1
|
Wang W, Rui M. Advances in understanding the roles of actin scaffolding and membrane trafficking in dendrite development. J Genet Genomics 2024; 51:1151-1161. [PMID: 38925347 DOI: 10.1016/j.jgg.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Dendritic morphology is typically highly branched, and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received, thus providing the basis for information processing in the nervous system. Once dendritic development is aberrantly compromised or damaged, it may lead to abnormal connectivity of the neural network, affecting the function and stability of the nervous system and ultimately triggering a series of neurological disorders. Research on the regulation of dendritic developmental processes has flourished, and much progress is now being made in its regulatory mechanisms. Noteworthily, dendrites are characterized by an extremely complex dendritic arborization that cannot be attributed to individual protein functions alone, requiring a systematic analysis of the intrinsic and extrinsic signals and the coordinated roles among them. Actin cytoskeleton organization and membrane vesicle trafficking are required during dendrite development, with actin providing tracks for vesicles and vesicle trafficking in turn providing material for actin assembly. In this review, we focus on these two basic biological processes and discuss the molecular mechanisms and their synergistic effects underlying the morphogenesis of neuronal dendrites. We also offer insights and discuss strategies for the potential preventive and therapeutic treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wanting Wang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China
| | - Menglong Rui
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China.
| |
Collapse
|
2
|
Anitei M, Bruno F, Valkova C, Dau T, Cirri E, Mestres I, Calegari F, Kaether C. IER3IP1-mutations cause microcephaly by selective inhibition of ER-Golgi transport. Cell Mol Life Sci 2024; 81:334. [PMID: 39115595 PMCID: PMC11335259 DOI: 10.1007/s00018-024-05386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/22/2024]
Abstract
Mutations in the IER3IP1 (Immediate Early Response-3 Interacting Protein 1) gene can give rise to MEDS1 (Microcephaly with Simplified Gyral Pattern, Epilepsy, and Permanent Neonatal Diabetes Syndrome-1), a severe condition leading to early childhood mortality. The small endoplasmic reticulum (ER)-membrane protein IER3IP1 plays a non-essential role in ER-Golgi transport. Here, we employed secretome and cell-surface proteomics to demonstrate that the absence of IER3IP1 results in the mistrafficking of proteins crucial for neuronal development and survival, including FGFR3, UNC5B and SEMA4D. This phenomenon correlates with the distension of ER membranes and increased lysosomal activity. Notably, the trafficking of cargo receptor ERGIC53 and KDEL-receptor 2 are compromised, with the latter leading to the anomalous secretion of ER-localized chaperones. Our investigation extended to in-utero knock-down of Ier3ip1 in mouse embryo brains, revealing a morphological phenotype in newborn neurons. In summary, our findings provide insights into how the loss or mutation of a 10 kDa small ER-membrane protein can cause a fatal syndrome.
Collapse
Affiliation(s)
- Mihaela Anitei
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Francesca Bruno
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Christina Valkova
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Therese Dau
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Emilio Cirri
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Iván Mestres
- Center for Regenerative Therapies, TU-Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Federico Calegari
- Center for Regenerative Therapies, TU-Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Christoph Kaether
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany.
| |
Collapse
|
3
|
Kim JY, Hwang HG, Jeon HJ, Kim SI, Kim MK, Kim JY. ARHGEF5 binds Drebrin and affects α-tubulin acetylation to direct neuronal morphogenesis and migration during mouse brain development. Front Mol Neurosci 2024; 17:1421932. [PMID: 38932934 PMCID: PMC11199874 DOI: 10.3389/fnmol.2024.1421932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Rho guanine nucleotide exchange factors (Rho GEFs) activate Rho GTPases, which act as molecular switches regulating various essential cellular functions. This study investigated the role of ARHGEF5, a Rho GEF known for its involvement in cell migration and invasion processes, in the context of brain development. We found that ARHGEF5 is essential for dendrite development during the early stages of neuronal growth. We also discovered that ARHGEF5 binds to Drebrin E, which is vital for coordinating actin and microtubule dynamics, and facilitates the interaction between Drebrin E and Cyclin-dependent kinase 5, which phosphorylates Drebrin E. Notably, ARHGEF5 deficiency resulted in a decrease in acetylated α-tubulin levels, and the expression of an α-tubulin acetylation mimetic mutant (K40Q) rescued the defects in dendrite development and neuronal migration, suggesting ARHGEF5's role in modulating microtubule stability. Additionally, ARHGEF5 was shown to influence Golgi positioning in the leading processes of migrating cortical neurons during brain development. Our study suggests that ARHGEF5 plays a crucial role in integrating cytoskeletal dynamics with neuronal morphogenesis and migration processes during brain development.
Collapse
Affiliation(s)
- Ji-ye Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Hee-Gon Hwang
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Hye-Jin Jeon
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Seung Il Kim
- Digital Omics Research Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Min-kyu Kim
- Divison of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
4
|
He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring proteins (AKAPs) in ischemic stroke and therapeutic potentials. Biomed Pharmacother 2024; 175:116715. [PMID: 38739993 DOI: 10.1016/j.biopha.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Ziyu He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
5
|
Chen D, Zhou Y, Zhang Y, Zeng H, Wu L, Liu Y. Unraveling shared susceptibility loci and Mendelian genetic associations linking educational attainment with multiple neuropsychiatric disorders. Front Psychiatry 2024; 14:1303430. [PMID: 38250258 PMCID: PMC10797721 DOI: 10.3389/fpsyt.2023.1303430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Background Empirical studies have demonstrated that educational attainment (EA) is associated with neuropsychiatric disorders (NPDs), suggesting a shared etiological basis between them. However, little is known about the shared genetic mechanisms and causality behind such associations. Methods This study explored the shared genetic basis and causal relationships between EA and NPDs using the high-definition likelihood (HDL) method, cross phenotype association study (CPASSOC), transcriptome-wide association study (TWAS), and bidirectional Mendelian randomization (MR) with summary-level data for EA (N = 293,723) and NPDs (N range = 9,725 to 455,258). Results Significant genetic correlations between EA and 12 NPDs (rg range - 0.49 to 0.35; all p < 3.85 × 10-3) were observed. CPASSOC identified 37 independent loci shared between EA and NPDs, one of which was novel (rs71351952, mapped gene: ARFGEF2). Functional analyses and TWAS found shared genes were enriched in brain tissue, especially in the cerebellum and highlighted the regulatory role of neuronal signaling, purine nucleotide metabolic process, and cAMP-mediated signaling pathways. CPASSOC and TWAS supported the role of three regions of 6q16.1, 3p21.31, and 17q21.31 might account for the shared causes between EA and NPDs. MR confirmed higher genetically predicted EA lower the risk of ADHD (ORIVW: 0.50; 95% CI: 0.39 to 0.63) and genetically predicted ADHD decreased the risk of EA (Causal effect: -2.8 months; 95% CI: -3.9 to -1.8). Conclusion These findings provided evidence of shared genetics and causation between EA and NPDs, advanced our understanding of EA, and implicated potential biological pathways that might underlie both EA and NPDs.
Collapse
Affiliation(s)
- Dongze Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genetics, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yi Zhou
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yali Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Huatang Zeng
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Liqun Wu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Yuyang Liu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| |
Collapse
|
6
|
Chen M, Xu L, Wu Y, Soba P, Hu C. The organization and function of the Golgi apparatus in dendrite development and neurological disorders. Genes Dis 2023; 10:2425-2442. [PMID: 37554209 PMCID: PMC10404969 DOI: 10.1016/j.gendis.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dendrites are specialized neuronal compartments that sense, integrate and transfer information in the neural network. Their development is tightly controlled and abnormal dendrite morphogenesis is strongly linked to neurological disorders. While dendritic morphology ranges from relatively simple to extremely complex for a specified neuron, either requires a functional secretory pathway to continually replenish proteins and lipids to meet dendritic growth demands. The Golgi apparatus occupies the center of the secretory pathway and is regulating posttranslational modifications, sorting, transport, and signal transduction, as well as acting as a non-centrosomal microtubule organization center. The neuronal Golgi apparatus shares common features with Golgi in other eukaryotic cell types but also forms distinct structures known as Golgi outposts that specifically localize in dendrites. However, the organization and function of Golgi in dendrite development and its impact on neurological disorders is just emerging and so far lacks a systematic summary. We describe the organization of the Golgi apparatus in neurons, review the current understanding of Golgi function in dendritic morphogenesis, and discuss the current challenges and future directions.
Collapse
Affiliation(s)
- Meilan Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Lu Xu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yi Wu
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Bonn 53115, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| |
Collapse
|
7
|
de Sainte Agathe JM, Pode-Shakked B, Naudion S, Michaud V, Arveiler B, Fergelot P, Delmas J, Keren B, Poirsier C, Alkuraya FS, Tabarki B, Bend E, Davis K, Bebin M, Thompson ML, Bryant EM, Wagner M, Hannibal I, Lenberg J, Krenn M, Wigby KM, Friedman JR, Iascone M, Cereda A, Miao T, LeGuern E, Argilli E, Sherr E, Caluseriu O, Tidwell T, Bayrak-Toydemir P, Hagedorn C, Brugger M, Vill K, Morneau-Jacob FD, Chung W, Weaver KN, Owens JW, Husami A, Chaudhari BP, Stone BS, Burns K, Li R, de Lange IM, Biehler M, Ginglinger E, Gérard B, Stottmann RW, Trimouille A. ARF1-related disorder: phenotypic and molecular spectrum. J Med Genet 2023; 60:999-1005. [PMID: 37185208 PMCID: PMC10579487 DOI: 10.1136/jmg-2022-108803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder. METHODS We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated. RESULTS De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder. CONCLUSION We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.
Collapse
Affiliation(s)
| | - Ben Pode-Shakked
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sophie Naudion
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Vincent Michaud
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- Maladies Rares : Génétique et Métabolisme (MRGM), U1211, INSERM, Bordeaux, France
| | - Benoit Arveiler
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- Maladies Rares : Génétique et Métabolisme (MRGM), U1211, INSERM, Bordeaux, France
| | - Patricia Fergelot
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- Maladies Rares : Génétique et Métabolisme (MRGM), U1211, INSERM, Bordeaux, France
| | - Jean Delmas
- Pediatric and Prenatal Imaging Department, Centre Hospitalier Universitaire de Bordeaux Groupe hospitalier Pellegrin, Bordeaux, France
| | - Boris Keren
- Department of Medical Genetics, Groupe Hospitalo-Universitaire Pitié-Salpêtrière, AP-HP.Sorbonne Université, Paris, France
| | | | - Fowzan S Alkuraya
- Department of Translational Genomic, Center for Genomic Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military and Medical City, Riyadh, Saudi Arabia
| | - Eric Bend
- PreventionGenetics LLC, Marshfield, Wisconsin, USA
| | - Kellie Davis
- Division of Medical Genetics, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | - Martina Bebin
- UAB Epilepsy Center, The University of Alabama at Birmingham Hospital, Birmingham, Alabama, USA
| | - Michelle L Thompson
- Greg Cooper's Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Emily M Bryant
- Gillette Children's Specialty Healthcare, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Matias Wagner
- Institute of Human Genetics, Technische Universitat Munchen, Munchen, Germany
- Institute of Neurogenomics, Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Umwelt und Gesundheit, Neuherberg, Germany
| | - Iris Hannibal
- Department of Pediatrics, University Hospital Munich, Munchen, Germany
| | - Jerica Lenberg
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Martin Krenn
- Department of Neurology, Medizinische Universitat Wien, Wien, Austria
| | - Kristen M Wigby
- Rady Children's Hospital-San Diego, University of California, San Diego, California, USA
| | - Jennifer R Friedman
- Department of Neuroscience, Rady Children's Institute for Genomic Medicine, San Diego, California, USA
- Division of Neurology, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Cereda
- Pediatric Department, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Térence Miao
- Department of Medical Genetics, Groupe Hospitalo-Universitaire Pitié-Salpêtrière, AP-HP.Sorbonne Université, Paris, France
- École d'ingénieurs biotechnologies Paris - SupBiotech, Sup'Biotech, Paris, France
| | - Eric LeGuern
- Department of Medical Genetics, Groupe Hospitalo-Universitaire Pitié-Salpêtrière, AP-HP.Sorbonne Université, Paris, France
- ICM, INSERM, Paris, France
| | - Emanuela Argilli
- Department of Neurology, University of California San Francisco Division of Hospital Medicine, San Francisco, California, USA
| | - Elliott Sherr
- Department of Neurology, University of California San Francisco Division of Hospital Medicine, San Francisco, California, USA
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta Hospital, Edmonton, Alberta, Canada
| | | | | | - Caroline Hagedorn
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munchen, Germany
| | - Katharina Vill
- Fachbereich Neuromuskuläre Erkrankungen und klinische Neurophysiologie, Dr. v. Hauner Children's Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | | | - Wendy Chung
- Departments of Pediatrics and Medicine, Columbia University, New York City, New York, USA
| | - Kathryn N Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Joshua W Owens
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ammar Husami
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bimal P Chaudhari
- Divisions of Neonatology, Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Brandon S Stone
- Divisions of Genetics and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Katie Burns
- Sanford Children's Specialty Clinic, Sioux Falls, South Dakota, USA
| | - Rachel Li
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, USA
| | - Iris M de Lange
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Margaux Biehler
- Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg University Hospitals, Strasbourg, France
| | | | - Bénédicte Gérard
- Laboratories of Genetic Diagnosis, Institut de Génétique Médicale d'Alsace (IGMA), Strasbourg University Hospitals, Strasbourg, France
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Aurélien Trimouille
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
- Maladies Rares : Génétique et Métabolisme (MRGM), U1211, INSERM, Bordeaux, France
- Service de Pathologie, University Hospital Centre Bordeaux Pellegrin Hospital Group, Bordeaux, France
| |
Collapse
|
8
|
Mohan AG, Calenic B, Ghiurau NA, Duncea-Borca RM, Constantinescu AE, Constantinescu I. The Golgi Apparatus: A Voyage through Time, Structure, Function and Implication in Neurodegenerative Disorders. Cells 2023; 12:1972. [PMID: 37566051 PMCID: PMC10417163 DOI: 10.3390/cells12151972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
This comprehensive review article dives deep into the Golgi apparatus, an essential organelle in cellular biology. Beginning with its discovery during the 19th century until today's recognition as an important contributor to cell function. We explore its unique organization and structure as well as its roles in protein processing, sorting, and lipid biogenesis, which play key roles in maintaining homeostasis in cellular biology. This article further explores Golgi biogenesis, exploring its intricate processes and dynamics that contribute to its formation and function. One key focus is its role in neurodegenerative diseases like Parkinson's, where changes to the structure or function of the Golgi apparatus may lead to their onset or progression, emphasizing its key importance in neuronal health. At the same time, we examine the intriguing relationship between Golgi stress and endoplasmic reticulum (ER) stress, providing insights into their interplay as two major cellular stress response pathways. Such interdependence provides a greater understanding of cellular reactions to protein misfolding and accumulation, hallmark features of many neurodegenerative diseases. In summary, this review offers an exhaustive examination of the Golgi apparatus, from its historical background to its role in health and disease. Additionally, this examination emphasizes the necessity of further research in this field in order to develop targeted therapeutic approaches for Golgi dysfunction-associated conditions. Furthermore, its exploration is an example of scientific progress while simultaneously offering hope for developing innovative treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Aurel George Mohan
- Department of Neurosurgery, Bihor County Emergency Clinical Hospital, 410167 Oradea, Romania;
- Faculty of Medicine, Oradea University, 410610 Oradea, Romania
| | - Bogdan Calenic
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Nicu Adrian Ghiurau
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410610 Oradea, Romania;
| | | | | | - Ileana Constantinescu
- Immunology and Transplant Immunology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Centre of Immunogenetics and Virology, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
9
|
Havranek T, Mihalj D, Bacova Z, Bakos J. Oxytocin action on components of endoplasmic reticulum in hippocampal neuronal cells. Neurosci Lett 2023; 792:136971. [PMID: 36414131 DOI: 10.1016/j.neulet.2022.136971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Despite the known importance of the endoplasmic reticulum (ER) in protein synthesis and vesicular transport, it is not clear whether neuropeptide and neuromodulator oxytocin can directly affect components of the ER in neuronal cells. Therefore, in the present study, we hypothesize that incubation of hippocampal neuronal cells in a presence of oxytocin 1) plays a role in the regulation of the expression of selected ER chaperone components and molecules involved in unfolded protein response pathway 2) affects distribution of the intracellular fluorescence signal highly selective for the ER. We found that oxytocin (1 μM) after 60 min significantly decreased the gene expression of oxidoreductase Ero1β, chaperone glucose-regulated proteins (Grp) 78 and Grp94. A significant decrease in GRP78 protein levels in response to oxytocin treatment occurred after 30, 60 and 120 min. We also observed a time-dependent increase in calreticulin protein levels with a statistically significant increase observed after 360 min. We found that the dynamics of the ER network changes significantly within 2 h of incubation under the influence of oxytocin. In conclusion we have shown that ER chaperones, oxidoreductases and trafficking molecules in neuronal cells are changing in response to oxytocin treatment in a short-term scenario potentially relevant for growth of dendrites and axons.
Collapse
Affiliation(s)
- T Havranek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - D Mihalj
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Z Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - J Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Faculty of Medicine, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
10
|
Schafer JB, Lucas ED, Dzieciatkowska M, Forward T, Tamburini BAJ. Programmed death ligand 1 intracellular interactions with STAT3 and focal adhesion protein Paxillin facilitate lymphatic endothelial cell remodeling. J Biol Chem 2022; 298:102694. [PMID: 36375639 PMCID: PMC9761386 DOI: 10.1016/j.jbc.2022.102694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/13/2022] Open
Abstract
Lymphatic endothelial cells (LECs) comprise lymphatic capillaries and vessels that guide immune cells to lymph nodes (LNs) and form the subcapsular sinus and cortical and medullary lymphatic structures of the LN. During an active immune response, the lymphatics remodel to accommodate the influx of immune cells from the tissue, but factors involved in remodeling are unclear. Here, we determined that a TSS motif within the cytoplasmic domain of programmed death ligand 1 (PD-L1), expressed by LECs in the LN, participates in lymphatic remodeling. Mutation of the TSS motif to AAA does not affect surface expression of PD-L1, but instead causes defects in LN cortical and medullary lymphatic organization following immunostimulant, Poly I:C, administration in vivo. Supporting this observation, in vitro treatment of the LEC cell line, SVEC4-10, with cytokines TNFα and IFNα significantly impeded SVEC4-10 movement in the presence of the TSS-AAA cytoplasmic mutation. The cellular movement defects coincided with reduced F-actin polymerization, consistent with differences previously found in dendritic cells. Here, in addition to loss of actin polymerization, we define STAT3 and Paxillin as important PD-L1 binding partners. STAT3 and Paxillin were previously demonstrated to be important at focal adhesions for cellular motility. We further demonstrate the PD-L1 TSS-AAA motif mutation reduced the amount of pSTAT3 and Paxillin bound to PD-L1 both before and after exposure to TNFα and IFNα. Together, these findings highlight PD-L1 as an important component of a membrane complex that is involved in cellular motility, which leads to defects in lymphatic organization.
Collapse
Affiliation(s)
- Johnathon B Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Erin D Lucas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Immunology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Tadg Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, Colorado, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA; Immunology Graduate Program, University of Colorado School of Medicine, Aurora, Colorado, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.
| |
Collapse
|
11
|
Zhang W, Ciorraga M, Mendez P, Retana D, Boumedine-Guignon N, Achón B, Russier M, Debanne D, Garrido JJ. Formin Activity and mDia1 Contribute to Maintain Axon Initial Segment Composition and Structure. Mol Neurobiol 2021; 58:6153-6169. [PMID: 34458961 PMCID: PMC8639558 DOI: 10.1007/s12035-021-02531-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/11/2021] [Indexed: 10/29/2022]
Abstract
The axon initial segment (AIS) is essential for maintaining neuronal polarity, modulating protein transport into the axon, and action potential generation. These functions are supported by a distinctive actin and microtubule cytoskeleton that controls axonal trafficking and maintains a high density of voltage-gated ion channels linked by scaffold proteins to the AIS cytoskeleton. However, our knowledge of the mechanisms and proteins involved in AIS cytoskeleton regulation to maintain or modulate AIS structure is limited. In this context, formins play a significant role in the modulation of actin and microtubules. We show that pharmacological inhibition of formins modifies AIS actin and microtubule characteristics in cultured hippocampal neurons, reducing F-actin density and decreasing microtubule acetylation. Moreover, formin inhibition diminishes sodium channels, ankyrinG and βIV-spectrin AIS density, and AIS length, in cultured neurons and brain slices, accompanied by decreased neuronal excitability. We show that genetic downregulation of the mDia1 formin by interference RNAs also decreases AIS protein density and shortens AIS length. The ankyrinG decrease and AIS shortening observed in pharmacologically inhibited neurons and neuron-expressing mDia1 shRNAs were impaired by HDAC6 downregulation or EB1-GFP expression, known to increase microtubule acetylation or stability. However, actin stabilization only partially prevented AIS shortening without affecting AIS protein density loss. These results suggest that mDia1 maintain AIS composition and length contributing to the stability of AIS microtubules.
Collapse
Affiliation(s)
- Wei Zhang
- Instituto Cajal, CSIC, 28002 Madrid, Spain
- Present Address: College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | | | | | | | | | - Michaël Russier
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015 Marseille, France
| | - Dominique Debanne
- UNIS, INSERM, UMR 1072, Aix-Marseille Université, 13015 Marseille, France
| | - Juan José Garrido
- Instituto Cajal, CSIC, 28002 Madrid, Spain
- Alzheimer’s Disease and Other Degenerative Dementias, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
12
|
Das R, Bhattacharjee S, Letcher JM, Harris JM, Nanda S, Foldi I, Lottes EN, Bobo HM, Grantier BD, Mihály J, Ascoli GA, Cox DN. Formin 3 directs dendritic architecture via microtubule regulation and is required for somatosensory nociceptive behavior. Development 2021; 148:dev187609. [PMID: 34322714 PMCID: PMC8380456 DOI: 10.1242/dev.187609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/12/2021] [Indexed: 01/26/2023]
Abstract
Dendrite shape impacts functional connectivity and is mediated by organization and dynamics of cytoskeletal fibers. Identifying the molecular factors that regulate dendritic cytoskeletal architecture is therefore important in understanding the mechanistic links between cytoskeletal organization and neuronal function. We identified Formin 3 (Form3) as an essential regulator of cytoskeletal architecture in nociceptive sensory neurons in Drosophila larvae. Time course analyses reveal that Form3 is cell-autonomously required to promote dendritic arbor complexity. We show that form3 is required for the maintenance of a population of stable dendritic microtubules (MTs), and mutants exhibit defects in the localization of dendritic mitochondria, satellite Golgi, and the TRPA channel Painless. Form3 directly interacts with MTs via FH1-FH2 domains. Mutations in human inverted formin 2 (INF2; ortholog of form3) have been causally linked to Charcot-Marie-Tooth (CMT) disease. CMT sensory neuropathies lead to impaired peripheral sensitivity. Defects in form3 function in nociceptive neurons result in severe impairment of noxious heat-evoked behaviors. Expression of the INF2 FH1-FH2 domains partially recovers form3 defects in MTs and nocifensive behavior, suggesting conserved functions, thereby providing putative mechanistic insights into potential etiologies of CMT sensory neuropathies.
Collapse
Affiliation(s)
- Ravi Das
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | | | - Jamin M. Letcher
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Jenna M. Harris
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Sumit Nanda
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Istvan Foldi
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Erin N. Lottes
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Hansley M. Bobo
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | | | - József Mihály
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
13
|
Xu Z, Orkwis JA, Harris GM. Cell Shape and Matrix Stiffness Impact Schwann Cell Plasticity via YAP/TAZ and Rho GTPases. Int J Mol Sci 2021; 22:ijms22094821. [PMID: 34062912 PMCID: PMC8124465 DOI: 10.3390/ijms22094821] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Schwann cells (SCs) are a highly plastic cell type capable of undergoing phenotypic changes following injury or disease. SCs are able to upregulate genes associated with nerve regeneration and ultimately achieve functional recovery. During the regeneration process, the extracellular matrix (ECM) and cell morphology play a cooperative, critical role in regulating SCs, and therefore highly impact nerve regeneration outcomes. However, the roles of the ECM and mechanotransduction relating to SC phenotype are largely unknown. Here, we describe the role that matrix stiffness and cell morphology play in SC phenotype specification via known mechanotransducers YAP/TAZ and RhoA. Using engineered microenvironments to precisely control ECM stiffness, cell shape, and cell spreading, we show that ECM stiffness and SC spreading downregulated SC regenerative associated proteins by the activation of RhoA and YAP/TAZ. Additionally, cell elongation promoted a distinct SC regenerative capacity by the upregulation of Rac1/MKK7/JNK, both necessary for the ECM and morphology changes found during nerve regeneration. These results confirm the role of ECM signaling in peripheral nerve regeneration as well as provide insight to the design of future biomaterials and cellular therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhenyuan Xu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Jacob A. Orkwis
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Greg M. Harris
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-(513)-556-4167
| |
Collapse
|
14
|
do Canto AM, Donatti A, Geraldis JC, Godoi AB, da Rosa DC, Lopes-Cendes I. Neuroproteomics in Epilepsy: What Do We Know so Far? Front Mol Neurosci 2021; 13:604158. [PMID: 33488359 PMCID: PMC7817846 DOI: 10.3389/fnmol.2020.604158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Epilepsies are chronic neurological diseases that affect approximately 2% of the world population. In addition to being one of the most frequent neurological disorders, treatment for patients with epilepsy remains a challenge, because a proportion of patients do not respond to the antiseizure medications that are currently available. This results in a severe economic and social burden for patients, families, and the healthcare system. A characteristic common to all forms of epilepsy is the occurrence of epileptic seizures that are caused by abnormal neuronal discharges, leading to a clinical manifestation that is dependent on the affected brain region. It is generally accepted that an imbalance between neuronal excitation and inhibition generates the synchronic electrical activity leading to seizures. However, it is still unclear how a normal neural circuit becomes susceptible to the generation of seizures or how epileptogenesis is induced. Herein, we review the results of recent proteomic studies applied to investigate the underlying mechanisms leading to epilepsies and how these findings may impact research and treatment for these disorders.
Collapse
Affiliation(s)
- Amanda M. do Canto
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Amanda Donatti
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Jaqueline C. Geraldis
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Alexandre B. Godoi
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Douglas C. da Rosa
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics and Genomic Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil
| |
Collapse
|
15
|
Kim JY, Hwang HG, Lee JY, Kim M, Kim JY. Cortactin deacetylation by HDAC6 and SIRT2 regulates neuronal migration and dendrite morphogenesis during cerebral cortex development. Mol Brain 2020; 13:105. [PMID: 32711564 PMCID: PMC7382832 DOI: 10.1186/s13041-020-00644-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/15/2020] [Indexed: 01/11/2023] Open
Abstract
Proper dendrite morphogenesis and neuronal migration are crucial for cerebral cortex development and neural circuit formation. In this study, we sought to determine if the histone deacetylase HDAC6 plays a role in dendrite development and neuronal migration of pyramidal neurons during cerebral cortex development. It was observed that knockdown of HDAC6 leads to defective dendrite morphogenesis and abnormal Golgi polarization in vitro, and the expression of wild type cortactin or deacetyl-mimetic cortactin 9KR rescued the defective phenotypes of the HDAC6 knockdown neurons. This suggests that HDAC6 promotes dendritic growth and Golgi polarization through cortactin deacetylation in vitro. We also demonstrated that ectopic expression of SIRT2, a cytoplasmic NAD+ − dependent deacetylase, suppresses the defects of HDAC6 knockdown neurons. These results indicate that HDAC6 and SIRT2 may be functionally redundant during dendrite development. Neurons transfected with both HDAC6 and SIRT2 shRNA or acetyl-mimetic cortactin 9KQ showed slow radial migration compared to the control cells during cerebral cortex development. Furthermore, a large portion of cortactin 9KQ-expressing pyramidal neurons at layer II/III in the cerebral cortex failed to form an apical dendrite toward the pial surface and had an increased number of primary dendrites, and the percentage of neurons with dendritic Golgi decreased in cortactin 9KQ-expressing cells, compared to control neurons. Taken together, this study suggests that HDAC6 and SIRT2 regulate neuronal migration and dendrite development through cortactin deacetylation in vivo.
Collapse
Affiliation(s)
- Ji-Ye Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, South Korea
| | - Hee-Gon Hwang
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, South Korea
| | - Joo-Yong Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, South Korea
| | - Minkyu Kim
- Divison of Animal and Dairy Science, Chungnam National University, Daejeon, South Korea
| | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon, South Korea.
| |
Collapse
|
16
|
Liu YD, Ma MY, Hu XB, Yan H, Zhang YK, Yang HX, Feng JH, Wang L, Zhang H, Zhang B, Li QB, Zhang JC, Kong QX. Brain Proteomic Profiling in Intractable Epilepsy Caused by TSC1 Truncating Mutations: A Small Sample Study. Front Neurol 2020; 11:475. [PMID: 32655475 PMCID: PMC7326032 DOI: 10.3389/fneur.2020.00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease characterized by seizures, mental deficiency, and abnormalities of the skin, brain, kidney, heart, and lungs. TSC is inherited in an autosomal dominant manner and is caused by variations in either the TSC1 or TSC2 gene. TSC-related epilepsy (TRE) is the most prevalent and challenging clinical feature of TSC, and more than half of the patients have refractory epilepsy. In clinical practice, we found several patients of intractable epilepsy caused by TSC1 truncating mutations. To study the changes of protein expression in the brain, three cases of diseased brain tissue with TSC1 truncating mutation resected in intractable epilepsy operations and three cases of control brain tissue resected in craniocerebral trauma operations were collected to perform protein spectrum detection, and then the data-independent acquisition (DIA) workflow was used to analyze differentially expressed proteins. As a result, there were 55 up- and 55 down-regulated proteins found in the damaged brain tissue with TSC1 mutation compared to the control. Further bioinformatics analysis revealed that the differentially expressed proteins were mainly concentrated in the synaptic membrane between the patients with TSC and the control. Additionally, TSC1 truncating mutations may affect the pathway of amino acid metabolism. Our study provides a new idea to explore the brain damage mechanism caused by TSC1 mutations.
Collapse
Affiliation(s)
- Yi-Dan Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Meng-Yu Ma
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xi-Bin Hu
- Department of Imaging, Affiliated Hospital of Jining Medical University, Jining, China
| | - Huan Yan
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yan-Ke Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hao-Xiang Yang
- Clinical Medical College, Jining Medical University, Jining, China
| | - Jing-Hui Feng
- Clinical Medical College, Jining Medical University, Jining, China
| | - Lin Wang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Hao Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Bin Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qiu-Bo Li
- Department of Pediatrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jun-Chen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Qing-Xia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China.,Institute of Epilepsy, Jining Medical University, Jining, China
| |
Collapse
|
17
|
Ligon C, Cai Y, Buch S, Arikkath J. A selective role for a component of the autophagy pathway in coupling the Golgi apparatus to dendrite polarity in pyramidal neurons. Neurosci Lett 2020; 730:135048. [PMID: 32439477 DOI: 10.1016/j.neulet.2020.135048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Pyramidal neurons have a characteristic morphology that is critical to their ability to integrate into functional neural circuits. In addition to axon dendrite polarity, pyramidal neurons also exhibit dendritic polarity such that apical and basolateral dendrites differ in size, structure and inputs. Dendrite polarity in pyramidal neurons coincides with polarity of the Golgi apparatus, a key feature relevant to directed secretory trafficking, both in vitro and in vivo. We identify a novel autophagy based mechanism that uncouples the polarity of the Golgi apparatus from dendrite polarity. Autophagy is a universal cellular pathway that promotes cellular homeostasis via degradation of cellular components. Our data indicate that knockdown of ATG7, a key component of the autophagy mechanism, disrupts the polarity of the Golgi apparatus without impacting dendritic polarity in primary pyramidal neurons, providing the first evidence that dendrite polarity can be uncoupled from Golgi polarity. Interestingly, these effects are restricted to ATG7 knockdown and are not replicated by the knockdown of ATG16L1, another component of the autophagy mechanism. We propose that cellular mechanisms exist to couple Golgi polarity to dendrite polarity. Components of the autophagy mechanism are leveraged to actively couple Golgi polarity to dendrite polarity, thus impacting secretory trafficking into individual dendrites in pyramidal neurons.
Collapse
Affiliation(s)
- Cheryl Ligon
- Developmental Neuroscience, Munroe-Meyer Institute, United States
| | - Yu Cai
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Jyothi Arikkath
- Department of Anatomy, Howard University, Washington D.C, 20059, United States.
| |
Collapse
|
18
|
Wang B, Ji L, Bishayee K, Li C, Huh SO. Identification and prevention of heterotopias in mouse neocortical neural cell migration incurred by surgical damages during utero electroporation procedures. Anim Cells Syst (Seoul) 2020; 24:114-123. [PMID: 32489691 PMCID: PMC7241496 DOI: 10.1080/19768354.2020.1737225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
In utero electroporation (IUE) is a useful technique for gene delivery in embryonic mouse brain. IUE technique is used to investigate the mammalian brain development in vivo. However, according to recent studies, IUE methodology has some limitations like the formation of artificial ectopias and heterotopias at the micro-injection site. Thus far, the artificial heterotopias generated by physical trauma during IUE are rarely reported. Here, we reported the artificial heterotopias and ectopias generated from surgical damages of micropipette in detail, and moreover, we described the protocol to avoid these phenotypes. For the experimental purpose, we transferred empty plasmids (pCAGIG-GFP) with green fluorescent-labelled protein into the cortical cortex by IUE and then compared the structure of the cortex region between the injected and un-injected cerebral hemispheres. The coronary section showed that ectopias and heterotopias were appeared on imperfect-injected brains, and layer maker staining, which including Ctip2 and TBR1 and laminin, can differentiate the physical damage, revealing the neurons in artificial ectopic and heterotopic area were not properly arranged. Moreover, premature differentiation of neurons in ectopias and heterotopias were observed. To avoid heterotopias and ectopias, we carefully manipulated the method of IUE application. Thus, this study might be helpful for the in utero electroporator to distinguish the artificial ectopias and heterotopias that caused by the physical injury by microneedle and the ways to avoid those undesirable circumstances.
Collapse
Affiliation(s)
- Bolin Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Liting Ji
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Kausik Bishayee
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University,Chuncheon, South Korea
| | - Changyu Li
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University,Chuncheon, South Korea
| |
Collapse
|
19
|
Passemard S, Perez F, Gressens P, El Ghouzzi V. Endoplasmic reticulum and Golgi stress in microcephaly. Cell Stress 2019; 3:369-384. [PMID: 31832602 PMCID: PMC6883743 DOI: 10.15698/cst2019.12.206] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Microcephaly is a neurodevelopmental condition characterized by a small brain size associated with intellectual deficiency in most cases and is one of the most frequent clinical sign encountered in neurodevelopmental disorders. It can result from a wide range of environmental insults occurring during pregnancy or postnatally, as well as from various genetic causes and represents a highly heterogeneous condition. However, several lines of evidence highlight a compromised mode of division of the cortical precursor cells during neurogenesis, affecting neural commitment or survival as one of the common mechanisms leading to a limited production of neurons and associated with the most severe forms of congenital microcephaly. In this context, the emergence of the endoplasmic reticulum (ER) and the Golgi apparatus as key guardians of cellular homeostasis, especially through the regulation of proteostasis, has raised the hypothesis that pathological ER and/or Golgi stress could contribute significantly to cortical impairments eliciting microcephaly. In this review, we discuss recent findings implicating ER and Golgi stress responses in early brain development and provide an overview of microcephaly-associated genes involved in these pathways.
Collapse
Affiliation(s)
- Sandrine Passemard
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Service de Génétique Clinique, AP-HP, Hôpital Robert Debré, F-75019 Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, France
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas'Hospital, London, United Kingdom
| | | |
Collapse
|
20
|
Rewiring of Cancer Cell Metabolism by Mitochondrial VDAC1 Depletion Results in Time-Dependent Tumor Reprogramming: Glioblastoma as a Proof of Concept. Cells 2019; 8:cells8111330. [PMID: 31661894 PMCID: PMC6912264 DOI: 10.3390/cells8111330] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022] Open
Abstract
Reprograming of the metabolism of cancer cells is an event recognized as a hallmark of the disease. The mitochondrial gatekeeper, voltage-dependent anion channel 1 (VDAC1), mediates transport of metabolites and ions in and out of mitochondria, and is involved in mitochondria-mediated apoptosis. Here, we compared the effects of reducing hVDAC1 expression in a glioblastoma xenograft using human-specific si-RNA (si-hVDAC1) for a short (19 days) and a long term (40 days). Tumors underwent reprograming, reflected in rewired metabolism, eradication of cancer stem cells (CSCs) and differentiation. Short- and long-term treatments of the tumors with si-hVDAC1 similarly reduced the expression of metabolism-related enzymes, and translocator protein (TSPO) and CSCs markers. In contrast, differentiation into cells expressing astrocyte or neuronal markers was noted only after a long period during which the tumor cells were hVDAC1-depleted. This suggests that tumor cell differentiation is a prolonged process that precedes metabolic reprograming and the “disappearance” of CSCs. Tumor proteomics analysis revealing global changes in the expression levels of proteins associated with signaling, synthesis and degradation of proteins, DNA structure and replication and epigenetic changes, all of which were highly altered after a long period of si-hVDAC1 tumor treatment. The depletion of hVDAC1 greatly reduced the levels of the multifunctional translocator protein TSPO, which is overexpressed in both the mitochondria and the nucleus of the tumor. The results thus show that VDAC1 depletion-mediated cancer cell metabolic reprograming involves a chain of events occurring in a sequential manner leading to a reversal of the unique properties of the tumor, indicative of the interplay between metabolism and oncogenic signaling networks.
Collapse
|
21
|
Liu J, He J, Huang Y, Xiao H, Jiang Z, Hu Z. The Golgi apparatus in neurorestoration. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The central role of the Golgi apparatus in critical cellular processes such as the transport, processing, and sorting of proteins and lipids has placed it at the forefront of cell science. Golgi apparatus dysfunction caused by primary defects within the Golgi or pharmacological and oxidative stress has been implicated in a wide range of neurodegenerative diseases. In addition to participating in disease progression, the Golgi apparatus plays pivotal roles in angiogenesis, neurogenesis, and synaptogenesis, thereby promoting neurological recovery. In this review, we focus on the functions of the Golgi apparatus and its mediated events during neurorestoration.
Collapse
|