1
|
Zheng Q, Wang D, Lin R, Xu W. Pyroptosis, ferroptosis, and autophagy in spinal cord injury: regulatory mechanisms and therapeutic targets. Neural Regen Res 2025; 20:2787-2806. [PMID: 39101602 PMCID: PMC11826477 DOI: 10.4103/nrr.nrr-d-24-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Regulated cell death is a form of cell death that is actively controlled by biomolecules. Several studies have shown that regulated cell death plays a key role after spinal cord injury. Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords. Autophagy, a complex form of cell death that is interconnected with various regulated cell death mechanisms, has garnered significant attention in the study of spinal cord injury. This injury triggers not only cell death but also cellular survival responses. Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis, ferroptosis, and autophagy. Therefore, this review aims to comprehensively examine the mechanisms underlying regulated cell deaths, the signaling pathways that modulate these mechanisms, and the potential therapeutic targets for spinal cord injury. Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury. Moreover, a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Weihong Xu
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Wang BN, Du AY, Chen XH, Huang T, Mamun AA, Li P, Du ST, Feng YZ, Jiang LY, Xu J, Wang Y, Wang SS, Kim K, Zhou KL, Wu YQ, Hu SW, Xiao J. Inhibition of CD36 ameliorates mouse spinal cord injury by accelerating microglial lipophagy. Acta Pharmacol Sin 2025; 46:1205-1220. [PMID: 39880928 PMCID: PMC12032095 DOI: 10.1038/s41401-024-01463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
Spinal cord injury (SCI) is a serious trauma of the central nervous system (CNS). SCI induces a unique lipid-dense environment that results in the deposition of large amounts of lipid droplets (LDs). The presence of LDs has been shown to contribute to the progression of other diseases. Lipophagy, a selective type of autophagy, is involved in intracellular LDs degradation. Fatty acid translocase CD36, a multifunctional transmembrane protein that facilitates the uptake of long-chain fatty acids, is implicated in the progression of certain metabolic diseases, and negatively regulates autophagy. However, the precise mechanisms of LDs generation and degradation in SCI, as well as whether CD36 regulates SCI via lipophagy, remain unknown. In this study, we investigated the role of LDs accumulation in microglia for SCI, as well as the regulatory mechanism of CD36 in microglia lipophagy during LDs elimination in vivo and in vitro. SCI was induced in mice by applying moderate compression on spina cord at T9-T10 level. Locomotion recovery was evaluated at days 0, 1, 3, 7 and 14 following the injury. PA-stimulated BV2 cells was established as the in vitro lipid-loaded model. We observed a marked buildup of LDs in microglial cells at the site of injury post-SCI. More importantly, microglial cells with excessive LDs exhibited elevated activation and stimulated inflammatory response, which drastically triggered the pyroptosis of microglial cells. Furthermore, we found significantly increased CD36 expression, and the breakdown of lipophagy in microglia following SCI. Sulfo-N-succinimidyl oleate sodium (SSO), a CD36 inhibitor, has been shown to promote the lipophagy of microglial cells in SCI mice and PA-treated BV2 cells, which enhanced LDs degradation, ameliorated inflammatory levels and pyroptosis of microglial cells, and ultimately promoted SCI recovery. As expected, inhibition of lipophagy with Baf-A1 reversed the effects of SSO. We conclude that microglial lipophagy is essential for the removal of LDs during SCI recovery. Our research implies that CD36 could be a potential therapeutic target for the treatment and management of SCI.
Collapse
Affiliation(s)
- Bei-Ni Wang
- Department of Arthroplasty, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - An-Yu Du
- Department of Arthroplasty, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiang-Hang Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ting Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Abdullah Al Mamun
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui, 323000, China
| | - Ping Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Si-Ting Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yan-Zheng Feng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lin-Yuan Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yu Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shuang-Shuang Wang
- Department of Arthroplasty, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, China
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kai-Liang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Yan-Qing Wu
- The Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou, 325035, China.
| | - Si-Wang Hu
- Department of Arthroplasty, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, 317500, China.
| | - Jian Xiao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
3
|
Xu Q, Zhu Q, Ling G, Huang T, Su T, Chen Y, Xie Y, Zhong Y. Activation of spinal PGC-1α regulates microglial polarization through a feedback loop between ROS-mediated mitochondrial dysfunction and the NLRP3 inflammasome in neuropathic pain. Brain Res Bull 2025:111365. [PMID: 40316183 DOI: 10.1016/j.brainresbull.2025.111365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/19/2025] [Accepted: 04/26/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND An imbalance in microglial polarization plays an important role in the pathogenesis of neuropathic pain. PPARγ coactivator-1α (PGC-1α), a master coregulator of gene expression in mitochondrial biogenesis, is related to microglial polarization. However, the underlying mechanism involved is poorly understood.The aim of the present study was to explore the role of PGC-1α in regulating microglial polarization through a feedback loop between reactive oxygen species (ROS)-mediated mitochondrial dysfunction and the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in a rat model of chronic constriction injury (CCI). METHODS we quantified pain behaviour after CCI; analysed the localization of PGC-1α and the changes in the expression of CD68 (an M1 microglial marker)/IBA1 and ARG1 (an M2 microglial marker)/IBA1 in the dorsal horn (DH) via immunofluorescence. Western blotting and immunofluorescence were used to examine the expression of target proteins. Quantitative real-time PCR (qPCR) was used to investigate the mitochondrial DNA copy number (mtDNA). ROS production was measured via dihydroethidium (DHE). SOD activity and the MDA content were measured via SOD and MDA assay kits, respectively. In addition, tumour necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and IL-10 levels were measured via enzyme-linked immunosorbent assay (ELISA). RESULTS The results revealed ROS-mediated mitochondrial dysfunction and NLRP3 inflammasome activation, microglia phenotype from the M2 to the M1 phenotype in the CCI rats.Interesting, ROS-mediated mitochondrial dysfunction is one of the critical mediators of NLRP3 inflammasome activation.NLRP3 inflammasome in turn cause ROS production and mitochondrial dysfunction, suggesting for the first time a feedback loop between ROS-mediated mitochondrial dysfunction and NLRP3 inflammasome in the neuropathic pain.The activation of PGC-1α shifts the microglial phenotype via the modulation of a feedback loop between ROS-mediated mitochondrial dysfunction and the NLRP3 inflammasome. CONCLUSIONS These findings indicate that activation of PGC-1α could be a potential therapeutic approach to ameliorate neuropathic pain.
Collapse
Affiliation(s)
- Qingling Xu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Qiulin Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Guoxu Ling
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Tonghong Huang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Tingting Su
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Yanhua Chen
- Department of Anesthesiology, Cardiovascular Institute,Nanning, Guangxi 530021, PR China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, PR China.
| | - Yu Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, PR China.
| |
Collapse
|
4
|
Mohammadi M, Rahimi K, Rezaie A, Tabandeh MR. The role of fecal microbiota transplantation on the NLRP3-Caspase 1 pathway and anxiety like behavioral in the ulcerative colitis model in rats. Sci Rep 2025; 15:14831. [PMID: 40295607 PMCID: PMC12037881 DOI: 10.1038/s41598-025-96948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
The purpose of this study was to investigate the function of the NLRP3-Caspase 1 signaling pathway in the colon during fecal microbiota transplantation (FMT) in colitis induced by acetic acid. Additionally, the study aimed to determine the impact of FMT on anxiety behaviors by analyzing the function of the NLRP3-Caspase 1 signaling pathway in the hippocampus. A total of twenty-four rats were selected randomly for the study and divided into two groups, a control group, and an acid acetic-induced colitis group. The acid acetic-induced colitis group further consisted of three subgroups: untreated acid acetic-induced colitis group, mesalazine 0.3 gr/kg group, and FMT group. After 6 days, the colon was evaluated for macroscopic and microscopic damage, and the signaling pathway NLRP3-Caspase1-related genes in the colon and hippocampus were analyzed. Additionally, anxiety-related behaviors of the rats were observed. FMT decreased colonic mRNA expression levels of NLRP3, NF-кB, and Caspase1 and pro-inflammatory cytokines (IL-1β and IL-18). Also, FMT reduced the expression of NLRP3, NF-κB, and Caspase1 protein levels as well as pro-inflammatory cytokines IL-1β and IL-18 in the hippocampus, resulting in a reduction of anxiety behaviors in the open field and elevated plus maze tests in the colitis model. FMT may improve acetic acid-induced colitis by regulating the NLRP3-Caspase1 signaling pathway in the colon. It also reduced colitis-induced anxiety behavior by regulating the expression of proteins related to the NLRP3-Caspase 1 pathway in the hippocampus.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Anahita Rezaie
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
5
|
Cao P, Chen S, Wang H, Chen Y. Taraxasterol mediated autophagy inhibition in pancreatic encephalopathy involves its regulation on L1 cell adhesion molecule. Cytotechnology 2025; 77:72. [PMID: 40051886 PMCID: PMC11880456 DOI: 10.1007/s10616-025-00721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Pancreatic encephalopathy (PE) is a frequent complication of acute pancreatitis. This study explored the mechanism of taraxasterol (TAS) in PE treatment by inhibiting pyroptosis via L1 cell adhesion molecule (L1CAM) up-regulation. PE rat models were established and treated with TAS, NLRP3 activator, and sh-L1CAM lentivirus. Serum amylase and lipase activities and Serum, hippocampus, and amygdala IL-18 and IL-1β levels were determined by ELISA, followed by TUNEL and HE staining. Rat nerve injury was evaluated by modified Neurological Severity Score (mNSS). Spontaneous behaviors, learning, memory, and emotions in rats were separately assessed by open field, new object recognition, tail suspension, and forced swimming tests. Microstructures of hippocampal CA1 region and amygdala were observed. NLRP3 + GSDMD + cells, pyroptosis markers, L1CAM, and myelin basic protein (MBP) were detected. PE rat model displayed elevated serum amylase and lipase activities and IL-18 and IL-1β levels, increased mNSS, shortened moving distance, reduced discrimination rate, prolonged immobility time, pathological damage in hippocampal CA1 region and amygdala, increased TUNEL-positive and NLRP3 + GSDMD + cells, raised NLRP3, cleaved caspase-1, GSDMD-N, IL-1β and IL-18 levels, and reduced L1CAM and MBP levels. TAS mitigated behavioral deficits and brain injury and curbed NLRP3-mediated pyroptosis in hippocampal CA1 region and amygdala in PE rats. NLRP3 activation partly averted the beneficial impacts of TAS on PE rats. TAS suppressed nerve cell pyroptosis and facilitated myelin regeneration by up-regulating L1CAM. L1CAM silencing partially abrogated TAS's effect on behavioral deficits and brain injury in PE rats. TAS treated PE by inhibiting pyroptosis via L1CAM up-regulation. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00721-x.
Collapse
Affiliation(s)
- Peng Cao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuangxi Chen
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, No.69, Chuanshan Road, Shigu District, Hengyang, 421001 Hunan Province China
| | - Huiqing Wang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanfang Chen
- Department of Neurology, The First Affiliated Hospital, Hengyang Medical School, University of South China, No.69, Chuanshan Road, Shigu District, Hengyang, 421001 Hunan Province China
| |
Collapse
|
6
|
Kui W, Li Y, Gu Z, Xie L, Huang A, Kong S, Song L, Li L, Yu J, Xue CC, Wang K. Electroacupuncture Inhibits NLRP3-Mediated Microglial Pyroptosis to Ameliorate Chronic Neuropathic Pain in Rats. J Pain Res 2025; 18:1115-1129. [PMID: 40070891 PMCID: PMC11895692 DOI: 10.2147/jpr.s506569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Background Patients with neuropathic pain (NP), caused by injury or disease of the somatosensory nervous system, usually suffer from severe pain. Our previous studies revealed that electroacupuncture (EA) stimulation could effectively improve NP. However, the underlying mechanisms of EA have not been fully clarified. This study aimed to investigate the specific mechanisms of EA in alleviating NP, focusing on the pyroptosis. Materials and Methods Chronic Constriction Injury (CCI) model was established on the male Sprague-Dawley rats. CCI rats were treated with EA at acupoints GV20 and ST36 or/with the NOD-like receptor protein 3 (NLRP3) antagonist MCC950. EA treatment was administered for successive 14 days 7 days after the CCI surgery. The mechanical withdrawal threshold (MWT) and paw withdrawal latency (PWL) were performed during the experiment. At the end of the experiment, spinal cord segments and serum of rats were collected, ELISA detected the expression of inflammatory factors, immunofluorescence detected the microglia and neuron cells with pyroptosis biomarkers, and Western blot detected the NLRP3 pathway. Results EA treatment significantly alleviated pain hypersensitivity by increasing the MWT and PWL. Moreover, EA reduced levels of pro-inflammatory cytokines IL-1β and TNF-α in the spinal tissue. Mechanistically, the pyroptosis-related proteins, including NLRP3, N-GSDMD, Cleaved Caspase-1, IL-18 as well as IL-1β were downregulated by EA, indicating that EA attenuated the pyroptosis phenotype in NP rats. In particular, EA reduced the co-expression of NLRP3, Caspase-1 and N-GSDMD in microglia rather than in neuronal or astrocytic cells within the spinal cord of CCI rats. Pharmacological inhibition of NLRP3 inflammasome by MCC950 alleviates CCI-induced pain hypersensitivity while blocking EA's effect on anti-pyroptosis in CCI rats. Conclusion These findings demonstrate the EA ameliorates the neuroinflammation and pyroptosis to relieve chronic NP by suppressing NLRP3 inflammasome activation in microglia. EA may serve as a viable treatment therapy for chronic NP.
Collapse
Affiliation(s)
- Wenyun Kui
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Yanan Li
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Zhen Gu
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Lei Xie
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Aiping Huang
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Shuyi Kong
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Lilong Song
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Lingxing Li
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Jun Yu
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Chun-Chun Xue
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Kaiqiang Wang
- Department of Pain, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| |
Collapse
|
7
|
Kalaga P, Ray SK. Mental Health Disorders Due to Gut Microbiome Alteration and NLRP3 Inflammasome Activation After Spinal Cord Injury: Molecular Mechanisms, Promising Treatments, and Aids from Artificial Intelligence. Brain Sci 2025; 15:197. [PMID: 40002529 PMCID: PMC11852823 DOI: 10.3390/brainsci15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Aside from its immediate traumatic effects, spinal cord injury (SCI) presents multiple secondary complications that can be harmful to those who have been affected by SCI. Among these secondary effects, gut dysbiosis (GD) and the activation of the NOD (nucleotide-binding oligomerization domain) like receptor-family pyrin-domain-containing three (NLRP3) inflammasome are of special interest for their roles in impacting mental health. Studies have found that the state of the gut microbiome is thrown into disarray after SCI, providing a chance for GD to occur. Metabolites such as short-chain fatty acids (SCFAs) and a variety of neurotransmitters produced by the gut microbiome are hampered by GD. This disrupts healthy cognitive processes and opens the door for SCI patients to be impacted by mental health disorders. Additionally, some studies have found an increased presence and activation of the NLRP3 inflammasome and its respective parts in SCI patients. Preclinical and clinical studies have shown that NLRP3 inflammasome plays a key role in the maturation of pro-inflammatory cytokines that can initiate and eventually aggravate mental health disorders after SCI. In addition to the mechanisms of GD and the NLRP3 inflammasome in intensifying mental health disorders after SCI, this review article further focuses on three promising treatments: fecal microbiome transplants, phytochemicals, and melatonin. Studies have found these treatments to be effective in combating the pathogenic mechanisms of GD and NLRP3 inflammasome, as well as alleviating the symptoms these complications may have on mental health. Another area of focus of this review article is exploring how artificial intelligence (AI) can be used to support treatments. AI models have already been developed to track changes in the gut microbiome, simulate drug-gut interactions, and design novel anti-NLRP3 inflammasome peptides. While these are promising, further research into the applications of AI for the treatment of mental health disorders in SCI is needed.
Collapse
Affiliation(s)
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA;
| |
Collapse
|
8
|
Xiao L, Wang M, Shi Y, Huang X, Zhang W, Wu Y, Deng H, Xiong B, Pan W, Zhang J, Wang W. Neuroinflammation-mediated white matter injury in Parkinson's disease and potential therapeutic strategies targeting NLRP3 inflammasome. Int Immunopharmacol 2024; 143:113483. [PMID: 39488915 DOI: 10.1016/j.intimp.2024.113483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, severely affecting the quality of life of patients. Recent studies have shown that white matter (WM) plays a vital role in higher neurological functions such as behavior and cognition. In PD patients, neurodegeneration occurs not only in neuronal soma, but also in WM fiber bundles, which are composed of neural axons. The clinical symptoms of PD patients are related not only to the degeneration of neuronal soma, but also to the degeneration of WM. Most previous studies have focused on neuronal soma in substantia nigra (SN), while WM injury (WMI) in PD has been less studied. Moreover, most previous studies have focused on intracerebral lesions in PD, while less attention has been paid to the spinal cord distal to the brain. The above-mentioned factors may be one of the reasons for the poor treatment of previous drug outcomes. Neuroinflammation has been shown to exert a significant effect on the pathological process of brain and spinal cord neurodegeneration in PD. The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome has been shown to activate and mediate neuroinflammation and exacerbate neurodegeneration in PD. NLRP3 inflammasome inhibition may be a potential strategy for the treatment of WMI in PD. This review summarizes recent advances and future directions regarding neuroinflammation-mediated WMI in PD and potential therapeutic strategies for targeting NLRP3 inflammasome in the brain and spinal cord, providing new insights for researchers to develop more effective therapeutic approaches for PD patients.
Collapse
Affiliation(s)
- Linglong Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Mengqi Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yifeng Shi
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Xinyuejia Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Hao Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Botao Xiong
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Pan
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Jie Zhang
- Core Facility of West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China.
| |
Collapse
|
9
|
Hu X, Wang W, Chen X, Kong C, Zhao X, Wang Z, Zhang H, Lu S. Trehalose Rescues Postmenopausal Osteoporosis Induced by Ovariectomy through Alleviating Osteoblast Pyroptosis via Promoting Autophagy. Biomedicines 2024; 12:2224. [PMID: 39457537 PMCID: PMC11505409 DOI: 10.3390/biomedicines12102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Osteoporosis, a prevalent bone metabolic disease, often requires long-term drug treatments that may lead to serious side effects. Trehalose, a natural disaccharide found in various organisms, has been shown to have a promoting effect on autophagy. However, whether trehalose can improve bone mass recovery in ovariectomized rats and its underlying mechanisms remains unclear. In this study, trehalose was administered to ovariectomized rats to evaluate its therapeutic potential for osteoporosis following ovariectomy. METHODS Micro-computed tomography (Micro-CT), hematoxylin and eosin (HE) and immunohistochemical staining techniques were utilized to evaluate the impact of trehalose on osteoporosis induced by ovariectomy (OVX) in mice, both in imaging and histological dimensions. Furthermore, the influence of trehalose on osteoblastogenesis and functional activity was quantified through Alizarin Red S (ARS) staining and immunoblotting assays. RESULTS Trehalose effectively mitigated bone loss, elevated autophagy and suppressed pyroptosis in ovariectomized rats. Furthermore, 3-methyladenine diminished the protective effects of trehalose, particularly in promoting autophagy and inhibiting pyroptosis. CONCLUSIONS Trehalose demonstrates significant potential in treating osteoporosis by suppressing NLRP3 inflammasome-driven pyroptosis, primarily through autophagy promotion. This suggests that trehalose could be a promising, safer alternative treatment for osteoporosis.
Collapse
Affiliation(s)
- Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Xuan Zhao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Haojie Zhang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China; (W.W.); (X.C.); (C.K.); (X.Z.); (Z.W.); (H.Z.); (S.L.)
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
10
|
Youn JK, Lee HR, Ko D, Kim HY. Attenuation of esophageal anastomotic stricture through remote ischemic conditioning in a rat model. Sci Rep 2024; 14:18481. [PMID: 39122787 PMCID: PMC11315918 DOI: 10.1038/s41598-024-69386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024] Open
Abstract
Anastomotic stricture is a typical complication of esophageal atresia surgery. Remote ischemic conditioning (RIC) has demonstrated multiorgan benefits, however, its efficacy in the esophagus remains unclear. This study aimed to investigate whether applying RIC after esophageal resection and anastomosis in rats could attenuate esophageal stricture and improve inflammation. Sixty-five male Sprague-Dawley rats were categorized into the following groups: controls with no surgery, resection and anastomosis only, resection and anastomosis with RIC once, and resection and anastomosis with RIC twice. RIC included three cycles of hind-limb ischemia followed by reperfusion. Inflammatory markers associated with the interleukin 6/Janus kinase/ signal transducer and activator of transcription 3 (IL-6/JAK/STAT3) and tumor necrosis factor-alpha/nuclear factor-κB (TNF-α/NF-kB) signaling pathways were evaluated with RNA and protein works. The RIC groups showed significantly lower stricture rates, lower inflammatory markers levels than the resection and anastomosis-only group. The RIC groups had significantly lower IL-6 and TNFa levels than the resection and anastomosis-only group, confirming the inhibitory role of remote ischemic conditioning in the IL-6/JAK/STAT3 and TNF-α/NF-kB signaling pathways. RIC after esophageal resection and anastomosis can reduce the inflammatory response, improving strictures at the esophageal anastomosis site, to be a novel noninvasive intervention for reducing esophageal anastomotic strictures.
Collapse
Affiliation(s)
- Joong Kee Youn
- Department of Pediatric Surgery, Seoul National University Hospital, Seoul, Korea
- Department of Pediatric Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - Hye-Rim Lee
- Department of Pediatric Surgery, Seoul National University Hospital, Seoul, Korea
| | - Dayoung Ko
- Department of Pediatric Surgery, Seoul National University Hospital, Seoul, Korea
- Department of Pediatric Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Hospital, Seoul, Korea.
- Department of Pediatric Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Korea.
| |
Collapse
|
11
|
Khoshnavay Foumani M, Amirshahrokhi K, Namjoo Z, Niapour A. Carvedilol attenuates inflammatory reactions of lipopolysaccharide-stimulated BV2 cells and modulates M1/M2 polarization of microglia via regulating NLRP3, Notch, and PPAR-γ signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4727-4736. [PMID: 38133658 DOI: 10.1007/s00210-023-02914-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Microglial cells coordinate immune responses in the central nervous system. Carvedilol (CVL) is a non-selective β-blocker with anti-inflammatory and anti-oxidant effects. This study aims to investigate the anti-inflammatory effects and the underlying mechanisms of CVL on lipopolysaccharide (LPS)-induced inflammation in microglial BV2 cells. BV2 cells were stimulated with LPS, and the protective effects of CVL were investigated via measurement of cell viability, reactive oxygen species (ROS), and interleukin (IL)-1β liberation. The protein levels of some inflammatory cascade, Notch, and peroxisome proliferator-activated receptor (PPAR)-γ pathways and relative markers of M1/M2 microglial phenotypes were assessed. Neuroblastoma SH-SY5Y cells were cultured with a BV2-conditioned medium (CM), and the capacity of CVL to protect cell viability was evaluated. CVL displayed a protective effect against LPS stress through reducing ROS and down-regulating of nuclear factor kappa B (NF-κB) p65, NLR family pyrin domain containing-3 (NLRP3), and IL-1β proteins. LPS treatment significantly increased the levels of the M1 microglial marker inducible nitric oxide synthase (iNOS) and M1-associated cleaved-NOTCH1 and hairy and enhancer of split-1 (HES1) proteins. Conversely, LPS treatment reduced the levels of the M2 marker arginase-1 (Arg-1) and PPAR-γ proteins. CVL pre-treatment reduced the protein levels of iNOS, cleaved-NOTCH1, and HES1, while increased Arg-1 and PPAR-γ. CM of CVL-primed BV2 cells significantly improved SH-SY5Y cell viability as compared with the LPS-induced cells. CVL suppressed ROS production and alleviated the expression of inflammatory markers in LPS-stimulated BV2 cells. Our results demonstrated that targeting Notch and PPAR-γ pathways as well as directing BV2 cell polarization toward the M2 phenotype may provide a therapeutic strategy to suppress neuroinflammation by CVL.
Collapse
Affiliation(s)
- Mohammadjavad Khoshnavay Foumani
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zeinab Namjoo
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
12
|
Cihankaya H, Bader V, Winklhofer KF, Vorgerd M, Matschke J, Stahlke S, Theiss C, Matschke V. Elevated NLRP3 Inflammasome Activation Is Associated with Motor Neuron Degeneration in ALS. Cells 2024; 13:995. [PMID: 38920626 PMCID: PMC11202041 DOI: 10.3390/cells13120995] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron degeneration in the central nervous system. Recent research has increasingly linked the activation of nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome to ALS pathogenesis. NLRP3 activation triggers Caspase 1 (CASP 1) auto-activation, leading to the cleavage of Gasdermin D (GSDMD) and pore formation on the cellular membrane. This process facilitates cytokine secretion and ultimately results in pyroptotic cell death, highlighting the complex interplay of inflammation and neurodegeneration in ALS. This study aimed to characterize the NLRP3 inflammasome components and their colocalization with cellular markers using the wobbler mouse as an ALS animal model. Firstly, we checked the levels of miR-223-3p because of its association with NLRP3 inflammasome activity. The wobbler mice showed an increased expression of miR-223-3p in the ventral horn, spinal cord, and cerebellum tissues. Next, increased levels of NLRP3, pro-CASP 1, cleaved CASP 1 (c-CASP 1), full-length GSDMD, and cleaved GDSMD revealed NLRP3 inflammasome activation in wobbler spinal cords, but not in the cerebellum. Furthermore, we investigated the colocalization of the aforementioned proteins with neurons, microglia, and astrocyte markers in the spinal cord tissue. Evidently, the wobbler mice displayed microgliosis, astrogliosis, and motor neuron degeneration in this tissue. Additionally, we showed the upregulation of protein levels and the colocalization of NLRP3, c-CASP1, and GSDMD in neurons, as well as in microglia and astrocytes. Overall, this study demonstrated the involvement of NLRP3 inflammasome activation and pyroptotic cell death in the spinal cord tissue of wobbler mice, which could further exacerbate the motor neuron degeneration and neuroinflammation in this ALS mouse model.
Collapse
Affiliation(s)
- Hilal Cihankaya
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, 44801 Bochum, Germany; (H.C.); (C.T.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Konstanze F. Winklhofer
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, 44801 Bochum, Germany;
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, Buerkle-de-la-Camp-Platz 1, 44789 Bochum, Germany;
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Sarah Stahlke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, 44801 Bochum, Germany; (H.C.); (C.T.)
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, 44801 Bochum, Germany; (H.C.); (C.T.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, 44801 Bochum, Germany;
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, 44801 Bochum, Germany; (H.C.); (C.T.)
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, 44801 Bochum, Germany;
| |
Collapse
|
13
|
Jin J, Kang DH, Lee GH, Kim WM, Choi JI. Intrathecal gastrodin alleviates allodynia in a rat spinal nerve ligation model through NLRP3 inflammasome inhibition. BMC Complement Med Ther 2024; 24:213. [PMID: 38835032 PMCID: PMC11149323 DOI: 10.1186/s12906-024-04519-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Gastrodin (GAS), a main bioactive component of the herbal plant, Gastrodia elata Blume, has shown to have beneficial effects on neuroinflammatory diseases such as Alzheimer's disease in animal studies and migraine in clinical studies. Inflammasome is a multimeric protein complex having a core of pattern recognition receptor and has been implicated in the development of neuroinflammatory diseases. Gastrodin has shown to modulate the activation of nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. This study investigated the effects of GAS on the intensity of mechanical allodynia and associated changes in NLRP3 inflammasome expression at the spinal level using L5/6 spinal nerve ligation model (SNL) in rats. METHODS Intrathecal (IT) catheter implantation and SNL were used for drug administration and pain model in male Sprague-Dawley rats. The effect of gastrodin or MCC950 (NLRP3 inflammasome inhibitor) on mechanical allodynia was measured by von Frey test. Changes in NLRP3 inflammasome components and interleukin-1β (IL-1β) and cellular expression were examined in the spinal cord and dorsal root ganglion. RESULTS The expression of NLRP3 inflammasome components was found mostly in the neurons in the spinal cord and dorsal root ganglion. The protein and mRNA levels of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, and IL-1β were upregulated in SNL animals compared to Sham animals. IT administration of GAS significantly attenuated the expression of NLRP3 inflammasome and the intensity of SNL-induced mechanical allodynia. NLRP3 inflammasome inhibitor, MCC950, also attenuated the intensity of allodynia, but the effect is less strong and shorter than that of GAS. CONCLUSIONS Expression of NLRP3 inflammasome and IL-1β is greatly increased and mostly found in the neurons at the spinal level in SNL model, and IT gastrodin exerts a significant anti-allodynic effect in SNL model partly through suppressing the expression of NLRP3 inflammasome.
Collapse
Affiliation(s)
- JunXiu Jin
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea
- Department of Anesthesia, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Dong Ho Kang
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea
| | - Geon Hui Lee
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea
| | - Woong Mo Kim
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, 58128, Korea
| | - Jeong Il Choi
- Department of Anesthesiology and Pain Medicine, Chonnam National University Medical School and Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Korea.
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun, 58128, Korea.
| |
Collapse
|
14
|
Meisinger C, Freuer D, Schmitz T, Ertl M, Zickler P, Naumann M, Linseisen J. Inflammation biomarkers in acute ischemic stroke according to different etiologies. Eur J Neurol 2024; 31:e16006. [PMID: 37522399 PMCID: PMC11235198 DOI: 10.1111/ene.16006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND High throughput technologies provide new opportunities to further investigate the pathophysiology of ischemic strokes. The present cross-sectional study aimed to evaluate potential associations between the etiologic subtypes of ischemic stroke and blood-based proteins. METHODS We investigated the associations between ischemic stroke subtypes and a panel of circulating inflammation biomarkers in 364 patients included in the Stroke Cohort Augsburg (SCHANA). Stroke etiologies were categorized according to the TOAST (Trial of Org 10172 in Acute Stroke Treatment) classification. Serum concentrations of 52 biomarkers were measured using the Bio-Plex Pro™ Human Cytokine Screening Panel, ICAM-1 set and VCAM-1 set, plus the Pro™ Human TH17 cytokine sCD40L set and IL31 set (all Bio-Rad, USA). Multivariable linear regression models were used to examine associations. Point estimates were calculated as the mean difference inσ -standardized cytokine levels on the log2 -scale. RESULTS Stromal-cell-derived-factor 1 alpha (SDF-1a) showed significantly higher serum levels in cardioembolic compared with large vessel atherosclerotic stroke (β = 0.48; 95% CI 0.22; 0.75; Padj = 0.036). Significantly lower levels of interleukin-6 (IL-6) (β = -0.53; 95% CI -0.84; -0.23; Padj = 0.036) and macrophage migration inhibitory factor (MIF) (β = -0.52; 95% CI -0.84; -0.21; Padj = 0.043) were found in the small vessel versus large vessel stroke subtype. CONCLUSIONS Immune dysregulations observed in different stroke subtypes might help uncover pathophysiological mechanisms of the disease. Further studies are needed to validate identified biomarkers in diverse study populations before they can potentially be used in clinical practice to further improve stroke management and patient outcomes.
Collapse
Affiliation(s)
| | - Dennis Freuer
- Epidemiology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Timo Schmitz
- Epidemiology, Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Michael Ertl
- Department of Neurology and Clinical NeurophysiologyUniversity Hospital AugsburgAugsburgGermany
| | - Philipp Zickler
- Department of Neurology and Clinical NeurophysiologyUniversity Hospital AugsburgAugsburgGermany
| | - Markus Naumann
- Department of Neurology and Clinical NeurophysiologyUniversity Hospital AugsburgAugsburgGermany
| | - Jakob Linseisen
- Epidemiology, Medical FacultyUniversity of AugsburgAugsburgGermany
- Institute for Medical Information Processing, Biometry and Epidemiology – IBELudwig‐Maximilians‐Universität Munich (LMU)MunichGermany
| |
Collapse
|
15
|
Kharazinejad E, Hassanzadeh G, Sahebkar A, Yousefi B, Reza Sameni H, Majidpoor J, Golchini E, Taghdiri Nooshabadi V, Mousavi M. The Comparative Effects of Schwann Cells and Wharton's Jelly Mesenchymal Stem Cells on the AIM2 Inflammasome Activity in an Experimental Model of Spinal Cord Injury. Neuroscience 2023; 535:1-12. [PMID: 37890609 DOI: 10.1016/j.neuroscience.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Inflammasome activation and the consequent release of pro-inflammatory cytokines play a crucial role in the development of sensory/motor deficits following spinal cord injury (SCI). Immunomodulatory activities are exhibited by Schwann cells (SCs) and Wharton's jelly mesenchymal stem cells (WJ-MSCs). In this study, we aimed to compare the effectiveness of these two cell sources in modulating the absent in melanoma 2 (AIM2) inflammasome complex in rats with SCI. The Basso, Beattie, Bresnahan (BBB) test, Nissl staining, and Luxol fast blue (LFB) staining were performed to evaluate locomotor function, neuronal survival, and myelination, respectively. Real-time polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA) were employed to analyze the gene and protein expressions of inflammasome components, including AIM2, ASC, caspase-1, interleukin-1β (IL-1β), and IL-18. Both gene and protein expressions of all evaluated factors were decreased after SC or WJ-MSC treatment, with a more pronounced effect observed in the SCs group (P < 0.05). Additionally, SCs promoted neuronal survival and myelination. Moreover, the administration of 3 × 105 cells resulted in motor recovery improvement in both treatment groups (P < 0.05). Although not statistically significant, these effects were more prominent in the SC-treated animals. In conclusion, SC therapy demonstrated greater efficacy in targeting AIM2 inflammasome activation and the associated inflammatory pathway in SCI experiments compared to WJ-MSCs.
Collapse
Affiliation(s)
- Ebrahim Kharazinejad
- Department of Anatomy, Faculty of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behpour Yousefi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Reza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Science, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ehsan Golchini
- Department of Operating Room, School of Paramedical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Vajihe Taghdiri Nooshabadi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Science, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Mousavi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
16
|
Baranova K, Nalivaeva N, Rybnikova E. Neuroadaptive Biochemical Mechanisms of Remote Ischemic Conditioning. Int J Mol Sci 2023; 24:17032. [PMID: 38069355 PMCID: PMC10707673 DOI: 10.3390/ijms242317032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
This review summarizes the currently known biochemical neuroadaptive mechanisms of remote ischemic conditioning. In particular, it focuses on the significance of the pro-adaptive effects of remote ischemic conditioning which allow for the prevention of the neurological and cognitive impairments associated with hippocampal dysregulation after brain damage. The neuroimmunohumoral pathway transmitting a conditioning stimulus, as well as the molecular basis of the early and delayed phases of neuroprotection, including anti-apoptotic, anti-oxidant, and anti-inflammatory components, are also outlined. Based on the close interplay between the effects of ischemia, especially those mediated by interaction of hypoxia-inducible factors (HIFs) and steroid hormones, the involvement of the hypothalamic-pituitary-adrenocortical system in remote ischemic conditioning is also discussed.
Collapse
Affiliation(s)
| | | | - Elena Rybnikova
- I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia; (K.B.); (N.N.)
| |
Collapse
|
17
|
Zhou Z, Zhang P. Formononetin ameliorates the LPS-induced inflammatory response and apoptosis of neuronal cells via NF-κB/NLRP3 signaling pathway. Funct Integr Genomics 2023; 23:321. [PMID: 37847432 DOI: 10.1007/s10142-023-01247-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
The objective of this study was to investigate the impact of formononetin on cellular apoptosis and inflammatory responses following spinal cord injury (SCI), as well as the underlying mechanisms involved. In this study, PC12 cells were treated with lipopolysaccharide (LPS) and different concentrations of Formononetin (FT) (50 μM, 100 μM, 200 μM). To confirm the effect of nuclear factor-κB (NF-κB)/NLR family pyrin domain containing 3 (NLRP3) signaling pathways, the cells in the phorbol-12-myristate-13-acetate (PMA) group were treated with 0.1 μmol/L PMA (NF-κB/NLRP3 signaling pathway activators). The lactate dehydrogenase (LDH) concentration and cell viability, proliferating cell nuclear antigen (PCNA) fluorescence intensity, and cell apoptosis were determined using an LDH kit, Cell Counting Kit-8 (CCK-8), immunofluorescence, and flow cytometry assays, respectively. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-16 (IL-6) expression levels were detected by quantitative ELISA assay. The expression of proteins related to the NF-κB/NLRP3 signaling pathway was detected by western blotting. Our results showed that LPS increased LDH levels in PC12 cells, suggesting that inflammation caused PC12 cell damage. However, the PC12 cell damage was decreased by methylprednisolone. Formononetin promotes cell survival and proliferation, and prevents apoptosis in a concentration-dependent manner. Formononetin reduced the TNF-α, IL-1β, and IL-6 levels in the LPS-treated model. Moreover, formononetin decreased the levels of p-p65 NF-κB and NLRP3 in PC12 cells. We conclude that formononetin ameliorated the inflammatory response and apoptosis in LPS-induced inflammatory injury in neuronal cells via the NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Zhijing Zhou
- Department of Orthopedic, Lianyungang Hospital of Traditional Chinese Medicine, Chaoyang Middle Road No. 160, Haizhou District, Lianyungang, 222004, Jiangsu, China
| | - Peng Zhang
- Department of Orthopedic, Lianyungang Hospital of Traditional Chinese Medicine, Chaoyang Middle Road No. 160, Haizhou District, Lianyungang, 222004, Jiangsu, China.
| |
Collapse
|
18
|
Liu GZ, Niu TT, Yu Q, Xu BL, Li XQ, Yuan BY, Yuan GB, Yang TT, Li HQ, Sun Y. Ginkgolide attenuates memory impairment and neuroinflammation by suppressing the NLRP3/caspase-1 pathway in Alzheimer's disease. Aging (Albany NY) 2023; 15:10237-10252. [PMID: 37793010 PMCID: PMC10599747 DOI: 10.18632/aging.205072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 10/06/2023]
Abstract
The NLRP3 inflammasome is involved in the neuroinflammatory pathway of Alzheimer's disease (AD). The aim of this study is to explore the roles and underlying mechanisms of ginkgolide (Baiyu®) on amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice and a murine microglial cell line, BV-2. In the present study, the APP/PS1 mice were administered with ginkgolide, followed by a Morris water maze test. The mice were then euthanized to obtain brain tissue for histological and Aβ analysis. Additionally, BV-2 cells were pretreated with ginkgolide and then incubated with Aβ1-42 peptide. NLRP3, ASC, and caspase-1 mRNA and protein expression in brain tissue of mice and BV-2 cells were quantified by real-time PCR and western blotting, as well as reactive oxygen species (ROS) production, interleukin (IL)-1β and IL-18 levels by lucigenin technique and ELISA. Compared with the APP/PS1 mice, ginkgolide-treated mice demonstrated the shortened escape latency, reduced plaques, less inflammatory cell infiltration and neuron loss in the hippocampi of APP/PS1 mice. The levels of NLRP3, ASC, caspase-1, ROS, IL-1β, and IL-18 were also decreased in the brain tissue of APP/PS1 mice or Aβ1-42-treated BV-2 cells following ginkgolide treatment. Ginkgolide exerted protective effects on AD, at least partly by inactivating the NLRP3/caspase-1 pathway.
Collapse
Affiliation(s)
- Guang-Zhi Liu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Tian-Tong Niu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qian Yu
- Beijing D.A. Medical Laboratory, Beijing 102600, China
| | - Bao-Lei Xu
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiao-Qing Li
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Bo-Yi Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Guo-Bin Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Ting-Ting Yang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Hui-Qin Li
- Research and Development Centre, Chengdu Baiyu Pharmaceutical Co., Ltd., Chengdu 611130, China
| | - Yi Sun
- Research and Development Centre, Chengdu Baiyu Pharmaceutical Co., Ltd., Chengdu 611130, China
| |
Collapse
|
19
|
Mohamadi Y, Borhani-Haghighi M. TGN020 application against aquaporin 4 improved multiple sclerosis by inhibiting astrocytes, microglia, and NLRP3 inflammasome in a cuprizone mouse model. J Chem Neuroanat 2023; 132:102306. [PMID: 37394105 DOI: 10.1016/j.jchemneu.2023.102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
In multiple sclerosis (MS), activation of the astrocytes and microglia induces a cascading inflammatory response. Overexpression of the aquaporin 4 (AQP4) in the glia is a trigger for this reaction. This study aimed to block AQP4 by injecting TGN020 to alleviate the symptoms of MS. Total of 30 male mice were randomly divided into control (intact), cuprizone model of MS (fed with 0.2% cuprizone for 35 days), and TGN020-treated (received daily intraperitoneal injections of 200 mg/kg TGN020 with cuprizone intake) groups. Astrogliosis, M1-M2 microglia polarization, NLRP3 inflammasome activation, and demyelination were investigated in the corpus callosum by immunohistochemistry, real-time PCR, western blot, and luxol fast blue staining. The Rotarod test was performed for a behavior assessment. AQP4 inhibition caused a significant decrease in the expression of the astrocyte-specific marker, GFAP. It also changed the microglia polarization from M1 to M2 indicated by a significant downregulation of iNOS, CD86, MHC-ІІ, and upregulation of arginase1, CD206, and TREM-2. In addition, western blot data showed a significant decrease in the NLRP3, caspase1, and IL-1b proteins in the treatment group, which indicated inflammasome inactivation. The molecular changes following the TGN020 injection resulted in remyelination and motor recovery enhancement in the treatment group. In conclusion, the results draw the attention to the role of AQP4 in the cuprizone model of MS.
Collapse
Affiliation(s)
- Yousef Mohamadi
- Department of Anatomy, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Borhani-Haghighi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Jiang W, He F, Ding G, Wu J. Elamipretide reduces pyroptosis and improves functional recovery after spinal cord injury. CNS Neurosci Ther 2023; 29:2843-2856. [PMID: 37081763 PMCID: PMC10493668 DOI: 10.1111/cns.14221] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/01/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
AIMS Elamipretide (EPT), a novel mitochondria-targeted peptide, has been shown to be protective in a range of diseases. However, the effect of EPT in spinal cord injury (SCI) has yet to be elucidated. We aimed to investigate whether EPT would inhibit pyroptosis and protect against SCI. METHODS After establishing the SCI model, we determined the biochemical and morphological changes associated with pyroptosis, including neuronal cell death, proinflammatory cytokine expression, and signal pathway levels. Furthermore, mitochondrial function was assessed with flow cytometry, quantitative real-time polymerase chain reaction, and western blot. RESULTS Here, we demonstrate that EPT improved locomotor functional recovery following SCI as well as reduced neuronal loss. Moreover, EPT inhibited nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome activation and pyroptosis occurrence and decreased pro-inflammatory cytokines levels following SCI. Furthermore, EPT alleviated mitochondrial dysfunction and reduced mitochondrial reactive oxygen species level. CONCLUSION EPT treatment may protect against SCI via inhibition of pyroptosis.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
21
|
Nazari S, Pourmand SM, Motevaseli E, Hassanzadeh G. Mesenchymal stem cells (MSCs) and MSC-derived exosomes in animal models of central nervous system diseases: Targeting the NLRP3 inflammasome. IUBMB Life 2023; 75:794-810. [PMID: 37278718 DOI: 10.1002/iub.2759] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is a multimeric protein complex that is engaged in the innate immune system and plays a vital role in inflammatory reactions. Activation of the NLRP3 inflammasome and subsequent release of proinflammatory cytokines can be triggered by microbial infection or cellular injury. The NLRP3 inflammasome has been implicated in the pathogenesis of many disorders affecting the central nervous system (CNS), ranging from stroke, traumatic brain injury, and spinal cord injury to Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and depression. Furthermore, emerging evidence has suggested that mesenchymal stem cells (MSCs) and their exosomes may modulate NLRP3 inflammasome activation in a way that might be promising for the therapeutic management of CNS diseases. In the present review, particular focus is placed on highlighting and discussing recent scientific evidence regarding the regulatory effects of MSC-based therapies on the NLRP3 inflammasome activation and their potential to counteract proinflammatory responses and pyroptotic cell death in the CNS, thereby achieving neuroprotective impacts and improvement in behavioral impairments.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Pourmand
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Su WJ, Li JM, Zhang T, Cao ZY, Hu T, Zhong SY, Xu ZY, Gong H, Jiang CL. Microglial NLRP3 inflammasome activation mediates diabetes-induced depression-like behavior via triggering neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110796. [PMID: 37209992 DOI: 10.1016/j.pnpbp.2023.110796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Abundant evidence suggests that the prevalence and risk of depression in people with diabetes is high. However, the pathogenesis of diabetes-related depression remains unclear. Since neuroinflammation is associated with the pathophysiology of diabetic complications and depression, this study aims to elucidate the neuroimmune mechanism of diabetes-related depression. METHODS Male C57BL/6 mice were injected with streptozotocin to establish a diabetes model. After screening, diabetic mice were treated with the NLRP3 inhibitor MCC950. Then, metabolic indicators and depression-like behaviors were evaluated in these mice, as well as their central and peripheral inflammation. To explore the mechanism of high glucose-induced microglial NLRP3 inflammasome activation, we performed in vitro studies focusing on its canonical upstream signal I (TLR4/MyD88/NF-κB) and signal II (ROS/PKR/P2X7R/TXNIP). RESULTS Diabetic mice exhibited depression-like behaviors and activation of NLRP3 inflammasome in hippocampus. In vitro high-glucose (50 mM) environment primed microglial NLRP3 inflammasome by promoting NF-κB phosphorylation in a TLR4/MyD88-independent manner. Subsequently, high glucose activated the NLRP3 inflammasome via enhancing intracellular ROS accumulation, upregulating P2X7R, as well as promoting PKR phosphorylation and TXNIP expression, thereby facilitating the production and secretion of IL-1β. Inhibition of NLRP3 with MCC950 significantly restored hyperglycemia-induced depression-like behavior and reversed the increase in IL-1β levels in the hippocampus and serum. CONCLUSION The activation of NLRP3 inflammasome, probably mainly in hippocampal microglia, mediates the development of depression-like behaviors in STZ-induced diabetic mice. Targeting the microglial inflammasome is a feasible strategy for the treatment of diabetes-related depression.
Collapse
Affiliation(s)
- Wen-Jun Su
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China.
| | - Jia-Mei Li
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China; The 971st Hospital of PLA Navy, Qingdao 266072, China
| | - Ting Zhang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China
| | - Zhi-Yong Cao
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China; Department of Psychiatry and Sleep Disorder, The 904th Hospital of PLA, Changzhou 213004, China
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China
| | - Shi-Yang Zhong
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China
| | - Zhang-Yang Xu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China; The Battalion 3 of Cadet Brigade, School of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Hong Gong
- Department of Developmental Neuropsychology, Faculty of Medical Psychology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
23
|
Wang T, Li Y, Zhu Y, Liu Z, Huang L, Zhao H, Zhou Z, Wu Q. Anti-aging mechanism of different age donor-matched adipose-derived stem cells. Stem Cell Res Ther 2023; 14:192. [PMID: 37533129 PMCID: PMC10394785 DOI: 10.1186/s13287-023-03415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) have anti-aging and anti-obesity effects in aged animals, but the underlying molecular mechanism remains unknown. METHODS In the present study, we evaluated the in vivo transplantation effects of different age donor-matched ASCs on natural aging and leptin knockout mice (ob-/ob- mice). The multi-omics expression profiles of young and aged mouse donor-derived ASCs were also analyzed. RESULTS The results revealed that ASCs from young donors induced weight and abdominal fat loss for older recipients but not for young or ob-/ob-mice. The young and aged mouse donor ASCs displayed significant phenotypic differences, contributing to the distinguished weight loss and anti-aging effects in aged mice. CONCLUSIONS Our data suggest an underlying molecular mechanism by which young-donor ASCs reduce immune cells and inflammation in aged mice via secreted immune factors. These findings point to a general anti-aging mechanism of stem cells, which may provide new insights into age-related disturbances of stem cell plasticity in healthy aging and age-related diseases.
Collapse
Affiliation(s)
- Tao Wang
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yingyu Li
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yu Zhu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zebiao Liu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Li Huang
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hongxia Zhao
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Zuping Zhou
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qiong Wu
- Guangxi Universities Key Laboratory of Stem Cell and Biopharmaceutical Technology, Research Center for Biomedical Sciences, School of Life Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
24
|
Zheng JH, Yuan N, Zhang P, Liu DF, Lin W, Miao J. Acupuncture combined with moxibustion mitigates spinal cord injury-induced motor dysfunction in mice by NLRP3-IL-18 signaling pathway inhibition. J Orthop Surg Res 2023; 18:419. [PMID: 37296436 DOI: 10.1186/s13018-023-03902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI), which reportedly induces severe motor dysfunction, imposes a significant social and financial burden on affected individuals, families, communities, and nations. Acupuncture combined with moxibustion (AM) therapy has been widely used for motor dysfunction treatment, but the underlying mechanisms remain unknown. In this work, we aimed to determine whether AM therapy could alleviate motor impairment post-SCI and, if so, the potential mechanism. METHODS A SCI model was established in mice through impact methods. AM treatment was performed in SCI model mice at Dazhui (GV14) and Jiaji points (T7-T12), Mingmen (GV4), Zusanli (ST36), and Ciliao (BL32) on both sides for 30 min once per day for 28 days. The Basso-Beattie-Bresnahan score was used to assess motor function in mice. A series of experiments including astrocytes activation detected by immunofluorescence, the roles of NOD-like receptor pyrin domain-containing-3 (NLRP3)-IL-18 signaling pathway with the application of astrocyte-specific NLRP3 knockout mice, and western blot were performed to explore the specific mechanism of AM treatment in SCI. RESULTS Our data indicated that mice with SCI exposure exhibited motor dysfunction, a significant decrease of neuronal cells, a remarkable activation of astrocytes and microglia, an increase of IL-6, TNF-α, IL-18 expression, and an elevation of IL-18 colocalized with astrocytes, while astrocytes-specific NLRP3 knockout heavily reversed these changes. Besides, AM treatment simulated the neuroprotective effects of astrocyte-specific NLRP3 knockout, whereas an activator of NLRP3 nigericin partially reversed the AM neuroprotective effects. CONCLUSION AM treatment mitigates SCI-induced motor dysfunction in mice; this protective mechanism may be related to the NLRP3-IL18 signaling pathway inhibition in astrocytes.
Collapse
Affiliation(s)
- Ji-Hui Zheng
- Department of OrthopaedicsThe Graduate School, Tianjin Medical University, Tianjin, China
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing), Cangzhou, China
| | - Na Yuan
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Peng Zhang
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - De-Feng Liu
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Wei Lin
- Department of Orthopaedics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Jun Miao
- Department of OrthopaedicsTianjin Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
25
|
Müller N, Scheld M, Voelz C, Gasterich N, Zhao W, Behrens V, Weiskirchen R, Baazm M, Clarner T, Beyer C, Sanadgol N, Zendedel A. Lipocalin-2 Deficiency Diminishes Canonical NLRP3 Inflammasome Formation and IL-1β Production in the Subacute Phase of Spinal Cord Injury. Int J Mol Sci 2023; 24:ijms24108689. [PMID: 37240031 DOI: 10.3390/ijms24108689] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Spinal cord injury (SCI) results in the production of proinflammatory cytokines due to inflammasome activation. Lipocalin 2 (LCN2) is a small secretory glycoprotein upregulated by toll-like receptor (TLR) signaling in various cells and tissues. LCN2 secretion is induced by infection, injury, and metabolic disorders. In contrast, LCN2 has been implicated as an anti-inflammatory regulator. However, the role of LCN2 in inflammasome activation during SCI remains unknown. This study examined the role of Lcn2 deficiency in the NLRP3 inflammasome-dependent neuroinflammation in SCI. Lcn2-/- and wild-type (WT) mice were subjected to SCI, and locomotor function, formation of the inflammasome complex, and neuroinflammation were assessed. Our findings demonstrated that significant activation of the HMGB1/PYCARD/caspase-1 inflammatory axis was accompanied by the overexpression of LCN2 7 days after SCI in WT mice. This signal transduction results in the cleaving of the pyroptosis-inducing protein gasdermin D (GSDMD) and the maturation of the proinflammatory cytokine IL-1β. Furthermore, Lcn2-/- mice showed considerable downregulation in the HMGB1/NLRP3/PYCARD/caspase-1 axis, IL-1β production, pore formation, and improved locomotor function compared with WT. Our data suggest that LCN2 may play a role as a putative molecule for the induction of inflammasome-related neuroinflammation in SCI.
Collapse
Affiliation(s)
- Nina Müller
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Miriam Scheld
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Clara Voelz
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Natalie Gasterich
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Weiyi Zhao
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Victoria Behrens
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak 38481-7-6341, Iran
| | - Tim Clarner
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
- Institute of Anatomy, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
26
|
Xu Y, Wang Y, Ji X. Immune and inflammatory mechanism of remote ischemic conditioning: A narrative review. Brain Circ 2023; 9:77-87. [PMID: 37576576 PMCID: PMC10419737 DOI: 10.4103/bc.bc_57_22] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 08/15/2023] Open
Abstract
The benefits of remote ischemic conditioning (RIC) on multiple organs have been extensively investigated. According to existing research, suppressing the immune inflammatory response is an essential mechanism of RIC. Based on the extensive effects of RIC on cardiovascular and cerebrovascular diseases, this article reviews the immune and inflammatory mechanisms of RIC and summarizes the effects of RIC on immunity and inflammation from three perspectives: (1) the mechanisms of the impact of RIC on inflammation and immunity; (2) evidence of the effects of RIC on immune and inflammatory processes in ischaemic stroke; and (3) possible future applications of this effect, especially in systemic infectious diseases such as sepsis and sepsis-associated encephalopathy. This review explores the possibility of using RIC as a treatment in more inflammation-related diseases, which will provide new ideas for the treatment of this kind of disease.
Collapse
Affiliation(s)
- Yi Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Khaing ZZ, Chen JY, Safarians G, Ezubeik S, Pedroncelli N, Duquette RD, Prasse T, Seidlits SK. Clinical Trials Targeting Secondary Damage after Traumatic Spinal Cord Injury. Int J Mol Sci 2023; 24:3824. [PMID: 36835233 PMCID: PMC9960771 DOI: 10.3390/ijms24043824] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Spinal cord injury (SCI) often causes loss of sensory and motor function resulting in a significant reduction in quality of life for patients. Currently, no therapies are available that can repair spinal cord tissue. After the primary SCI, an acute inflammatory response induces further tissue damage in a process known as secondary injury. Targeting secondary injury to prevent additional tissue damage during the acute and subacute phases of SCI represents a promising strategy to improve patient outcomes. Here, we review clinical trials of neuroprotective therapeutics expected to mitigate secondary injury, focusing primarily on those in the last decade. The strategies discussed are broadly categorized as acute-phase procedural/surgical interventions, systemically delivered pharmacological agents, and cell-based therapies. In addition, we summarize the potential for combinatorial therapies and considerations.
Collapse
Affiliation(s)
- Zin Z. Khaing
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sohib Ezubeik
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicolas Pedroncelli
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca D. Duquette
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Tobias Prasse
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Orthopedics and Trauma Surgery, University of Cologne, 50931 Cologne, Germany
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
28
|
Moonen S, Koper MJ, Van Schoor E, Schaeverbeke JM, Vandenberghe R, von Arnim CAF, Tousseyn T, De Strooper B, Thal DR. Pyroptosis in Alzheimer's disease: cell type-specific activation in microglia, astrocytes and neurons. Acta Neuropathol 2023; 145:175-195. [PMID: 36481964 DOI: 10.1007/s00401-022-02528-y] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
The major neuropathological hallmarks of Alzheimer's disease (AD) are amyloid β (Aβ) plaques and neurofibrillary tangles (NFT), accompanied by neuroinflammation and neuronal loss. Increasing evidence is emerging for the activation of the canonical NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome in AD. However, the mechanisms leading to neuronal loss in AD and the involvement of glial cells in these processes are still not clear. The aim of this study was to investigate the contribution of pyroptosis, a pro-inflammatory mechanism of cell death downstream of the inflammasome, to neurodegeneration in AD. Immunohistochemistry and biochemical analysis of protein levels were performed on human post-mortem brain tissue. We investigated the presence of cleaved gasdermin D (GSDMD), the pyroptosis effector protein, as well as the NLRP3 inflammasome-forming proteins, in the medial temporal lobe of 23 symptomatic AD, 25 pathologically defined preclinical AD (p-preAD) and 21 non-demented control cases. Cleaved GSDMD was detected in microglia, but also in astrocytes and in few pyramidal neurons in the first sector of the cornu ammonis (CA1) of the hippocampus and the temporal cortex of Brodmann area 36. Only microglia expressed all NLRP3 inflammasome-forming proteins (i.e., ASC, NLRP3, caspase-1). Cleaved GSDMD-positive astrocytes and neurons exhibited caspase-8 and non-canonical inflammasome protein caspase-4, respectively, potentially indicating alternative pathways for GSDMD cleavage. Brains of AD patients exhibited increased numbers of cleaved GSDMD-positive cells. Cleaved GSDMD-positive microglia and astrocytes were found in close proximity to Aβ plaques, while cleaved GSDMD-positive neurons were devoid of NFTs. In CA1, NLRP3-positive microglia and cleaved GSDMD-positive neurons were associated with local neuronal loss, indicating a possible contribution of NLRP3 inflammasome and pyroptosis activation to AD-related neurodegeneration. Taken together, our results suggest cell type-specific activation of pyroptosis in AD and extend the current knowledge about the contribution of neuroinflammation to the neurodegenerative process in AD via a direct link to neuron death by pyroptosis.
Collapse
Affiliation(s)
- Sebastiaan Moonen
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), O&N IV Herestraat 49, Bus 1032, 3000, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
- Vlaams Instituut voor Biotechnologie (VIB) Center for Brain and Disease Research, VIB, Leuven, Belgium.
| | - Marta J Koper
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), O&N IV Herestraat 49, Bus 1032, 3000, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Evelien Van Schoor
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), O&N IV Herestraat 49, Bus 1032, 3000, Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Center for Brain and Disease Research, VIB, Leuven, Belgium
- Laboratory for Neurobiology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Jolien M Schaeverbeke
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), O&N IV Herestraat 49, Bus 1032, 3000, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Christine A F von Arnim
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Tousseyn
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
- Vlaams Instituut voor Biotechnologie (VIB) Center for Brain and Disease Research, VIB, Leuven, Belgium
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), O&N IV Herestraat 49, Bus 1032, 3000, Leuven, Belgium.
- Department of Pathology, University Hospital Leuven, Leuven, Belgium.
| |
Collapse
|
29
|
Yin T, Li Y, Sung P, Chiang JY, Shao P, Yip H, Lee MS. Adipose-derived mesenchymal stem cells overexpressing prion improve outcomes via the NLRP3 inflammasome/DAMP signalling after spinal cord injury in rat. J Cell Mol Med 2023; 27:482-495. [PMID: 36660907 PMCID: PMC9930430 DOI: 10.1111/jcmm.17620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 01/21/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a highly destructive disease in human neurological functions. Adipose-derived mesenchymal stem cells (ADMSCs) have tissue regenerations and anti-inflammations, especially with prion protein overexpression (PrPcOE ). Therefore, this study tested whether PrPcOE -ADMSCs therapy offered benefits in improving outcomes via regulating nod-like-receptor-protein-3 (NLRP3) inflammasome/DAMP signalling after acute SCI in rats. Compared with ADMSCs only, the capabilities of PrPcOE -ADMSCs were significantly enhanced in cellular viability, anti-oxidative stress and migration against H2 O2 and lipopolysaccharide damages. Similarly, PrPcOE -ADMSCs significantly inhibited the inflammatory patterns of Raw264.7 cells. The SD rats (n = 32) were categorized into group 1 (Sham-operated-control), group 2 (SCI), group 3 (SCI + ADMSCs) and group 4 (SCI + PrPcOE -ADMSCs). Compared with SCI group 2, both ADMSCs and PrPcOE -ADMSCs significantly improved neurological functions. Additionally, the circulatory inflammatory cytokines levels (TNF-α/IL-6) and inflammatory cells (CD11b/c+/MPO+/Ly6G+) were highest in group 2, lowest in group 1, and significantly higher in group 3 than in group 4. By Day 3 after SCI induction, the protein expressions of inflammasome signalling (HGMB1/TLR4/MyD88/TRIF/c-caspase8/FADD/p-NF-κB/NEK7/NRLP3/ASC/c-caspase1/IL-ß) and by Day 42 the protein expressions of DAMP-inflammatory signalling (HGMB1/TLR-4/MyD88/TRIF/TRAF6/p-NF-κB/TNF-α/IL-1ß) in spinal cord tissues displayed an identical pattern as the inflammatory patterns. In conclusion, PrPcOE -ADMSCs significantly attenuated SCI in rodents that could be through suppressing the inflammatory signalling.
Collapse
Affiliation(s)
- Tsung‐Cheng Yin
- Department of Orthopaedic SurgeryKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Center for General EducationCheng Shiu UniversityKaohsiungTaiwan
| | - Yi‐Chen Li
- Clinical Medicine Research CenterNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan,Center of Cell TherapyNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan,Institute of Clinical MedicineCollege of MedicineNational Cheng Kung UniversityTainanTaiwan,Division of Cardiology, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan
| | - Pei‐Hsun Sung
- Division of Cardiology, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Center for Shockwave Medicine and Tissue EngineeringKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan,Institute for Translational Research in BiomedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan
| | - John Y. Chiang
- Department of Computer Science & EngineeringNational Sun Yat‐sen UniversityKaohsiungTaiwan,Department of Healthcare Administration and Medical InformaticsKaohsiung Medical UniversityKaohsiungTaiwan
| | - Pei‐Lin Shao
- Department of NursingAsia UniversityTaichungTaiwan
| | - Hon‐Kan Yip
- Division of Cardiology, Department of Internal MedicineKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Center for Shockwave Medicine and Tissue EngineeringKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan,Institute for Translational Research in BiomedicineKaohsiung Chang Gung Memorial HospitalKaohsiungTaiwan,Department of NursingAsia UniversityTaichungTaiwan,Department of Medical ResearchChina Medical University Hospital, China Medical UniversityTaichungTaiwan,Division of Cardiology, Department of Internal MedicineXiamen Chang Gung HospitalXiamenChina
| | - Mel S. Lee
- Department of Orthopaedic SurgeryKaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung UniversityKaohsiungTaiwan,Department of Orthopedic SurgeryPao‐Chien HospitalPingtungTaiwan
| |
Collapse
|
30
|
Wang J, Yu Z, Hu Y, Li F, Huang X, Zhao X, Tang Y, Fang S, Tang Y. EGCG promotes the sensory function recovery in rats after dorsal root crush injury by upregulating KAT6A and inhibiting pyroptosis. Transl Neurosci 2023; 14:20220326. [PMID: 38152093 PMCID: PMC10751571 DOI: 10.1515/tnsci-2022-0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023] Open
Abstract
Dorsal root injury usually leads to irreversible sensory function loss and lacks effective treatments. (-)-epigallocatechin-3-gallate (EGCG) is reported to exert neuroprotective roles in the nervous systems. However, the function of EGCG in treating dorsal root injury remains unclear. Hence, we built the dorsal root crush injury (DRCI) rat model to be treated with EGCG, followed by the western blot, Enzyme-linked immunosorbent assay, and sensory behavior tests. We observed that EGCG can upregulate the Lysine acetyltransferase 6A (KAT6A) level and inhibit the pyroptosis, indicated by downregulated gasdermin-D, caspase-1, and interleukin 18 protein levels, and alleviate the neuropathic pain, indicated by the decreased paw withdraw threshold in Plantar test and decreased paw withdraw latency in von Frey test, and downregulated calcitonin gene-related peptide, nerve growth factor, and c-Fos protein levels. But EGCG cannot alleviate the neuropathic pain when the KAT6A was inhibited by CTX-0124143 and pyroptosis was activated by Miltirone. These combined results indicated that EGCG can promote the sensory function recovery in rats after DRCI via upregulating KAT6A and inhibiting pyroptosis, laying the foundation for EGCG to be a novel candidate for the treatment of dorsal root injury.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, China
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Zuer Yu
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Yichun Hu
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Fuyu Li
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Xiaoyu Huang
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Xiangyue Zhao
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Yaqi Tang
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Shujuan Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Yinjuan Tang
- School of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| |
Collapse
|
31
|
Xiao L, Wang M, Shi Y, Xu Y, Gao Y, Zhang W, Wu Y, Deng H, Pan W, Wang W, Sun H. Secondary White Matter Injury Mediated by Neuroinflammation after Intracerebral Hemorrhage and Promising Therapeutic Strategies of Targeting the NLRP3 Inflammasome. Curr Neuropharmacol 2023; 21:669-686. [PMID: 36043798 PMCID: PMC10207923 DOI: 10.2174/1570159x20666220830115018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a neurological disease with high mortality and disability. Recent studies showed that white matter injury (WMI) plays an important role in motor dysfunction after ICH. WMI includes WMI proximal to the lesion and WMI distal to the lesion, such as corticospinal tract injury located at the cervical enlargement of the spinal cord after ICH. Previous studies have tended to focus only on gray matter (GM) injury after ICH, and fewer studies have paid attention to WMI, which may be one of the reasons for the poor outcome of previous drug treatments. Microglia and astrocyte-mediated neuroinflammation are significant mechanisms responsible for secondary WMI following ICH. The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome activation, has been shown to exacerbate neuroinflammation and brain injury after ICH. Moreover, NLRP3 inflammasome is activated in microglia and astrocytes and exerts a vital role in microglia and astrocytes-mediated neuroinflammation. We speculate that NLRP3 inflammasome activation is closely related to the polarization of microglia and astrocytes and that NLRP3 inflammasome activation may exacerbate WMI by polarizing microglia and astrocytes to the pro-inflammatory phenotype after ICH, while NLRP3 inflammasome inhibition may attenuate WMI by polarizing microglia and astrocytes to the anti-inflammatory phenotype following ICH. Therefore, NLRP3 inflammasome may act as leveraged regulatory fulcrums for microglia and astrocytes polarization to modulate WMI and WM repair after ICH. This review summarized the possible mechanisms by which neuroinflammation mediated by NLRP3 inflammasome exacerbates secondary WMI after ICH and discussed the potential therapeutic targets.
Collapse
Affiliation(s)
- Linglong Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Mengqi Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yifeng Shi
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yangyang Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yuan Gao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Hao Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Pan
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu 610041, Sichuan Province, China
| | - Haitao Sun
- Department of Laboratory Medicine, Clinical Biobank Center, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
32
|
Jiang W, He F, Ding G, Wu J. Dopamine inhibits pyroptosis and attenuates secondary damage after spinal cord injury in female mice. Neurosci Lett 2023; 792:136935. [PMID: 36307053 DOI: 10.1016/j.neulet.2022.136935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND An excessive inflammatory response accompanies the pathogenesis of spinal cord injury (SCI) and has been found to be promoted by inflammasomes in a variety of disease models. Dopamine is a neurotransmitter that also regulates nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome-dependent neuroinflammation. However, little is known regarding the effects and molecular mechanisms underlying the role of dopamine in SCI. METHODS Functional recovery in mice was assessed with the Basso Mouse Scale (BMS). Neuronal loss was evaluated with immunochemical staining of NeuN. Pyroptosis was assessed with immunofluorescence staining, flow cytometry, western blotting, and cell viability and cytotoxicity assays. RESULTS Dopamine was significantly associated with enhanced locomotor recovery after SCI, and with decreased NLRP3 inflammasome activation, pyroptosis, neuronal loss and pro-inflammatory cytokine levels. In vitro data suggested that dopamine suppressed NLRP3 inflammasome activation and pyroptosis, and decreased pro-inflammatory cytokine levels. CONCLUSIONS Dopamine may be a novel approach for alleviating secondary damage after SCI.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310003, China; Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No.261 Huansha Road, Shangcheng District, Hangzhou, Zhejiang 310006, China.
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
33
|
Yuan Y, Wang Y, Wu S, Zhao MY. Review: Myelin clearance is critical for regeneration after peripheral nerve injury. Front Neurol 2022; 13:908148. [PMID: 36588879 PMCID: PMC9801717 DOI: 10.3389/fneur.2022.908148] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Traumatic peripheral nerve injury occurs frequently and is a major clinical and public health problem that can lead to functional impairment and permanent disability. Despite the availability of modern diagnostic procedures and advanced microsurgical techniques, active recovery after peripheral nerve repair is often unsatisfactory. Peripheral nerve regeneration involves several critical events, including the recreation of the microenvironment and remyelination. Results from previous studies suggest that the peripheral nervous system (PNS) has a greater capacity for repair than the central nervous system. Thus, it will be important to understand myelin and myelination specifically in the PNS. This review provides an update on myelin biology and myelination in the PNS and discusses the mechanisms that promote myelin clearance after injury. The roles of Schwann cells and macrophages are considered at length, together with the possibility of exogenous intervention.
Collapse
Affiliation(s)
- YiMing Yuan
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China,*Correspondence: Yan Wang
| | - ShanHong Wu
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Yue Zhao
- Laboratory of Brain Function and Neurorehabilitation, Heilongjiang University of Chinese Medicine, Harbin, China,Department of Rehabilitation, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
34
|
Hong Z, Cheng J, Ye Y, Chen X, Zhang F. MicroRNA-451 Attenuates the Inflammatory Response of Activated Microglia by Downregulating Nucleotide Binding Oligomerization Domain-Like Receptor Protein 3. World Neurosurg 2022; 167:e1128-e1137. [PMID: 36087911 DOI: 10.1016/j.wneu.2022.08.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Spinal cord injury is the most common problem encountered during spinal surgery. After the initial trauma, the disruption of the blood-brain barrier and subsequent microglia activation result in extensive inflammatory responses. Inflammasomes are large protein complexes that are essential during inflammation. One of the most studied inflammasome components, nucleotide binding oligomerization domain-like receptor protein 3 (NLRP; nucleotide binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing 3), is widely expressed in the central nervous system. Previous research has shown that microRNA-451 (miR-451) might play a role in regulating inflammatory conditions. METHODS Using bioinformatics analysis, we found that NLRP3 is a direct target of miR-451. This in silico prediction was confirmed using dual-luciferase reporter gene assays. To further demonstrate that miR-451 influenced microglial NLRP3 production, we activated microglial cells with lipopolysaccharides. RESULTS Activating microglial cells with lipopolysaccharides resulted in the production of NLRP3 inflammasomes and the secretion of the proinflammatory cytokines interleukin-1β and interleukin-18. We were able to demonstrate that overexpression of miR-451 suppressed this NLRP3-induced proinflammatory cascade of events. CONCLUSIONS Our findings have highlighted the potential anti-inflammatory role of miR-451 in reducing the secondary neuronal damage after spinal cord injury.
Collapse
Affiliation(s)
- Zhou Hong
- Medical School of Nantong University, Nantong, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiaqi Cheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yong Ye
- Medical School of Nantong University, Nantong, China
| | - Xiaoqing Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China
| | - Feng Zhang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
35
|
Ebrahimy N, Gasterich N, Behrens V, Amini J, Fragoulis A, Beyer C, Zhao W, Sanadgol N, Zendedel A. Neuroprotective effect of the Nrf2/ARE/miRNA145-5p signaling pathway in the early phase of spinal cord injury. Life Sci 2022; 304:120726. [PMID: 35750202 DOI: 10.1016/j.lfs.2022.120726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
AIMS Spinal cord injury (SCI) is a debilitating neurological condition often associated with chronic neuroinflammation and redox imbalance. Oxidative stress is one of the main hallmark of secondary injury of SCI which is tightly regulated by nuclear factor E2-related factor 2/antioxidant response element (Nrf2/ARE) signaling. In this study, we aimed at investigating the interplay between inflammation-related miRNAs and the Nrf2 pathway in animal model of SCI. MATERIALS AND METHODS The expression of selected four validated miRNA-target pairs (miRNA223-3p, miRNA155-5p, miRNA145-5p, and miRNA124-3p) was examined at different time points (6 h, 12 h, 1 day, 3 day and 7 day) after SCI. Further, using GFAP-specific kelch-like ECH-associated protein 1 deletion (Keap1-/-) and whole-body Nrf2-/- knockout mice, we investigated the potential interplay between each miRNA and the Keap1/Nrf2 signaling system. KEY FINDINGS The expression of all miRNAs except miRNA155-5p significantly increased 24 h after SCI and decreased after 7 days. Interestingly, Keap1-/- mice only showed significant increase in the miRNA145-5p after 24 h SCI compared to the WT group. In addition, Keap1-/- mice showed significant decrease in CXCL10/12 (CXCL12 increased in Nrf2-/- mice), and TNF-α, and an increase in Mn-SOD and NQO-1 (Mn-SOD and NQO-1 decreased in Nrf2-/- mice) compared to WT mice. SIGNIFICANCE Our results suggest that astrocytic hyperactivation of Nrf2 exert neuroprotective effects at least in part through the upregulation of miRNA145-5p, a negative regulator of astrocyte proliferation, and induction of ARE in early phase of SCI. Further studies are needed to investigate the potential interplay between Nrf2 and miRNA145-5p in neuroinflammatory condition.
Collapse
Affiliation(s)
- Nahal Ebrahimy
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | | | - Victoria Behrens
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Javad Amini
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Weiyi Zhao
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Nima Sanadgol
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany
| | - Adib Zendedel
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, Aachen, Germany.
| |
Collapse
|
36
|
Freyermuth-Trujillo X, Segura-Uribe JJ, Salgado-Ceballos H, Orozco-Barrios CE, Coyoy-Salgado A. Inflammation: A Target for Treatment in Spinal Cord Injury. Cells 2022; 11:2692. [PMID: 36078099 PMCID: PMC9454769 DOI: 10.3390/cells11172692] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a significant cause of disability, and treatment alternatives that generate beneficial outcomes and have no side effects are urgently needed. SCI may be treatable if intervention is initiated promptly. Therefore, several treatment proposals are currently being evaluated. Inflammation is part of a complex physiological response to injury or harmful stimuli induced by mechanical, chemical, or immunological agents. Neuroinflammation is one of the principal secondary changes following SCI and plays a crucial role in modulating the pathological progression of acute and chronic SCI. This review describes the main inflammatory events occurring after SCI and discusses recently proposed potential treatments and therapeutic agents that regulate inflammation after insult in animal models.
Collapse
Affiliation(s)
- Ximena Freyermuth-Trujillo
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico
| | - Julia J. Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City CP 06720, Mexico
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| | - Carlos E. Orozco-Barrios
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| | - Angélica Coyoy-Salgado
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| |
Collapse
|
37
|
Barczuk J, Siwecka N, Lusa W, Rozpędek-Kamińska W, Kucharska E, Majsterek I. Targeting NLRP3-Mediated Neuroinflammation in Alzheimer’s Disease Treatment. Int J Mol Sci 2022; 23:ijms23168979. [PMID: 36012243 PMCID: PMC9409081 DOI: 10.3390/ijms23168979] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the general population and, to date, constitutes a major therapeutic challenge. In the pathogenesis of AD, aggregates of amyloid β (Aβ) and neurofibrillary tangles (NFTs) containing Tau-microtubule-associated protein (tau) are known to trigger a neuroinflammatory response with subsequent formation of an inflammasome. In particular, the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome is thought to play a crucial role in AD-related pathology. While the mechanisms for NLRP3 activation are not fully understood, it has been demonstrated that, after detection of protein aggregates, NLRP3 induces pro-inflammatory cytokines, such as interleukin 18 (IL-18) or interleukin 1β (IL-1β), that further potentiate AD progression. Specific inhibitors of NLRP3 that exhibit various mechanisms to attenuate the activity of NLRP3 have been tested in in vivo studies and have yielded promising results, as shown by the reduced level of tau and Aβ aggregates and diminished cognitive impairment. Herein, we would like to summarize the current state of knowledge on NLRP3 inflammasome priming, activation, and its actual role in AD pathogenesis, and to characterize the NLRP3 inhibitors that have been studied most and their impact on AD-related pathology.
Collapse
Affiliation(s)
- Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | - Weronika Lusa
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
| | | | - Ewa Kucharska
- Department of Gerontology, Geriatrics and Social Work, Jesuit University Ignatianum, 31-501 Krakow, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland
- Correspondence: ; Tel.: +48-42-272-53-00
| |
Collapse
|
38
|
Jiang W, He F, Ding G, Wu J. Topotecan Reduces Neuron Death after Spinal Cord Injury by Suppressing Caspase-1-Dependent Pyroptosis. Mol Neurobiol 2022; 59:6033-6048. [DOI: 10.1007/s12035-022-02960-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022]
|
39
|
Mata-Martínez E, Díaz-Muñoz M, Vázquez-Cuevas FG. Glial Cells and Brain Diseases: Inflammasomes as Relevant Pathological Entities. Front Cell Neurosci 2022; 16:929529. [PMID: 35783102 PMCID: PMC9243488 DOI: 10.3389/fncel.2022.929529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammation mediated by the innate immune system is a physiopathological response to diverse detrimental circumstances such as microbe infections or tissular damage. The molecular events that underlie this response involve the assembly of multiprotein complexes known as inflammasomes. These assemblages are essentially formed by a stressor-sensing protein, an adapter protein and a non-apoptotic caspase (1 or 11). The coordinated aggregation of these components mediates the processing and release of pro-inflammatory interleukins (IL-β and IL-18) and cellular death by pyroptosis induction. The inflammatory response is essential for the defense of the organism; for example, it triggers tissue repair and the destruction of pathogen microbe infections. However, when inflammation is activated chronically, it promotes diverse pathologies in the lung, liver, brain and other organs. The nervous system is one of the main tissues where the inflammatory process has been characterized, and its implications in health and disease are starting to be understood. Thus, the regulation of inflammasomes in specific cellular types of the central nervous system needs to be thoroughly understood to innovate treatments for diverse pathologies. In this review, the presence and participation of inflammasomes in pathological conditions in different types of glial cells will be discussed.
Collapse
|
40
|
Jiang W, He F, Ding G, Wu J. Topoisomerase 1 inhibition modulates pyroptosis to improve recovery after spinal cord injury. FASEB J 2022; 36:e22294. [PMID: 35579890 DOI: 10.1096/fj.202100713rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 11/11/2022]
Abstract
Excessive neuroinflammation and neuronal loss contribute to mechanisms of spinal cord injury (SCI). Accumulating evidence has suggested that topoisomerase 1 (Top1) inhibition can suppress exacerbated immune responses and protect against lethal inflammation. Pyroptosis is a recently identified pro-inflammatory programmed mode of cell death. However, the effects and underlying mechanisms of Top1 inhibition in SCI remains unclear. Locomotor functional recovery in mice was evaluated through Basso Mouse Scale (BMS). Neuronal loss was evaluated by immunochemistry staining of NeuN. Pyroptosis was determined by immunofluorescence staining, western blot, flow cytometry, cell viability, and cytotoxicity assays. In the present study, we estimated the effects of chemical inhibition of Top1 in an SCI model. Administration of Top1 inhibitor camptothecin (CPT) to mice significantly improved locomotor functional recovery after SCI. Moreover, CPT reduced Top1 level, inhibited nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome activation and pyroptosis, attenuated proinflammatory cytokines levels, diminished the number of neutrophil and neuronal loss in mice. Furthermore, CPT in oxygen-glucose deprivation neurons down-regulated Top1 level, attenuated NLRP3 inflammasome activation, and suppressed pyroptosis and inflammatory response. Together, our findings indicate that inhibition of Top1 with CPT can inhibit pyroptosis, control neuroinflammation, and improve functional recovery after SCI.
Collapse
Affiliation(s)
- Wu Jiang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan He
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoming Ding
- Department of Orthopedics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsong Wu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
Haseeb M, Javaid N, Yasmeen F, Jeong U, Han JH, Yoon J, Seo JY, Heo JK, Shin HC, Kim MS, Kim W, Choi S. Novel Small-Molecule Inhibitor of NLRP3 Inflammasome Reverses Cognitive Impairment in an Alzheimer's Disease Model. ACS Chem Neurosci 2022; 13:818-833. [PMID: 35196855 DOI: 10.1021/acschemneuro.1c00831] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of the Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays an essential role in multiple diseases, including Alzheimer's disease (AD) and psoriasis. We report a novel small-molecule inhibitor, NLRP3-inhibitory compound 7 (NIC7), and its derivative, which inhibit NLRP3-mediated activation of caspase 1 along with the secretion of interleukin (IL)-1β, IL-18, and lactate dehydrogenase. We examined the therapeutic potential of NIC7 in a disease model of AD by analyzing its effect on cognitive impairment as well as the expression of dopamine receptors and neuronal markers. NIC7 significantly reversed the associated disease symptoms in the mice model. On the other hand, NIC7 did not reverse the disease symptoms in the imiquimod (IMQ)-induced disease model of psoriasis. This indicates that IMQ-based psoriasis is independent of NLRP3. Overall, NIC7 and its derivative have therapeutic prospects to treat AD or NLRP3-mediated diseases.
Collapse
Affiliation(s)
- Muhammad Haseeb
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Nasir Javaid
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Farzana Yasmeen
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Uisuk Jeong
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Ji Hye Han
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Juhwan Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Jee Yeon Seo
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Jae Kyung Heo
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Ho Chul Shin
- Whan In Pharmaceutical Co., Ltd., 11, Beobwon-ro 6-gil, Songpa-gu, Seoul 05855, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Wook Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|
42
|
Komaki A, Shahidi S, Hashemi-Firouzi N, Rafat Z, Keymoradzadeh A, Golipoor Z. Combined Effect of Co-administration of Stromal Cell-Derived Factor-1 and Granulocyte-Colony Stimulating Factor on Rat Model of Alzheimer's Disease. Front Behav Neurosci 2022; 16:796230. [PMID: 35309680 PMCID: PMC8924615 DOI: 10.3389/fnbeh.2022.796230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/09/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by amyloid plaque deposits, neuronal cell loss, and memory impairment. Granulocyte-colony stimulating factor (G-CSF) is a growth factor associated with AD improvement. Stromal cell-derived factor-1 (SDF-1) mediates therapeutic effects of G-CSF. This study investigated the effect of combination treatment of G-CSF and SDF-1 on amyloid plaque deposits, apoptosis, and behavior of AD rats. Methods Intracerebroventricular amyloid-beta [Aβ(1-42)] peptide was used to induce AD in Aβ rats. There were six groups including naive control, sham-operated, Aβ, Aβ + G-CSF, Aβ + SDF-1, and Aβ + G-CSF + SDF-1. SDF-1 intra-cerebroventricular (ICV), G-CSF Subcutaneous (SC), or a combination of them were administered to Aβ rats weekly for 2 months. The cognition and memory were assessed using the novel object recognition, passive avoidance, and Morris water maze tests. Next, rat brains were removed and the amyloid plaque and apoptosis were detected in the brain and hippocampus using immunohistochemistry and TUNEL assay, respectively. Results The amyloid-beta and apoptotic cell levels dropped in groups receiving SDF-1 and G-CSF combination compared to the Aβ group. Also, number of microglial cells increased significantly in the combination group compared to other treatment groups. Moreover, learning and memory were significantly improved in the combination group compared to the Aβ groups (P < 0.05). Conclusion SDF-1 and G-CSF combination therapy can offer a promising strategy for AD.
Collapse
Affiliation(s)
- Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Hashemi-Firouzi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Rafat
- Department of Medical Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arman Keymoradzadeh
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zoleikha Golipoor
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
43
|
All-Trans Retinoic Acid-Preconditioned Mesenchymal Stem Cells Improve Motor Function and Alleviate Tissue Damage After Spinal Cord Injury by Inhibition of HMGB1/NF-κB/NLRP3 Pathway Through Autophagy Activation. J Mol Neurosci 2022; 72:947-962. [PMID: 35147911 DOI: 10.1007/s12031-022-01977-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a significant public health issue that imposes numerous burdens on patients and society. Uncontrolled excessive inflammation in the second pathological phase of SCI can aggravate the injury. In this paper, we hypothesized that suppressing inflammatory pathways via autophagy could aid functional recovery, and prevent spinal cord tissue degeneration following SCI. To this end, we examined the effects of intrathecal injection of all-trans retinoic acid (ATRA)-preconditioned bone marrow mesenchymal stem cells (BM-MSCs) (ATRA-MSCs) on autophagy activity and the HMGB1/NF-κB/NLRP3 inflammatory pathway in an SCI rat model. This study demonstrated that SCI increased the expression of Beclin-1 (an autophagy-related gene) and NLRP3 inflammasome components such as NLRP3, ASC, Caspase-1, and pro-inflammatory cytokines IL-1β, IL-18, IL-6, and TNF-α. Additionally, following SCI, the protein levels of key autophagy factors (Beclin-1 and LC3-II) and HMGB1/NF-κB/NLRP3 pathway factors (HMGB1, p-NF-κB, NLRP3, IL-1β, and TNF-α) increased. Our findings indicated that ATRA-MSCs enhanced Beclin-1 and LC3-II levels, regulated the HMGB1/NF-κB/NLRP3 pathway, and inhibited pro-inflammatory cytokines. These factors improved hind limb motor activity and aided in the survival of neurons. Furthermore, ATRA-MSCs demonstrated greater beneficial effects than MSCs in treating spinal cord injury. Overall, ATRA-MSC treatment revealed beneficial effects on the damaged spinal cord by suppressing excessive inflammation and activating autophagy. Further research and investigation of the pathways involved in SCI and the use of amplified stem cells may be beneficial for future clinical use.
Collapse
|
44
|
Zhou C, Zheng J, Fan Y, Wu J. TI: NLRP3 Inflammasome-Dependent Pyroptosis in CNS Trauma: A Potential Therapeutic Target. Front Cell Dev Biol 2022; 10:821225. [PMID: 35186932 PMCID: PMC8847380 DOI: 10.3389/fcell.2022.821225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022] Open
Abstract
Central nervous system (CNS) trauma, including traumatic brain injury (TBI) and traumatic spinal cord injury (SCI), is characterized by high morbidity, disability, and mortality. TBI and SCI have similar pathophysiological mechanisms and are often accompanied by serious inflammatory responses. Pyroptosis, an inflammation-dependent programmed cell death, is becoming a major problem in CNS post-traumatic injury. Notably, the pyrin domain containing 3 (NLRP3) inflammasome is a key protein in the pyroptosis signaling pathway. Therefore, underlying mechanism of the NLRP3 inflammasome in the development of CNS trauma has attracted much attention. In this review, we briefly summarize the molecular mechanisms of NLRP3 inflammasome in pyroptosis signaling pathway, including its prime and activation. Moreover, the dynamic expression pattern, and roles of the NLRP3 inflammasome in CNS post-traumatic injury are summarized. The therapeutic applications of NLRP3 inflammasome activation inhibitors are also discussed.
Collapse
Affiliation(s)
- Conghui Zhou
- The First Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinfeng Zheng
- The First Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunpeng Fan
- The First Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang University, Hangzhou, China
| | - Junsong Wu
- Department of Orthopaedics of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Junsong Wu,
| |
Collapse
|
45
|
Lai J, Ji JM, Chen MYZ, Luo YP, Yu Y, Zhou G, Wei LL, Huang LS, Liu JC. Melatonin ameliorates bupivacaine-induced spinal neurotoxicity in rats by suppressing neuronal NLRP3 inflammasome activation. Neurosci Lett 2022; 772:136472. [PMID: 35065245 DOI: 10.1016/j.neulet.2022.136472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
Abstract
Bupivacaine is a common local anesthetic that causes neurotoxicity when used at clinical concentrations. Melatonin (MT), is a potent neuroprotective molecule. The study aimed to characterize the neuroprotective effects of MT on spinal neurotoxicity induced by bupivacaine in rats. It showed that bupivacaine, by intrathecal injection, induced spinal injury, and that the protein levels of Nod-like receptor protein 3 (NLRP3), cleaved caspase-1, and the N-terminal region of gasdermin D (GSDMD-N) were significantly increased. NLRP3 was expressed mainly in neurons and microglia. MT treatment ameliorated bupivacaine-induced spinal cord injury in rats by suppressing activation of neuronal NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Jian Lai
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Jie-Mei Ji
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Mei-Yun-Zi Chen
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Yun-Peng Luo
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Yue Yu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Gang Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Li-Ling Wei
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Lan-Shan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China
| | - Jing-Chen Liu
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, Guangxi, People's Republic of China.
| |
Collapse
|
46
|
Mancino DNJ, Lima A, Roig P, García Segura LM, De Nicola AF, Garay LI. Tibolone restrains neuroinflammation in mouse experimental autoimmune encephalomyelitis. J Neuroendocrinol 2022; 34:e13078. [PMID: 34961984 DOI: 10.1111/jne.13078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/03/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated and degenerating disease in which myelin sheaths are damaged as a result of chronic progressive inflammation of the central nervous system. Tibolone [(7α,17α)-17-hydroxy-7-methyl-19-norpregn-5(10)-en-20-in-3-one], a synthetic estrogenic compound with tissue-specific actions and used for menopausal hormone therapy, shows neuroprotective and antioxidant properties both in vivo and in vitro. In the present study, we analyzed whether tibolone plays a therapeutic role in experimental autoimmune encephalomyelitis (EAE) mice, a commonly used model of MS. Female C57BL/6 mice were induced with the myelin oligodendrocyte glycoprotein MOG35-55 and received s.c. tibolone (0.08 mg kg-1 ) injection every other day from the day of induction until death on the acute phase of the disease. Reactive gliosis, Toll like receptor 4 (TLR4), high mobility group box protein 1 (HMGB1), inflammasome parameters, activated Akt levels and myelin were assessed by a real-time polymerase chain reaction, immunohistochemistry, and western blot analysis. Our findings indicated that, in the EAE spinal cord, tibolone reversed the astrocytic and microglial reaction, and reduced the hyperexpression of TLR4 and HMGB1, as well as NLR family pyrin domain containing 3-caspase 1-interleukin-1β inflammasome activation. At the same time, tibolone attenuated the Akt/nuclear factor kappa B pathway and limited the white matter demyelination area. Estrogen receptor expression was unaltered with tibolone treatment. Clinically, tibolone improved neurological symptoms without uterine compromise. Overall, our data suggest that tibolone may serve as a promising agent for the attenuation of MS-related inflammation.
Collapse
Affiliation(s)
- Dalila N J Mancino
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental - CONICET, Buenos Aires, Argentina
| | - Analia Lima
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental - CONICET, Buenos Aires, Argentina
| | - Paulina Roig
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental - CONICET, Buenos Aires, Argentina
| | | | - Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental - CONICET, Buenos Aires, Argentina
- Department of Human Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Laura I Garay
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental - CONICET, Buenos Aires, Argentina
- Department of Human Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
47
|
Ghosh S, Mohammed Z, Singh I. Bruton's tyrosine kinase drives neuroinflammation and anxiogenic behavior in mouse models of stress. J Neuroinflammation 2021; 18:289. [PMID: 34895246 PMCID: PMC8665324 DOI: 10.1186/s12974-021-02322-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/12/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Current therapies targeting several neurotransmitter systems are only able to partially mitigate the symptoms of stress- and trauma-related disorder. Stress and trauma-related disorders lead to a prominent inflammatory response in humans, and in pre-clinical models. However, mechanisms underlying the induction of neuroinflammatory response in PTSD and anxiety disorders are not clearly understood. The present study investigated the mechanism underlying the activation of proinflammatory NLRP3 inflammasome and IL1β in mouse models of stress. METHODS We used two mouse models of stress, i.e., mice subjected to physical restraint stress with brief underwater submersion, and predator odor stress. Mice were injected with MCC950, a small molecule specific inhibitor of NLRP3 activation. To pharmacologically inhibit BTK, a specific inhibitor ibrutinib was used. To validate the observation from ibrutinib studies, a separate group of mice was injected with another BTK-specific inhibitor LFM-A13. Seven days after the induction of stress, mice were examined for anxious behavior using open field test (OFT), light-dark test (LDT), and elevated plus maze test (EPM). Following the behavior tests, hippocampus and amygdale were extracted and analyzed for various components of NLRP3-caspase 1-IL1β pathway. Plasma and peripheral blood mononuclear cells were also used to assess the induction of NLRP3-Caspase 1-IL-1β pathway in stressed mice. RESULTS Using two different pre-clinical models of stress, we demonstrate heightened anxious behavior in female mice as compared to their male counterparts. Stressed animals exhibited upregulation of proinflammatory IL1β, IL-6, Caspase 1 activity and NLRP3 inflammasome activation in brain, which were significantly higher in female mice. Pharmacological inhibition of NLRP3 inflammasome activation led to anxiolysis as well as attenuated neuroinflammatory response. Further, we observed induction of activated Bruton's tyrosine kinase (BTK), an upstream positive-regulator of NLRP3 inflammasome activation, in hippocampus and amygdala of stressed mice. Next, we conducted proof-of-concept pharmacological BTK inhibitor studies with ibrutinib and LFM-A13. In both sets of experiments, we found BTK inhibition led to anxiolysis and attenuated neuroinflammation, as indicated by significant reduction of NLRP3 inflammasome and proinflammatory IL-1β in hippocampus and amygdala. Analysis of plasma and peripheral blood mononuclear cells indicated peripheral induction of NLRP3-caspase 1-IL1β pathway in stressed mice. CONCLUSION Our study identified BTK as a key upstream regulator of neuroinflammation, which drives anxiogenic behavior in mouse model of stress. Further, we demonstrated the sexually divergent activation of BTK, providing a clue to heightened neuroinflammation and anxiogenic response to stress in females as compared to their male counterparts. Our data from the pharmacological inhibition studies suggest BTK as a novel target for the development of potential clinical treatment of PTSD and anxiety disorders. Induction of pBTK and NLRP3 in peripheral blood mononuclear cells of stressed mice suggest the potential effect of stress on systemic inflammation.
Collapse
Affiliation(s)
- Simantini Ghosh
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- Department of Psychology, Ashoka University, Rai, India.
| | | | - Itender Singh
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Ambedkar Center for Biomedical Research, Delhi University, New Delhi, India
| |
Collapse
|
48
|
Wu D, Shi L, Chen F, Lin Q, Kong J. Methylation Status of the miR-141-3p Promoter Regulates miR-141-3p Expression, Inflammasome Formation, and the Invasiveness of HTR-8/SVneo Cells. Cytogenet Genome Res 2021; 161:501-513. [PMID: 34879371 DOI: 10.1159/000519740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/19/2021] [Indexed: 11/19/2022] Open
Abstract
MicroRNA-141 (miR-141-3p) is upregulated in preeclampsia. This study investigated the effect of methylation of the miR-141-3p promoter on cell viability, invasion capability, and inflammasomes in vitro. The expression of miR-141-3p and methylation status of the miR-141-3p promoter were examined by RT-qPCR and pyrosequencing in villus tissues of women with spontaneous delivery (VTsd), villus tissues of women with preeclampsia (VTpe), and also in HTR-8/SVneo cells treated with a miR-141-3p inhibitor and 20 μmol/L 5-aza-2'-deoxycytidine (5-Aza), a DNA methyltransferase inhibitor. Cell viability and invasion were evaluated by CCK-8 and transwell assays. In addition, the levels of CXCL12, CXCR4, CXCR2, MMPs, NLRP3, and ASC expression were assessed by western blotting, and IL-1β and IL-18 concentrations were assayed by ELISA. miR-141-3p expression was upregulated, and the levels of miR-141-3p promoter methylation and CXCL12, CXCR4, and CXCR2 expression were decreased in VTpe relative to VTsd. In HTR-8/SVneo cells, hypomethylation caused by 5-Aza treatment increased miR-141-3p expression, while DNA methyltransferase 3 (DNMT3) transfection decreased miR-141-3p expression. miRNA-141-3p induced NLRP3, IL-1β, and IL-18 production, decreased CXCR4, MMP, and MMP2 production, and suppressed cell growth and invasion. Furthermore, we observed that NLRP3 plays an important mediatory role in the effects of miR-141-3p described above. Decreased methylation of the miR-141-3p promoter increases miR-141-3p expression, which in turn increases NLRP3 expression, resulting in higher IL-1β and IL-18 levels and lower levels of MMP2/9 and CXCR4. We conclude that modification of the miR-141-3p promoter might be a curial mediator in preeclampsia.
Collapse
Affiliation(s)
- Dongcai Wu
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Li Shi
- Department of Medical Ultrasonics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Fangrong Chen
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qing Lin
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiao Kong
- Department of Obstetrics, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
49
|
Rh-CXCL-12 Attenuates Neuronal Pyroptosis after Subarachnoid Hemorrhage in Rats via Regulating the CXCR4/NLRP1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6966394. [PMID: 34795842 PMCID: PMC8595028 DOI: 10.1155/2021/6966394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a cerebrovascular disease associated with high morbidity and mortality. CXCR4 provides neuroprotective effects, which can alleviate brain injury and inflammation induced by stroke. Previous studies have suggested that CXCR4 reduces the pyroptosis of LPS-stimulated BV2 cells. The purpose of this study was to evaluate the antipyroptosis effects and mechanisms of CXCR4 after SAH. SAH animal model was induced via endovascular perforation. A total of 136 male Sprague-Dawley rats were used. Recombinant human cysteine-X-cysteine chemokine ligand 12 (rh-CXCL-12) was administered intranasally at 1 h after SAH induction. To investigate the underlying mechanism, the inhibitor of CXCR4, AMD3100, was administered intraperitoneally at 1 h before SAH. The neurobehavior tests were assessed, followed by performing Western blot and immunofluorescence staining. The Western blot results suggested that the expressions of endogenous CXCL-12, CXCR4, and NLRP1 were increased and peaked at 24 h following SAH. Immunofluorescence staining showed that CXCR4 was expressed on neurons, microglia, and astrocytes. Rh-CXCL-12 treatment improved the neurological deficits and reduced the number of FJC-positive cells, IL-18-positive neurons, and cleaved caspase-1(CC-1)-positive neurons after SAH. Meanwhile, rh-CXCL-12 treatment increased the levels of CXCL-12 and CXCR4, and reduced the levels of NLRP1, IL-18, IL-1β, and CC-1. Moreover, the administration of AMD3100 abolished antipyroptosis effects of CXCL-12 and its regulation of CXCR4 post-SAH. The CXCR4/NLRP1 signaling pathway may be involved in CXCL-12-mediated neuronal pyroptosis after SAH. Early administration of CXCL-12 may be a preventive and therapeutic strategy against brain injury after SAH.
Collapse
|
50
|
Baazm M, Behrens V, Beyer C, Nikoubashman O, Zendedel A. Regulation of Inflammasomes by Application of Omega-3 Polyunsaturated Fatty Acids in a Spinal Cord Injury Model. Cells 2021; 10:3147. [PMID: 34831370 PMCID: PMC8618254 DOI: 10.3390/cells10113147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFA n3) ameliorate inflammation in different diseases and potentially improve neurological function after neuronal injury. Following spinal cord injury (SCI), inflammatory events result in caspase-1 mediated activation of interleukin-1 beta (IL-1b) and 18. We aim to evaluate the neuroprotective potency of PUFA n3 in suppressing the formation and activation of inflammasomes following SCI. Male Wistar rats were divided into four groups: control, SCI, SCI+PUFA n3, and SCI+Lipofundin MCT (medium-chain triglyceride; vehicle). PUFA n3 or vehicle was intravenously administered immediately after SCI and every 24 h for the next three days. We analyzed the expression of NLRP3, NLRP1, ASC, caspase-1, IL-1b, and 18 in the spinal cord. The distribution of microglia, oligodendrocytes, and astrocytes was assessed by immunohistochemistry analysis. Behavioral testing showed significantly improved locomotor recovery in PUFA n3-treated animals and the SCI-induced upregulation of inflammasome components was reduced. Histopathological evaluation confirmed the suppression of microgliosis, increased numbers of oligodendrocytes, and the prevention of demyelination by PUFA n3. Our data support the neuroprotective role of PUFA n3 by targeting the NLRP3 inflammasome. These findings provide evidence that PUFA n3 has therapeutic effects which potentially attenuate neuronal damage in SCI and possibly also in other neuronal injuries.
Collapse
Affiliation(s)
- Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak 3819693345, Iran;
| | - Victoria Behrens
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (V.B.); (C.B.)
| | - Cordian Beyer
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (V.B.); (C.B.)
| | - Omid Nikoubashman
- Department of Neuroradiology, University Hospital RWTH, 52074 Aachen, Germany;
| | - Adib Zendedel
- Institute of Neuroanatomy, Uniklinik RWTH Aachen, 52074 Aachen, Germany; (V.B.); (C.B.)
| |
Collapse
|