1
|
Yarreiphang H, Vidyadhara DJ, Nambisan AK, Raju TR, Sagar BKC, Alladi PA. Apoptotic Factors and Mitochondrial Complexes Assist Determination of Strain-Specific Susceptibility of Mice to Parkinsonian Neurotoxin MPTP. Mol Neurobiol 2023:10.1007/s12035-023-03372-1. [PMID: 37162724 DOI: 10.1007/s12035-023-03372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Identification of genetic mutations in Parkinson's disease (PD) promulgates the genetic nature of disease susceptibility. Resilience-associated genes being unknown till date, the normal genetic makeup of an individual may be determinative too. Our earlier studies comparing the substantia nigra (SN) and striatum of C57BL/6J, CD-1 mice, and their F1-crossbreds demonstrated the neuroprotective role of admixing against the neurotoxin MPTP. Furthermore, the differences in levels of mitochondrial fission/fusion proteins in the SN of parent strains imply effects on mitochondrial biogenesis. Our present investigations suggest that the baseline levels of apoptotic factors Bcl-2, Bax, and AIF differ across the three strains and are differentially altered in SN following MPTP administration. The reduction in complex-I levels exclusively in MPTP-injected C57BL/6J reiterates mitochondrial involvement in PD pathogenesis. The MPTP-induced increase in complex-IV, in the nigra of both parent strains, may be compensatory in nature. The ultrastructural evaluation showed fairly preserved mitochondria in the dopaminergic neurons of CD-1 and F1-crossbreds. However, in CD-1, the endoplasmic reticulum demonstrated distinct luminal enlargement, bordering onto ballooning, suggesting proteinopathy as a possible initial trigger.The increase in α-synuclein in the pars reticulata of crossbreds suggests a supportive role for this output nucleus in compensating for the lost function of pars compacta. Alternatively, since α-synuclein over-expression occurs in different brain regions in PD, the α-synuclein increase here may suggest a similar pathogenic outcome. Further understanding is required to resolve this biological contraption. Nevertheless, admixing reduces the risk to MPTP by favoring anti-apoptotic consequences. Similar neuroprotection may be envisaged in the admixed populace of Anglo-Indians.
Collapse
Affiliation(s)
- Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
- Present address: Zoology Department, Hansraj College, University of Delhi, Delhi, 110007, India
| | - D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
- Present address: Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Anand Krishnan Nambisan
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India
| | - B K Chandrashekar Sagar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore, India.
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
2
|
Jiménez-Salvador I, Meade P, Iglesias E, Bayona-Bafaluy P, Ruiz-Pesini E. Developmental origins of Parkinson disease: Improving the rodent models. Ageing Res Rev 2023; 86:101880. [PMID: 36773760 DOI: 10.1016/j.arr.2023.101880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
Numerous pesticides are inhibitors of the oxidative phosphorylation system. Oxidative phosphorylation dysfunction adversely affects neurogenesis and often accompanies Parkinson disease. Since brain development occurs mainly in the prenatal period, early exposure to pesticides could alter the development of the nervous system and increase the risk of Parkinson disease. Different rodent models have been used to confirm this hypothesis. However, more precise considerations of the selected strain, the xenobiotic, its mode of administration, and the timing of animal analysis, are necessary to resemble the model to the human clinical condition and obtain more reliable results.
Collapse
Affiliation(s)
- Irene Jiménez-Salvador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain.
| | - Patricia Meade
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Eldris Iglesias
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain; Facultad de Ciencias de la Salud, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain.
| | - Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50009- and 50013 Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, 50009 Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain.
| |
Collapse
|
3
|
Vidyadhara DJ, Somayaji M, Wade N, Yücel B, Zhao H, Shashaank N, Ribaudo J, Gupta J, Lam TT, Sames D, Greene LE, Sulzer DL, Chandra SS. Dopamine transporter and synaptic vesicle sorting defects underlie auxilin-associated Parkinson's disease. Cell Rep 2023; 42:112231. [PMID: 36920906 PMCID: PMC10127800 DOI: 10.1016/j.celrep.2023.112231] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 12/22/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Auxilin participates in the uncoating of clathrin-coated vesicles (CCVs), thereby facilitating synaptic vesicle (SV) regeneration at presynaptic sites. Auxilin (DNAJC6/PARK19) loss-of-function mutations cause early-onset Parkinson's disease (PD). Here, we utilized auxilin knockout (KO) mice to elucidate the mechanisms through which auxilin deficiency and clathrin-uncoating deficits lead to PD. Auxilin KO mice display cardinal features of PD, including progressive motor deficits, α-synuclein pathology, nigral dopaminergic loss, and neuroinflammation. Significantly, treatment with L-DOPA ameliorated motor deficits. Unbiased proteomic and neurochemical analyses of auxilin KO brains indicated dopamine dyshomeostasis. We validated these findings by demonstrating slower dopamine reuptake kinetics in vivo, an effect associated with dopamine transporter misrouting into axonal membrane deformities in the dorsal striatum. Defective SV protein sorting and elevated synaptic autophagy also contribute to ineffective dopamine sequestration and compartmentalization, ultimately leading to neurodegeneration. This study provides insights into how presynaptic endocytosis deficits lead to dopaminergic vulnerability and pathogenesis of PD.
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Mahalakshmi Somayaji
- Department of Psychiatry, Columbia University, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Nigel Wade
- Department of Neurology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Betül Yücel
- Department of Neurology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Helen Zhao
- Department of Neurology, Yale University, New Haven, CT, USA
| | - N Shashaank
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA; Department of Computer Science, Columbia University, New York, NY, USA; New York Genome Center, New York, NY, USA
| | - Joseph Ribaudo
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Jyoti Gupta
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Keck MS and Proteomics Resource, Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dalibor Sames
- Department of Chemistry and NeuroTechnology Center, Columbia University, New York, NY, USA
| | - Lois E Greene
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, MD, USA
| | - David L Sulzer
- Department of Psychiatry, Columbia University, New York, NY, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA; Departments of Neurology and Pharmacology, Columbia University, New York, NY, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sreeganga S Chandra
- Department of Neurology, Yale University, New Haven, CT, USA; Department of Neuroscience, Yale University, New Haven, CT, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Vidyadhara DJ, Yarreiphang H, Raju TR, Alladi PA. Differences in Neuronal Numbers, Morphology, and Developmental Apoptosis in Mice Nigra Provide Experimental Evidence of Ontogenic Origin of Vulnerability to Parkinson's Disease. Neurotox Res 2021; 39:1892-1907. [PMID: 34762290 DOI: 10.1007/s12640-021-00439-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
Parkinson disease (PD) prevalence varies by ethnicity. In an earlier study, we replicated the reduced vulnerability to PD in an admixed population, using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-susceptible C57BL/6 J, MPTP-resistant CD-1 and their F1 crossbreds. In the present study, we investigated if the differences have a developmental origin. Substantia nigra was evaluated at postnatal days 2 (P2), P6, P10, P14, P18, and P22. C57BL/6 J mice had smaller nigra and fewer dopaminergic neurons than the CD-1 and crossbreds at P2, which persisted through development. A significant increase in numbers and nigral volume was observed across strains until P14. A drastic decline thereafter was specific to C57BL/6 J. CD-1 and crossbreds retained their numbers from P14 to stabilize with supernumerary neurons at adulthood. The neuronal size increased gradually to attain adult morphology at P10 in the resistant strains, vis-à-vis at P22 in C57BL/6 J. Accordingly, in comparison to C57BL/6 J, the nigra of CD-1 and reciprocal crossbreds possessed cytomorphological features of resilience, since birth. The considerably lesser dopaminergic neuronal loss in the CD-1 and crossbreds was seen at P2 and P14 and thereafter was complemented by attenuated developmental cell death. The differences in programmed cell death were confirmed by reduced TUNEL labelling, AIF, and caspase-3 expression. GDNF expression aligned with the cell death pattern at P2 and P14 in both nigra and striatum. Earlier maturity of nigra and its neurons appears to be better features that reflect as MPTP resistance at adulthood. Thus, variable MPTP vulnerability in mice and also differential susceptibility to PD in humans may arise early during nigral development.
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
- Departments of Neurology and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Trichur R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Clinical Psychopharmacology and Neurotoxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
- Formerly at Department of Neurophysiology, National Institute of Mental Health and Neuro-Sciences, Hosur Road, Bangalore, India.
| |
Collapse
|
5
|
Ferrucci M, Biagioni F, Busceti CL, Vidoni C, Castino R, Isidoro C, Ryskalin L, Frati A, Puglisi-Allegra S, Fornai F. Inhibition of Autophagy In Vivo Extends Methamphetamine Toxicity to Mesencephalic Cell Bodies. Pharmaceuticals (Basel) 2021; 14:ph14101003. [PMID: 34681227 PMCID: PMC8538796 DOI: 10.3390/ph14101003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/21/2023] Open
Abstract
Methamphetamine (METH) is a widely abused psychostimulant and a stress-inducing compound, which leads to neurotoxicity for nigrostriatal dopamine (DA) terminals in rodents and primates including humans. In vitro studies indicate that autophagy is a strong modulator of METH toxicity. In detail, suppressing autophagy increases METH toxicity, while stimulating autophagy prevents METH-induced toxicity in cell cultures. In the present study, the role of autophagy was investigated in vivo. In the whole brain, METH alone destroys meso-striatal DA axon terminals, while fairly sparing DA cell bodies within substantia nigra pars compacta (SNpc). No damage to either cell bodies or axons from ventral tegmental area (VTA) is currently documented. According to the hypothesis that ongoing autophagy prevents METH-induced DA toxicity, we tested whether systemic injection of autophagy inhibitors such as asparagine (ASN, 1000 mg/Kg) or glutamine (GLN, 1000 mg/Kg), may extend METH toxicity to DA cell bodies, both within SNpc and VTA, where autophagy was found to be inhibited. When METH (5 mg/Kg × 4, 2 h apart) was administered to C57Bl/6 mice following ASN or GLN, a frank loss of cell bodies takes place within SNpc and a loss of both axons and cell bodies of VTA neurons is documented. These data indicate that, ongoing autophagy protects DA neurons and determines the refractoriness of cell bodies to METH-induced toxicity.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (M.F.); (L.R.)
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Carla L. Busceti
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Chiara Vidoni
- Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (C.V.); (R.C.); (C.I.)
| | - Roberta Castino
- Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (C.V.); (R.C.); (C.I.)
| | - Ciro Isidoro
- Department of Health Sciences, Università del Piemonte Orientale, Via P. Solaroli 17, 28100 Novara, Italy; (C.V.); (R.C.); (C.I.)
| | - Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (M.F.); (L.R.)
| | - Alessandro Frati
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
- Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135 Rome, Italy
| | - Stefano Puglisi-Allegra
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (M.F.); (L.R.)
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Isernia, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
- Correspondence: or ; Tel.: +39-050-2218601
| |
Collapse
|
6
|
Effect of Chronic Methylphenidate Treatment in a Female Experimental Model of Parkinsonism. Neurotox Res 2021; 39:667-676. [PMID: 33666887 DOI: 10.1007/s12640-021-00347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/11/2021] [Accepted: 02/28/2021] [Indexed: 10/22/2022]
Abstract
Methylphenidate (MPH) is the most commonly prescribed drug for the treatment of ADHD in males and females. However, a majority of previous studies investigated the effect of MPH in only males, and little is known regarding consequences of female exposure to MPH. This is unfortunate because the few studies that have been conducted indicate that females have a greater sensitivity to MPH. Previous research in male mice has shown that chronic exposure to MPH causes dopaminergic neurons within the nigrostriatal pathway to be more sensitive to the Parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, estrogen has been shown to protect dopaminergic neurons from MPTP neurotoxicity. Therefore, in this study, we test the hypothesis that chronic MPH exposure in female mice will render dopaminergic neurons in the nigrostriatal pathway more sensitive to MPTP, and that estrogen may play a protective role. Interestingly, proestrus females exhibited greater sensitivity to MPTP, with significantly reduced dopaminergic neurons in the SN and significant increases in DA quinone production. Chronic MPH exposure contributed to GSH depletion, but surprisingly, it did not increase dopamine quinone levels or dopaminergic cell loss. There were no significant differences in anestrus animals, with the exception of a depletion in GSH seen when animals received chronic high-dose (10 mg/kg) MPH followed by MPTP. Thus, estrogen may actually sensitize neurons to MPTP in this model, and chronic MPH may contribute to GSH depletion within the striatum. This study provides insight into how chronic psychostimulant use may affect males and females differently.
Collapse
|
7
|
Bjerke IE, Puchades MA, Bjaalie JG, Leergaard TB. Database of literature derived cellular measurements from the murine basal ganglia. Sci Data 2020; 7:211. [PMID: 32632099 PMCID: PMC7338524 DOI: 10.1038/s41597-020-0550-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/04/2020] [Indexed: 11/09/2022] Open
Abstract
Quantitative measurements and descriptive statistics of different cellular elements in the brain are typically published in journal articles as text, tables, and example figures, and represent an important basis for the creation of biologically constrained computational models, design of intervention studies, and comparison of subject groups. Such data can be challenging to extract from publications and difficult to normalise and compare across studies, and few studies have so far attempted to integrate quantitative information available in journal articles. We here present a database of quantitative information about cellular parameters in the frequently studied murine basal ganglia. The database holds a curated and normalised selection of currently available data collected from the literature and public repositories, providing the most comprehensive collection of quantitative neuroanatomical data from the basal ganglia to date. The database is shared as a downloadable resource from the EBRAINS Knowledge Graph (https://kg.ebrains.eu), together with a workflow that allows interested researchers to update and expand the database with data from future reports.
Collapse
Affiliation(s)
- Ingvild E Bjerke
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
8
|
Rodríguez-Cruz A, Romo-Mancillas A, Mendiola-Precoma J, Escobar-Cabrera JE, García-Alcocer G, Berumen LC. "Effect of valerenic acid on neuroinflammation in a MPTP-induced mouse model of Parkinson's disease". IBRO Rep 2020; 8:28-35. [PMID: 31909290 PMCID: PMC6938966 DOI: 10.1016/j.ibror.2019.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Parkinson´s disease is the most important neuromotor pathology due to the prominent loss of dopaminergic neurons in the substantia nigra pars compacta. There is an inherent deficiency of dopamine in Parkinson´s disease, which is aggravated when neuroinflammatory processes are present. Several biomolecules are interesting candidates for the regulation of inflammation and possible neuroprotection, such as valerenic acid, one of the main components of Valeriana officinalis. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced mouse model of Parkinson's disease was developed to evaluate the motor effects of valerenic acid. The evaluation was carried out with four tests (an invert screen test for muscle strength, cross beam test, open field mobility test and lifting on hind legs test). Subsequently, the neuroinflammatory process was evaluated through ELISA of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and IFN-γ). The decreases in the inflammatory and neurodegenerative processes were evaluated by Western blot and immunohistochemistry analyses of the tissues, which included an evaluation of the tyrosine hydroxylase and GFAP proteins. Finally, the predicted mechanism of action of valerenic acid was supported by molecular docking calculations with the 5-HT5A receptor. The results indicate that the use of valerenic acid as a co-treatment decreases the neuroinflammation in Parkinson's disease induced by MPTP and provides evidence of a decrease in the evaluated pro-inflammatory cytokines and in the amount of GFAP in the mesencephalic area. Valerenic acid prevents neuroinflammation in a Parkinson's disease mouse model, which might reflect the neuroprotection of dopaminergic neurons with the recovery of motor ability.
Collapse
Affiliation(s)
- Alfredo Rodríguez-Cruz
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Antonio Romo-Mancillas
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Jesus Mendiola-Precoma
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Jesica Esther Escobar-Cabrera
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Guadalupe García-Alcocer
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Laura Cristina Berumen
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Posgrado en Ciencias Químico-Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| |
Collapse
|
9
|
Sn S, Pandurangi J, Murumalla R, Dj V, Garimella L, Acharya A, Rai S, Paul A, Yarreiphang H, Pillai MS, Giridharan M, Clement JP, Alladi PA, Saiyed T, Manjithaya R. Small molecule modulator of aggrephagy regulates neuroinflammation to curb pathogenesis of neurodegeneration. EBioMedicine 2019; 50:260-273. [PMID: 31727601 PMCID: PMC6921191 DOI: 10.1016/j.ebiom.2019.10.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 10/13/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022] Open
Abstract
Background Plethora of efforts fails to yield a single drug to reverse the pathogenesis of Parkinson's disease (PD) and related α-synucleopathies. Methods Using chemical biology, we identified a small molecule inhibitor of c-abl kinase, PD180970 that could potentially clear the toxic protein aggregates. Genetic, molecular, cell biological and immunological assays were performed to understand the mechanism of action. In vivo preclinical disease model of PD was used to assess its neuroprotection efficacy. Findings In this report, we show the ability of a small molecule inhibitor of tyrosine kinases, PD180970, to induce autophagy (cell lines and mice midbrain) in an mTOR-independent manner and ameliorate the α-synuclein mediated toxicity. PD180970 also exerts anti-neuroinflammatory potential by inhibiting the release of proinflammatory cytokines such as IL-6 (interleukin-6) and MCP-1 (monocyte chemoattractant protein-1) through reduction of TLR-4 (toll like receptor-4) mediated NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation. In vivo studies show that PD180970 is neuroprotective by degrading the toxic protein oligomers through induction of autophagy and subsiding the microglial activation. Interpretation These protective mechanisms ensure the negation of Parkinson's disease related motor impairments. Fund This work was supported by Wellcome Trust/DBT India Alliance Intermediate Fellowship (500159-Z-09-Z), DST-SERB grant (EMR/2015/001946), DBT (BT/INF/22/SP27679/2018) and JNCASR intramural funds to RM, and SERB, DST (SR/SO/HS/0121/2012) to PAA, and DST-SERB (SB/YS/LS-215/2013) to JPC and BIRAC funding to ETA C-CAMP.
Collapse
Affiliation(s)
- Suresh Sn
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; Centre for Brain Research (CBR), IISc, Bangalore, India
| | - Janhavi Pandurangi
- Centre for Cellular and Molecular Platforms (C-CAMP), Bangalore Life Sciences Cluster (BLiSC), Tata Institute of Fundamental Research, Bangalore, India
| | - Ravi Murumalla
- Centre for Cellular and Molecular Platforms (C-CAMP), Bangalore Life Sciences Cluster (BLiSC), Tata Institute of Fundamental Research, Bangalore, India
| | - Vidyadhara Dj
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; Yale University, USA
| | - Lakshmi Garimella
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Achyuth Acharya
- Centre for Cellular and Molecular Platforms (C-CAMP), Bangalore Life Sciences Cluster (BLiSC), Tata Institute of Fundamental Research, Bangalore, India
| | - Shashank Rai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Malini S Pillai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Mridhula Giridharan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Taslimarif Saiyed
- Centre for Cellular and Molecular Platforms (C-CAMP), Bangalore Life Sciences Cluster (BLiSC), Tata Institute of Fundamental Research, Bangalore, India
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
10
|
Vidyadhara DJ, Lee JE, Chandra SS. Role of the endolysosomal system in Parkinson's disease. J Neurochem 2019; 150:487-506. [PMID: 31287913 PMCID: PMC6707858 DOI: 10.1111/jnc.14820] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, affecting 1-1.5% of the total population. While progress has been made in understanding the neurodegenerative mechanisms that lead to cell death in late stages of PD, mechanisms for early, causal pathogenic events are still elusive. Recent developments in PD genetics increasingly point at endolysosomal (E-L) system dysfunction as the early pathomechanism and key pathway affected in PD. Clathrin-mediated synaptic endocytosis, an integral part of the neuronal E-L system, is probably the main early target as evident in auxilin, RME-8, and synaptojanin-1 mutations that cause PD. Autophagy, another important pathway in the E-L system, is crucial in maintaining proteostasis and a healthy mitochondrial pool, especially in neurons considering their inability to divide and requirement to function an entire life-time. PINK1 and Parkin mutations severely perturb autophagy of dysfunctional mitochondria (mitophagy), both in the cell body and synaptic terminals of dopaminergic neurons, leading to PD. Endolysosomal sorting and trafficking is also crucial, which is complex in multi-compartmentalized neurons. VPS35 and VPS13C mutations noted in PD target these mechanisms. Mutations in GBA comprise the most common risk factor for PD and initiate pathology by compromising lysosomal function. This is also the case for ATP13A2 mutations. Interestingly, α-synuclein and LRRK2, key proteins involved in PD, function in different steps of the E-L pathway and target their components to induce disease pathogenesis. In this review, we discuss these E-L system genes that are linked to PD and how their dysfunction results in PD pathogenesis. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John E Lee
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sreeganga S Chandra
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Seshadri A, Alladi PA. Divergent Expression Patterns of Drp1 and HSD10 in the Nigro-Striatum of Two Mice Strains Based on their MPTP Susceptibility. Neurotox Res 2019; 36:27-38. [PMID: 30993548 DOI: 10.1007/s12640-019-00036-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Alterations in the basal ganglia circuitry are critical events in the pathophysiology of Parkinson's disease (PD). We earlier compared MPTP-susceptible C57BL/6J and MPTP-resistant CD-1 mice to understand the differential prevalence of PD in different ethnic populations like Caucasians and Asian-Indians. The MPTP-resistant CD-1 mice had 33% more nigral neurons and lost only 15-17% of them following MPTP administration. In addition to other cytomorphological features, their basal ganglia neurons had higher calcium-buffering protein levels. During disease pathogenesis as well as in MPTP-induced parkinsonian models, the loss of nigral neurons is associated with reduction in mitochondrial complex-1. Under these conditions, mitochondria respond by undergoing fusion or fission. 17β-hydroxysteroid type 10, i.e., hydroxysteroid dehydrogenase10 (HSD10) and dynamin-related peptide1 (Drp1) are proteins involved in mitochondrial hyperfusion and fission, respectively. Each plays an important role in mitochondrial structure and homeostasis. Their role in determining susceptibility to the neurotoxin MPTP in basal ganglia is however unclear. We studied their expression using immunohistochemistry and Western blotting in the dorsolateral striatum, ventral tegmental area, and substantia nigra pars compacta (SNpc) of C57BL/6J and CD-1 mice. In the SNpc, which exhibits more neuron loss following MPTP, C57BL/6J had higher baseline Drp1 levels; suggesting persistence of fission under normal conditions. Whereas, HSD10 levels increased in CD-1 following MPTP administration. This suggests mitochondrial hyperfusion, as an attempt towards neuroprotection. Thus, the baseline differences in HSD10 and DRP1 levels as well as their contrasting MPTP-responses may be critical determinants of the magnitude of neuronal loss/survival. Similar differences may determine the variable susceptibility to PD in humans.
Collapse
Affiliation(s)
- Akshaya Seshadri
- Department of Neuroscience, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
- Department of Clinical Pharmacology and Toxicology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
12
|
Vidyadhara DJ, Sasidharan A, Kutty BM, Raju TR, Alladi PA. Admixing MPTP-resistant and MPTP-vulnerable mice enhances striatal field potentials and calbindin-D28K expression to avert motor behaviour deficits. Behav Brain Res 2018; 360:216-227. [PMID: 30529402 DOI: 10.1016/j.bbr.2018.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
Abstract
Asian-Indians are less vulnerable to Parkinson's disease (PD) than the Caucasians. Their admixed populace has even lesser risk. Studying this phenomenon using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-susceptible C57BL/6J, MPTP-resistant CD-1 and their resistant crossbred mice revealed differences in the nigrostriatal cyto-molecular features. Here, we investigated the electrophysiological and behavioural correlates for differential MPTP-susceptibility and their outcome upon admixing. We recorded local field potentials (LFPs) from dorsal striatum and assessed motor co-ordination using rotarod and grip strength measures. Nigral calbindin-D28K expression, a regulator of striatal activity through nigrostriatal projections was evaluated using immunohistochemistry. The crossbreds had significantly higher baseline striatal LFPs. MPTP significantly increased the neuronal activity in delta (0.5-4 Hz) and low beta (12-16 Hz) ranges in C57BL/6J; significant increase across frequency bands till high beta (0.5-30 Hz) in CD-1, and caused no alterations in crossbreds. MPTP further depleted the already low nigral calbindin-D28K expression in C57BL/6J. While in crossbreds, it was further up-regulated. MPTP affected the rotarod and grip strength performance of the C57BL/6J, while the injected CD-1 and crossbreds performed well. The increased striatal β-oscillations are comparable to that in PD patients. Higher power in CD-1 may be compensatory in nature, which were also reported in pre-symptomatic monkeys. Concurrent up-regulation of nigral calbindin-D28K may assist maintenance of striatal activity by buffering calcium overload in nigra. Thus, preserved motor behaviour in PD reminiscent conditions in CD-1 and crossbreds complement compensated/unaffected striatal LFPs. Similar electrophysiological correlates and cytomorphological features are envisaged in human phenomenon of differential PD prevalence, which are modulated upon admixing.
Collapse
Affiliation(s)
- D J Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Arun Sasidharan
- Axxonet Brain Research Laboratory (ABRL), Axxonet System Technologies Pvt. Ltd., Bengaluru, 560029, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India.
| |
Collapse
|
13
|
Mundugaru R, Sivanesan S, Popa-Wagner A, Udaykumar P, Kirubagaran R, KP G, Vidyadhara D. Pluchea lanceolata protects hippocampal neurons from endothelin-1 induced ischemic injury to ameliorate cognitive deficits. J Chem Neuroanat 2018; 94:75-85. [DOI: 10.1016/j.jchemneu.2018.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/23/2022]
|
14
|
Suresh SN, Chavalmane AK, Pillai M, Ammanathan V, Vidyadhara DJ, Yarreiphang H, Rai S, Paul A, Clement JP, Alladi PA, Manjithaya R. Modulation of Autophagy by a Small Molecule Inverse Agonist of ERRα Is Neuroprotective. Front Mol Neurosci 2018; 11:109. [PMID: 29686608 PMCID: PMC5900053 DOI: 10.3389/fnmol.2018.00109] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/19/2018] [Indexed: 11/13/2022] Open
Abstract
Mechanistic insights into aggrephagy, a selective basal autophagy process to clear misfolded protein aggregates, are lacking. Here, we report and describe the role of Estrogen Related Receptor α (ERRα, HUGO Gene Nomenclature ESRRA), new molecular player of aggrephagy, in keeping autophagy flux in check by inhibiting autophagosome formation. A screen for small molecule modulators for aggrephagy identified ERRα inverse agonist XCT 790, that cleared α-synuclein aggregates in an autophagy dependent, but mammalian target of rapamycin (MTOR) independent manner. XCT 790 modulates autophagosome formation in an ERRα dependent manner as validated by siRNA mediated knockdown and over expression approaches. We show that, in a basal state, ERRα is localized on to the autophagosomes and upon autophagy induction by XCT 790, this localization is lost and is accompanied with an increase in autophagosome biogenesis. In a preclinical mouse model of Parkinson's disease (PD), XCT 790 exerted neuroprotective effects in the dopaminergic neurons of nigra by inducing autophagy to clear toxic protein aggregates and, in addition, ameliorated motor co-ordination deficits. Using a chemical biology approach, we unrevealed the role of ERRα in regulating autophagy and can be therapeutic target for neurodegeneration.
Collapse
Affiliation(s)
- S. N. Suresh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Aravinda K. Chavalmane
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Malini Pillai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Veena Ammanathan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - D. J. Vidyadhara
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Shashank Rai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Phalguni A. Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
15
|
Suresh SN, Chavalmane AK, DJ V, Yarreiphang H, Rai S, Paul A, Clement JP, Alladi PA, Manjithaya R. A novel autophagy modulator 6-Bio ameliorates SNCA/α-synuclein toxicity. Autophagy 2017; 13:1221-1234. [PMID: 28350199 PMCID: PMC5529071 DOI: 10.1080/15548627.2017.1302045] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 01/30/2017] [Accepted: 02/28/2017] [Indexed: 01/12/2023] Open
Abstract
Parkinson disease (PD) is a life-threatening neurodegenerative movement disorder with unmet therapeutic intervention. We have identified a small molecule autophagy modulator, 6-Bio that shows clearance of toxic SNCA/α-synuclein (a protein implicated in synucleopathies) aggregates in yeast and mammalian cell lines. 6-Bio induces autophagy and dramatically enhances autolysosome formation resulting in SNCA degradation. Importantly, neuroprotective function of 6-Bio as envisaged by immunohistology and behavior analyses in a preclinical model of PD where it induces autophagy in dopaminergic (DAergic) neurons of mice midbrain to clear toxic protein aggregates suggesting that it could be a potential therapeutic candidate for protein conformational disorders.
Collapse
Affiliation(s)
- S. N. Suresh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Aravinda K. Chavalmane
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Vidyadhara DJ
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Haorei Yarreiphang
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Shashank Rai
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Abhik Paul
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - James P. Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Phalguni Anand Alladi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore, India
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| |
Collapse
|