1
|
Wang F, Chen Z, Zhou Q, Sun Q, Zheng N, Chen Z, Lin J, Li B, Li L. Implications of liquid-liquid phase separation and ferroptosis in Alzheimer's disease. Neuropharmacology 2024; 259:110083. [PMID: 39043267 DOI: 10.1016/j.neuropharm.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Neuronal cell demise represents a prevalent occurrence throughout the advancement of Alzheimer's disease (AD). However, the mechanism of triggering the death of neuronal cells remains unclear. Its potential mechanisms include aggregation of soluble amyloid-beta (Aβ) to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFTs), neuroinflammation, ferroptosis, oxidative stress, liquid-liquid phase separation (LLPS) and metal ion disorders. Among them, ferroptosis is an iron-dependent lipid peroxidation-driven cell death and emerging evidences have demonstrated the involvement of ferroptosis in the pathological process of AD. The sensitivity to ferroptosis is tightly linked to numerous biological processes. Moreover, emerging evidences indicate that LLPS has great impacts on regulating human health and diseases, especially AD. Soluble Aβ can undergo LLPS to form liquid-like droplets, which can lead to the formation of insoluble amyloid plaques. Meanwhile, tau has a high propensity to condensate via the mechanism of LLPS, which can lead to the formation of NFTs. In this review, we summarize the most recent advancements pertaining to LLPS and ferroptosis in AD. Our primary focus is on expounding the influence of Aβ, tau protein, iron ions, and lipid oxidation on the intricate mechanisms underlying ferroptosis and LLPS within the domain of AD pathology. Additionally, we delve into the intricate cross-interactions that occur between LLPS and ferroptosis in the context of AD. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for AD.
Collapse
Affiliation(s)
- Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
2
|
Rugieł M, Setkowicz Z, Czyzycki M, Simon R, Baumbach T, Chwiej J. Element Changes Occurring in Brain Point at the White Matter Abnormalities in Rats Exposed to the Ketogenic Diet During Prenatal Life. ACS Chem Neurosci 2024; 15:3932-3944. [PMID: 39443296 DOI: 10.1021/acschemneuro.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
A large number of clinical studies demonstrate that the ketogenic diet (KD) may be an effective approach to the reduction of epileptic seizures in children and adults. Such dietary therapy could also help pregnant women with epilepsy, especially since most antiseizure drugs have teratogenic action. However, there is a lack of medical data, considering the safety of using KD during gestation for the progeny. Therefore, we examined the influence of KD used prenatally in rats on the elemental composition of the selected brain regions in their offspring. For this purpose, synchrotron radiation-induced X-ray fluorescence (SR-XRF) microscopy was utilized, and elements such as P, S, K, Ca, Fe, and Zn were determined. Moreover, to verify whether the possible effects of KD are temporary or long-term, different stages of animal postnatal development were taken into account in our experiment. The obtained results confirmed the great applicability of SR-XRF microscopy to track the element changes occurring in the brain during postnatal development as well as those induced by prenatal exposure to the high-fat diet. The topographic analysis of the brains taken from offspring of mothers fed with KD during pregnancy and appropriate control individuals showed a potential influence of such dietary treatment on the brain levels of elements such as P and S. In the oldest progeny, a significant reduction of the surface of brain areas characterized by an increased P and S content, which histologically/morphologically correspond to white matter structures, was noticed. In turn, quantitative elemental analysis showed significantly decreased levels of Fe in the striatum and white matter of 30-day-old rats exposed prenatally to KD. This effect was temporary and was not noticed in adult animals. The observed abnormalities may be related to the changes in the accumulation of sphingomyelin and sulfatides and may testify about disturbances in the structure and integrity of the myelin, present in the white matter.
Collapse
Affiliation(s)
- Marzena Rugieł
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Al. Mickiewicza 30, Krakow 30-059, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, Krakow 30-387, Poland
| | - Mateusz Czyzycki
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
| | - Rolf Simon
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
| | - Tilo Baumbach
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen D-76344, Germany
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Kaiserstr. 12, Karlsruhe D-76131, Germany
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Al. Mickiewicza 30, Krakow 30-059, Poland
| |
Collapse
|
3
|
Guindo A, Koya A, Sarro YDS, Toure AB, Doumbia M, Traoré Y, Kene S, Diarra AB, Diallo DA. Analysis of Iron Status in Sickle Cell Disease Patients During Steady State at the Center de Recherche et de Lutte contre la Drépanocytose (CRLD) Bamako. Hemoglobin 2024:1-5. [PMID: 39496616 DOI: 10.1080/03630269.2024.2419889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024]
Abstract
Sickle cell disease (SCD) is a prevalent inherited blood disorder arising from a single point mutation that results in substitution of valine with glutamic acid in the Beta hemoglobin chain, making red blood cells assume a banana shape under low oxygen state. It is most prevalent in sub-Saharan Africa, affecting approximately 2% of the population in Mali. This study aimed to evaluate the iron status and associated hematological parameters in SCD patients at steady state in an environment with a high prevalence of iron deficiency. A cross-sectional study was conducted at the Center de Recherche et de Lutte contre la Drépanocytose (CRLD) in Bamako, Mali, involving 757 SCD patients aged 10 to 29 years. Iron deficiency was defined as serum ferritin < 20 ng/mL, while iron overload was associated with serum ferritin > 500 ng/mL. The study population consisted of 171 (22.6%) hemolytic phenotypes (SS and Sβ0) and 586 (77.4%) viscous phenotypes (SC and Sβ+). Iron deficiency was found in 19 SCD patients (2.5%), with a higher prevalence in the SC phenotype (68.4%). All iron-deficient subjects exhibited microcytosis (MCV < 80 fL) and hypochromia (MCH < 26 pg). Hemoglobin levels < 12 g/dL were observed only in homozygous SCD patients. Low reticulocyte counts were noted in iron-deficient subjects with SC and Sβ+ phenotypes, but not in iron-deficient SS subjects. Serum C-reactive protein (CRP) was normal (< 10 mg/L) in all iron-deficient subjects, excluding iron deficiency due to chronic inflammation. Iron deficiency was observed among 2.5% of the study population, with a predominant occurrence among those with SC phenotype. All iron deficient subjects had microcytosis and hypochromia. Hemoglobin levels below 12 g/dL were only found in homozygous SCD patients. Additionally, low reticulocyte counts were noted in iron deficient patients with SC and Sβ+ phenotypes, though not in those with the SS phenotype. These findings contribute to the understanding of iron status in SCD patients in an African context and highlights the importance of monitoring iron levels in these population to prevent complications associated with iron deficiency or overload.
Collapse
Affiliation(s)
- Aldiouma Guindo
- Centre de Recherche et de Lutte contre la Drépanocytose (CRLD) de Bamako, Bamako, Mali
| | - Abdulmalik Koya
- Centre de Recherche et de Lutte contre la Drépanocytose (CRLD) de Bamako, Bamako, Mali
| | - Yeya Dit Sadio Sarro
- Centre de Recherche et de Lutte contre la Drépanocytose (CRLD) de Bamako, Bamako, Mali
| | | | | | - Youssouf Traoré
- Centre de Recherche et de Lutte contre la Drépanocytose (CRLD) de Bamako, Bamako, Mali
| | - Sekou Kene
- Centre de Recherche et de Lutte contre la Drépanocytose (CRLD) de Bamako, Bamako, Mali
| | - A B Diarra
- Centre National de Transfusion Sanguine, Bamako, Mali
| | - D A Diallo
- Centre de Recherche et de Lutte contre la Drépanocytose (CRLD) de Bamako, Bamako, Mali
| |
Collapse
|
4
|
Wang R, Zhang X, Ye H, Yang X, Zhao Y, Wu L, Liu H, Wen Y, Wang J, Wang Y, Yu M, Ma C, Wang L. Fibroblast growth factor 21 improves diabetic cardiomyopathy by inhibiting ferroptosis via ferritin pathway. Cardiovasc Diabetol 2024; 23:394. [PMID: 39488694 PMCID: PMC11531115 DOI: 10.1186/s12933-024-02469-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 2 diabetes mellitus, and its mechanisms are complex and poorly understood. Despite growing evidence suggesting that ferroptosis plays a significant role in cardiovascular disease, it has been less extensively studied in DCM. Fibroblast growth factor 21 (FGF21), whose mechanism of action is closely related to ferroptosis, is widely utilized in studies focused on the prevention and treatment of glucolipid metabolism-related diseases and cardiovascular diseases. OBJECTIVE To confirm the significant role of ferroptosis in DCM and to investigate whether FGF21 improves DCM by inhibiting ferroptosis and elucidating its specific molecular mechanisms. METHODS The animal DCM models were established through high-fat feeding combined with streptozotocin injection in C57BL/6J mice or by db/db mice, and the diabetic cardiomyocyte injury model was created using high glucose and high fat (HG/HF) culture of primary cardiomyocytes. Intervention modeling of FGF21 were performed by injecting adeno-associated virus 9-FGF21 in mice and transfecting FGF21 siRNA or overexpression plasmid in primary cardiomyocytes. RESULTS The findings indicated that ferroptosis was exacerbated and played a significant role in DCM. The overexpression of FGF21 inhibited ferroptosis and improved cardiac injury and function, whereas the knockdown of FGF21 aggravated ferroptosis and cardiac injury and function in DCM. Furthermore, we discovered that FGF21 inhibited ferroptosis in DCM by directly acting on ferritin and prolonging its half-life. Specifically, FGF21 binded to the heavy and light chains of ferritin, thereby reducing its excessive degradation in the proteasome and lysosomal-autophagy pathways in DCM. Additionally, activating transcription factor 4 (ATF4) served as the upstream regulator of FGF21 in DCM. CONCLUSIONS The ATF4-FGF21-ferritin axis mediates the protective effects in DCM through the ferroptosis pathway and represents a potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Ruxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaofang Zhang
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Haowen Ye
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xian Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yongting Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Liangyan Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Han Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Yun Wen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jiaxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Ying Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Meixin Yu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Caixia Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Lihong Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
- The Academician Cooperative Laboratory of Basic and Translational Research on Chronic Diseases, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Wu A, Yang H, Xiao T, Gu W, Li H, Chen P. COPZ1 regulates ferroptosis through NCOA4-mediated ferritinophagy in lung adenocarcinoma. Biochim Biophys Acta Gen Subj 2024; 1868:130706. [PMID: 39181476 DOI: 10.1016/j.bbagen.2024.130706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Ferroptosis, a type of autophagy-dependent cell death, has been implicated in the pathogenesis of lung adenocarcinoma (LUAD). This study aimed to investigate the involvement of coatomer protein complex I subunit zeta 1 (COPZ1) in ferroptosis and ferritinophagy in LUAD. METHODS Publicly available human LUAD sample data were obtained from the TCGA database to analyze the association of COPZ1 expression with LUAD grade and patient survival. Clinical samples of LUAD and para-carcinoma tissues were collected. COPZ1-deficient LUAD cell model and xenograft model were established. These models were analyzed to evaluate tumor growth, lipid peroxidation levels, mitochondrial structure, autophagy activation, and iron metabolism. RESULTS High expression of COPZ1 was indicative of malignancy and poor overall survival. Clinical LUAD tissues showed increased COPZ1 expression and decreased nuclear receptor coactivator 4 (NCOA4) expression. COPZ1 knockdown inhibited xenograft tumor growth and induced apoptosis. COPZ1 knockdown elevated the levels of ROS, Fe2+ and lipid peroxidation. COPZ1 knockdown also caused mitochondrial shrinkage. Liproxstatin-1, deferoxamine, and z-VAD-FMK reversed the effects of COPZ1 knockdown on LUAD cell proliferation and ferroptosis. Furthermore, COPZ1 was directly bound to NCOA4. COPZ1 knockdown restricted FTH1 expression and promoted NCOA4 and LC3 expression. NCOA4 knockdown reversed the regulation of iron metabolism, lipid peroxidation, and mitochondrial structure induced by COPZ1 knockdown. COPZ1 knockdown induced the translocation of ferritin to lysosomes for degradation, whereas NCOA4 knockdown disrupted this process. CONCLUSION This study provides novel evidence that COPZ1 regulates NCOA4-mediated ferritinophagy and ferroptosis. These findings provide new insights into the pathogenesis and potential treatment of LUAD.
Collapse
Affiliation(s)
- Anbang Wu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongmin Yang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Tengfei Xiao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wangnin Gu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - He Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; College of pharmacy, Changsha Medical University, Changsha 410219, China.
| | - Pan Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
6
|
Yao Z, Jiao Q, Du X, Jia F, Chen X, Yan C, Jiang H. Ferroptosis in Parkinson's disease -- The iron-related degenerative disease. Ageing Res Rev 2024; 101:102477. [PMID: 39218077 DOI: 10.1016/j.arr.2024.102477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) is a prevalent and advancing age-related neurodegenerative disorder, distinguished by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Iron regional deposit in SNpc is a significant pathological characteristic of PD. Brain iron homeostasis is precisely regulated by iron metabolism related proteins, whereas disorder of these proteins can damage neurons and glial cells in the brain. Additionally, growing studies have reported iron metabolism related proteins are involved in the ferroptosis progression in PD. However, the effect of these proteins in the ferroptosis of PD has not been systematically summarized. This review focuses on the roles of iron metabolism related proteins in the ferroptosis of PD. Finally, we put forward the iron early diagnosis according to the observation of iron deposits in the brain and showed the recent advances in iron chelation therapy in PD.
Collapse
Affiliation(s)
- Zhengyang Yao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Fengju Jia
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Hong Jiang
- Qingdao Key Laboratory of Neurorehabilitation, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| |
Collapse
|
7
|
Kulczyńska-Przybik A, Czupryna P, Adamczuk J, Kruszewska E, Mroczko B, Moniuszko-Malinowska A. Clinical usefulness of the serum levels of neuroinflammatory and lung fibrosis biomarkers in the assessment of cognitive dysfunction in post-COVID19 patients. Sci Rep 2024; 14:25798. [PMID: 39468309 PMCID: PMC11519350 DOI: 10.1038/s41598-024-76630-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
A growing body of evidence indicates there is an increasing incidence of cognitive dysfunction in patients after coronavirus disease 2019 (COVID-19) infection. However, still lack diagnostic tools, which allow us to predict prognosis in such cases and improve the stratification of the disease. This study aims to evaluate the usefulness of the biomarkers that could allow to predict the severity and progression of COVID-19 in patients with post-COVID syndrome and cognitive problems. Data regarding clinical history, pre-existing conditions, chest CT scan, and therapy (remdesivir, steroids) were acquired. A total of 44 patients with hospitalized COVID-19, and healthy controls were enrolled in the investigation, and serum blood was obtained. After 6 months of observations, patients with COVID-19 were divided into two groups: first - without post-COVID syndrome and memory complaints, and second - with post-COVID and cognitive problems. Measurements of YKL-40 and MR-pro-ADM were taken in the serum with enzyme immunoassay kits at the time of admission (visit 1) and 6 months after discharge from the hospital (visit 2). Significantly higher concentrations of YKL-40 were found in patients with COVID-19 as compared to healthy individuals (p = 0.016). Moreover, YKL-40 ratio allowed to differentiate patients with and without post-COVID syndrome (median: 0.94 vs. 1.55, p = 0.004). Additionally, COVID-19 patients with dyspnea presented significantly elevated levels of MR-pro-ADM as compared to the group of COVID-19 survivors without dyspnea (p = 0.015). In the group of patients without post-COVID syndrome, the concentrations of YKL-40 and MR-pro-ADM decreased after treatment as compared to levels before therapy (77 vs. 36 ng/ml and 607 vs. 456 pmol/L). However, in patients with post-COVID syndrome and cognitive problems, the levels of both markers did not alter 6 months after hospital discharge in comparison to basal levels. Furthermore, after dexamethasone treatment the YKL-40 concentrations declined significantly (p = 0.003) in patients with COVID-19. This study demonstrated the predictive usefulness of YKL-40 as an indicator of successful treatment in patients with COVID-19 infection allowing risk stratification of hospitalized patients. It seems that indicators of neuroinflammation might have the potential to track development of cognitive complaints, however, it requires further investigations.
Collapse
Affiliation(s)
| | - Piotr Czupryna
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| | - Justyna Adamczuk
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| | - Ewelina Kruszewska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269, Białystok, Poland
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-269, Białystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, 15-540, Białystok, Poland
| |
Collapse
|
8
|
Li S, Ma S, Wang L, Zhan D, Jiang S, Zhang Z, Xiong M, Jiang Y, Huang Q, Zhang J, Li X. ATF3 as a response factor to regulate Cd-induced reproductive damage by activating the NRF2/HO-1 ferroptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117114. [PMID: 39357374 DOI: 10.1016/j.ecoenv.2024.117114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Cadmium (Cd) has garnered significant attention due to reproductive toxicity in inducing ferroptosis. However, the specific mechanisms underlying Cd-induced germ cell ferroptosis remain poorly understood. This study aimed to systematically explore the molecular mechanisms of germ cell ferroptosis by investigating differential changes in transcription factors and proteins in male mice treated orally with CdCl2 (0.5 g/L) reaching postnatal day 60, alongside Leydig cell (TM3) and Sertoli cell (TM4) lines. Results demonstrated that Cd exposure led to increased iron overload and oxidative stress in mouse testes, disrupted intracellular mitochondrial morphology characteristic of ferroptosis. RNA sequencing revealed significant upregulation of Atf3 and Hmox1 in Cd-exposed germ cells, along with increased expression of ATF3 and HO-1. Intervention in ferroptosis or HO-1 effectively rescued cells from Cd-induced mortality by breaking the detrimental cycle between lipid peroxidation and HO-1 activation. Further findings showed that NRF2 and HO-1 expression was notably elevated upon ATF3 overexpression in TM3 and TM4 cells, activating the Keap1-Nrf2 pathway and triggering ferroptosis in testes, whereas NRF2 and HO-1 expression levels were reversed when ATF3 was silenced. This study provides novel insights into ATF3-mediated NRF2/HO-1 signaling in Cd-induced mitochondrial ferroptosis in testes, shedding light on the mechanisms underlying Cd-induced ferroptosis and testicular injury.
Collapse
Affiliation(s)
- Sisi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Sheng Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Lirui Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Dian Zhan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Shengyao Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Zhenyang Zhang
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Manyi Xiong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Yanping Jiang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Qixian Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China
| | - Jian Zhang
- Department of Agriculture, Hetao College, Bayannur 015000, China
| | - Xinhong Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory for Veterinary and Biotechnology, Shanghai 200240, China.
| |
Collapse
|
9
|
Wang H, Liu X, Chen Y, Li W, Ge Y, Liang H, Xu B, Li X. The regulatory role of miR-21 in ferroptosis by targeting FTH1 and the contribution of microglia-derived miR-21 in exosomes to arsenic-induced neuronal ferroptosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135580. [PMID: 39186845 DOI: 10.1016/j.jhazmat.2024.135580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/17/2024] [Indexed: 08/28/2024]
Abstract
Arsenic is recognized as a hazardous environmental toxicant strongly associated with neurological damage, but the mechanism is ambiguous. Neuronal cell death is one of the mechanisms of arsenic-induced neurological injury. Ferroptosis is involved in the pathophysiological process of many neurological diseases, however, the role and regulatory mechanism of ferroptosis in nerve injury under arsenic exposure remains uncovered. Our findings confirmed the role of ferroptosis in arsenic-induced learning and memory disorder and revealed miR-21 played a regulatory role in neuronal ferroptosis. Further study discovered that miR-21 regulated neuronal ferroptosis by targeting at FTH1, a finding which has not been documented before. We also found an extra increase of ferroptosis in neuronal cells conditionally cultured by medium collected from arsenic-exposed microglial cells when compared with neuronal cells directly exposed to the same dose of arsenic. Moreover, microglia-derived exosomes removal or miR-21 knockdown in microglia inhibited neuronal ferroptosis, suggesting the role of intercellular communication in the promotion of neuronal ferroptosis. In summary, our findings highlighted the regulatory role of miR-21 in ferroptosis and the contribution of microglia-derived miR-21 in exosomes to arsenic-induced neuronal ferroptosis.
Collapse
Affiliation(s)
- Huanhuan Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Xudan Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Yao Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Wanying Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Yanhong Ge
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Huning Liang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122
| | - Bin Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122.
| | - Xin Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China, 110122; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, China Medical University, Shenyang, Liaoning, China, 110122; Department of Occupational Health, School of Public Health, China Medical University, Shenyang, Liaoning, China, 110122.
| |
Collapse
|
10
|
Li H, Fan X, Guo X, Yan W, Yu X, Deng X, Zhang J. Changes in meat quality of Esox Lucius during postmortem storage: Based on the lysosomal-mitochondrial apoptotic pathway. Food Chem 2024; 463:141522. [PMID: 39383794 DOI: 10.1016/j.foodchem.2024.141522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
In this study, we explored the correlation between the lysosome-mitochondrial apoptosis pathway and fish softening, as well as the correlation between ferritin degradation and lysosomal iron changes. The results indicated that ferritin levels gradually decreased, lysosomal iron first increased and then decreased and tended to stabilize, and lysosomal membrane stability significantly decreased (p < 0.05). Spearman's analysis suggested that an increase in lysosomal iron was associated with ferritin degradation. Lysosomal instability promoted the release of cathepsin D, thereby increasing the release of Bid and Bax, and inhibiting the expression of Bcl-2. Subsequently, caspase-9/-3 was activated. In addition, transmission electron microscopy revealed ultrastructural damage to mitochondria and cell nuclei, which are morphological features of apoptosis during post-mortem storage. Moreover, TUNEL staining confirmed the occurrence of apoptosis. We concluded that the lysosome- mitochondrial apoptosis pathway was active during the storage of Esox Lucius, in which ferritin degradation and increased lysosomal iron were key factors inducing lysosomal damage, and cathepsin D released by lysosomes was a key factor connecting lysosomes and mitochondria.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xuemei Fan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xin Guo
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenbo Yan
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xinyao Yu
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaorong Deng
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Jian Zhang
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
11
|
Li J, Feng R, Yang W, Liang P, Qiu T, Zhang J, Sun X, Li Q, Yang G, Yao X. Lysosomal iron accumulation and subsequent lysosomes-mitochondria iron transmission mediate PFOS-induced hepatocyte ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116890. [PMID: 39146593 DOI: 10.1016/j.ecoenv.2024.116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is known as a persistent organic pollutant. A significant correlation between PFOS and liver ferroptosis has been unveiled, but the precise mechanism needs to be elucidated. In prior research, we found that PFOS treatment provoked mitochondrial iron overload. In this study, we observed a gradual increase in lysosomal iron in L-O2 cells after exposure to PFOS for 0.5-24 h. In PFOS-exposed L-O2 cells, suppressing autophagy relieved the lysosomal iron overload. Inhibiting transient receptor potential mucolipin 1 (TRPML1), a calcium efflux channel on the lysosomal membrane, led to a further rise in lysosomal iron levels and decreased mitochondrial iron overload during PFOS treatment. Suppressing VDAC1, a subtype of voltage-dependent anion-selective channels (VDACs) on the outer mitochondrial membrane, had no impact on PFOS-triggered mitochondrial iron overload, whereas restraining VDAC2/3 relieved this condition. Although silencing VDAC2 relieved PFOS-induced mitochondrial iron overload, it had no effect on PFOS-triggered lysosomal iron overload. Silencing VDAC3 alleviated PFOS-mediated mitochondrial iron overload and led to an additional increase in lysosomal iron. Therefore, we regarded VDAC3 as the specific VDACs subtype that mediated the lysosomes-mitochondria iron transfer. Additionally, in the presence of PFOS, an enhanced association between TRPML1 and VDAC3 was found in mice liver tissue and L-O2 cells. Our research unveils a novel regulatory mechanism of autophagy on the iron homeostasis and the effect of TRPML1-VDAC3 interaction on lysosomes-mitochondria iron transfer, giving an explanation of PFOS-induced ferroptosis and shedding some light on the role of classic calcium channels in iron transmission.
Collapse
Affiliation(s)
- Jixun Li
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Ruzhen Feng
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Wei Yang
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Peiyao Liang
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Tianming Qiu
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Jingyuan Zhang
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Xiance Sun
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Qiujuan Li
- Nutrition and Food Safety Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Guang Yang
- Nutrition and Food Safety Department, Dalian Medical University, 9 Lushun South Road, Dalian, China
| | - Xiaofeng Yao
- Environment and Occupation Health Department, Dalian Medical University, 9 Lushun South Road, Dalian, China.
| |
Collapse
|
12
|
Aiello EN, Contarino VE, Conte G, Solca F, Curti B, Maranzano A, Torre S, Casale S, Doretti A, Colombo E, Verde F, Silani V, Liu C, Cinnante C, Triulzi FM, Morelli C, Poletti B, Ticozzi N. QSM-detected iron accumulation in the cerebellar gray matter is selectively associated with executive dysfunction in non-demented ALS patients. Front Neurol 2024; 15:1426841. [PMID: 39364420 PMCID: PMC11448125 DOI: 10.3389/fneur.2024.1426841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024] Open
Abstract
Background This study aimed to assess whether quantitative susceptibility imaging (QSM)-based measures of iron accumulation in the cerebellum predict cognitive and behavioral features in non-demented amyotrophic lateral sclerosis (ALS) patients. Methods A total of ALS patients underwent 3-T MRI and a clinical assessment using the ALS Functional Rating Scale-Revised (ALSFRS-R) and the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). Regression models were applied to each subscale of the cognitive section of the ECAS and the ECAS-Carer Interview to examine the effect of QSM-based measures in white and gray matter (WM; GM) of the cerebellum, separately for right, left, and bilateral cerebellar regions of interest (ROIs). These effects were compared to those of cerebellar volumetrics in WM/GM, right and left hemispheres while controlling for demographics, disease status, and total intracranial volume. Results Higher QSM measures of the cerebellar GM on the left, right, and bilateral sides significantly predicted (ps ≤ 0.003) a greater number of errors on the executive functioning (EF) subscale of the ECAS (ECAS-EF). Moreover, higher GM-related, QSM measures of the cerebellum were associated with an increased probability of a below-cut-off performance on the ECAS-EF (ps ≤ 0.024). No significant effects were observed for QSM measures of the cerebellar WM or for volumetric measures on the ECAS-EF. Other ECAS measures showed no significant effects. Bilateral QSM measures of the cerebellar GM also selectively predicted performance on backward digit span and social cognition tasks. Discussion Iron accumulation within the cerebellar GM, particularly in the cerebellar cortices, may be associated with executive functioning deficits in non-demented ALS patients. Therefore, QSM-based measures could be useful for identifying the neural correlates of extra-motor cognitive deficits in ALS patients.
Collapse
Affiliation(s)
- Edoardo Nicolò Aiello
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Valeria Elisa Contarino
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giorgio Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Beatrice Curti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Alessio Maranzano
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Silvia Torre
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Silvia Casale
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Alberto Doretti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Eleonora Colombo
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Chunlei Liu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States
| | - Claudia Cinnante
- Department of Diagnostic Imaging, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Fabio Maria Triulzi
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Claudia Morelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milano, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milano, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
13
|
Chen Y, Meng Z, Li Y, Liu S, Hu P, Luo E. Advanced glycation end products and reactive oxygen species: uncovering the potential role of ferroptosis in diabetic complications. Mol Med 2024; 30:141. [PMID: 39251935 PMCID: PMC11385660 DOI: 10.1186/s10020-024-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Advanced glycation end products (AGEs) are a diverse range of compounds that are formed when free amino groups of proteins, lipids, and nucleic acids are carbonylated by reactive carbonyl species or glycosylated by reducing sugars. Hyperglycemia in patients with diabetes can cause an overabundance of AGEs. Excess AGEs are generally acknowledged as major contributing factors to the development of diabetic complications because of their ability to break down the extracellular matrix directly and initiate intracellular signaling pathways by binding to the receptor for advanced glycation end products (RAGE). Inflammation and oxidative stress are the two most well-defined pathophysiological states induced by the AGE-RAGE interaction. In addition to oxidative stress, AGEs can also inhibit antioxidative systems and disturb iron homeostasis, all of which may induce ferroptosis. Ferroptosis is a newly identified contributor to diabetic complications. This review outlines the formation of AGEs in individuals with diabetes, explores the oxidative damage resulting from downstream reactions of the AGE-RAGE axis, and proposes a novel connection between AGEs and the ferroptosis pathway. This study introduces the concept of a vicious cycle involving AGEs, oxidative stress, and ferroptosis in the development of diabetic complications.
Collapse
Affiliation(s)
- Yanchi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zihan Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Pei Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
14
|
Gubieda AG, Gandarias L, Pósfai M, Pattammattel A, Fdez-Gubieda ML, Abad-Díaz-de-Cerio A, García-Prieto A. Temporal and spatial resolution of magnetosome degradation at the subcellular level in a 3D lung carcinoma model. J Nanobiotechnology 2024; 22:529. [PMID: 39218876 PMCID: PMC11367995 DOI: 10.1186/s12951-024-02788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Magnetic nanoparticles offer many exciting possibilities in biomedicine, from cell imaging to cancer treatment. One of the currently researched nanoparticles are magnetosomes, magnetite nanoparticles of high chemical purity synthesized by magnetotactic bacteria. Despite their therapeutic potential, very little is known about their degradation in human cells, and even less so of their degradation within tumours. In an effort to explore the potential of magnetosomes for cancer treatment, we have explored their degradation process in a 3D human lung carcinoma model at the subcellular level and with nanometre scale resolution. We have used state of the art hard X-ray probes (nano-XANES and nano-XRF), which allow for identification of distinct iron phases in each region of the cell. Our results reveal the progression of magnetite oxidation to maghemite within magnetosomes, and the biosynthesis of magnetite and ferrihydrite by ferritin.
Collapse
Affiliation(s)
- Alicia G Gubieda
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain.
| | - Lucía Gandarias
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
- Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Aix-Marseille Université, CNRS, CEA-UMR 7265, Saint-Paul-les-Durance, 13108, France
| | - Mihály Pósfai
- Research Center of Biomolecular and Chemical Engineering, University of Pannonia Veszprém, Veszprém, Hungary
- HUN-REN-PE Environmental Mineralogy Research Group, Veszprém, Hungary
| | - Ajith Pattammattel
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - M Luisa Fdez-Gubieda
- Department of Electricity and Electronics, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain
| | - Ana Abad-Díaz-de-Cerio
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country (UPV/EHU), Leioa, 48940, Spain.
| | - Ana García-Prieto
- Department of Applied Physics, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain.
| |
Collapse
|
15
|
Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H, Peng S. Progress in the Pathogenesis of Diabetic Encephalopathy: The Key Role of Neuroinflammation. Diabetes Metab Res Rev 2024; 40:e3841. [PMID: 39295168 DOI: 10.1002/dmrr.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a severe complication that occurs in the central nervous system (CNS) and leads to cognitive impairment. DE involves various pathophysiological processes, and its pathogenesis is still unclear. This review summarised current research on the pathogenesis of diabetic encephalopathy, which involves neuroinflammation, oxidative stress, iron homoeostasis, blood-brain barrier disruption, altered gut microbiota, insulin resistance, etc. Among these pathological mechanisms, neuroinflammation has been focused on. This paper summarises some of the molecular mechanisms involved in neuroinflammation, including the Mammalian Target of Rapamycin (mTOR), Lipocalin-2 (LCN-2), Pyroptosis, Advanced Glycosylation End Products (AGEs), and some common pro-inflammatory factors. In addition, we discuss recent advances in the study of potential therapeutic targets for the treatment of DE against neuroinflammation. The current research on the pathogenesis of DE is progressing slowly, and more research is needed in the future. Further study of neuroinflammation as a mechanism is conducive to the discovery of more effective treatments for DE in the future.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Dimas-Benedicto C, Albasanz JL, Bermejo LM, Castro-Vázquez L, Sánchez-Melgar A, Martín M, Martínez-García RM. Impact of Iron Intake and Reserves on Cognitive Function in Young University Students. Nutrients 2024; 16:2808. [PMID: 39203944 PMCID: PMC11356983 DOI: 10.3390/nu16162808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Iron is a key nutrient for cognitive function. During periods of high academic demand, brain and cognitive activity increase, potentially affecting iron intake and reserves. The present study aimed to investigate the impact of iron levels on cognitive function in a university sample, considering the influence of gender. A cross-sectional study was conducted with 132 university students (18-29 years) from the University of Castilla-La Mancha (Spain). A dietary record was formed through a questionnaire to analyze iron consumption, and blood and anthropometric parameters were measured. The Wechsler Adult Intelligence Scale-IV was used to determine the Intelligence Quotient (IQ), as well as the Verbal Comprehension Index (VCI), Working Memory Index (WMI), Processing Speed Index (PSI), and Perceptual Reasoning Index (PRI), to assess cognitive abilities. Among women, the prevalence of iron deficiency (ID) and iron deficiency anemia (IDA) was 21% and 4.2%, respectively. No ID or IDA was found in men. The impact of iron intake on IQ and cognitive abilities was mainly associated with the female population, where a positive association between iron intake, serum ferritin, and total IQ was revealed. In conclusion, low iron intake is related to poorer intellectual ability, suggesting that an iron-rich diet is necessary to maintain the academic level of university students.
Collapse
Affiliation(s)
- Carmen Dimas-Benedicto
- NUTRI-SAF Research Group, Departamento de Enfermería, Fisioterapia y Terapia Ocupacional, Facultad de Enfermería, University of Castilla-La Mancha, 16071 Cuenca, Spain; (C.D.-B.); (R.M.M.-G.)
| | - José Luis Albasanz
- GNCR Research Group, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina de Ciudad Real, Instituto de Biomedicina de la UCLM, IDISCAM, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Laura M. Bermejo
- VALORNUT Research Group, Departamento de Nutrición y Ciencias de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- San Carlos Health Research Institute (IdISSC), 28040 Madrid, Spain
| | - Lucía Castro-Vázquez
- NUTRI-SAF Research Group, Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Farmacia, University of Castilla-La Mancha, 02071 Albacete, Spain;
| | - Alejandro Sánchez-Melgar
- GNCR Research Group, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Enfermeria de Ciudad Real, Instituto de Biomedicina de la UCLM, IDISCAM, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Mairena Martín
- GNCR Research Group, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Medicina de Ciudad Real, Instituto de Biomedicina de la UCLM, IDISCAM, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
- GNCR Research Group, Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Enfermeria de Ciudad Real, Instituto de Biomedicina de la UCLM, IDISCAM, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Rosa M. Martínez-García
- NUTRI-SAF Research Group, Departamento de Enfermería, Fisioterapia y Terapia Ocupacional, Facultad de Enfermería, University of Castilla-La Mancha, 16071 Cuenca, Spain; (C.D.-B.); (R.M.M.-G.)
| |
Collapse
|
17
|
Song Y, Yuan Z, Ji J, Ruan Y, Li X, Wang L, Zeng W, Wu K, Hu W, Yi L, Ding H, Zhao M, Fan S, Li Z, Chen J. Development of a Ferritin-Based Nanoparticle Vaccine against Classical Swine Fever. Vaccines (Basel) 2024; 12:948. [PMID: 39204071 PMCID: PMC11360710 DOI: 10.3390/vaccines12080948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The occurrence of classical swine fever (CSF) poses a significant threat to the global swine industry. Developing an effective and safe vaccine is crucial for preventing and controlling CSF. Here, we constructed self-assembled ferritin nanoparticles fused with the classical swine fever virus (CSFV) E2 protein and a derived B cell epitope (Fe-E2B) using a baculovirus expression system (BVES), demonstrating enhanced immunogenicity. Furthermore, we provide a detailed evaluation of the immunological efficacy of the FeE2B in rabbits. The results showed that robust and sustained antibody responses were detected in rabbits immunized with the Fe-E2B nanoparticle vaccine, comparable to those elicited by commercially available vaccines. Additionally, we demonstrated that the vaccine effectively activated crucial immune factors IFN-γ and IL-4 in vivo, increasing their levels by 1.41-fold and 1.39-fold, respectively. Immunization with Fe-E2B enabled rabbits to avoid viremia and stereotypic fever after CSFV challenge. In conclusion, this study highlights the potential of ferritin nanoparticles as antigen-presenting carriers to induce robust immune responses, proposing a candidate vaccine strategy for the prevention and control of CSF.
Collapse
Affiliation(s)
- Yiwan Song
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Zhongmao Yuan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Junzhi Ji
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Yang Ruan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Lianxiang Wang
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing 527400, China;
| | - Weijun Zeng
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Wenshuo Hu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoyao Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd., Xinxing 527400, China;
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (Y.S.); (Z.Y.); (J.J.); (Y.R.); (X.L.); (W.Z.); (K.W.); (W.H.); (L.Y.); (H.D.); (M.Z.); (S.F.)
- Key Laboratory of Zoonotic Disease Prevention and Control of Guangdong, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
Agostini F, Sgalletta B, Bisaglia M. Iron Dyshomeostasis in Neurodegeneration with Brain Iron Accumulation (NBIA): Is It the Cause or the Effect? Cells 2024; 13:1376. [PMID: 39195264 DOI: 10.3390/cells13161376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Iron is an essential metal ion implicated in several cellular processes. However, the reactive nature of iron renders this metal ion potentially dangerous for cells, and its levels need to be tightly controlled. Alterations in the intracellular concentration of iron are associated with different neuropathological conditions, including neurodegeneration with brain iron accumulation (NBIA). As the name suggests, NBIA encompasses a class of rare and still poorly investigated neurodegenerative disorders characterized by an abnormal accumulation of iron in the brain. NBIA is mostly a genetic pathology, and to date, 10 genes have been linked to familial forms of NBIA. In the present review, after the description of the principal mechanisms implicated in iron homeostasis, we summarize the research data concerning the pathological mechanisms underlying the genetic forms of NBIA and discuss the potential involvement of iron in such processes. The picture that emerges is that, while iron overload can contribute to the pathogenesis of NBIA, it does not seem to be the causal factor in most forms of the pathology. The onset of these pathologies is rather caused by a combination of processes involving the interplay between lipid metabolism, mitochondrial functions, and autophagic activity, eventually leading to iron dyshomeostasis.
Collapse
Affiliation(s)
- Francesco Agostini
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Bibiana Sgalletta
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Marco Bisaglia
- Department of Biology, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, 35121 Padova, Italy
| |
Collapse
|
19
|
Vana F, Szabo Z, Masarik M, Kratochvilova M. The interplay of transition metals in ferroptosis and pyroptosis. Cell Div 2024; 19:24. [PMID: 39097717 PMCID: PMC11297737 DOI: 10.1186/s13008-024-00127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Abstract
Cell death is one of the most important mechanisms of maintaining homeostasis in our body. Ferroptosis and pyroptosis are forms of necrosis-like cell death. These cell death modalities play key roles in the pathophysiology of cancer, cardiovascular, neurological diseases, and other pathologies. Transition metals are abundant group of elements in all living organisms. This paper presents a summary of ferroptosis and pyroptosis pathways and their connection to significant transition metals, namely zinc (Zn), copper (Cu), molybdenum (Mo), lead (Pb), cobalt (Co), iron (Fe), cadmium (Cd), nickel (Ni), mercury (Hg), uranium (U), platinum (Pt), and one crucial element, selenium (Se). Authors aim to summarize the up-to-date knowledge of this topic.In this review, there are categorized and highlighted the most common patterns in the alterations of ferroptosis and pyroptosis by transition metals. Special attention is given to zinc since collected data support its dual nature of action in both ferroptosis and pyroptosis. All findings are presented together with a brief description of major biochemical pathways involving mentioned metals and are visualized in attached comprehensive figures.This work concludes that the majority of disruptions in the studied metals' homeostasis impacts cell fate, influencing both death and survival of cells in the complex system of altered pathways. Therefore, this summary opens up the space for further research.
Collapse
Affiliation(s)
- Frantisek Vana
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Zoltan Szabo
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
20
|
Lau K, Kotzur R, Richter F. Blood-brain barrier alterations and their impact on Parkinson's disease pathogenesis and therapy. Transl Neurodegener 2024; 13:37. [PMID: 39075566 PMCID: PMC11285262 DOI: 10.1186/s40035-024-00430-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
There is increasing evidence for blood-brain barrier (BBB) alterations in Parkinson's disease (PD), the second most common neurodegenerative disorder with rapidly rising prevalence. Altered tight junction and transporter protein levels, accumulation of α-synuclein and increase in inflammatory processes lead to extravasation of blood molecules and vessel degeneration. This could result in a self-perpetuating pathophysiology of inflammation and BBB alteration, which contribute to neurodegeneration. Toxin exposure or α-synuclein over-expression in animal models has been shown to initiate similar pathologies, providing a platform to study underlying mechanisms and therapeutic interventions. Here we provide a comprehensive review of the current knowledge on BBB alterations in PD patients and how rodent models that replicate some of these changes can be used to study disease mechanisms. Specific challenges in assessing the BBB in patients and in healthy controls are discussed. Finally, a potential role of BBB alterations in disease pathogenesis and possible implications for therapy are explored. The interference of BBB alterations with current and novel therapeutic strategies requires more attention. Brain region-specific BBB alterations could also open up novel opportunities to target specifically vulnerable neuronal subpopulations.
Collapse
Affiliation(s)
- Kristina Lau
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Rebecca Kotzur
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
21
|
Jiang H, Sun Z, He P, Li F, Chen Q. Ferritin Light Chain Alleviates Cerebral Ischemic-Reperfusion Injury-Induced Neuroinflammation via the HIF1α Mediated NF-κB Signaling Pathways. Inflammation 2024:10.1007/s10753-024-02110-6. [PMID: 39066965 DOI: 10.1007/s10753-024-02110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Ferritin light chain (FtL) is a complex formed by apoferritin and iron core and is one of the main storage forms of iron. Currently, the precise role of FtL in cerebral ischemia/reperfusion injury (CIRI) remains undetermined. This investigation aimed to elucidate the roles and underlying mechanisms of FtL in CIRI. To induce CIRI, an oxygen-glucose deprivation (OGD) model in microglia and middle cerebral artery occlusion (MCAO) model were established using C57BL/6 J mice. The in vivo and in vitro FtL expression patterns were assessed. Furthermore, the potential regulatory mechanism of FtL at the upstream level was also explored. In addition, the in vivo and in vitro role of FtL in post-ischemic inflammation was also clarified. The results indicated that FtL was up-regulated in OGD-induced microglia and CIRI mice. Moreover, OGD activated HIF1α, which interacted with the FtL promoter region as an activator, thereby increasing FtL expression. Furthermore, FtL attenuated the release of pro-inflammatory cytokines (TNFα, IL6) and decreased levels of COX2 and iNOS in microglia; however, FtL knockdown had the opposite effects. Up-regulated FtL was observed to inhibit OGD-induced NF-κB activation in microglia, decreased IκBα degradation, and reduced NF-κB/p65 nuclear translocation. In summary, this study revealed an underlying mechanism of FtL upregulation via HIF1α and highlighted its protective role against post-ischemic neuroinflammation, indicating the potential of FtL as a target for CIRI treatment.
Collapse
Affiliation(s)
- Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China
| | - Zheng Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China
| | - Peidong He
- First School of Clinical Medicine of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Fei Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China.
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang Distict, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
22
|
Zhao F, Wang J, Zhang Y, Hu J, Li C, Liu S, Li R, Du R. In vivo Fate of Targeted Drug Delivery Carriers. Int J Nanomedicine 2024; 19:6895-6929. [PMID: 39005963 PMCID: PMC11246094 DOI: 10.2147/ijn.s465959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
This review aimed to systematically investigate the intracellular and subcellular fate of various types of targeting carriers. Upon entering the body via intravenous injection or other routes, a targeting carrier that can deliver therapeutic agents initiates their journey. If administered intravenously, the carrier initially faces challenges presented by the blood circulation before reaching specific tissues and interacting with cells within the tissue. At the subcellular level, the car2rier undergoes processes, such as drug release, degradation, and metabolism, through specific pathways. While studies on the fate of 13 types of carriers have been relatively conclusive, these studies are incomplete and lack a comprehensive analysis. Furthermore, there are still carriers whose fate remains unclear, underscoring the need for continuous research. This study highlights the importance of comprehending the in vivo and intracellular fate of targeting carriers and provides valuable insights into the operational mechanisms of different carriers within the body. By doing so, researchers can effectively select appropriate carriers and enhance the successful clinical translation of new formulations.
Collapse
Affiliation(s)
- Fan Zhao
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jitong Wang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Yu Zhang
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Jinru Hu
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, People’s Republic of China
| | - Shuainan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, People’s Republic of China
- Diabetes Research Center of Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ruixiang Li
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Ruofei Du
- Engineering Research Center of Modern Preparation Technology of TCM, Ministry of Education, Shanghai, 201203, People’s Republic of China
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| |
Collapse
|
23
|
Zhou Z, Niu H, Bian M, Zhu C. Kidney tea [ Orthosiphon aristatus (Blume) Miq.] improves diabetic nephropathy via regulating gut microbiota and ferroptosis. Front Pharmacol 2024; 15:1392123. [PMID: 38962302 PMCID: PMC11220284 DOI: 10.3389/fphar.2024.1392123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Due to its complex pathogenesis, new therapeutic agents are urgently needed. Orthosiphon aristatus (Blume) Miq., commonly known as kidney tea, is widely used in DN treatment in China. However, the mechanisms have not been fully elucidated. Methods We used db/db mice as the DN model and evaluated the efficacy of kidney tea in DN treatment by measuring fasting blood glucose (FBG), serum inflammatory cytokines, renal injury indicators and histopathological changes. Furthermore, 16S rDNA gene sequencing, untargeted serum metabolomics, electron microscope, ELISA, qRT-PCR, and Western blotting were performed to explore the mechanisms by which kidney tea exerted therapeutic effects. Results Twelve polyphenols were identified from kidney tea, and its extract ameliorated FBG, inflammation and renal injury in DN mice. Moreover, kidney tea reshaped the gut microbiota, reduced the abundance of Muribaculaceae, Lachnoclostridium, Prevotellaceae_UCG-001, Corynebacterium and Akkermansia, and enriched the abundance of Alloprevotella, Blautia and Lachnospiraceae_NK4A136_group. Kidney tea altered the levels of serum metabolites in pathways such as ferroptosis, arginine biosynthesis and mTOR signaling pathway. Importantly, kidney tea improved mitochondrial damage, increased SOD activity, and decreased the levels of MDA and 4-HNE in the renal tissues of DN mice. Meanwhile, this functional tea upregulated GPX4 and FTH1 expression and downregulated ACSL4 and NCOA4 expression, indicating that it could inhibit ferroptosis in the kidneys. Conclusion Our findings imply that kidney tea can attenuate DN development by modulating gut microbiota and ferroptosis, which presents a novel scientific rationale for the clinical application of kidney tea.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjuan Niu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunsheng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
24
|
Wang X, Kang C, Guo W, Zhang H, Xiao Q, Hao W. Chlormequat Chloride Inhibits TM3 Leydig Cell Growth via Ferroptosis-Initiated Inflammation. Cells 2024; 13:979. [PMID: 38891111 PMCID: PMC11171675 DOI: 10.3390/cells13110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Ferroptosis hallmarked by lipid peroxidation and iron homeostasis imbalance is involved in the occurrence and development of various diseases. The plant growth regulator chlormequat chloride (CCC) can contribute to the causality and exacerbation of reproductive disorders. However, the mechanism by which CCC may cause Leydig cell attenuation remains poorly understood. In this study, TM3 Leydig cells were used to investigate the inhibitory effect of CCC on cell growth and its possible mechanism. The results showed that CCC caused apoptosis, pyroptosis, ferroptosis and necroinflammation in TM3 cells. By comparing the effects of ferroptosis inhibitor Ferrostatin-1 (Fer-1) and pan-Caspase inhibitor Z-VAD-FMK (ZVF) on lipid peroxidation and Caspase-mediated regulated cell death (RCD), we found that Fer-1 was better at rescuing the growth of TM3 cells than ZVF. Although ZVF reduced mitochondrial ROS level and inhibited the activation of Caspase3 and Caspase1, it could not significantly ameliorate lipid peroxidation and the levels of IL-1β and HMGB1 like Fer-1. Therefore, ferroptosis might be a key non apoptotic RCD mode responsible for CCC-driven inflammation, leading to weakened viability and proliferation of TM3 cells. In addition, overexpression of ferritin light chain (FTL) promoted the resistance of TM3 cells to CCC-induced ferroptosis-mediated inflammation and to some extent improved the inhibition of viability and proliferation. Altogether, ferroptosis-initiated inflammation might play a key role in CCC-impaired TM3 cell growth.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Haoran Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; (X.W.); (C.K.); (W.G.); (H.Z.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| |
Collapse
|
25
|
Jiang D, An X, Xu Q, Mo G, Ling W, Ji C, Wang Z, Wang X, Sun Q, Kang B. Effects of ferritin heavy chain on oxidative stress, cell proliferation and apoptosis in geese follicular granulosa cells. Br Poult Sci 2024; 65:297-306. [PMID: 38456722 DOI: 10.1080/00071668.2024.2315086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/02/2023] [Indexed: 03/09/2024]
Abstract
1. The ferritin heavy chain (FHC) has a vital impact on follicular development in geese, due to its ability to regulate apoptosis of granulosa cells (GCs) and follicular atresia. However, its specific regulatory mechanisms remain unclear. The present study characterised how FHC regulates oxidative stress, cell proliferation and apoptosis in goose GCs by interfering with and overexpressing the FHC gene.2. After 72 h of interference with FHC expression, the activity of GCs decreased remarkably (p < 0.05), reactive oxygen species (ROS) levels and the expression levels of antioxidant enzyme genes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) increased significantly (p < 0.05). The overexpression of FHC for 72 h was found to significantly reduce the expression of CAT and SOD genes (p < 0.05).3. Interfering with FHC expression revealed that the expression levels of the cell proliferation gene Aurora kinase A (AURORA-A) were significantly decreased (p < 0.05), while the expression levels of the apoptosis genes B-cell lymphoma-2 (BCL-2) and cysteine aspartate-specific protease 8 (CASPASE 8) increased (p < 0.05). Further research has shown that, when interfering with FHC expression for 72 h, apoptosis rate increased by 1.19-fold (p < 0.05), but the current data showed a lower apoptosis rate after FHC overexpression by 59.41%, 63.39%, and 52.31% at three different treatment times (p < 0.05).4. In conclusion, FHC improved the antioxidant capacity of GCs, promotes GCs proliferation, and inhibits GCs apoptosis of ovarian follicles in Sichuan white geese.
Collapse
Affiliation(s)
- D Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - X An
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Q Xu
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - G Mo
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - W Ling
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - C Ji
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Z Wang
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - X Wang
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - Q Sun
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| | - B Kang
- State Key Laboratory of Swine and Poultry Breeding Industry,College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
26
|
Kurepa J, Bruce KA, Gerhardt GA, Smalle JA. A Plant Model of α-Synucleinopathy: Expression of α-Synuclein A53T Variant in Hairy Root Cultures Leads to Proteostatic Stress and Dysregulation of Iron Metabolism. APPLIED BIOSCIENCES 2024; 3:233-249. [PMID: 38835931 PMCID: PMC11149894 DOI: 10.3390/applbiosci3020016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Synucleinopathies, typified by Parkinson's disease (PD), entail the accumulation of α-synuclein (αSyn) aggregates in nerve cells. Various αSyn mutants, including the αSyn A53T variant linked to early-onset PD, increase the propensity for αSyn aggregate formation. In addition to disrupting protein homeostasis and inducing proteostatic stress, the aggregation of αSyn in PD is associated with an imbalance in iron metabolism, which increases the generation of reactive oxygen species and causes oxidative stress. This study explored the impact of αSyn A53T expression in transgenic hairy roots of four medicinal plants (Lobelia cardinalis, Artemisia annua, Salvia miltiorrhiza, and Polygonum multiflorum). In all tested plants, αSyn A53T expression triggered proteotoxic stress and perturbed iron homeostasis, mirroring the molecular profile observed in human and animal nerve cells. In addition to the common eukaryotic defense mechanisms against proteostatic and oxidative stresses, a plant stress response generally includes the biosynthesis of a diverse set of protective secondary metabolites. Therefore, the hairy root cultures expressing αSyn A53T offer a platform for identifying secondary metabolites that can ameliorate the effects of αSyn, thereby aiding in the development of possible PD treatments and/or treatments of synucleinopathies.
Collapse
Affiliation(s)
- Jasmina Kurepa
- Department of Plant and Soil Sciences, Martin-Gatton College of Agriculture Food and Environment, Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Kristen A. Bruce
- Naprogenix, Inc., UK-AsTeCC, 145 Graham Avenue, Lexington, KY 40506, USA
| | - Greg A. Gerhardt
- Brain Restoration Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Jan A. Smalle
- Department of Plant and Soil Sciences, Martin-Gatton College of Agriculture Food and Environment, Kentucky Tobacco Research & Development Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
27
|
Wei D, Qu C, Zhao N, Li S, Pu N, Song Z, Tao Y. The significance of precisely regulating heme oxygenase-1 expression: Another avenue for treating age-related ocular disease? Ageing Res Rev 2024; 97:102308. [PMID: 38615894 DOI: 10.1016/j.arr.2024.102308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Aging entails the deterioration of the body's organs, including overall damages at both the genetic and cellular levels. The prevalence of age-related ocular disease such as macular degeneration, dry eye diseases, glaucoma and cataracts is increasing as the world's population ages, imposing a considerable economic burden on individuals and society. The development of age-related ocular disease is predominantly triggered by oxidative stress and chronic inflammatory reaction. Heme oxygenase-1 (HO-1) is a crucial antioxidant that mediates the degradative process of endogenous iron protoporphyrin heme. It catalyzes the rate-limiting step of the heme degradation reaction, and releases the metabolites such as carbon monoxide (CO), ferrous, and biliverdin (BV). The potent scavenging activity of these metabolites can help to defend against peroxides, peroxynitrite, hydroxyl, and superoxide radicals. Other than directly decomposing endogenous oxidizing substances (hemoglobin), HO-1 is also a critical regulator of inflammatory cells and tissue damage, exerting its anti-inflammation activity through regulating complex inflammatory networks. Therefore, promoting HO-1 expression may act as a promising therapeutic strategy for the age-related ocular disease. However, emerging evidences suggest that the overexpression of HO-1 significantly contributes to ferroptosis due to its dual nature. Surplus HO-1 leads to excessive Fe2+ and reactive oxygen species, thereby causing lipid peroxidation and ferroptosis. In this review, we elucidate the role of HO-1 in countering age-related disease, and summarize recent pharmacological trials that targeting HO-1 for disease management. Further refinements of the knowledge would position HO-1 as a novel therapeutic target for age-related ocular disease.
Collapse
Affiliation(s)
- Dong Wei
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, China
| | - Chengkang Qu
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Na Zhao
- College of Medicine, Zhengzhou University, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, China
| | - Ning Pu
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, China
| | - Zongming Song
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Ye Tao
- Department of ophthalmology, Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| |
Collapse
|
28
|
Song K, Liu X, Xu H, Li M, Zheng Q, Qi C, Wang X, Liu Y, Zheng P, Liu J. Cr(VI) induces ferroptosis in DF-1 cells by simultaneously perturbing iron homeostasis of ferritinophagy and mitophagy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171818. [PMID: 38508245 DOI: 10.1016/j.scitotenv.2024.171818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Hexavalent chromium [Cr(VI)] is an environmental pollutant known for its strong oxidizing and carcinogenic effects. However, its potential to induce ferroptosis in poultry remains poorly understood. This study aims to investigate the induction of ferroptosis by Cr(VI) in DF-1 cells and elucidate the underlying mechanisms. DF-1 cells exposed to Cr(VI) showed increased lipid reactive oxygen species and changes in ferroptosis marker genes (decreased expression of GPX4 and increased expression of COX2). Notably, the addition of the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) can reverse this effect. During the cell death process, Cr(VI) induced ferritinophagy, disrupting iron homeostasis and releasing labile iron ions. We predicted by docking that these iron ions would bind to mitochondrial membrane proteins through virtual docking. This binding was validated through colocalization analysis. In addition, Cr(VI) caused mitophagy, which releases additional ferrous ions. Therefore, Cr(VI) can induce the simultaneous release of ferrous ions through these pathways, thereby exacerbating lipid peroxidation and ultimately triggering ferroptosis in DF-1 cells. This study demonstrates that Cr(VI) can induce ferroptosis in DF-1 cells by disrupting intracellular iron homeostasis and providing valuable insights into the toxic effects of Cr(VI) in poultry and potentially other organisms.
Collapse
Affiliation(s)
- Kaimin Song
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiaoting Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Huiling Xu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Muzi Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qi Zheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Changxi Qi
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiaozhou Wang
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yongxia Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Pimiao Zheng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
29
|
Hagen WR. Quantum Magnetism of the Iron Core in Ferritin Proteins-A Re-Evaluation of the Giant-Spin Model. Molecules 2024; 29:2254. [PMID: 38792115 PMCID: PMC11123763 DOI: 10.3390/molecules29102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The electron-electron, or zero-field interaction (ZFI) in the electron paramagnetic resonance (EPR) of high-spin transition ions in metalloproteins and coordination complexes, is commonly described by a simple spin Hamiltonian that is second-order in the spin S: H=D[Sz2-SS+1/3+E(Sx2-Sy2). Symmetry considerations, however, allow for fourth-order terms when S ≥ 2. In metalloprotein EPR studies, these terms have rarely been explored. Metal ions can cluster via non-metal bridges, as, for example, in iron-sulfur clusters, in which exchange interaction can result in higher system spin, and this would allow for sixth- and higher-order ZFI terms. For metalloproteins, these have thus far been completely ignored. Single-molecule magnets (SMMs) are multi-metal ion high spin complexes, in which the ZFI usually has a negative sign, thus affording a ground state level pair with maximal spin quantum number mS = ±S, giving rise to unusual magnetic properties at low temperatures. The description of EPR from SMMs is commonly cast in terms of the 'giant-spin model', which assumes a magnetically isolated system spin, and in which fourth-order, and recently, even sixth-order ZFI terms have been found to be required. A special version of the giant-spin model, adopted for scaling-up to system spins of order S ≈ 103-104, has been applied to the ubiquitous iron-storage protein ferritin, which has an internal core containing Fe3+ ions whose individual high spins couple in a way to create a superparamagnet at ambient temperature with very high system spin reminiscent to that of ferromagnetic nanoparticles. This scaled giant-spin model is critically evaluated; limitations and future possibilities are explicitly formulated.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Building 58, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
30
|
Huan R, Zhang J, Yue J, Yang S, Han G, Cheng Y, Tan Y. Orexin-A mediates glioblastoma proliferation inhibition by increasing ferroptosis triggered by unstable iron pools and GPX4 depletion. J Cell Mol Med 2024; 28:e18318. [PMID: 38685674 PMCID: PMC11058333 DOI: 10.1111/jcmm.18318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma (GBM) represents a prevalent form of primary malignant tumours in the central nervous system, but the options for effective treatment are extremely limited. Ferroptosis, as the most enriched programmed cell death process in glioma, makes a critical difference in glioma progression. Consequently, inducing ferroptosis has become an appealing strategy for tackling gliomas. Through the utilization of multi-omics sequencing data analysis, flow cytometry, MDA detection and transmission electron microscopy, the impact of orexin-A on ferroptosis in GBM was assessed. In this report, we provide the first evidence that orexin-A exerts inhibitory effects on GBM proliferation via the induction of ferroptosis. This induction is achieved by instigating an unsustainable increase in iron levels and depletion of GPX4. Moreover, the regulation of TFRC, FTH1 and GPX4 expression through the targeting of NFE2L2 appears to be one of the potential mechanisms underlying orexin-A-induced ferroptosis.
Collapse
Affiliation(s)
- Rengzheng Huan
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jiqin Zhang
- Department of AnesthesiologyGuizhou Provincial People's HospitalGuiyangChina
| | - Jianhe Yue
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Sha Yang
- Department of biomedical sciencesMedical College of Guizhou UniversityGuiyangChina
| | - Guoqiang Han
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| | - Yuan Cheng
- Department of NeurosurgeryThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ying Tan
- Department of NeurosurgeryGuizhou Provincial People's HospitalGuiyangChina
| |
Collapse
|
31
|
Luan M, Feng Z, Zhu W, Xing Y, Ma X, Zhu J, Wang Y, Jia Y. Mechanism of metal ion-induced cell death in gastrointestinal cancer. Biomed Pharmacother 2024; 174:116574. [PMID: 38593706 DOI: 10.1016/j.biopha.2024.116574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.
Collapse
Affiliation(s)
- Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Zhaotian Feng
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Jingyu Zhu
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, People's Republic of China.
| |
Collapse
|
32
|
Song Y, Luo X, Yao L, Chen Y, Mao X. Exploring the Role of Ferroptosis-Related Circular RNAs in Subarachnoid Hemorrhage. Mol Biotechnol 2024:10.1007/s12033-024-01140-7. [PMID: 38619799 DOI: 10.1007/s12033-024-01140-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular event associated with high mortality and significant morbidity. Recent studies have highlighted the emerging role of ferroptosis, a novel form of regulated cell death, in the pathogenesis of SAH. Circular RNAs (circRNAs), have been found to play essential roles in various cellular processes, including gene regulation and disease pathogenesis. The expression profile of circRNAs in neural tissues, particularly in the brain, suggests their critical role in synaptic function and neurogenesis. Moreover, the interplay between circRNAs and ferroptosis-related pathways, such as iron metabolism and lipid peroxidation, is explored in the context of SAH. Understanding the functional roles of specific circRNAs in the context of SAH may provide potential therapeutic targets to attenuate ferroptosis-associated brain injury. Furthermore, the potential of circRNAs as diagnostic biomarkers for SAH severity, prognosis, and treatment response is discussed. Overall, this review highlights the significance of studying the intricate interplay between circRNAs and ferroptosis in the context of SAH. Unraveling the mechanisms by which circRNAs modulate ferroptotic cell death may pave the way for the development of novel therapeutic strategies and diagnostic approaches for SAH management, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Yanju Song
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Xin Luo
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Liping Yao
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Yinchao Chen
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China
| | - Xinfa Mao
- Department of Neurology, The Third Hospital of Changsha, Changsha, 410015, China.
| |
Collapse
|
33
|
Wu J, Li Z, Wu Y, Cui N. The crosstalk between exosomes and ferroptosis: a review. Cell Death Discov 2024; 10:170. [PMID: 38594265 PMCID: PMC11004161 DOI: 10.1038/s41420-024-01938-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Exosomes are a subtype of extracellular vesicles composed of bioactive molecules, including nucleic acids, proteins, and lipids. Exosomes are generated by the fusion of intracellular multivesicular bodies (MVBs) with the cell membrane and subsequently released into the extracellular space to participate in intercellular communication and diverse biological processes within target cells. As a crucial mediator, exosomes have been implicated in regulating ferroptosis-an iron-dependent programmed cell death characterized by lipid peroxide accumulation induced by reactive oxygen species. The involvement of exosomes in iron, lipid, and amino acid metabolism contributes to their regulatory role in specific mechanisms underlying how exosomes modulate ferroptosis, which remains incompletely understood, and some related studies are still preliminary. Therefore, targeting the regulation of ferroptosis by exosomes holds promise for future clinical treatment strategies across various diseases. This review aims to provide insights into the pathophysiology and mechanisms governing the interaction between exosomes and ferroptosis and their implications in disease development and treatment to serve as a reference for further research.
Collapse
Affiliation(s)
- Jiao Wu
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyu Li
- Department of Internal Medicine, Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yu Wu
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ning Cui
- Oncology Department of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
34
|
Jia H, Chang Y, Chen Y, Chen X, Zhang H, Hua X, Xu M, Sheng Y, Zhang N, Cui H, Han L, Zhang J, Fu X, Song J. A single-cell atlas of lung homeostasis reveals dynamic changes during development and aging. Commun Biol 2024; 7:427. [PMID: 38589700 PMCID: PMC11001898 DOI: 10.1038/s42003-024-06111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Aging is a global challenge, marked in the lungs by function decline and structural disorders, which affects the health of the elderly population. To explore anti-aging strategies, we develop a dynamic atlas covering 45 cell types in human lungs, spanning from embryonic development to aging. We aim to apply the discoveries of lung's development to address aging-related issues. We observe that both epithelial and immune cells undergo a process of acquisition and loss of essential function as they transition from development to aging. During aging, we identify cellular phenotypic alternations that result in reduced pulmonary compliance and compromised immune homeostasis. Furthermore, we find a distinctive expression pattern of the ferritin light chain (FTL) gene, which increases during development but decreases in various types of lung cells during the aging process.
Collapse
Affiliation(s)
- Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yulin Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiao Chen
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hang Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengda Xu
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixuan Sheng
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningning Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Han
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Yanan Hospital, Kunming Medical University, Kunming, China
| | - Jian Zhang
- Thoracic Surgery Department, the third affiliated hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China.
| | - Xiaodong Fu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
35
|
Rosell-Díaz M, Santos-González E, Motger-Albertí A, Gallardo-Nuell L, Arnoriaga-Rodríguez M, Coll-Martínez C, Ramió-Torrentà L, Garre-Olmo J, Puig J, Ramos R, Mayneris-Perxachs J, Fernández-Real JM. Lower serum ferritin levels are associated with worse cognitive performance in aging. J Nutr Health Aging 2024; 28:100190. [PMID: 38368845 DOI: 10.1016/j.jnha.2024.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVES Iron is important for neurogenesis, synaptic development, and neurotransmitter synthesis. Serum ferritin (SF) is a reliable marker for assessing iron stores. Therefore, we evaluated the cognitive function associated with SF levels. We also assessed brain iron content using R2* Magnetic Resonance Imaging (MRI) and its association with SF levels. DESIGN Data from three cross-sectional observational studies were used. Aging Imageomics (n = 1030) was conducted on aged subjects. Health Imageomics (n = 971) and IR0NMET (n = 175) were conducted in middle-aged subjects. SETTING AND PARTICIPANTS Participants were enrolled at Dr. Josep Trueta University Hospital facilities. The three cohorts included a total of 2176 subjects (mean age, 52 years; 48% men). MEASUREMENTS SF levels were measured by standard laboratory methods. Total Digits Span (TDS), and Phonemic Verbal Fluency (PVF) were used to assess executive function. Language function was assessed by semantic verbal fluency (SVF), attention by the Symbol Digit Modalities Test, and memory by the Memory Binding Tests - Total Free Recall and Total Delayed Free Recall. MRI was used to assess the iron content of the brain by R2*. RESULTS In subjects aged 65 years or older, SF levels were associated with increased TDS (β = 0.003, p = 0.02), PVF (β = 0.004, p = 0.01), and SVF (β = 0.004, p = 0.002) scores. After stratification by sex, these findings were significant only in men, where SF was associated with increased TDS (β = 0.003, p = 0.01), PVF (β = 0.004, p = 0.03), and SVF (β = 0.004, p = 0.009) scores. In middle-aged subjects, SF was also associated with increased SVF scores (β = 0.005, p = 0.011). Lastly, in men, SF levels were negatively associated with R2*, a surrogate marker of brain iron content, in both the left frontal inferior opercular area (r = -0.41, p = 0.005) and the right frontal inferior opercular area (r = -0.44, p = 0.002). CONCLUSIONS SF is significantly and positively associated with cognition. In older people with low SF levels, iron supplementation may be a promising therapy to improve cognition.
Collapse
Affiliation(s)
- Marisel Rosell-Díaz
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Elena Santos-González
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Anna Motger-Albertí
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Laura Gallardo-Nuell
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - María Arnoriaga-Rodríguez
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Clàudia Coll-Martínez
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta Hospital, Neurodegeneration and Neuroinflammation Research Group, (IDIBGI-CERCA), Girona, Spain; Research Group on Health, Gender, and Aging, Girona Biomedical Research Institute (IDIBGI-CERCA) and University of Girona, Girona, Spain
| | - Lluís Ramió-Torrentà
- Neuroimmunology and Multiple Sclerosis Unit, Department of Neurology, Dr. Josep Trueta Hospital, Neurodegeneration and Neuroinflammation Research Group, (IDIBGI-CERCA), Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Josep Garre-Olmo
- Research Group on Health, Gender, and Aging, Girona Biomedical Research Institute (IDIBGI-CERCA) and University of Girona, Girona, Spain; Serra-Hunter Professor, Department of Nursing, University of Girona, Spain
| | - Josep Puig
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Radiology Department CDI, Hospital Clinic of Barcelona, Barcelona, Spain; Medical Imaging, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain
| | - Rafael Ramos
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Vascular Health Research Group of Girona (ISV-Girona), Jordi Gol Institute for Primary Care Research (Institut Universitari per a la Recerca en Atenció Primària Jordi Gol I Gorina -IDIAPJGol), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud-RICAPPS- ISCIII, Spain; Girona Biomedical Research Institute (IDIBGI-CERCA), Dr. Josep Trueta University Hospital, Catalonia, Spain
| | - Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain.
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Dr. Josep Trueta University Hospital, Girona, Spain; Nutrition, Eumetabolism and Health Group, Girona Biomedical Research Institute (IDIBGI-CERCA), Girona, Spain; CIBER Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain; Girona Biomedical Research Institute (IDIBGI-CERCA), Dr. Josep Trueta University Hospital, Catalonia, Spain.
| |
Collapse
|
36
|
Li C, Liu R, Xiong Z, Bao X, Liang S, Zeng H, Jin W, Gong Q, Liu L, Guo J. Ferroptosis: a potential target for the treatment of atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:331-344. [PMID: 38327187 PMCID: PMC10984869 DOI: 10.3724/abbs.2024016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Atherosclerosis (AS), the main contributor to acute cardiovascular events, such as myocardial infarction and ischemic stroke, is characterized by necrotic core formation and plaque instability induced by cell death. The mechanisms of cell death in AS have recently been identified and elucidated. Ferroptosis, a novel iron-dependent form of cell death, has been proven to participate in atherosclerotic progression by increasing endothelial reactive oxygen species (ROS) levels and lipid peroxidation. Furthermore, accumulated intracellular iron activates various signaling pathways or risk factors for AS, such as abnormal lipid metabolism, oxidative stress, and inflammation, which can eventually lead to the disordered function of macrophages, vascular smooth muscle cells, and vascular endothelial cells. However, the molecular pathways through which ferroptosis affects AS development and progression are not entirely understood. This review systematically summarizes the interactions between AS and ferroptosis and provides a feasible approach for inhibiting AS progression from the perspective of ferroptosis.
Collapse
Affiliation(s)
- Chengyi Li
- School of MedicineYangtze UniversityJingzhou434020China
| | - Ran Liu
- School of MedicineYangtze UniversityJingzhou434020China
| | - Zhenyu Xiong
- School of MedicineYangtze UniversityJingzhou434020China
| | - Xue Bao
- School of MedicineYangtze UniversityJingzhou434020China
| | - Sijia Liang
- Department of PharmacologyZhongshan School of MedicineSun Yat-Sen UniversityGuangzhou510120China
| | - Haotian Zeng
- Department of GastroenterologyShenzhen People’s HospitalThe Second Clinical Medical CollegeJinan UniversityShenzhen518000China
| | - Wei Jin
- Department of Second Ward of General PediatricsSuizhou Central HospitalHubei University of MedicineSuizhou441300China
| | - Quan Gong
- School of MedicineYangtze UniversityJingzhou434020China
| | - Lian Liu
- School of MedicineYangtze UniversityJingzhou434020China
| | - Jiawei Guo
- School of MedicineYangtze UniversityJingzhou434020China
| |
Collapse
|
37
|
Liao F, Yang W, Long L, Yu R, Qu H, Peng Y, Lu J, Ren C, Wang Y, Fu C. Elucidating Iron Metabolism through Molecular Imaging. Curr Issues Mol Biol 2024; 46:2798-2818. [PMID: 38666905 PMCID: PMC11049567 DOI: 10.3390/cimb46040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Iron is essential for many physiological processes, and the dysregulation of its metabolism is implicated in the pathogenesis of various diseases. Recent advances in iron metabolism research have revealed multiple complex pathways critical for maintaining iron homeostasis. Molecular imaging, an interdisciplinary imaging technique, has shown considerable promise in advancing research on iron metabolism. Here, we comprehensively review the multifaceted roles of iron at the cellular and systemic levels (along with the complex regulatory mechanisms of iron metabolism), elucidate appropriate imaging methods, and summarize their utility and fundamental principles in diagnosing and treating diseases related to iron metabolism. Utilizing molecular imaging technology to deeply understand the complexities of iron metabolism and its critical role in physiological and pathological processes offers new possibilities for early disease diagnosis, treatment monitoring, and the development of novel therapies. Despite technological limitations and the need to ensure the biological relevance and clinical applicability of imaging results, molecular imaging technology's potential to reveal the iron metabolic process is unparalleled, providing new insights into the link between iron metabolism abnormalities and various diseases.
Collapse
Affiliation(s)
- Feifei Liao
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Wenwen Yang
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Linzi Long
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Ruotong Yu
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Hua Qu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Yuxuan Peng
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Jieming Lu
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Chenghuan Ren
- Beijing University of Traditional Chinese Medicine Graduate School, Beijing University of Chinese Medicine, Beijing 100105, China; (F.L.); (R.Y.); (Y.P.); (J.L.); (C.R.)
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| | - Yueqi Wang
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Changgeng Fu
- Graduate School, China Academy of Chinese Medical Sciences, Beijing 100091, China; (W.Y.); (L.L.); (H.Q.)
| |
Collapse
|
38
|
Kamihara T, Kinoshita T, Kawano R, Tanaka S, Toda A, Ohara F, Hirashiki A, Kokubo M, Shimizu A. Upregulated Genes in Atrial Fibrillation Blood and the Left Atrium. Cardiology 2024; 149:357-368. [PMID: 38452746 DOI: 10.1159/000537923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION Atrial fibrillation (AF) is a common arrhythmia associated with aging. Many known risk factors are associated with AF, but many senior individuals do not develop AF despite having multiple risk factors. This finding suggests that other factors may be involved in AF onset. This study aimed to identify upregulated genes in the peripheral blood and left atrium of patients with AF. These genes may serve as potential biomarkers to predict AF onset risk and its complications. METHODS Gene expression data were analyzed from blood (n = 3) and left atrial samples (n = 15) of patients with AF and sinus rhythm. We evaluated the significant genes identified using p value analysis of weighted average difference to confirm their rankings. We created figures for the genes using GeneMANIA and performed a functional analysis using Cytoscape3.10.1. Hub and bottleneck genes were identified based on degree and betweenness centrality. We used reference expression (RefEx) to confirm the organs in which the extracted genes were expressed. Heatmaps and Gene ontology term evaluation were performed to further elucidate the biological functions of the genes. RESULTS We identified 12 upregulated genes (CAST, ASAH1, MAFB, VCAN, DDIT4, FTL, HEXB, PROS1, BNIP3L, PABPC1, YBX3, and S100A6) in both the blood and left atrium of patients with AF. We analyzed the gene functions using GeneMANIA and Cytoscape. The identified genes were involved in a variety of pathways, including lysosomal function and lipid and sphingolipid catabolism. Next, we investigated whether the 12 identified genes identified were systemically expressed or had high organ specificity. Finally, RefEx was used to analyze the gene expression levels in various tissues. Four genes, FTL, ASAH1, S100A6, and PABPC1, were highly expressed in the normal heart tissue. Finally, we evaluated the expression levels of the 12 genes in the blood of patients with AF using a heatmap. Our findings suggest that the 12 genes identified in this study, especially the lysosome-related genes (FTL and ASAH1), may be involved in AF pathogenesis. CONCLUSION Lysosome-related genes may be important to understand the AF pathophysiology and to develop AF-related future studies.
Collapse
Affiliation(s)
- Takahiro Kamihara
- Department of Cardiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Tomoyasu Kinoshita
- Innovation Center for Translational Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Reo Kawano
- Innovation Center for Translational Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Seiya Tanaka
- Innovation Center for Translational Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Ayano Toda
- Innovation Center for Translational Research, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Fumiya Ohara
- Department of Hematology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Akihiro Hirashiki
- Department of Cardiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Manabu Kokubo
- Department of Cardiology, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Atsuya Shimizu
- Department of Cardiology, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
39
|
Li X, Cheng Y, Yang Z, Ji Q, Huan M, Ye W, Liu M, Zhang B, Liu D, Zhou S. Glioma-targeted oxaliplatin/ferritin clathrate reversing the immunosuppressive microenvironment through hijacking Fe 2+ and boosting Fenton reaction. J Nanobiotechnology 2024; 22:93. [PMID: 38443927 PMCID: PMC10913265 DOI: 10.1186/s12951-024-02376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Glioma is easy to develop resistance to temozolomide (TMZ). TMZ-resistant glioma secretes interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), recruiting regulatory T cell (Treg) and inhibiting the activity of T cells and natural killer cell (NK cell), subsequently forming an immunosuppressive microenvironment. Oxaliplatin (OXA) greatly inhibits the proliferation of TMZ-resistant glioma cells, but the ability of OXA to cross blood-brain barrier (BBB) is weak. Thus, the therapeutic effect of OXA on glioma is not satisfactory. Transferrin receptor 1 (TfR1) is highly expressed in brain capillary endothelial cells and TMZ-resistant glioma cells. In this study, OXA was loaded into ferritin (Fn) to prepare glioma-targeted oxaliplatin/ferritin clathrate OXA@Fn. OXA@Fn efficiently crossed BBB and was actively taken up by TMZ-resistant glioma cells via TfR1. Then, OXA increased the intracellular H2O2 level and induced the apoptosis of TMZ-resistant glioma cells. Meanwhile, Fn increased Fe2+ level in TMZ-resistant glioma cells. In addition, the expression of ferroportin 1 was significantly reduced, resulting in Fe2+ to be locked up inside the TMZ-resistant glioma cells. This subsequently enhanced the Fenton reaction and boosted the ferroptosis of TMZ-resistant glioma cells. Consequently, T cell mediated anti-tumor immune response was strongly induced, and the immunosuppressive microenvironment was significantly reversed in TMZ-resistant glioma tissue. Ultimately, the growth and invasion of TMZ-resistant glioma was inhibited by OXA@Fn. OXA@Fn shows great potential in the treatment of TMZ-resistant glioma and prospect in clinical transformation.
Collapse
Affiliation(s)
- Xue Li
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Qifeng Ji
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Menglei Huan
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Weiliang Ye
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China.
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China.
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
40
|
Song Y, Gao M, Wei B, Huang X, Yang Z, Zou J, Guo Y. Mitochondrial ferritin alleviates ferroptosis in a kainic acid-induced mouse epilepsy model by regulating iron homeostasis: Involvement of nuclear factor erythroid 2-related factor 2. CNS Neurosci Ther 2024; 30:e14663. [PMID: 38439636 PMCID: PMC10912846 DOI: 10.1111/cns.14663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Epilepsy is a widespread and chronic disease of the central nervous system caused by a variety of factors. Mitochondrial ferritin (FtMt) refers to ferritin located within the mitochondria that may protect neurons against oxidative stress by binding excess free iron ions in the cytoplasm. However, the potential role of FtMt in epilepsy remains unclear. We aimed to investigate whether FtMt and its related mechanisms can regulate epilepsy by modulating ferroptosis. METHODS Three weeks after injection of adeno-associated virus (AAV) in the skull of adult male C57BL/6 mice, kainic acid (KA) was injected into the hippocampus to induce seizures. Primary hippocampal neurons were transfected with siRNA using a glutamate-mediated epilepsy model. After specific treatments, Western blot analysis, immunofluorescence, EEG recording, transmission electron microscopy, iron staining, silver staining, and Nissl staining were performed. RESULTS At different time points after KA injection, the expression of FtMt protein in the hippocampus of mice showed varying degrees of increase. Knockdown of the FtMt gene by AAV resulted in an increase in intracellular free iron levels and a decrease in the function of iron transport-related proteins, promoting neuronal ferroptosis and exacerbating epileptic brain activity in the hippocampus of seizure mice. Additionally, increasing the expression level of FtMt protein was achieved by AAV-mediated upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) gene in the hippocampus of seizure mice. CONCLUSIONS In epilepsy, Nrf2 modulates ferroptosis by involving the expression of FtMt and may be a potential therapeutic mechanism of neuronal injury after epilepsy. Targeting this relevant process for treatment may be a therapeutic strategy to prevent epilepsy.
Collapse
Affiliation(s)
- Yu Song
- Department of Functional Neurosurgery, Neurosurgery Center, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Mengjiao Gao
- Department of Functional Neurosurgery, Neurosurgery Center, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Boyang Wei
- Department of Cerebrovascular Surgery, Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | | | - Zeyu Yang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSun Yat‐sen UniversityGuangzhouChina
| | - Junjie Zou
- Department of Functional Neurosurgery, Neurosurgery Center, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yanwu Guo
- Department of Functional Neurosurgery, Neurosurgery Center, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
41
|
Zhang T, Wang C, Song A, Lei X, Li G, Sun H, Wang X, Geng Z, Shu G, Deng X. Water extract of earthworms mitigates mouse liver fibrosis by potentiating hepatic LKB1/Nrf2 axis to inhibit HSC activation and hepatocyte death. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117495. [PMID: 38016572 DOI: 10.1016/j.jep.2023.117495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE When left untreated, liver fibrosis (LF) causes various chronic liver diseases. Earthworms (Pheretima aspergillum) are widely used in traditional medicine because of their capacity to relieve hepatic diseases. AIM OF THE STUDY This study aimed to explore the anti-LF effects of water extract of earthworms (WEE) and the underlying molecular mechanisms. MATERIALS AND METHODS A CCl4-induced mouse model of LF was used to study the impact of WEE on LF in vivo. The anti-LF activity of WEE in mice was compared with that of silybin, which can be clinically applied in LF intervention and was used as a positive control. Activation of LX-2 hepatic stellate cells (HSCs) and apoptosis and ferroptosis of AML-12 hepatocytes induced by TGFβ1 were used as in vitro models. RESULTS WEE drastically improved LF in mice. WEE reduced markers of activated HSCs in mice and inhibited TGFβ1-induced activation of LX-2 HSCs in vitro. Additionally, WEE suppressed CCl4-induced apoptosis and ferroptosis in mouse hepatocytes. Mechanistically, WEE induced Nrf2 to enter the nuclei of the mouse liver cells, and the hepatic levels of Nrf2-downstream antioxidative factors increased. LKB1/AMPK/GSK3β is an upstream regulatory cascade of Nrf2. In the LF mouse model, WEE increased hepatic phosphorylated LKB1, AMPK, and GSK3β levels. Similar results were obtained for the LX-2 cells. In AML-12 hepatocytes and LX-2 HSCs, WEE elevated intracellular Nrf2 levels, promoted its nuclear translocation, and inhibited TGFβ1-induced ROS accumulation. Knocking down LKB1 abolished the impact of WEE on the AMPK/GSK3β/Nrf2 cascade and eliminated its protective effects against TGFβ1. CONCLUSIONS Our findings reveal that WEE improves mouse LF triggered by CCl4 and supports its application as a promising hepatoprotective agent against LF. The potentiation of the hepatic antioxidative AMPK/GSK3β/Nrf2 cascade by activating LKB1 and the subsequent suppression of HSC activation and hepatocyte apoptosis and ferroptosis are implicated in WEE-mediated alleviation of LF.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chuo Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Anning Song
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xiao Lei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Guangqiong Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Xiaoming Wang
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhirong Geng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guangwen Shu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
42
|
Alrouji M, Alhumaydhi FA, Venkatesan K, Sharaf SE, Shahwan M, Shamsi A. Evaluation of binding mechanism of dietary phytochemical, capsaicin, with human transferrin: targeting neurodegenerative diseases therapeutics. Front Pharmacol 2024; 15:1348128. [PMID: 38495092 PMCID: PMC10943693 DOI: 10.3389/fphar.2024.1348128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Human transferrin (htf) plays a crucial role in regulating the balance of iron within brain cells; any disruption directly contributes to the development of Neurodegenerative Diseases (NDs) and other related pathologies, especially Alzheimer's Disease (AD). In recent times, a transition towards natural compounds is evident to treat diseases and this shift is mainly attributed to their broad therapeutic potential along with minimal side effects. Capsaicin, a natural compound abundantly found in red and chili peppers, possess neuroprotective potential. The current work targets to decipher the interaction mechanism of capsaicin with htf using experimental and computational approaches. Molecular docking analysis revealed that capsaicin occupies the iron binding pocket of htf, with good binding affinity. Further, the binding mechanism was investigated atomistically using Molecular dynamic (MD) simulation approach. The results revealed no significant alterations in the structure of htf implying the stability of the complex. In silico observations were validated by fluorescence binding assay. Capsaicin binds to htf with a binding constant (K) of 3.99 × 106 M-1, implying the stability of the htf-capsaicin complex. This study lays a platform for potential applications of capsaicin in treatment of NDs in terms of iron homeostasis.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
43
|
Lee EP, Lin JJ, Chang HP, Yen CW, Hsieh MS, Chan OW, Lin KL, Su YT, Mu CT, Hsia SH. Ferritin as an Effective Predictor of Neurological Outcomes in Children With Acute Necrotizing Encephalopathy. Pediatr Neurol 2024; 152:162-168. [PMID: 38295717 DOI: 10.1016/j.pediatrneurol.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 04/26/2023] [Accepted: 12/31/2023] [Indexed: 02/20/2024]
Abstract
BACKGROUND Acute necrotizing encephalopathy (ANE) is a fulminant disease with poor prognosis. Cytokine storm is the important phenomenon of ANE that affects the brain and multiple organs. The study aimed to identify whether hyperferritinemia was associated with poor prognosis in patients with ANE. METHODS All patients with ANE had multiple symmetric lesions located in the bilateral thalami and other regions such as brainstem tegmentum, cerebral white matter, and cerebellum. Neurological outcome at discharge was evaluated by pediatric neurologists using the Pediatric Cerebral Performance Category Scale. All risk factors associated with poor prognosis were further analyzed using receiver operating characteristic curve analysis. RESULTS Twenty-nine patients with ANE were enrolled in the current study. Nine (31%) patients achieved a favorable neurological outcome, and 20 (69%) patients had poor neurological outcomes. results The group of poor neurological outcome had significantly higher proportion of shock on admission and brainstem involvement. Based on multivariate logistic regression analysis, ferritin, aspartate aminotransferase (AST), and ANE severity score (ANE-SS) were the predictors associated with outcomes. The appropriate cutoff value for predicting neurological outcomes in patients with ANE was 1823 ng/mL for ferritin, 78 U/L for AST, and 4.5 for ANE-SS. Besides, comparison analyses showed that higher level of ferritin and ANE-SS were significantly correlated with brainstem involvement (P < 0.05). CONCLUSIONS Ferritin may potentially be a prognostic factor in patients with ANE. Hyperferritinemia is associated with poor neurological outcomes in patients with ANE and ferritin levels more than 1823 ng/mL have about eightfold increased risk of poor neurological outcome.
Collapse
Affiliation(s)
- En-Pei Lee
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jainn-Jim Lin
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Han-Pi Chang
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Wei Yen
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Shun Hsieh
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taoyuan Branch, Taoyuan, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Oi-Wa Chan
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuang-Lin Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Pediatric Neurology, Chang Gung Children's Hospital and Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Ting Su
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Ting Mu
- College of Medicine, Chang Gung University, Taoyuan, Taiwan; Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Shao-Hsuan Hsia
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, Chang Gung Memorial Hospital at Linko, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
44
|
Zeng W, Cai J, Zhang L, Peng Q. Iron Deposition in Parkinson's Disease: A Mini-Review. Cell Mol Neurobiol 2024; 44:26. [PMID: 38393383 PMCID: PMC10891198 DOI: 10.1007/s10571-024-01459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Iron deposition is crucial pathological changes observed in patients with Parkinson's disease (PD). Recently, scientists have actively explored therapeutic approaches targeting iron deposition in PD. However, several clinical studies have failed to yield consistent results. In this review, we provide an overview of iron deposition in PD, from both basic research and clinical perspectives. PD patients exhibit abnormalities in various iron metabolism-related proteins, leading to disruptions in iron distribution, transport, storage, and circulation, ultimately resulting in iron deposition. Excess iron can induce oxidative stress and iron-related cell death, and exacerbate mitochondrial dysfunction, contributing to the progression of PD pathology. Magnetic resonance imaging studies have indicated that the characteristics of iron deposition in the brains of PD patients vary. Iron deposition correlates with the clinical symptoms of PD, and patients with different disease courses and clinical presentations display distinct patterns of iron deposition. These iron deposition patterns may contribute to PD diagnosis. Iron deposition is a promising target for PD treatment. However, further research is required to elucidate the underlying mechanisms and their impacts on PD.
Collapse
Affiliation(s)
- Weiqi Zeng
- Department of Neurology, The First People's Hospital of Foshan, Foshan, China
| | - Jin Cai
- Department of Cardiology, The Second Hospital of Zhangzhou, Zhangzhou, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiwei Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
45
|
Chen Q, Liu Y, Bi L, Jin L, Peng R. Understanding the mechanistic roles of microplastics combined with heavy metals in regulating ferroptosis: Adding new paradigms regarding the links with diseases. ENVIRONMENTAL RESEARCH 2024; 242:117732. [PMID: 37996004 DOI: 10.1016/j.envres.2023.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
As a new type of pollutant, microplastics (MPs) commonly exist in today's ecosystems, causing damage to the ecological environment and the health of biological organisms, including human beings. MPs can function as carriers of heavy metals (HMs) to aggravate the enrichment of HMs in important organs of organisms, posing a great threat to health. Ferroptosis, a novel process for the regulation of nonapoptotic cell death, has been shown to be closely related to the occurrence and processes of MPs and HMs in diseases. In recent years, some HMs, such as cadmium (Cd), iron (Fe), arsenic (As) and copper (Cu), have been proven to induce ferroptosis. MPs can function as carriers of HMs to aggravate damage to the body. This damage involves oxidative stress, mitochondrial dysfunction, lipid peroxidation (LPO), inflammation, endoplasmic reticulum stress (ERS) and so on. Therefore, ferroptosis has great potential as a therapeutic target for diseases induced by MPs combined with HMs. This paper systematically reviews the potential effects and regulatory mechanisms of MPs and HMs in the process of ferroptosis, focusing on the mitochondrial damage, Fe accumulation, LPO, ERS and inflammation caused by MPs and HMs that affect the regulatory mechanism of ferroptosis, providing new insights for research on regulating drugs and for the development of ferroptosis-targeting therapy for Alzheimer's disease, Parkinson's disease, cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
46
|
Wang L, Liu J, Ma D, Zhi X, Li L, Li S, Li W, Zhao J, Qin Y. Glycine recalibrates iron homeostasis of lens epithelial cells by blocking lysosome-dependent ferritin degradation. Free Radic Biol Med 2024; 210:258-270. [PMID: 38042221 DOI: 10.1016/j.freeradbiomed.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
One of the major pathological processes in cataracts has been identified as ferroptosis. However, studies on the iron metabolism mechanism in lens epithelial cells (LECs) and the methods of effectively alleviating ferroptosis in LECs are scarce. Along these lines, we found that in the ultraviolet radiation b (UVB) induced cataract model in vitro and in vivo, the ferritin of LECs is over-degraded by lysosomes, resulting in the occurrence of iron homeostasis disorder. Glycine can affect the ferritin degradation through the proton-coupled amino acid transporter (PAT1) on the lysosome membrane, further upregulating the content of nuclear factor erythrocyte 2 related factor 2 (Nrf2) to reduce the damage of LECs from two aspects of regulating iron homeostasis and alleviating oxidative stress. By co-staining, we further demonstrate that there is a more sensitive poly-(rC)-binding protein 2 (PCBP2) transportation of iron ions in LECs after UVB irradiation. Additionally, this study illustrated the increased expression of nuclear receptor coactivator 4 (NCOA4) in NRF2-KO mice, indicating that Nrf2 may affect ferritin degradation by decreasing the expression of NCOA4. Collectively, glycine can effectively regulate cellular iron homeostasis by synergistically affecting the lysosome-dependent ferritin degradation and PCBP2-mediated ferrous ion transportation, ultimately delaying the development of cataracts.
Collapse
Affiliation(s)
- Ludi Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Jinxia Liu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Dongyue Ma
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Xinyu Zhi
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Luo Li
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Shanjiao Li
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Weijia Li
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China
| | - Jiangyue Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China.
| | - Yu Qin
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang City, Liaoning Province, 110005, PR China.
| |
Collapse
|
47
|
Ma J, Zhang J, Ou Z, Ren Y, Wu K, Zhang Y, Chen S, Wang Z. Chronic noise exposure induces Alzheimer's disease-like neuropathology and cognitive impairment via ferroptosis in rat hippocampus. Environ Health Prev Med 2024; 29:50. [PMID: 39343514 PMCID: PMC11446637 DOI: 10.1265/ehpm.24-00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/16/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Chronic noise exposure poses a remarkable public health concern, drawing attention to its impacts on the brain. Ferroptosis is involved in several brain-related diseases. However, the role of ferroptosis in the effects of chronic noise on the brain remains elusive. This study aimed to investigate the effects of chronic noise exposure on the brain and elucidate the underlying mechanisms. METHODS A chronic noise-induced cognitive impairment model in rats was constructed and validated. The pathological state and ferroptosis level of the rat hippocampus were determined using Western blotting and immunohistochemistry. Bioinformatics was employed to investigate the interrelationship between chronic noise exposure and genes. Genetic relationships were analyzed using Mendelian randomization (MR) analysis. Cytoscape was employed for the prediction of upstream molecular and drug targets. RESULTS In vivo experiments revealed that chronic noise exposure could induce Alzheimer's disease (AD)-like neuropathological changes in rat hippocampus and cognitive impairment. Moreover, protein markers indicative of ferroptosis and levels of lipid peroxidation were quantified to elucidate underlying mechanisms. Thereafter, oxidative stress- and ferroptosis-related differentially expressed genes (DEGs) underwent functional enrichment and PPI network analyses. Additionally, 8 genes with diagnostic significance were identified. In MR analysis, retinoic acid receptor responder 2 (Rarres2) gene exhibited a negative genetic relationship with AD. CONCLUSIONS Chronic noise exposure could induce AD-like neuropathological changes and cognitive impairment via ferroptosis. The results of MR analysis indicated that Rarres2 gene may act as a protective factor in AD. This gene may be upstream of ferroptosis and serve as a target for the prevention and treatment of chronic noise-induced cognitive impairment.
Collapse
Affiliation(s)
- Jialao Ma
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
| | - Jinwei Zhang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
| | - Zejin Ou
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
| | - Yixian Ren
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
| | - Kangyong Wu
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
| | - Yifan Zhang
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
| | - Siran Chen
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
- School of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, China
| | - Zhi Wang
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou 510620, China
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People’s Hospital, Guangzhou 510620, China
| |
Collapse
|
48
|
Zhang D, Jia X, Lin D, Ma J. Melatonin and ferroptosis: Mechanisms and therapeutic implications. Biochem Pharmacol 2023; 218:115909. [PMID: 37931663 DOI: 10.1016/j.bcp.2023.115909] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron-dependent lipid peroxidation leading to oxidative damage to cell membranes. Cell sensitivity to ferroptosis is influenced by factors such as iron overload, lipid metabolism, and the regulation of the antioxidant system. Melatonin, with its demonstrated capacity to chelate iron, modulate iron metabolism proteins, regulate lipid peroxidation, and regulate antioxidant systems, has promise as a potential therapeutic agent in mediating ferroptosis. The availability of approved drugs targeting ferroptosis is limited; therefore, melatonin is a candidate for broad application due to its safety and efficacy in attenuating ferroptosis in noncancerous diseases. Melatonin has been demonstrated to attenuate ferroptosis in cellular and animal models of noncancerous diseases, showcasing effectiveness in organs such as the heart, brain, lung, liver, kidney, and bone. This review outlines the molecular mechanisms of ferroptosis, investigates melatonin's potential effects on ferroptosis, and discusses melatonin's therapeutic potential as a promising intervention against diseases associated with ferroptosis. Through this discourse, we aim to lay a strong foundation for developing melatonin as a therapeutic strategy to modulate ferroptosis in a variety of disease contexts.
Collapse
Affiliation(s)
- Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaotong Jia
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
49
|
Li Y, Gao H, Nepovimova E, Wu Q, Adam V, Kuca K. Recombinant ferritins for multimodal nanomedicine. J Enzyme Inhib Med Chem 2023; 38:2219868. [PMID: 37263586 DOI: 10.1080/14756366.2023.2219868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
In all living organisms, ferritins are a group of proteins important for maintaining iron homeostasis. Increasing amount of studies has shown that recombinant ferritins can be widely used in multimodal nanomedicine, especially for anticancer treatment and vaccination. Recombinant particles prepared by fusing viral proteins and ferritin subunits produce a better immune response and higher antibody titres. Moreover, actively-targeted ferritin nanoparticles can recognise receptors and deliver natural or chemical drugs specifically to the tumour tissue. In addition, ferritin-linked or loaded with contrast agents or fluorescent dyes can be used as multimodal particles useful cancer theranostics. In this review, we fully summarised the unitisation of recombinant ferritins in multimodal nanomedicine. The research progress of using recombinant ferritins as nanovaccines, nanozymes, and bioengineered nanocarriers for targeted therapy and bioimaging is emphasised.
Collapse
Affiliation(s)
- Yihao Li
- College of Life Science, Yangtze University, Jingzhou, China
| | - Haoyu Gao
- College of Life Science, Yangtze University, Jingzhou, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Králové, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
50
|
Gao Y, Tong M, Wong TL, Ng KY, Xie YN, Wang Z, Yu H, Loh JJ, Li M, Ma S. Long Noncoding RNA URB1-Antisense RNA 1 (AS1) Suppresses Sorafenib-Induced Ferroptosis in Hepatocellular Carcinoma by Driving Ferritin Phase Separation. ACS NANO 2023; 17:22240-22258. [PMID: 37966480 DOI: 10.1021/acsnano.3c01199] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Sorafenib, a first-line molecular-target drug for advanced hepatocellular carcinoma (HCC), has been shown to be a potent ferroptosis inducer in HCC. However, we found that there was a lower level of ferroptosis in sorafenib-resistant HCC samples than in sorafenib-sensitive HCC samples, suggesting that sorafenib resistance in HCC may be a result of ferroptosis suppression. Recent reports have shown that long noncoding RNAs (lncRNAs) are involved in programmed cell death (PCD), including apoptosis and ferroptosis. This study aimed to investigate the roles and underlying molecular mechanisms of lncRNAs in sorafenib-induced ferroptosis in HCC cells. Using lncRNA sequencing, we identified a ferroptosis-related lncRNA, URB1-antisense RNA 1 (AS1), which was highly expressed in sorafenib-resistant HCC samples and predicted poor survival in HCC. Furthermore, URB1-AS1 mitigates sorafenib-induced ferroptosis by inducing ferritin phase separation and reducing the cellular free iron content. Hypoxia inducible factor (HIF)-1α was identified as a key factor promoting URB1-AS1 expression in sorafenib-resistant HCC cells. Notably, we found that specifically inhibiting the expression of URB1-AS1 with N-acetylgalactosamine (GalNAc)-small interfering (si)URB1-AS1 successfully enhanced the sensitivity of HCC cells to sorafenib in an in vivo tumor model. Our study uncovered a critical role for URB1-AS1 in the repression of ferroptosis, suggesting URB1-AS1 targeting may represent a potential approach to overcome sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Yuan Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710000, China
| | - Man Tong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin-Lok Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China
| | - Kai-Yu Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yu-Nong Xie
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhaowei Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710000, China
| | - Huajian Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jia-Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710000, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|