic Surgery, Department of Surgery
- Department of Orthopedic Surgery
| | - Guidong Shi
- Department of Orthopedic Surgery
- Tianjin Medical University
| | | | - Jialun Li
- Division of Plastic Surgery, Department of Surgery
- Department of Plastic Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology
| | | | | | | | | | - Atta Behfar
- Center for Regenerative Medicine
- Department of Cardiovascular Medicine, Mayo Clinic
| | | | | |
Collapse
|
27
|
You M, Xing H, Yan M, Zhang J, Chen J, Chen Y, Liu X, Zhu J. Schwann Cell-Derived Exosomes Ameliorate Paclitaxel-Induced Peripheral Neuropathy Through the miR-21-Mediated PTEN Signaling Pathway. Mol Neurobiol 2023; 60:6840-6851. [PMID: 37498480 DOI: 10.1007/s12035-023-03488-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
Paclitaxel-induced peripheral neuropathy (PIPN) is a neurological disorder resulting from paclitaxel (PTX) treatment for cancer patients. There are currently no drugs available that can definitively prevent or treat PIPN. Exosomes are cell-secreted nanoscale vesicles that mediate communication between neurons and glial cells. We found that Schwann cell-derived exosomes (SC-EXOs) robustly improved PIPN both in vitro and in vivo. In vivo studies showed that SC-EXOs were able to alleviate PTX-induced mechanical nociceptive sensitization in rats. Pathomorphological analysis showed that SC-EXOs ameliorated PTX-induced plantar intraepidermal nerve fiber loss and dorsal root ganglion (DRG) injury. Additionally, the results of in vitro studies showed that SC-EXOs had significant protective effects on the DRG cells damaged by PTX, and did not affect the antitumor effect of PTX against Hela cells. Further, mechanism research revealed that SC-EXOs promoted axonal regeneration and protected damaged neurons by upregulating miR-21 to repress the phosphatase and tensin homolog (PTEN) pathway, which could improve PIPN. Taken together, these findings suggest that SC-EXOs ameliorate PTX-induced peripheral neuropathy via the miR-21-mediated PTEN signaling pathway, which provides a novel strategy for the treatment of PIPN.
Collapse
Affiliation(s)
- Min You
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haizhu Xing
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ming Yan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Jie Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Jiayi Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yang Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Xiaoli Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
- Department of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Cui TW, Lu LF, Cao XD, Zhang QP, He YB, Wang YR, Ren R, Ben XY, Ni PL, Ma ZJ, Li YQ, Yi XN, Feng RJ. Exosomes combined with biosynthesized cellulose conduits improve peripheral nerve regeneration. IBRO Neurosci Rep 2023; 15:262-269. [PMID: 37841087 PMCID: PMC10570595 DOI: 10.1016/j.ibneur.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
Peripheral nerve injury is one of the more common forms of peripheral nerve disorders, and the most severe type of peripheral nerve injury is a defect with a gap. Biosynthetic cellulose membrane (BCM) is a commonly used material for repair and ligation of nerve defects with gaps. Meanwhile, exosomes from mesenchymal stem cells can promote cell growth and proliferation. We envision combining exosomes with BCMs to leverage the advantages of both to promote repair of peripheral nerve injury. Prepared exosomes were added to BCMs to form exosome-loaded BCMs (EXO-BCM) that were used for nerve repair in a rat model of sciatic nerve defects with gaps. We evaluated the repair activity using a pawprint experiment, measurement and statistical analyses of sciatica function index and thermal latency of paw withdrawal, and quantitation of the number and diameter of regenerated nerve fibers. Results indicated that EXO-BCM produced comprehensive and durable repair of peripheral nerve defects that were similar to those for autologous nerve transplantation, the gold standard for nerve defect repair. EXO-BCM is not predicted to cause donor site morbidity to the patient, in contrast to autologous nerve transplantation. Together these results indicate that an approach using EXO-BCM represents a promising alternative to autologous nerve transplantation, and could have broad applications for repair of nerve defects.
Collapse
Affiliation(s)
- Tian-Wei Cui
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Li-Fang Lu
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Xu-Dong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Quan-Peng Zhang
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Yue-Bin He
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Ya-Ru Wang
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Rui Ren
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Xin-Yu Ben
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Pan-Li Ni
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Zhi-Jian Ma
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Xi-Nan Yi
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Ren-Jun Feng
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| |
Collapse
|
29
|
Zhang L, Guan Q, Wang Z, Feng J, Zou J, Gao B. Consequences of Aging on Bone. Aging Dis 2023; 15:2417-2452. [PMID: 38029404 PMCID: PMC11567267 DOI: 10.14336/ad.2023.1115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
With the aging of the global population, the incidence of musculoskeletal diseases has been increasing, seriously affecting people's health. As people age, the microenvironment within skeleton favors bone resorption and inhibits bone formation, accompanied by bone marrow fat accumulation and multiple cellular senescence. Specifically, skeletal stem/stromal cells (SSCs) during aging tend to undergo adipogenesis rather than osteogenesis. Meanwhile, osteoblasts, as well as osteocytes, showed increased apoptosis, decreased quantity, and multiple functional limitations including impaired mechanical sensing, intercellular modulation, and exosome secretion. Also, the bone resorption function of macrophage-lineage cells (including osteoclasts and preosteoclasts) was significantly enhanced, as well as impaired vascularization and innervation. In this study, we systematically reviewed the effect of aging on bone and the within microenvironment (including skeletal cells as well as their intracellular structure variations, vascular structures, innervation, marrow fat distribution, and lymphatic system) caused by aging, and mechanisms of osteoimmune regulation of the bone environment in the aging state, and the causal relationship with multiple musculoskeletal diseases in addition with their potential therapeutic strategy.
Collapse
Affiliation(s)
- Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| | - Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhikun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jie Feng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Department of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
30
|
Rai S, Bharti PS, Singh R, Rastogi S, Rani K, Sharma V, Gorai PK, Rani N, Verma BK, Reddy TJ, Modi GP, Inampudi KK, Pandey HC, Yadav S, Rajan R, Nikolajeff F, Kumar S. Circulating plasma miR-23b-3p as a biomarker target for idiopathic Parkinson's disease: comparison with small extracellular vesicle miRNA. Front Neurosci 2023; 17:1174951. [PMID: 38033547 PMCID: PMC10684698 DOI: 10.3389/fnins.2023.1174951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/24/2023] [Indexed: 12/02/2023] Open
Abstract
Background Parkinson's disease (PD) is an increasingly common neurodegenerative condition, which causes movement dysfunction and a broad range of non-motor symptoms. There is no molecular or biochemical diagnosis test for PD. The miRNAs are a class of small non-coding RNAs and are extensively studied owing to their altered expression in pathological states and facile harvesting and analysis techniques. Methods A total of 48 samples (16 each of PD, aged-matched, and young controls) were recruited. The small extracellular vesicles (sEVs) were isolated and validated using Western blot, transmission electron microscope, and nanoparticle tracking analysis. Small RNA isolation, library preparation, and small RNA sequencing followed by differential expression and targeted prediction of miRNA were performed. The real-time PCR was performed with the targeted miRNA on PD, age-matched, and young healthy control of plasma and plasma-derived sEVs to demonstrate their potential as a diagnostic biomarker. Results In RNA sequencing, we identified 14.89% upregulated (fold change 1.11 to 11.04, p < 0.05) and 16.54% downregulated (fold change -1.04 to -7.28, p < 0.05) miRNAs in PD and controls. Four differentially expressed miRNAs (miR-23b-3p, miR-29a-3p, miR-19b-3p, and miR-150-3p) were selected. The expression of miR-23b-3p was "upregulated" (p = 0.002) in plasma, whereas "downregulated" (p = 0.0284) in plasma-derived sEVs in PD than age-matched controls. The ROC analysis of miR-23b-3p revealed better AUC values in plasma (AUC = 0.8086, p = 0.0029) and plasma-derived sEVs (AUC = 0.7278, p = 0.0483) of PD and age-matched controls. Conclusion We observed an opposite expression profile of miR-23b-3p in PD and age-matched healthy control in plasma and plasma-derived sEV fractions, where the expression of miR-23b-3p is increased in PD plasma while decreased in plasma-derived sEV fractions. We further observed the different miR-23b-3p expression profiles in young and age-matched healthy control.
Collapse
Affiliation(s)
- Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Komal Rani
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences Bibinagar, Hyderabad, India
| | - Vaibhav Sharma
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Bhupendra Kumar Verma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, India
| | | | - Hem Chandra Pandey
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Yadav
- Department of Biochemistry, All India Institute of Medical Sciences Raebareli, Uttar Pradesh, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| |
Collapse
|
31
|
András IE, Serrano N, Djuraskovic I, Fattakhov N, Sun E, Toborek M. Extracellular Vesicle-Serpine-1 Affects Neural Progenitor Cell Mitochondrial Networks and Synaptic Density: Modulation by Amyloid Beta and HIV-1. Mol Neurobiol 2023; 60:6441-6465. [PMID: 37458985 PMCID: PMC10533645 DOI: 10.1007/s12035-023-03456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/17/2023] [Indexed: 07/28/2023]
Abstract
Brain endothelial extracellular vesicles carrying amyloid beta (EV-Aβ) can be transferred to neural progenitor cells (NPCs) leading to NPC dysfunction. However, the events involved in this EV-mediated Aβ pathology are unclear. EV-proteomics studies identified Serpine-1 (plasminogen activator inhibitor 1, PAI-1) as a major connecting "hub" on several protein-protein interaction maps. Serpine-1 was described as a key player in Aβ pathology and was linked to HIV-1 infection as well. Therefore, the aim of this work was to address the hypothesis that Serpine-1 can be transferred via EVs from brain endothelial cells (HBMEC) to NPCs and contribute to NPC dysfunction. HBMEC concentrated and released Serpine-1 via EVs, the effect that was potentiated by HIV-1 and Aβ. EVs loaded with Serpine-1 were readily taken up by NPCs, and HIV-1 enhanced this event. Interestingly, a highly specific Serpine-1 inhibitor PAI039 increased EV-Aβ transfer to NPCs in the presence of HIV-1. PAI039 also partially blocked mitochondrial network morphology alterations in the recipient NPCs, which developed mainly after HIV + Aβ-EV transfer. PAI039 partly attenuated HIV-EV-mediated decreased synaptic protein levels in NPCs, while increased synaptic protein levels in NPC projections. These findings contribute to a better understanding of the complex mechanisms underlying EV-Serpine-1 related Aβ pathology in the context of HIV infection. They are relevant to HIV-1 associated neurocognitive disorders (HAND) in an effort to elucidate the mechanisms of neuropathology in HIV infection.
Collapse
Affiliation(s)
- Ibolya E. András
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Nelson Serrano
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Irina Djuraskovic
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Nikolai Fattakhov
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Enze Sun
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15Th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| |
Collapse
|
32
|
Namini MS, Daneshimehr F, Beheshtizadeh N, Mansouri V, Ai J, Jahromi HK, Ebrahimi-Barough S. Cell-free therapy based on extracellular vesicles: a promising therapeutic strategy for peripheral nerve injury. Stem Cell Res Ther 2023; 14:254. [PMID: 37726794 PMCID: PMC10510237 DOI: 10.1186/s13287-023-03467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023] Open
Abstract
Peripheral nerve injury (PNI) is one of the public health concerns that can result in a loss of sensory or motor function in the areas in which injured and non-injured nerves come together. Up until now, there has been no optimized therapy for complete nerve regeneration after PNI. Exosome-based therapies are an emerging and effective therapeutic strategy for promoting nerve regeneration and functional recovery. Exosomes, as natural extracellular vesicles, contain bioactive molecules for intracellular communications and nervous tissue function, which could overcome the challenges of cell-based therapies. Furthermore, the bioactivity and ability of exosomes to deliver various types of agents, such as proteins and microRNA, have made exosomes a potential approach for neurotherapeutics. However, the type of cell origin, dosage, and targeted delivery of exosomes still pose challenges for the clinical translation of exosome therapeutics. In this review, we have focused on Schwann cell and mesenchymal stem cell (MSC)-derived exosomes in nerve tissue regeneration. Also, we expressed the current understanding of MSC-derived exosomes related to nerve regeneration and provided insights for developing a cell-free MSC therapeutic strategy for nerve injury.
Collapse
Affiliation(s)
- Mojdeh Salehi Namini
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Daneshimehr
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Mansouri
- Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Kargar Jahromi
- Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Ortiz GGR, Zaidi NH, Saini RS, Ramirez Coronel AA, Alsandook T, Hadi Lafta M, Arias-Gonzáles JL, Amin AH, Maaliw Iii RR. The developing role of extracellular vesicles in autoimmune diseases: special attention to mesenchymal stem cell-derived extracellular vesicles. Int Immunopharmacol 2023; 122:110531. [PMID: 37437434 DOI: 10.1016/j.intimp.2023.110531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Autoimmune diseases are complex, chronic inflammatory conditions initiated by the loss of immunological tolerance to self-antigens. Nowadays, there is no effective and useful therapy for autoimmune diseases, and the existing medications have some limitations due to their nonspecific targets and side effects. During the last few decades, it has been established that mesenchymal stem cells (MSCs) have immunomodulatory functions. It is proposed that MSCs can exert an important therapeutic effect on autoimmune disorders. In parallel with these findings, several investigations have shown that MSCs alleviate autoimmune diseases. Intriguingly, the results of studies have demonstrated that the effective roles of MSCs in autoimmune diseases do not depend on direct intercellular communication but on their ability to release a wide spectrum of paracrine mediators such as growth factors, cytokines and extracellular vehicles (EVs). EVs that range from 50 to 5,000 nm were produced by almost any cell type, and these nanoparticles participate in homeostasis and intercellular communication via the transfer of a broad range of biomolecules such as modulatory proteins, nucleic acids (DNA and RNA), lipids, cytokines, and metabolites. EVs derived from MSCs display the exact properties of MSCs and can be safer and more beneficial than their parent cells. In this review, we will discuss the features of MSCs and their EVs, EVs biogenesis, and their cargos, and then we will highlight the existing discoveries on the impacts of EVs from MSCs on autoimmune diseases such as multiple sclerosis, arthritis rheumatic, inflammatory bowel disease, Type 1 diabetes mellitus, systemic lupus erythematosus, autoimmune liver diseases, Sjögren syndrome, and osteoarthritis, suggesting a potential alternative for autoimmune conditions therapy.
Collapse
Affiliation(s)
- Geovanny Genaro Reivan Ortiz
- Laboratory of Basic Psychology, Behavioral Analysis and Programmatic Development (PAD-LAB), Catholic University of Cuenca, Cuenca, Ecuador
| | - Neelam Hazoor Zaidi
- Umanand Prasad School of Medicine and Health Science, The University of Fiji, Saweni Campus, Lautoka, Fiji
| | | | | | - Tahani Alsandook
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | | | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Renato R Maaliw Iii
- College of Engineering, Southern Luzon State University, Lucban, Quezon, Philippines.
| |
Collapse
|
34
|
Chen Q, Shi J, Ruan D, Bian C. The diagnostic and therapeutic prospects of exosomes in ovarian cancer. BJOG 2023; 130:999-1006. [PMID: 36852533 DOI: 10.1111/1471-0528.17446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/22/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023]
Abstract
Exosomes are nano-sized vesicles derived from the endosomal system and are involved in many biological and pathological processes. Emerging evidence has demonstrated that exosomes with cell-specific constituents are associated with the tumorigenesis and progression of ovarian cancer. Therefore, exosomes derived from ovarian cancers can be potential diagnostic biomarkers and therapeutic targets. In this review, we briefly present the biological characteristics of exosomes and the recent advances in isolating and detecting exosomes. Furthermore, we summarise the many functions of exosomes in ovarian cancer, hoping to provide a theoretical basis for clinical applications of exosomes in the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Qianrun Chen
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Jiayan Shi
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Danhua Ruan
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| | - Ce Bian
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Mowry FE, Espejo-Porras F, Jin S, Quadri Z, Wu L, Bertolio M, Jarvis R, Reynolds C, Alananzeh R, Bieberich E, Yang Y. Chronic nSMase inhibition suppresses neuronal exosome spreading and sex-specifically attenuates amyloid pathology in APP knock-in Alzheimer's disease mice. Neurobiol Dis 2023; 184:106213. [PMID: 37364689 PMCID: PMC10777534 DOI: 10.1016/j.nbd.2023.106213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
Female biased pathology and cognitive decline in Alzheimer's disease (AD) have been consistently observed with unclear underlying mechanisms. Although brain sphingolipid ceramide is elevated in AD patients, whether and how ceramide may contribute to sex-specific differences in amyloid pathology is unknown. Here we investigated the sex-specific impact of chronic pharmacological inhibition of neutral sphingomyelinase (nSMase), a key enzyme responsible for ceramide metabolism, on in vivo neuron-derived exosome dynamics, Aβ plaque load, and cognitive function in the APPNL-F/NL-F knock-in (APP NL-F) AD mouse model. Our results found sex-specific increase of cortical C20:0 ceramide and brain exosome levels only in APP NL-F but not in age-matched WT mice. Although nSMase inhibition similarly blocks exosome spreading in male and female mice, significantly reduced amyloid pathology was mostly observed in cortex and hippocampus of female APP NL-F mice with only modest effect found on male APP NL-F mice. Consistently, T maze test to examine spatial working memory revealed a female-specific reduction in spontaneous alternation rate in APP NL-F mice, which was fully reversed with chronic nSMase inhibition. Together, our results suggest that disease induced changes in ceramide and exosome pathways contribute to the progression of female-specific amyloid pathology in APP NL-F AD models.
Collapse
Affiliation(s)
- Francesca E Mowry
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Francisco Espejo-Porras
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Shijie Jin
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Zainuddin Quadri
- Department of Physiology, University of Kentucky College of Medicine, 780 Rose Street, Lexington, KY 40536, USA.
| | - Limin Wu
- Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| | - Marcela Bertolio
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Rachel Jarvis
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Caroline Reynolds
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Rashed Alananzeh
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, 780 Rose Street, Lexington, KY 40536, USA; Veterans Affairs Medical Center, 1101 Veterans Drive, Lexington, KY 40502, United States.
| | - Yongjie Yang
- Department of Neuroscience, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA; Graduate School of Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
36
|
Abudurexiti M, Zhao Y, Wang X, Han L, Liu T, Wang C, Yuan Z. Bio-Inspired Nanocarriers Derived from Stem Cells and Their Extracellular Vesicles for Targeted Drug Delivery. Pharmaceutics 2023; 15:2011. [PMID: 37514197 PMCID: PMC10386614 DOI: 10.3390/pharmaceutics15072011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
With their seemingly limitless capacity for self-improvement, stem cells have a wide range of potential uses in the medical field. Stem-cell-secreted extracellular vesicles (EVs), as paracrine components of stem cells, are natural nanoscale particles that transport a variety of biological molecules and facilitate cell-to-cell communication which have been also widely used for targeted drug delivery. These nanocarriers exhibit inherent advantages, such as strong cell or tissue targeting and low immunogenicity, which synthetic nanocarriers lack. However, despite the tremendous therapeutic potential of stem cells and EVs, their further clinical application is still limited by low yield and a lack of standardized isolation and purification protocols. In recent years, inspired by the concept of biomimetics, a new approach to biomimetic nanocarriers for drug delivery has been developed through combining nanotechnology and bioengineering. This article reviews the application of biomimetic nanocarriers derived from stem cells and their EVs in targeted drug delivery and discusses their advantages and challenges in order to stimulate future research.
Collapse
Affiliation(s)
- Munire Abudurexiti
- College of Pharmacy, Southwest Minzu University, Chendu 610041, China; (M.A.); (X.W.); (L.H.)
| | - Yue Zhao
- Department of Pharmacy, Sichuan Tianfu New Area People’s Hospital, Chengdu 610213, China;
| | - Xiaoling Wang
- College of Pharmacy, Southwest Minzu University, Chendu 610041, China; (M.A.); (X.W.); (L.H.)
| | - Lu Han
- College of Pharmacy, Southwest Minzu University, Chendu 610041, China; (M.A.); (X.W.); (L.H.)
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia;
| | - Chengwei Wang
- Division of Internal Medicine, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhixiang Yuan
- College of Pharmacy, Southwest Minzu University, Chendu 610041, China; (M.A.); (X.W.); (L.H.)
| |
Collapse
|
37
|
Peng W, Xie Y, Luo Z, Liu Y, Xu J, Li C, Qin T, Lu H, Hu J. UTX deletion promotes M2 macrophage polarization by epigenetically regulating endothelial cell-macrophage crosstalk after spinal cord injury. J Nanobiotechnology 2023; 21:225. [PMID: 37454119 DOI: 10.1186/s12951-023-01986-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Macrophages polarized to the M2 subtype after spinal cord injury (SCI) are beneficial for promoting neurological recovery. The crosstalk between endothelial cells (ECs) and macrophages is crucial for the imbalance between proinflammatory and pro-resolving responses caused by macrophage heterogeneity; however, this crosstalk is strengthened post-SCI, leading to inflammatory cascades and second damage. As a powerful means to regulate gene expression, epigenetic regulation of the interaction between immune cells and ECs in SCI is still largely unknown. Our previous research demonstrated that the histone demethylase UTX deletion in ECs (UTX-/- ECs) promotes neurological recovery, while the precise mechanism is unrevealed. Here, we discovered that UTX-/- ECs polarize macrophages toward the M2 subtype post-SCI. Macrophage deficiency could block the neurological recovery caused by the knockdown of UTX. The exosomes from UTX-/- ECs mediate this crosstalk. In addition, we found UTX, H3K27, and miR-467b-3p/Sfmbt2 promoters forming a regulatory complex that upregulates the miR-467b-3p in UTX-/- ECs. And then, miR-467b-3p transfers to macrophages by exosomes and activates the PI3K/AKT/mTOR signaling by decreasing PTEN expression, finally polarizing macrophage to the M2 subtype. This study reveals a mechanism by epigenetic regulation of ECs-macrophages crosstalk and identifies potential targets, which may provide opportunities for treating SCI.
Collapse
Affiliation(s)
- Wei Peng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Spine Surgery, Wuxi 9th Affiliated Hospital of Soochow University, Wuxi, China
| | - Yong Xie
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zixiang Luo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yudong Liu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengjun Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Qin
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- Hunan Engineering Research Center of Sports and Health, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.
- Hunan Engineering Research Center of Sports and Health, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
38
|
Nasiry D, Khalatbary AR. Stem cell-derived extracellular vesicle-based therapy for nerve injury: A review of the molecular mechanisms. World Neurosurg X 2023; 19:100201. [PMID: 37181584 PMCID: PMC10173266 DOI: 10.1016/j.wnsx.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Recent evidence suggests that stem cell therapy has beneficial effects on nerve damage. These beneficial effects were subsequently found to be exerted in part in a paracrine manner by the release of extracellular vesicles. Stem cell-secreted extracellular vesicles have shown great potential to reduce inflammation and apoptosis, optimize the function of Schwann cells, regulate genes related to regeneration, and improve behavioral performance after nerve damage. This review summarizes the current knowledge on the effect of stem cell-derived extracellular vesicles on neuroprotection and regeneration along with their molecular mechanisms after nerve damage.
Collapse
Affiliation(s)
- Davood Nasiry
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Cellular and Molecular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Corresponding author.
| |
Collapse
|
39
|
Dadkhah M, Jafarzadehgharehziaaddin M, Molaei S, Akbari M, Gholizadeh N, Fathi F. Major depressive disorder: biomarkers and biosensors. Clin Chim Acta 2023:117437. [PMID: 37315724 DOI: 10.1016/j.cca.2023.117437] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Depressive disorders belong to highly heterogeneous psychiatric diseases. Loss of in interest in previously enjoyed activities and a depressed mood are the main characteristics of major depressive disorder (MDD). Moreover, due to significant heterogeneity in clinical presentation and lack of applicable biomarkers, diagnosis and treatment remains challenging. Identification of relevant biomarkers would allow for improved disease classification and more personalized treatment strategies. Herein, we review the current state of these biomarkers and then discuss diagnostic techniques of aimed to specifically target these analytes using state of the art biosensor technology.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Morteza Akbari
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neghin Gholizadeh
- Students Research Committee, Health School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzaneh Fathi
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensor Sciences and Technologies Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
40
|
Chu S, Yu T, Wang W, Wu H, Zhu F, Wei C, Gao F, Liu C, Fan H. Exosomes derived from EphB2-overexpressing bone marrow mesenchymal stem cells regulate immune balance and repair barrier function. Biotechnol Lett 2023; 45:601-617. [PMID: 37036605 DOI: 10.1007/s10529-023-03358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/22/2022] [Accepted: 01/26/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Disruption of intestinal barrier function and an imbalance in intestinal immunity are crucial for the occurrence and development of ulcerative colitis. Because of their important roles in regulating inflammation and immunity, exosomes (Exos) released from bone marrow mesenchymal stem cells (BMSCs) may be useful for treating ulcerative colitis. The EphB/EphrinB signaling pathway plays a crucial role in the inflammatory process and the development and function of immune cells, and can mediate long-distance intercellular communication through extracellular vesicles. This study was conducted to explore the effects of pre-modified BMSC-Exos expressing EphB2 (EphB2-Exos) on immunoregulation in vitro. METHODS We transfected a lentivirus vector encoding EphB2 into BMSCs and isolated EphB2-Exos from the culture supernatant. Inflammation and oxidative damage in the human colon adenocarcinoma cell line (Caco-2) were induced by dextran sulfate sodium/hydrogen peroxide. In addition, spleen CD4+ T lymphocytes of rats were sorted in vitro. We conducted a series of experiments to explore the biological functions of EphB2-Exos. RESULTS EphB2-Exos were successfully isolated and were found to significantly protect the activity, proliferation, and migration of Caco-2 cells that were inhibited by dextran sulfate sodium. EphB2-Exos alleviated inflammation and apoptosis and increased the activity of antioxidant enzymes while inhibiting oxidative stress in Caco-2 cells. EphB2-Exos restored intestinal barrier function by inhibiting the RhoA/ROCK pathway and regulated the polarization of CD4+T cells. CONCLUSION EphB2-Exos enhanced intestinal barrier function and regulated the immune balance by inhibiting the RhoA/ROCK pathway in vitro. These findings suggest that EphB2-Exos can be applied as a cell-free therapy for ulcerative colitis.
Collapse
Affiliation(s)
- Si Chu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Road, Jianghan District, Wuhan, 430022, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Road, Jianghan District, Wuhan, 430022, China
| | - Wenzhu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Road, Jianghan District, Wuhan, 430022, China
| | - Hui Wu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Road, Jianghan District, Wuhan, 430022, China
| | - Feng Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Road, Jianghan District, Wuhan, 430022, China
| | - Chunzhu Wei
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Road, Jianghan District, Wuhan, 430022, China
| | - Fei Gao
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Road, Jianghan District, Wuhan, 430022, China
| | - Chang Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Road, Jianghan District, Wuhan, 430022, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Road, Jianghan District, Wuhan, 430022, China.
| |
Collapse
|
41
|
András IE, Serrano N, Djuraskovic I, Fattakhov N, Sun E, Toborek M. Extracellular vesicle-Serpine-1 affects neural progenitor cell mitochondrial functions and synaptic density: modulation by amyloid beta and HIV-1. RESEARCH SQUARE 2023:rs.3.rs-2551245. [PMID: 36824983 PMCID: PMC9949237 DOI: 10.21203/rs.3.rs-2551245/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Brain endothelial extracellular vesicles carrying amyloid beta (EV-Aβ) can be transferred to neural progenitor cells (NPCs) leading to NPC dysfunction. However, the events involved in this EV-mediated Aβ pathology are unclear. EV-proteomics studies identified Serpine-1 (plasminogen activator inhibitor 1, PAI-1) as a major connecting "hub" on several protein-protein interaction maps. Serpine-1 was described as a key player in Aβ pathology and was linked to HIV-1 infection as well. Therefore, the aim of this work was to address the hypothesis that Serpine-1 can be transferred via EVs from brain endothelial cells to NPCs and contribute to NPC dysfunction. HBMEC concentrated and released Serpine-1 via EVs, the effect that was potentiated by HIV-1 and Aβ. EVs loaded with Serpine-1 were readily taken up by NPCs, and HIV-1 enhanced this event. Interestingly, a highly specific Serpine-1 inhibitor PAI039 increased EV-Aβ transfer to NPCs in the presence of HIV-1. PAI039 also partially blocked mitochondrial network morphology and mitochondrial function alterations in the recipient NPCs, which developed mainly after HIV + Aβ-EV transfer. PAI039 partly attenuated HIV-EV-mediated decreased synaptic protein levels in NPCs, while increased synaptic protein levels in NPC projections. These findings contribute to a better understanding of the complex mechanisms underlying EV-Serpine-1 related Aβ pathology in the context of HIV infection. They are relevant to HIV-1 associated neurocognitive disorders (HAND) in an effort to elucidate the mechanisms of neuropathology in HIV infection.
Collapse
Affiliation(s)
- Ibolya E András
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Nelson Serrano
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Irina Djuraskovic
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Nikolai Fattakhov
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Enze Sun
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| | - Michal Toborek
- University of Miami Miller School of Medicine: University of Miami School of Medicine
| |
Collapse
|
42
|
Sharma V, Nikolajeff F, Kumar S. Employing nanoparticle tracking analysis of salivary neuronal exosomes for early detection of neurodegenerative diseases. Transl Neurodegener 2023; 12:7. [PMID: 36747288 PMCID: PMC9903484 DOI: 10.1186/s40035-023-00339-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases are a set of progressive and currently incurable diseases that are primarily caused by neuron degeneration. Neurodegenerative diseases often lead to cognitive impairment and dyskinesias. It is now well recognized that molecular events precede the onset of clinical symptoms by years. Over the past decade, intensive research attempts have been aimed at the early diagnosis of these diseases. Recently, exosomes have been shown to play a pivotal role in the occurrence and progression of many diseases including cancer and neurodegenerative diseases. Additionally, because exosomes can cross the blood-brain barrier, they may serve as a diagnostic tool for neural dysfunction. In this review, we detail the mechanisms and current challenges of these diseases, briefly review the role of exosomes in the progression of neurodegenerative diseases, and propose a novel strategy based on salivary neuronal exosomes and nanoparticle tracking analysis that could be employed for screening the early onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Vaibhav Sharma
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
| | - Fredrik Nikolajeff
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Saroj Kumar
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden.
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
43
|
Turano E, Scambi I, Virla F, Bonetti B, Mariotti R. Extracellular Vesicles from Mesenchymal Stem Cells: Towards Novel Therapeutic Strategies for Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24032917. [PMID: 36769247 PMCID: PMC9917806 DOI: 10.3390/ijms24032917] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Neurodegenerative diseases are fatal disorders of the central nervous system (CNS) which currently lack effective treatments. The application of mesenchymal stem cells (MSCs) represents a new promising approach for treating these incurable disorders. Growing evidence suggest that the therapeutic effects of MSCs are due to the secretion of neurotrophic molecules through extracellular vesicles. The extracellular vesicles produced by MSCs (MSC-EVs) have valuable innate properties deriving from parental cells and could be exploited as cell-free treatments for many neurological diseases. In particular, thanks to their small size, they are able to overcome biological barriers and reach lesion sites inside the CNS. They have a considerable pharmacokinetic and safety profile, avoiding the critical issues related to the fate of cells following transplantation. This review discusses the therapeutic potential of MSC-EVs in the treatment of neurodegenerative diseases, focusing on the strategies to further enhance their beneficial effects such as tracking methods, bioengineering applications, with particular attention to intranasal delivery as a feasible strategy to deliver MSC-EVs directly to the CNS in an effective and minimally invasive way. Current progresses and limiting issues to the extent of the use of MSC-EVs treatment for human neurodegenerative diseases will be also revised.
Collapse
Affiliation(s)
- Ermanna Turano
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Ilaria Scambi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Federica Virla
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Bruno Bonetti
- Neurology Unit, Azienda Ospedaliera Universitaria Integrata Verona, 37124 Verona, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7164
| |
Collapse
|
44
|
Noori L, Filip K, Nazmara Z, Mahakizadeh S, Hassanzadeh G, Caruso Bavisotto C, Bucchieri F, Marino Gammazza A, Cappello F, Wnuk M, Scalia F. Contribution of Extracellular Vesicles and Molecular Chaperones in Age-Related Neurodegenerative Disorders of the CNS. Int J Mol Sci 2023; 24:927. [PMID: 36674442 PMCID: PMC9861359 DOI: 10.3390/ijms24020927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Many neurodegenerative disorders are characterized by the abnormal aggregation of misfolded proteins that form amyloid deposits which possess prion-like behavior such as self-replication, intercellular transmission, and consequent induction of native forms of the same protein in surrounding cells. The distribution of the accumulated proteins and their correlated toxicity seem to be involved in the progression of nervous system degeneration. Molecular chaperones are known to maintain proteostasis, contribute to protein refolding to protect their function, and eliminate fatally misfolded proteins, prohibiting harmful effects. However, chaperone network efficiency declines during aging, prompting the onset and the development of neurological disorders. Extracellular vesicles (EVs) are tiny membranous structures produced by a wide range of cells under physiological and pathological conditions, suggesting their significant role in fundamental processes particularly in cellular communication. They modulate the behavior of nearby and distant cells through their biological cargo. In the pathological context, EVs transport disease-causing entities, including prions, α-syn, and tau, helping to spread damage to non-affected areas and accelerating the progression of neurodegeneration. However, EVs are considered effective for delivering therapeutic factors to the nervous system, since they are capable of crossing the blood-brain barrier (BBB) and are involved in the transportation of a variety of cellular entities. Here, we review the neurodegeneration process caused mainly by the inefficiency of chaperone systems as well as EV performance in neuropathies, their potential as diagnostic biomarkers and a promising EV-based therapeutic approach.
Collapse
Affiliation(s)
- Leila Noori
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Kamila Filip
- Department of Biology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Zohreh Nazmara
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Simin Mahakizadeh
- Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj 3149779453, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, 35959 Rzeszow, Poland
| | - Federica Scalia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
45
|
Kandimalla R, Saeed M, Tyagi N, Gupta RC, Aqil F. Exosome-based approaches in the management of Alzheimer's disease. Neurosci Biobehav Rev 2023; 144:104974. [PMID: 36435392 DOI: 10.1016/j.neubiorev.2022.104974] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) has been the most extensively studied neurological disorders that affects millions of individuals globally and is associated with misfolding of proteins in the brain. Amyloid-β and tau are predominantly involved in the pathogenesis of AD. Therapeutic interventions and nanotechnological advancements are useful only in managing the AD symptoms and the cure for this disease remains elusive. Exosomes, originating from most cell and tissue types are regarded as a double-edged sword, considering their roles in the progression and treatment of AD. Exosomes can be manipulated as drug delivery vehicles for a wide range of therapeutic cargos-both small molecules and macromolecules. Herein, we review the roles of exosomes in the pathology, diagnosis, and treatment of AD and highlight their application as a drug carrier to the brain for AD treatment.
Collapse
Affiliation(s)
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, PO Box 2240, Hail, Saudi Arabia
| | - Neetu Tyagi
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA
| | - Ramesh C Gupta
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of Medicine, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
46
|
Zhao YY, Wu ZJ, Zhu LJ, Niu TX, Liu B, Li J. Emerging roles of miRNAs in neuropathic pain: From new findings to novel mechanisms. Front Mol Neurosci 2023; 16:1110975. [PMID: 36873108 PMCID: PMC9981676 DOI: 10.3389/fnmol.2023.1110975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 02/19/2023] Open
Abstract
Neuropathic pain, which results from damage to the somatosensory nervous system, is a global clinical condition that affects many people. Neuropathic pain imposes significant economic and public health burdens and is often difficult to manage because the underlying mechanisms remain unclear. However, mounting evidence indicates a role for neurogenic inflammation and neuroinflammation in pain pattern development. There is increasing evidence that the activation of neurogenic inflammation and neuroinflammation in the nervous system contribute to neuropathic pain. Altered miRNA expression profiles might be involved in the pathogenesis of both inflammatory and neuropathic pain by regulating neuroinflammation, nerve regeneration, and abnormal ion channel expression. However, the lack of knowledge about miRNA target genes prevents a full understanding of the biological functions of miRNAs. At the same time, an extensive study on exosomal miRNA, a newly discovered role, has advanced our understanding of the pathophysiology of neuropathic pain in recent years. This section provides a comprehensive overview of the current understanding of miRNA research and discusses the potential mechanisms of miRNAs in neuropathic pain.
Collapse
Affiliation(s)
- Yu-Ying Zhao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Zi-Jun Wu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Li-Juan Zhu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Tong-Xiang Niu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| | - Bin Liu
- Department of Critical Care Medicine, General Hospital of Tianjin Medical University, Tianjin, China.,Center for Critical Care Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Research Institute of Anesthesiology, Tianjin, China
| |
Collapse
|
47
|
Osborne OM, Kowalczyk JM, Louis KDP, Daftari MT, Colbert BM, Naranjo O, Torices S, András IE, Dykxhoorn DM, Toborek M. Brain endothelium-derived extracellular vesicles containing amyloid-beta induce mitochondrial alterations in neural progenitor cells. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:340-362. [PMID: 36649440 PMCID: PMC9838065 DOI: 10.20517/evcna.2022.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Aim Elevated brain deposits of amyloid beta (Aβ40) contribute to neuropathology and cognitive dysfunction in Alzheimer's disease (AD). However, the role of the blood-brain barrier (BBB) as an interface for the transfer of Aβ40 from the periphery into the brain is not well characterized. In addition, a substantial population of neural progenitor cells (NPCs) resides in close proximity to brain capillaries that form the BBB. The aim of this study is to understand the impact of brain endothelium-derived extracellular vesicles (EV) containing Aβ40 on metabolic functions and differentiation of NPCs. Methods Endothelial EVs were derived from an in vitro model of the brain endothelium treated with 100 nM Aβ40 or PBS. We then analyzed the impact of these EVs on mitochondrial morphology and bioenergetic disruption of NPCs. In addition, NPCs were differentiated and neurite development upon exposure to EVs was assessed using the IncuCyte Zoom live cell imaging system. Results We demonstrate that physiological concentrations of Aβ40 can be transferred to accumulate in NPCs via endothelial EVs. This transfer results in mitochondrial dysfunction, disrupting crista morphology, metabolic rates, fusion and fission dynamics of NPCs, as well as their neurite development. Conclusion Intercellular transfer of Aβ40 is carried out by brain endothelium-derived EVs, which can affect NPC differentiation and induce mitochondrial dysfunction, leading to aberrant neurogenesis. This has pathological implications because NPCs growing into neurons are incorporated into cerebral structures involved in learning and memory, two common phenotypes affected in AD and related dementias.
Collapse
Affiliation(s)
- Olivia M. Osborne
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer M. Kowalczyk
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kelssey D. Pierre Louis
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Manav T. Daftari
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brett M. Colbert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oandy Naranjo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Silvia Torices
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ibolya E. András
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Derek M. Dykxhoorn
- Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute of the University of Miami, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
48
|
Natale F, Fusco S, Grassi C. Dual role of brain-derived extracellular vesicles in dementia-related neurodegenerative disorders: cargo of disease spreading signals and diagnostic-therapeutic molecules. Transl Neurodegener 2022; 11:50. [PMID: 36437458 PMCID: PMC9701396 DOI: 10.1186/s40035-022-00326-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022] Open
Abstract
Neurodegenerative disorders are one of the most common causes of disability and represent 6.3% of the global burden of disease. Among them, Alzheimer's, Parkinson's, and Huntington's diseases cause cognitive decline, representing the most disabling symptom on both personal and social levels. The molecular mechanisms underlying the onset and progression of dementia are still poorly understood, and include secretory factors potentially affecting differentiated neurons, glial cells and neural stem cell niche. In the last decade, much attention has been devoted to exosomes as novel carriers of information exchanged among both neighbouring and distant cells. These vesicles can be generated and internalized by different brain cells including neurons, neural stem cells, astrocytes, and microglia, thereby affecting neural plasticity and cognitive functions in physiological and pathological conditions. Here, we review data on the roles of exosomes as carriers of bioactive molecules potentially involved in the pathogenesis of neurodegenerative disorders and detectable in biological fluids as biomarkers of dementia. We also discuss the experimental evidence of the therapeutic potential of stem cell-derived vesicles in experimental models of neurodegeneration-dependent cognitive decline.
Collapse
Affiliation(s)
- Francesca Natale
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Salvatore Fusco
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Claudio Grassi
- grid.8142.f0000 0001 0941 3192Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168 Rome, Italy ,grid.414603.4Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
49
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles Therapy for Pulmonary Hypertension: A Comprehensive Review of Preclinical Studies. J Interv Cardiol 2022; 2022:5451947. [PMID: 36419957 PMCID: PMC9652076 DOI: 10.1155/2022/5451947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Pulmonary hypertension (PH) is a type of clinical pathophysiological syndrome characterized by a progressive increase in pulmonary vascular resistance and subsequent progressive failure of the right heart function, and is a common complication of many diseases. Mesenchymal stem cells (MSCs) autonomously home to sites damaged by disease, repair damaged tissues, and participate in the regulation of systemic inflammation and immune responses, which have good clinical application prospects. Extracellular vesicles (EVs), such as exosomes and microvesicles, participate in various biological activities by regulating intercellular communication. Exosomes secreted into the extracellular environment also affect the host immune system. MSC-derived extracellular vesicles (MSC-EVs), as a mediator in the paracrine processes of MSCs, carry biologically active substances such as proteins, lipids, mRNA, and micro-RNA. MSC-EVs therapies, safer than cell-based treatments, have been shown to be effective in modulating macrophages to support anti-inflammatory phenotypes, which are strongly related to histological and functional benefits in preclinical models of pulmonary hypertension. The main effects of active substances and their potential medical value have attracted wide attention from researchers. This article reviews the role and relevant mechanisms of MSC-EVs in the treatment of pulmonary hypertension in recent studies and provides a basis for their future clinical applications.
Collapse
|
50
|
Gholami Farashah MS, Javadi M, Mohammadi A, Soleimani Rad J, Shakouri SK, Roshangar L. Bone marrow mesenchymal stem cell's exosomes as key nanoparticles in osteogenesis and bone regeneration: specific capacity based on cell type. Mol Biol Rep 2022; 49:12203-12218. [PMID: 36224447 DOI: 10.1007/s11033-022-07807-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/19/2022] [Indexed: 10/17/2022]
Abstract
Today, communities and their health systems are facing with several challenges associated with the population ageing. Growing number of bone disorders is one of the most serious consequences of aging. According to the reports bone disorders won't just affect the elderly population. Mesenchymal stem cells (MSCs) are multipotent cells that could be derived from a variety of tissues including bone marrow, Wharton's Jelly, adipose tissue, and others. MSCs have been utilized in different researches in the field of regenerative medicine because of their immunosuppression and anti-inflammatory mechanisms (like: inhibiting the activity of antigen presenting cells, and suppressing the activity of T lymphocyte cells, macrophages, and so on.), migration to injured areas, and participation in healing processes. Bone marrow mesenchymal stem cells (BMMSCs) are a type of these cells which can be commonly used in bone research with the promising results. These cells function by releasing a large number of extracellular vesicles (EVs). Exosomes are the most major EVs products produced by BMMSCs. They have the same contents and properties as their parent cells; however, these structures don't have the defects of cell therapy. Proteins (annexins, tetraspannins, etc.), lipids (cholesterol, phosphoglycerides, etc.), nucleic acids (micro-RNAs, and etc.) and other substances are found in exosomes. Exosomes affect target cells, causing them to change their function. The features of BMMSC exosomes' mechanism in osteogenesis and bone regeneration (like: effects on other MSCs, osteoblasts, osteoclasts, and angiogenesis) and also the effects of their micro-RNAs on osteogenesis are the subject of the present review.
Collapse
Affiliation(s)
- Mohammad Sadegh Gholami Farashah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mohammadi
- Stem cell and regenerative medicine research center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Anatomical Sciences, Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|