1
|
Yousfan A, Al Khatib AO, Salman AMH, Abu Elella MH, Barrett G, Michael N, Zariwala MG, Al-Obaidi H. Innovative Microencapsulation of Polymyxin B for Enhanced Antimicrobial Efficacy via Coated Spray Drying. Mol Pharm 2025; 22:113-130. [PMID: 39378315 DOI: 10.1021/acs.molpharmaceut.4c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
This study aims to develop an innovative microencapsulation method for coated Polymyxin B, utilizing various polysaccharides such as hydroxypropyl β-cyclodextrin, alginate, and chitosan, implemented through a three-fluid nozzle (3FN) spray drying process. High-performance liquid chromatography (HPLC) analysis revealed that formulations with a high ratio of sugar cage, hydroxypropyl β-cyclodextrin (HPβCD), and sodium alginate (coded as ALGHCDHPLPM) resulted in a notable 16-fold increase in Polymyxin B recovery compared to chitosan microparticles. Morphological assessments using fluorescence labeling confirmed successful microparticle formation with core/shell structures. Alginate-based formulations exhibited distinct layers, while chitosan formulations showed uniform fluorescence throughout the microparticles. Focused beam reflectance and histograms from fluorescence microscopic measurements provided insights into physical size analysis, indicating consistent sizes of 6.8 ± 1.2 μm. Fourier-transform infrared (FTIR) spectra unveiled hydrogen bonding between Polymyxin B and other components within the microparticle structures. The drug release study showed sodium alginate's sustained release capability, reaching 26 ± 3% compared to 94 ± 3% from the free solution at the 24 h time point. Furthermore, the antimicrobial properties of the prepared microparticles against two Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, were investigated. The influence of various key excipients on the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values was evaluated. Results demonstrated effective bactericidal effects of ALGHCDHPLPM against both E. coli and P. aeruginosa. Additionally, the antibiofilm assay highlighted the potential efficacy of ALGHCDHPLPM against the biofilm viability of E. coli and P. aeruginosa, with concentrations ranging from 3.9 to 500 μg/m. This signifies a significant advancement in antimicrobial drug delivery systems, promising improved precision and efficacy in combating bacterial infections.
Collapse
Affiliation(s)
- Amal Yousfan
- School of Pharmacy, University of Reading, Reading RG6 6AD, U.K
| | | | - Afrah M H Salman
- School of Biological Sciences, University of Reading, Reading RG6 6AD, U.K
- College of Pharmacy, Pharmacology and Toxicology Department, Mustansiriyha University, Baghdad 14132, Iraq
| | | | - Glyn Barrett
- School of Biological Sciences, University of Reading, Reading RG6 6AD, U.K
| | - Nicholas Michael
- Chemical Analysis Facility, University of Reading, Reading RG6 6AD, U.K
| | - Mohammed Gulrez Zariwala
- Centre for Nutraceuticals, School of Life Sciences, University of Westminster, 115 New, Cavendish Street, London W1W 6UW, U.K
| | | |
Collapse
|
2
|
Kim J, Hasan M, Liao X, Ding T, Ahn J. Combined antimicrobial activity of short peptide and phage-derived endolysin against antibiotic-resistant Salmonella Typhimurium. Food Microbiol 2025; 125:104642. [PMID: 39448152 DOI: 10.1016/j.fm.2024.104642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/05/2024] [Accepted: 09/08/2024] [Indexed: 10/26/2024]
Abstract
This study was designed to evaluate the combination effects of antimicrobial peptides (FK13 and FK16) and phage-encoded endolysin (LysPB32) on the inhibition of growth of polymyxin B-resistant Salmonella Typhimurium ATCC 19585 (STPMB). The inhibitory effects of FK13, FK16, and LysPB32 against STPMB were evaluated by using antimicrobial susceptibility, membrane permeability, biofilm reduction, cross-resistance, and mutant frequency assay. The minimum inhibitory concentrations (MICs) of FK13 and FK16 treated with LysPB32 (FK13+LysPB32 and FK16+LysPB32) against STPMB were decreased from more than 512 to 128 μg/ml and from 64 to 32 μg/ml, respectively. Compared to the control, the number of STPMB in the growing culture was reduced by 4.2 and 5.2 log CFU/ml, respectively, for FK13+LysPB32 and FK16+LysPB32 after 12-h incubation at 37 °C. All treatments (FK13, FK16, FK13+LysPB32, FK16+LysPB32) significantly increased the permeability of the outer membrane of STPMB. Biofilms were significantly decreased from OD600 of 0.6 to 0.16 for FK13+LysPB32 and from 0.6 to 0.13 for FK16+LysPB32. The ratios of MICs of erythromycin, ceftriaxone, polymyxin B, and ciprofloxacin to MIC of the control against STPMB were decreased to 0.50 for FK13+LysPB32 and FK16+LysPB32. The bactericidal activities of amikacin and gentamicin were enhanced for FK13+LysPB32 and FK16+LysPB32 (2-fold < MBC/MIC ratio). The mutant frequencies of STPMB to antibiotics were decreased when treated with FK13+LysPB32 and FK16+LysPB32. The results suggest that the combination of antimicrobial peptides and endolysins can be a promising strategy to control polymyxin B-resistant S. Typhimurium.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Mahadi Hasan
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China; Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang, 314100, China.
| |
Collapse
|
3
|
Li M, Liu D, Bergen PJ, Liang S, Chen J, Kho ZY, Lu J, Sun H, Hong W, Liu X, Hong C, Chen Y, Li W, You H, Xu S, Wang Y, Gao H, Lam CH, Li J, Chen X, Liu X. Cerebrospinal fluid proteomics reveals the innate immunity and blood-brain barrier dysregulation in a patient with multidrug-resistant Acinetobacter baumannii ventriculitis treated with intrathecal and intravenous polymyxin B. Heliyon 2024; 10:e40893. [PMID: 39759273 PMCID: PMC11699078 DOI: 10.1016/j.heliyon.2024.e40893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/20/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Acinetobacter baumannii is a major pathogen of nosocomial meningitis and ventriculitis. Due to very limited antibiotic treatment options, polymyxins are often used as a last-line therapy. To optimise polymyxin use in the intraventricular environment, cerebrospinal fluid (CSF) proteomics was employed to investigate host-pathogen-polymyxin interactions in a 69-year-old patient with multidrug-resistant A. baumannii ventriculitis treated with a combination of intrathecal (ITH; 50,000 IU q24h/q48h), intraventricular (IVT; 50,000 IU q48h), and intravenous (500,000 IU, q12h) polymyxin B. CSF was collected before the first ITH dose in the ICU (0 h) and at 24 h, Day 7 and Day 26. The proteome was quantified at each time point and proteins with Qvalue <0.05 and fold change >1.2 were considered differentially expressed. Within 24 h of ITH/IVT polymyxin B administration, the innate immune system and neuroimmunity were highly active, evidenced by up-regulation of various pathways related to pathogen invasion, endocytosis and neutrophil degranulation. Blood-brain barrier impairment had worsened at 24 h but signs of repair were evident on Day 7 and Day 26. This is the first CSF proteomic study with polymyxins. Our findings provide critical mechanistic insights into optimizing ITH/IVT polymyxin administration.
Collapse
Affiliation(s)
- Mengyao Li
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China
| | - Dongyu Liu
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Phillip J. Bergen
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Silin Liang
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Juan Chen
- Department of Pharmacy, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Zhi Ying Kho
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jing Lu
- Institute of Infectious Diseases, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Tianjin, 300211, China
| | - Huiying Sun
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Weiqing Hong
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University / Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai 200040, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital affiliated to Fudan University, Shanghai, 200040, China
| | - Chengying Hong
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Youlian Chen
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Wei Li
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Hongxia You
- Department of Stomatology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Shunyao Xu
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| | - Yu Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University / Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People's Republic of China, Shanghai 200040, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital affiliated to Fudan University, Shanghai, 200040, China
| | - Huaiji Gao
- Mathematics and Statistics, School of Computing Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3085, Australia
| | - Chun Hin Lam
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, China
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xueyan Liu
- Department of Critical Care Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
| |
Collapse
|
4
|
Li YZ, Zhou FR, Chen XJ, Liu YG. Evaluating the therapeutic impact of Compound Polymyxin B Ointment on postoperative wound healing in patients with perianal abscesses. Front Med (Lausanne) 2024; 11:1496086. [PMID: 39741508 PMCID: PMC11685118 DOI: 10.3389/fmed.2024.1496086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Perianal abscesses pose a considerable obstacle in the realm of postoperative wound treatment owing to their elevated susceptibility to infection and associated consequences. Polymyxin B Ointment, a compound renowned for its antibacterial qualities, has the potential to provide therapeutic advantages by promoting wound healing and mitigating postoperative problems. Methods Our institution conducted a thorough retrospective analysis spanning from December 2020 to December 2023 to assess the effectiveness of Compound Polymyxin B Ointment in the management of surgical wounds in patients diagnosed with perianal abscesses. The research encompassed a cohort of 100 individuals, who were classified into two groups: a control group that received conventional postoperative care, and an observation group that received supplementary treatment with Compound Polymyxin B Ointment. The evaluation of clinical outcomes involved measuring wound healing effectiveness, pain intensity using the Visual Analogue Scale (VAS), tissue swelling, exudation, necrotic tissue shedding time, duration of hospital stays, and rate of reduction in wound area. Results The group that received Compound Polymyxin B Ointment had significant enhancements in wound healing, as seen by a noteworthy 46% of participants completing complete healing, in contrast to the control group's 32%. The VAS was used to quantify pain levels, and the observation group reported a substantial reduction of almost 50% in ratings. Furthermore, this cohort exhibited a 45% decrease in edema and a 50% decline in exudation rates, in addition to a 50% acceleration in the shedding of necrotic tissue. The duration of the hospital stay was reduced by 40%, and the reduction in wound area was 18% higher, suggesting a more effective healing process. In addition, it is worth noting that the observation group had a lower incidence of problems, so underscoring the effectiveness of the ointment in facilitating wound healing and mitigating postoperative difficulties. Discussion The utilization of Compound Polymyxin B Ointment as an adjuvant measure in the surgical treatment of perianal abscesses has been found to have a substantial positive impact on wound healing, pain relief, and complication reduction. This finding provides evidence for the possibility of the ointment as a helpful inclusion in post-surgical wound care procedures among this specific group of patients.
Collapse
Affiliation(s)
| | | | | | - Yong-Gan Liu
- Department of Anorectal, The People’s Hospital of Zhongshan, Zhongshan, Guangdong, China
| |
Collapse
|
5
|
Zulk JJ, Patras KA, Maresso AW. The rise, fall, and resurgence of phage therapy for urinary tract infection. EcoSal Plus 2024; 12:eesp00292023. [PMID: 39665540 PMCID: PMC11636367 DOI: 10.1128/ecosalplus.esp-0029-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/13/2024]
Abstract
In the face of rising antimicrobial resistance, bacteriophage therapy, also known as phage therapy, is seeing a resurgence as a potential treatment for bacterial infections including urinary tract infection (UTI). Primarily caused by uropathogenic Escherichia coli, the 400 million UTI cases annually are major global healthcare burdens and a primary cause of antibiotic prescriptions in the outpatient setting. Phage therapy has several potential advantages over antibiotics including the ability to disrupt bacterial biofilms and synergize with antimicrobial treatments with minimal side effects or impacts on the microbiota. Phage therapy for UTI treatment has shown generally favorable results in recent animal models and human case reports. Ongoing clinical trials seek to understand the efficacy of phage therapy in individuals with asymptomatic bacteriuria and uncomplicated cystitis. A possible challenge for phage therapy is the development of phage resistance in bacteria during treatment. While resistance frequently develops in vitro and in vivo, resistance can come with negative consequences for the bacteria, leaving them susceptible to antibiotics and other environmental conditions and reducing their overall virulence. "Steering" bacteria toward phage resistance outcomes that leave them less fit or virulent is especially useful in the context of UTI where poorly adherent or slow-growing bacteria are likely to be flushed from the system. In this article, we describe the history of phage therapy in treating UTI and its current resurgence, the state of its clinical use, and an outlook on how well-designed phage therapy could be used to "steer" bacteria toward less virulent and antimicrobial-susceptible states.
Collapse
Affiliation(s)
- Jacob J. Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
6
|
Filho D, Guerrero M, Castro R, Rafael D, Andrade F, Marican A, Valdes O, Vargas E, Valenzuela E, Mora C, Durán-Lara EF. Influence of agarose in semi-IPN hydrogels for sustained Polymyxin B release. Colloids Surf B Biointerfaces 2024; 247:114431. [PMID: 39673897 DOI: 10.1016/j.colsurfb.2024.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/06/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Hydrogels (HGs) are 3-D polymeric networks with high water content, making them appropriate for biomedical applications such as drug delivery systems. This study examines the impact of agarose in semi-interpenetrating polymer networks (Semi-IPNs) based on poly(acrylic acid) (p(AA)), N, N' Methylenebis(acrylamide) (MBA) and agarose (AGA) on the sustained release of Polymyxin B (PolB). Agarose incorporation improved the mechanical strength, swelling behavior and drug retention capacity of the HG. We synthesized the Semi-IPN HGs via free radical polymerization and characterized their structural and thermal properties using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The features of swelling under physiological conditions were carried out. Additionally, we conducted release kinetics using the three prepared HGs, each of which had a distinct amount of AGA. The findings demonstrated that the Semi-IPN HGs with greater AGA concentrations had drug release profiles that were slower and more sustained, making them perfect for long-term therapeutic uses. We also tested the PolB-loaded HGs' antimicrobial efficacy against Pseudomonas aeruginosa, and they showed sustained antibacterial activity. Using NIH-3T3 fibroblast cells, we verified the HGs' biocompatibility, demonstrating their appropriateness for use in biomedicine. According to these findings, agarose modified Semi-IPN HGs may find application in long-term medication delivery systems that aid in the treatment of infections and promote wound healing.
Collapse
Affiliation(s)
- David Filho
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca, Chile; PhD Program in Science, R&D Bioactive Products Department, Chemistry Institute of Natural Resources, University of Talca, Talca, Chile
| | - Marcelo Guerrero
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca, Chile; PhD Program in Science, R&D Bioactive Products Department, Chemistry Institute of Natural Resources, University of Talca, Talca, Chile
| | - Ricardo Castro
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Aplicadas, Facultad de Construcción y Medio Ambiente, Universidad Autónoma de Chile, Talca, Chile
| | - Diana Rafael
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, Madrid, Spain; Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Barcelona 08035, Spain
| | - Fernanda Andrade
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Passeig de la Vall d'Hebron, 119-129, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, Madrid, Spain; Department of Pharmacy and Pharmaceutical Technology and Physicochemistry, Faculty of Pharmacy and Food Sciences, School of Pharmacy, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Adolfo Marican
- Institute of Chemistry of Natural Research, University of Talca, Talca 3460000, Chile
| | - Oscar Valdes
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Esteban Vargas
- Center for the Development of Nanoscience and Nanotechnology. Santiago. Chile
| | - Elisa Valenzuela
- School of Biochemistry, Institute of Biological Sciences, University of Talca, Talca, Chile
| | - Claudia Mora
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca, Chile
| | - Esteban F Durán-Lara
- Laboratory of Bio & Nano Materials, Drug Delivery and Controlled Release, Department of Microbiology, Faculty of Health Sciences, University of Talca, Talca, Chile.
| |
Collapse
|
7
|
Blassick CM, Lugagne JB, Dunlop MJ. Dynamic heterogeneity in an E. coli stress response regulon mediates gene activation and antimicrobial peptide tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625634. [PMID: 39677761 PMCID: PMC11642793 DOI: 10.1101/2024.11.27.625634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The bacterial stress response is an intricately regulated system that plays a critical role in cellular resistance to drug treatment. The complexity of this response is further complicated by cell-to-cell heterogeneity in the expression of bacterial stress response genes. These genes are often organized into networks comprising one or more transcriptional regulators that control expression of a suite of downstream genes. While the expression heterogeneity of many of these upstream regulators has been characterized, the way in which this variability affects the larger downstream stress response remains hard to predict, prompting two key questions. First, how does heterogeneity and expression noise in stress response regulators propagate to the diverse downstream genes in their regulons. Second, when expression levels vary, how do multiple downstream genes act together to protect cells from stress. To address these questions, we focus on the transcription factor PhoP, a critical virulence regulator which coordinates pathogenicity in several gram-negative species. We use optogenetic stimulation to precisely control PhoP expression levels and examine how variations in PhoP affect the downstream activation of genes in the PhoP regulon. We find that these downstream genes exhibit differences both in mean expression level and sensitivity to increasing levels of PhoP. These response functions can also vary between individual cells, increasing heterogeneity in the population. We tie these variations to cell survival when bacteria are exposed to a clinically-relevant antimicrobial peptide, showing that high expression of the PhoP-regulon gene pmrD provides a protective effect against Polymyxin B. Overall, we demonstrate that even subtle heterogeneity in expression of a stress response regulator can have clear consequences for enabling bacteria to survive stress.
Collapse
|
8
|
Chandal N, Kalia R, Dey A, Tambat R, Mahey N, Jachak S, Nandanwar H. Synthetic indole derivatives as an antibacterial agent inhibiting respiratory metabolism of multidrug-resistant gram-positive bacteria. Commun Biol 2024; 7:1489. [PMID: 39533040 PMCID: PMC11557839 DOI: 10.1038/s42003-024-06996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
The survival of modern medicine depends heavily on the effective prevention and treatment of bacterial infections, are threatened by antibacterial resistance. The increasing use of antibiotics and lack of stewardship have led to an increase in antibiotic-resistant pathogens, so the growing issue of resistance can be resolved by emphasizing chemically synthesized antibiotics. This study discovered SMJ-2, a synthetic indole derivative, is effective against all multidrug-resistant gram-positive bacteria. SMJ-2 has multiple targets of action, but the primary mechanism inhibits respiratory metabolism and membrane potential disruption. SMJ-2 was discovered to interfere with the mevalonate pathway, ultimately preventing the synthesis of farnesyl diphosphate, a precursor to the antioxidant staphyloxanthin, eventually releasing reactive oxygen species, and leading phagocytic cells to destroy pathogens. Additionally, no discernible biochemical and histopathological alterations were found in the mouse acute toxicity model. This study emphasizes mechanistic insights into SMJ-2 as a potential antibacterial with an unusual method of action.
Collapse
Affiliation(s)
- Nishtha Chandal
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ritu Kalia
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Mohali, 160062, Mohali, India
| | - Akash Dey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Mohali, 160062, Mohali, India
| | - Rushikesh Tambat
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Nisha Mahey
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sanjay Jachak
- Department of Natural Products, National Institute of Pharmaceutical Education and Research Mohali, 160062, Mohali, India
| | - Hemraj Nandanwar
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
9
|
Caioni G, Reyes CP, Laurenti D, Chiaradia C, Dainese E, Mattioli R, Di Risola D, Santavicca E, Francioso A. Biochemistry and Future Perspectives of Antibiotic Resistance: An Eye on Active Natural Products. Antibiotics (Basel) 2024; 13:1071. [PMID: 39596764 PMCID: PMC11591525 DOI: 10.3390/antibiotics13111071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Antibiotic resistance poses a serious threat to the current healthcare system, negatively impacting the effectiveness of many antimicrobial treatments. The situation is exacerbated by the widespread overuse and abuse of available antibiotics, accelerating the evolution of resistance. Thus, there is an urgent need for novel approaches to therapy to overcome established resistance mechanisms. Plants produce molecules capable of inhibiting bacterial growth in various ways, offering promising paths for the development of alternative antibiotic medicine. This review emphasizes the necessity of research efforts on plant-derived chemicals in the hopes of finding and creating novel drugs that can successfully target resistant bacterial populations. Investigating these natural chemicals allows us to improve our knowledge of novel antimicrobial pathways and also expands our antibacterial repertoire with novel molecules. Simultaneously, it is still necessary to utilize present antibiotics sparingly; prudent prescribing practices must be encouraged to extend the effectiveness of current medications. The combination of innovative drug research and responsible drug usage offers an integrated strategy for managing the antibiotic resistance challenge.
Collapse
Affiliation(s)
- Giulia Caioni
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (G.C.); (E.D.)
| | - Carolina Pérez Reyes
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Instituto Universitario de Bio-Orgánica “Antonio González”, University of La Laguna, 38206 San Cristobal de La Laguna, Spain;
| | - Davide Laurenti
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | - Carmen Chiaradia
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | - Enrico Dainese
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (G.C.); (E.D.)
| | - Roberto Mattioli
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | - Daniel Di Risola
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy; (D.L.); (C.C.); (R.M.); (D.D.R.)
| | | | - Antonio Francioso
- Department of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (G.C.); (E.D.)
| |
Collapse
|
10
|
Wang H, Zeng P, Zhang P, Zuo Z, Liu Y, Xia J, Lam JKW, Chan HK, Leung SSY. Phage-derived polysaccharide depolymerase potentiates ceftazidime efficacy against Acinetobacter baumannii pneumonia via low-serum-dependent mechanisms. Int J Biol Macromol 2024; 282:137486. [PMID: 39528188 DOI: 10.1016/j.ijbiomac.2024.137486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The emergence of multidrug-resistant Acinetobacter baumannii (MDR-AB), which most commonly manifests as pneumonia, has posed significant clinical challenges and called for novel treatment strategies. Phage depolymerases, which degrade bacterial surface carbohydrates, have emerged as potential antimicrobial agents. However, their preclinical application is limited to systemic infections due to their dependency on serum-mediated bacterial killing. To extend the treatment paradigm of depolymerase to low-serum lung infections, we explored the feasibility of applying phage depolymerase to potentiate antibiotic efficacy in controlling MDR-AB pneumonia. Using a model depolymerase, Dpo71, we observed that it could effectively potentiate antibiotic efficacy against MDR-AB2 bacteria in low-serum conditions mimicking lung milieu but showed no adjuvant effect in serum-free conditions. Unprecedentedly, we reported this low-serum-dependent mechanism that polysaccharide-degrading enzyme Dpo71 exposed bacteria to serum-induced membrane permeabilization and oxidative phosphorylation pathway inhibition, leading to a weakened ATP-dependent efflux pump and strengthened ROS-induced membrane permeabilization. These joint effects facilitated antibiotic (ceftazidime, CFZ) binding, ultimately exerting bactericidal effects. Resultantly, the bacterial load in the lungs of the Dpo71-CFZ combination group was significantly reduced compared with the Dpo71-alone and CFZ-alone groups. Overall, this study unravels the low-serum-dependent mechanisms by which depolymerase potentiated antibiotic efficacy, highlighting its potential as a novel strategy to enhance antibiotic activity against severe pneumonia.
Collapse
Affiliation(s)
- Honglan Wang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong
| | - Ping Zeng
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong
| | - Pengfei Zhang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong
| | - Zhong Zuo
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong
| | - Yannan Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Hong Kong
| | - Jenny Ka Wing Lam
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX, UK
| | - Hak-Kim Chan
- Sydney Pharmacy School, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
11
|
Singh A, Wu M, Ye TT, Brown AC, Wittenberg NJ. Engineering Planar Gram-Negative Outer Membrane Mimics Using Bacterial Outer Membrane Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:23289-23300. [PMID: 39453730 PMCID: PMC11542184 DOI: 10.1021/acs.langmuir.4c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 10/27/2024]
Abstract
Antibiotic resistance is a major challenge in modern medicine. The unique double membrane structure of Gram-negative bacteria limits the efficacy of many existing antibiotics and adds complexity to antibiotic development by limiting transport of antibiotics to the bacterial cytosol. New methods to mimic this barrier would enable high-throughput studies for antibiotic development. In this study, we introduce an innovative approach to modify outer membrane vesicles (OMVs) from Aggregatibacter actinomycetemcomitans, to generate planar supported lipid bilayer membranes. Our method first involves the incorporation of synthetic lipids into OMVs using a rapid freeze-thaw technique to form outer membrane hybrid vesicles (OM-Hybrids). Subsequently, these OM-Hybrids can spontaneously rupture when in contact with SiO2 surfaces to form a planar outer membrane supported bilayer (OM-SB). We assessed the formation of OM-Hybrids using dynamic light scattering and a fluorescence quenching assay. To analyze the formation of OM-SBs from OM-Hybrids we used quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence recovery after photobleaching (FRAP). Additionally, we conducted assays to detect surface-associated DNA and proteins on OM-SBs. The interaction of an antimicrobial peptide, polymyxin B, with the OM-SBs was also assessed. These findings emphasize the capability of our platform to produce planar surfaces of bacterial outer membranes, which in turn, could function as a valuable tool for streamlining the development of antibiotics.
Collapse
Affiliation(s)
- Aarshi
N. Singh
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Meishan Wu
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Tiffany T. Ye
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Angela C. Brown
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J. Wittenberg
- Department
of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
12
|
Xu C, Cheng Q, Chen K, Kin So P, Jin W, Gu Y, Wong ILK, Chan EWC, Wong KY, Chan KF, Chen S. Repurposing cetylpyridinium chloride and domiphen bromide as phosphoethanolamine transferase inhibitor to combat colistin-resistant Enterobacterales. Microbiol Res 2024; 288:127879. [PMID: 39182419 DOI: 10.1016/j.micres.2024.127879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
The emergence of plasmid-encoded colistin resistance mechanisms, MCR-1, a phosphoethanolamine transferase, rendered colistin ineffective as last resort antibiotic against severe infections caused by clinical Gram-negative bacterial pathogens. Through screening FDA-approved drug library, we identified two structurally similar compounds, namely cetylpyridinium chloride (CET) and domiphen bromide (DOM), which potentiated colistin activity in both colistin-resistant and susceptible Enterobacterales. These compounds were found to insert their long carbon chain to a hydrophobic pocket of bacterial phosphoethanolamine transferases including MCR-1, competitively blocking the binding of lipid A tail for substrate recognition and modification, resulting in the increase of bacterial sensitivity to colistin. In addition, these compounds were also found to dissipate bacterial membrane potential leading to the increase of bacterial sensitivity to colistin. Importantly, combinational use of DOM with colistin exhibited remarkable protection of test animals against infections by colistin-resistant bacteria in both mouse thigh infection and sepsis models. For mice infected by colistin-susceptible bacteria, the combinational use of DOM and colistin enable us to use lower dose of colistin to for efficient treatment. These properties render DOM excellent adjuvant candidates that help transform colistin into a highly potent antimicrobial agent for treatment of colistin-resistant Gram-negative bacterial infections and allowed us to use of a much lower dosage of colistin to reduce its toxicity against colistin-susceptible bacterial infection such as carbapenem-resistant Enterobacterales.
Collapse
Affiliation(s)
- Chen Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qipeng Cheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kaichao Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Pui Kin So
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wenbin Jin
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yanjuan Gu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Iris Lai-King Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Edward Wai Chi Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kin Fai Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Sheng Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
13
|
Valookolaei FSG, Sazegar H, Rouhi L. Limonene encapsulated alginate/collagen as antibiofilm drug against Acinetobacter baumannii. BMC Biotechnol 2024; 24:86. [PMID: 39487438 PMCID: PMC11531196 DOI: 10.1186/s12896-024-00888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 11/04/2024] Open
Abstract
This work examined the antibacterial and antibiofilm properties of alginate/collagen nanoparticles containing limonene. The multi-drug resistant (MDR) strains were screened, and the morphological features of the produced nanoparticles were determined utilizing SEM, DLS, and FTIR. Additionally, the encapsulation effectiveness, stability, and drug release were assessed. The levels of OmpA and Bap biofilm genes were assessed using qRT-PCR. At the same time, the antibacterial and cytotoxic activities of the nanoparticles were evaluated using well diffusion and MTT techniques, respectively. LAC nanoparticles measuring 300 ± 9.6 nm in size, 83.64 ± 0.19% encapsulation efficiency, and 60-day stability at 4 °C were synthesized. The biological investigation demonstrated that LAC nanoparticles had potent antibacterial capabilities. This was shown by their ability to significantly decrease the transcription of OmpA and Bap biofilm genes at a statistically significant level of p ≤ 0.05. The nanoparticles exhibited reduced antibiotic resistance compared to free limonene and alginate/collagen. Compared to limonene, LAC nanoparticles exhibited negligible cytotoxicity against HEK-293 at doses ranging from 1.56 to 100 µg/mL (p ≤ 0.01). The findings underscore the potential of LAC nanoparticles as a breakthrough in the fight against highly resistant pathogens. The potent antibacterial effects of LAC nanoparticles versus Acinetobacter baumannii (A. baumannii) MDR strains, considered highly resistant pathogens of significant concern, could inspire new strategies in antibacterial research.
Collapse
Affiliation(s)
| | - Hossein Sazegar
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Leila Rouhi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
14
|
Nuske MR, Zhong J, Huang R, Sarojini V, Chen JLY, Squire CJ, Blaskovich MAT, Leung IKH. Adjuvant strategies to tackle mcr-mediated polymyxin resistance. RSC Med Chem 2024:d4md00654b. [PMID: 39539347 PMCID: PMC11556429 DOI: 10.1039/d4md00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The emergence of the mobile colistin resistance (mcr) gene is a demonstrable threat contributing to the worldwide antibiotic resistance crisis. The gene is encoded on plasmids and can easily spread between different bacterial strains. mcr encodes a phosphoethanolamine (pEtN) transferase, which catalyses the transfer of the pEtN moiety from phosphatidylethanolamine to lipid A, the head group of lipopolysaccharides (LPS). This neutralises the overall negative charge of the LPS and prevents the binding of polymyxins to bacterial membranes. We believe that the development of polymyxin adjuvants could be a promising approach to prolong the use of this important class of last-resort antibiotics. This review discusses recent progress in the identification, design and development of adjuvants to restore polymyxin sensitivity in these resistant bacteria, and focuses on both MCR inhibitors as well as alternative approaches that modulate polymyxin resistance.
Collapse
Affiliation(s)
- Madison R Nuske
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
| | - Junlang Zhong
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
| | - Renjie Huang
- School of Chemical Sciences, The University of Auckland Auckland 1010 New Zealand
| | | | - Jack L Y Chen
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology Auckland 1010 New Zealand
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, Università degli Studi di Siena 53100 Siena Italy
| | - Christopher J Squire
- School of Biological Sciences, The University of Auckland Auckland 1010 New Zealand
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland St. Lucia Queensland 4072 Australia
| | - Ivanhoe K H Leung
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
- School of Chemical Sciences, The University of Auckland Auckland 1010 New Zealand
| |
Collapse
|
15
|
Singh A, Tanwar M, Singh TP, Sharma S, Sharma P. An escape from ESKAPE pathogens: A comprehensive review on current and emerging therapeutics against antibiotic resistance. Int J Biol Macromol 2024; 279:135253. [PMID: 39244118 DOI: 10.1016/j.ijbiomac.2024.135253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
The rise of antimicrobial resistance has positioned ESKAPE pathogens as a serious global health threat, primarily due to the limitations and frequent failures of current treatment options. This growing risk has spurred the scientific community to seek innovative antibiotic therapies and improved oversight strategies. This review aims to provide a comprehensive overview of the origins and resistance mechanisms of ESKAPE pathogens, while also exploring next-generation treatment strategies for these infections. In addition, it will address both traditional and novel approaches to combating antibiotic resistance, offering insights into potential new therapeutic avenues. Emerging research underscores the urgency of developing new antimicrobial agents and strategies to overcome resistance, highlighting the need for novel drug classes and combination therapies. Advances in genomic technologies and a deeper understanding of microbial pathogenesis are crucial in identifying effective treatments. Integrating precision medicine and personalized approaches could enhance therapeutic efficacy. The review also emphasizes the importance of global collaboration in surveillance and stewardship, as well as policy reforms, enhanced diagnostic tools, and public awareness initiatives, to address resistance on a worldwide scale.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mansi Tanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - T P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
16
|
Aubry C, Kebbi-Beghdadi C, Luraschi-Eggemann A, Cathomen G, Cichocka D, Sturm A, Greub G, The Eradiamr Consortium. Nanomotion technology: an innovative method to study cell metabolism in Escherichia coli, as a potential indicator for tolerance. J Med Microbiol 2024; 73. [PMID: 39513692 DOI: 10.1099/jmm.0.001912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Introduction. Antibiotic tolerance corresponds to the bacterial ability to survive a transient exposure to antibiotics and is often associated with treatment failure. Current methods of identifying tolerance based on bacterial growth are time-consuming. This study explores the use of a growth-independent method utilizing nanomotion technology to detect antibiotic-tolerant bacteria.Hypothesis. The nanomotion signal obtained from a nanomechanical sensor measures real-time metabolic activity and cellular processes and could provide valuable information about the tolerance of bacteria to antibiotics that cannot be detected by standard antibiotic susceptibility tests.Aim. The aim of this study is to investigate the potential of nanomotion technology to record antibiotic-tolerant bacteria.Methodology. We generated a slow-growing Escherichia coli strain by manipulating mazF expression levels and confirmed its viability by several standard methods. We subsequently measured its nanomotion and the nanomotion of the WT E. coli in the presence or absence of antibiotics. Supervised machine learning was employed to distinguish slow-growing from exponentially growing bacteria. Observations for bacterial nanomotions were confirmed by standard kill curves.Results. We distinguished slow-growing from exponentially growing bacteria using specific features from the nanomotion signal. Furthermore, the exposition of both growth phenotypes to polymyxin decreased the nanomotion signal indicating cell death. Similarly, when exponentially growing cells were exposed to ampicillin, an antibiotic whose efficacy depends on the growth rate, the nanomotion signal also decreased. In contrast, the nanomotion signal remained unchanged for slow-growing bacteria upon exposure to ampicillin. In addition, antibiotic exposure can cause bacterial elongation, in which the biomass of a cell increases without cell division. By overexpressing sulA, we mimicked antibiotic-induced elongation. Differences in the nanomotion signal were observed when comparing elongating and non-elongating phenotypes.Conclusion. This work shows that nanomotion signals entail information about the reaction to antibiotics that standard MIC-based antibiotic susceptibility tests cannot detect. In the future, nanomotion-based antibiotic tolerance tests could be developed for clinical use in chronic or relapsing infections.
Collapse
Affiliation(s)
- Christèle Aubry
- Institute of Microbiology, Lausanne University Hospital and Lausanne University, CH-1011 Lausanne, Switzerland
| | - Carole Kebbi-Beghdadi
- Institute of Microbiology, Lausanne University Hospital and Lausanne University, CH-1011 Lausanne, Switzerland
| | - Amanda Luraschi-Eggemann
- Institute of Microbiology, Lausanne University Hospital and Lausanne University, CH-1011 Lausanne, Switzerland
- Resistell AG, Hofackerstrasse 40, CH-4132 Muttenz, Switzerland
| | - Gino Cathomen
- Resistell AG, Hofackerstrasse 40, CH-4132 Muttenz, Switzerland
| | - Danuta Cichocka
- Resistell AG, Hofackerstrasse 40, CH-4132 Muttenz, Switzerland
| | - Alexander Sturm
- Resistell AG, Hofackerstrasse 40, CH-4132 Muttenz, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital and Lausanne University, CH-1011 Lausanne, Switzerland
| | | |
Collapse
|
17
|
Rastegar S, Skurnik M, Tadjrobehkar O, Samareh A, Samare-Najaf M, Lotfian Z, Khajedadian M, Hosseini-Nave H, Sabouri S. Synergistic effects of bacteriophage cocktail and antibiotics combinations against extensively drug-resistant Acinetobacter baumannii. BMC Infect Dis 2024; 24:1208. [PMID: 39455951 PMCID: PMC11515142 DOI: 10.1186/s12879-024-10081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The extensively drug-resistant (XDR) strains of Acinetobacter baumannii have become a major cause of nosocomial infections, increasing morbidity and mortality worldwide. Many different treatments, including phage therapy, are attractive ways to overcome the challenges of antibiotic resistance. METHODS This study investigates the biofilm formation ability of 30 XDR A. baumannii isolates and the efficacy of a cocktail of four tempetate bacteriophages (SA1, Eve, Ftm, and Gln) and different antibiotics (ampicillin/sulbactam, meropenem, and colistin) in inhibiting and degrading the biofilms of these strains. RESULTS The majority (83.3%) of the strains exhibited strong biofilm formation. The bacteriophage cocktail showed varying degrees of effectiveness against A. baumannii biofilms, with higher concentrations generally leading to more significant inhibition and degradation rates. The antibiotics-bacteriophage cocktail combinations also enhanced the inhibition and degradation of biofilms. CONCLUSION The findings suggested that the bacteriophage cocktail is an effective tool in combating A. baumannii biofilms, with its efficacy depending on the concentration. Combining antibiotics with the bacteriophage cocktail improved the inhibition and removal of biofilms, indicating a promising strategy for managing A. baumannii infections. These results contribute to our understanding of biofilm dynamics and the potential of bacteriophage cocktails as a novel therapeutic approach to combat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sanaz Rastegar
- Student Research Committee, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Omid Tadjrobehkar
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology(Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Zahra Lotfian
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Khajedadian
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Hosseini-Nave
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Medical Microbiology(Bacteriology and Virology), Afzalipour School of Medicine, Kerman, Iran.
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Salehe Sabouri
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
18
|
Fang M, Zhang R, Wang C, Liu Z, Fei M, Tang B, Yang H, Sun D. Engineering probiotic Escherichia coli Nissle 1917 to block transfer of multiple antibiotic resistance genes by exploiting a type I CRISPR-Cas system. Appl Environ Microbiol 2024; 90:e0081124. [PMID: 39254327 PMCID: PMC11497782 DOI: 10.1128/aem.00811-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Many multidrug-resistant (MDR) bacteria have evolved through the accumulation of antibiotic resistance genes (ARGs). Although the potential risk of probiotics as reservoirs of ARGs has been recognized, strategies for blocking the transfer of ARGs while using probiotics have rarely been explored. The probiotic Escherichia coli Nissle 1917 (EcN) has long been used for treating intestinal diseases. Here, we demonstrate frequent transfer of ARGs into EcN both in vitro and in vivo, raising concerns about its potential risk of accumulating antibiotic resistance. Given that no CRISPR-Cas system was found in natural EcN, we integrated the type I-E CRISPR-Cas3 system derived from E. coli BW25113 into EcN. The engineered EcN was able to efficiently cleave multiple ARGs [i.e., mcr-1, blaNDM-1, and tet(X)] encoding enzymes for degrading last-resort antibiotics. Through co-incubation of EcN expressing Cas3-Cascade and that expressing Cas9, we showed that the growth of the former strain outcompeted the latter strain, demonstrating a better clinical application prospect of EcN expressing the type I-E CRISPR-Cas3 system. In the intestine of a model animal (i.e., zebrafish), the engineered EcN exhibited immunity against the transfer of CRISPR-targeted ARGs. Our work equips EcN with immunity against the transfer of multiple ARGs by exploiting the exogenous type I-E CRISPR-Cas3 system, thereby reducing the risk of the spread of ARGs while using it as a probiotic chassis for generating living therapeutics. IMPORTANCE To reduce the development of antibiotic resistance, probiotics have been considered as a substitute for antibiotics. However, probiotics themselves are reservoirs of antibiotic resistance genes (ARGs). This study introduces a new strategy for limiting the spread of ARGs by engineering the typical probiotic strain Escherichia coli Nissle 1917 (EcN), which has been used for treating intestinal diseases and developed as living therapeutics. We also demonstrate that the type I CRISPR-Cas system imposes a lower growth burden than the type II CRISPR-Cas system, highlighting its promising clinical application potential. Our work not only provides a new strategy for restricting the transfer of ARGs while using probiotics but also enriches the genetic engineering toolbox of EcN, paving the way for the safe use and development of probiotics as living therapeutics.
Collapse
Affiliation(s)
- Mengdie Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruiting Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Chenyu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhizhi Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Mingyue Fei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Sakalauskienė GV, Radzevičienė A. Antimicrobial Resistance: What Lies Beneath This Complex Phenomenon? Diagnostics (Basel) 2024; 14:2319. [PMID: 39451642 PMCID: PMC11506786 DOI: 10.3390/diagnostics14202319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial Resistance (AMR) has evolved from a mere concern into a significant global threat, with profound implications for public health, healthcare systems, and the global economy. Since the introduction of antibiotics between 1945 and 1963, their widespread and often indiscriminate use in human medicine, agriculture, and animal husbandry has led to the emergence and rapid spread of antibiotic-resistant genes. Bacteria have developed sophisticated mechanisms to evade the effects of antibiotics, including drug uptake limitation, drug degradation, target modification, efflux pumps, biofilm formation, and outer membrane vesicles production. As a result, AMR now poses a threat comparable to climate change and the COVID-19 pandemic, and projections suggest that death rates will be up to 10 million deaths annually by 2050, along with a staggering economic cost exceeding $100 trillion. Addressing AMR requires a multifaceted approach, including the development of new antibiotics, alternative therapies, and a significant shift in antibiotic usage and regulation. Enhancing global surveillance systems, increasing public awareness, and prioritizing investments in research, diagnostics, and vaccines are critical steps. By recognizing the gravity of the AMR threat and committing to collaborative action, its impact can be mitigated, and global health can be protected for future generations.
Collapse
Affiliation(s)
- Giedrė Valdonė Sakalauskienė
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | | |
Collapse
|
20
|
Oyenuga N, Cobo-Díaz JF, Alvarez-Ordóñez A, Alexa EA. Overview of Antimicrobial Resistant ESKAPEE Pathogens in Food Sources and Their Implications from a One Health Perspective. Microorganisms 2024; 12:2084. [PMID: 39458393 PMCID: PMC11510272 DOI: 10.3390/microorganisms12102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Antimicrobial resistance is an increasing societal burden worldwide, with ESKAPEE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species and Escherichia coli) pathogens overwhelming the healthcare sectors and more recently becoming predominantly a concern for their persistence in food and food industries, including agricultural settings and animal husbandry environments. The aim of this review is to explore the mechanisms by which the ESKAPEE group gained its multidrug resistance profiles, to analyse their occurrence in different foods and other related reservoirs, including water, and to address the current challenges due to their spread within the food production chain. Moreover, the repertoire of surveillance programmes available focused on monitoring their occurrence, common reservoirs and the spread of antimicrobial resistance are described in this review paper. Evidence from the literature suggests that restricting our scope in relation to multidrug resistance in ESKAPEE pathogens to healthcare and healthcare-associated facilities might actually impede unveiling the actual issues these pathogens can exhibit, for example, in food and food-related reservoirs. Furthermore, this review addresses the need for increasing public campaigns aimed at addressing this challenge, which must be considered in our fight against antimicrobial resistance shown by the ESKAPEE group in food and food-related sectors.
Collapse
Affiliation(s)
- Naomi Oyenuga
- School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland;
| | - José Francisco Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain; (J.F.C.-D.); (A.A.-O.)
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, 24071 León, Spain; (J.F.C.-D.); (A.A.-O.)
- Institute of Food Science and Technology, Universidad de León, 24007 León, Spain
| | - Elena-Alexandra Alexa
- School of Food Science and Environmental Health, Technological University Dublin, D07 H6K8 Dublin, Ireland;
| |
Collapse
|
21
|
Cui S, Kim E. Quorum sensing and antibiotic resistance in polymicrobial infections. Commun Integr Biol 2024; 17:2415598. [PMID: 39430726 PMCID: PMC11487952 DOI: 10.1080/19420889.2024.2415598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Quorum sensing (QS) is a critical bacterial communication system regulating behaviors like biofilm formation, virulence, and antibiotic resistance. This review highlights QS's role in polymicrobial infections, where bacterial species interactions enhance antibiotic resistance. We examine QS mechanisms, such as acyl-homoserine lactones (AHLs) in Gram-negative bacteria and autoinducing peptides (AIPs) in Gram-positive bacteria, and their impact on biofilm-associated antibiotic resistance. The challenges uniquely associated with polymicrobial infections, such as those found in cystic fibrosis lung infections, chronic wound infections, and medical device infections, are also summarized. Furthermore, we explore various laboratory models, including flow cells and dual-species culture models, used to study QS interactions in polymicrobial environments. The review also discusses promising quorum sensing inhibitors (QSIs), such as furanones and AHL analogs, which have demonstrated efficacy in reducing biofilm formation and virulence in laboratory and clinical studies. By addressing the interplay between QS and antibiotic resistance, this paper aims to advance therapeutic strategies that disrupt bacterial communication and improve antibiotic efficacy, ultimately mitigating the global challenge of antibiotic resistance in polymicrobial infections.
Collapse
Affiliation(s)
- Sunny Cui
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Esther Kim
- Arts and Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Hsieh YYP, O’Keefe IP, Sun W, Wang Z, Yang H, Vu LM, Ernst RK, Dandekar AA, Malik HS. A novel PhoPQ-potentiated mechanism of colistin resistance impairs membrane integrity in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618514. [PMID: 39464160 PMCID: PMC11507728 DOI: 10.1101/2024.10.15.618514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Polymicrobial communities are often recalcitrant to antibiotic treatment because interactions between different microbes can dramatically alter their responses and susceptibility to antimicrobials. However, the mechanisms of evolving antimicrobial resistance in such polymicrobial environments are poorly understood. We previously reported that Mg2+ depletion caused by the fungus Candida albicans can enable Pseudomonas aeruginosa to acquire significant resistance to colistin, a last-resort antibiotic targeting bacterial membrane. Here, we dissect the genetic and biochemical basis of this increased colistin resistance. We show that P. aeruginosa cells can acquire colistin resistance using three distinct evolutionary trajectories involving mutations in genes involved in lipid A biosynthesis, lipid A modifications that are dependent on low Mg2+, and a putative Mg2+ transporter, PA4824. These mutations confer colistin resistance by altering acyl chains, hydroxylation, and aminoarabinose modification of lipid A moieties on the bacterial outer membrane. In all cases, enhanced colistin resistance initially depends on the low Mg2+-responsive PhoPQ pathway, which potentiates the evolution of resistance mutations and lipid A modifications that do not occur without Mg2+ depletion. However, the PhoPQ pathway is not required to maintain high colistin resistance in all cases. In most cases, the genetic and biochemical changes associated with these novel forms of colistin resistance also impair bacterial membrane integrity, leading to fitness costs. Our findings provide molecular insights into how nutritional competition drives a novel antibiotic resistance mechanism and its ensuing fitness tradeoffs.
Collapse
Affiliation(s)
- Yu-Ying Phoebe Hsieh
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ian P. O’Keefe
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, University of Maryland – Baltimore, Maryland, USA
| | - Wanting Sun
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Zeqi Wang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hyojik Yang
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Maryland, USA
| | - Linda M. Vu
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Maryland, USA
| | - Robert K. Ernst
- Department of Microbial Pathogenesis, University of Maryland – Baltimore, Maryland, USA
| | - Ajai A. Dandekar
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Harmit S. Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
23
|
Bote L, Taylor-Brown A, Maes M, Ingle DJ, Valcanis M, Howden BP, Thomson NR. Surveillance of travel-associated isolates elucidates the diversity of non-pandemic Vibrio cholerae. Microb Genom 2024; 10. [PMID: 39412871 DOI: 10.1099/mgen.0.001307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024] Open
Abstract
Vibrio cholerae is a Gram-negative bacterium found in aquatic environments and is the aetiological agent of cholera, characterized by acute watery diarrhoea and severe dehydration. Cholera presents a significant global health burden of an estimated 1.3-5 million annual cases, with the current pandemic caused by a toxigenic lineage of the O1 El Tor biotype called seventh pandemic El Tor (7PET) that is still ongoing. Whilst it is known that non-7PET lineages can cause sporadic disease, little is known about the transmission of these non-epidemic lineages. Thirty-four V. cholerae isolates were obtained from travellers returning from Indonesia to Australia between 2005 and 2017. These were whole genome sequenced, placed into a global phylogenetic context with 883 isolates, and screened for known genes associated with antimicrobial resistance and virulence. This analysis revealed that 30 isolates fell within non-7PET lineages and four within the 7PET lineage. Both 7PET and non-7PET isolates carried genes for resistance to antibiotics that are commonly used in cholera treatment such as tetracyclines and fluoroquinolones. Diverse virulence factors were also present in non-7PET isolates, with two isolates notably carrying toxin-coregulated pilus genes, which are primarily responsible for intestinal colonization in 7PET V. cholerae. This study demonstrates the role of travel in long-range carriage of epidemic and non-epidemic lineages of V. cholerae, and how sentinel travel surveillance can enrich our knowledge of V. cholerae diversity, reveal new biology about the spread of diverse lineages with differing disease potential and illuminate disease presence in endemic regions with limited surveillance data.
Collapse
Affiliation(s)
- Lia Bote
- Wellcome Sanger Institute, Hinxton, UK
| | | | | | - Danielle J Ingle
- The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Benjamin P Howden
- The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, Australia
| | - Nicholas R Thomson
- Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
24
|
O'Hara MT, Shimozono TM, Dye KJ, Harris D, Yang Z. Surface hydrophilicity promotes bacterial twitching motility. mSphere 2024; 9:e0039024. [PMID: 39194233 PMCID: PMC11423576 DOI: 10.1128/msphere.00390-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/24/2024] [Indexed: 08/29/2024] Open
Abstract
Twitching motility is a form of bacterial surface translocation powered by the type IV pilus (T4P). It is frequently analyzed by interstitial colony expansion between agar and the polystyrene surfaces of petri dishes. In such assays, the twitching motility of Acinetobacter nosocomialis was observed with MacConkey but not Luria-Bertani (LB) agar media. One difference between these two media is the presence of bile salts as a selective agent in MacConkey but not in LB. Here, we demonstrate that the addition of bile salts to LB allowed A. nosocomialis to display twitching. Similarly, bile salts enhanced the twitching of Acinetobacter baumannii and Pseudomonas aeruginosa in LB. These observations suggest that there is a common mechanism, whereby bile salts enhance bacterial twitching and promote interstitial colony expansion. Bile salts disrupt lipid membranes and apply envelope stress as detergents. Surprisingly, their stimulatory effect on twitching appears not to be related to a bacterial physiological response to stressors. Rather, it is due to their ability to alter the physicochemical properties of a twitching surface. We observed that while other detergents promoted twitching like bile salts, stresses applied by antibiotics, including the outer membrane-targeting polymyxin B, did not enhance twitching motility. More importantly, bacteria displayed increased twitching on hydrophilic surfaces such as those of glass and tissue culture-treated polystyrene plastics, and bile salts no longer stimulated twitching on these surfaces. Together, our results show that altering the hydrophilicity of a twitching surface significantly impacts T4P functionality. IMPORTANCE The bacterial type IV pilus (T4P) is a critical virulence factor for many medically important pathogens, some of which are prioritized by the World Health Organization for their high levels of antibiotic resistance. The T4P is known to propel bacterial twitching motility, the analysis of which provides a convenient assay for T4P functionality. Here, we show that bile salts and other detergents augment the twitching of multiple bacterial pathogens. We identified the underlying mechanism as the alteration of surface hydrophilicity by detergents. Consequently, hydrophilic surfaces like those of glass or plasma-treated polystyrene promote bacterial twitching, bypassing the requirement for detergents. The implication is that surface properties, such as those of tissues and medical implants, significantly impact the functionality of bacterial T4P as a virulence determinant. This offers valuable insights for developing countermeasures against the colonization and infection by bacterial pathogens of critical importance to human health on a global scale.
Collapse
Affiliation(s)
- Megan T O'Hara
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Tori M Shimozono
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Keane J Dye
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - David Harris
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
25
|
Wouters M, Van Moll L, De Vooght L, Choińska E, Idaszek J, Szlązak K, Heljak MK, Święszkowski W, Cos P. Polymyxin B Peptide Hydrogel Coating: A Novel Approach to Prevent Ventilator-Associated Pneumonia. Int J Mol Sci 2024; 25:10269. [PMID: 39408597 PMCID: PMC11477085 DOI: 10.3390/ijms251910269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Ventilator-associated pneumonia (VAP) remains one of the most common hospital-acquired infections (HAI). Considering the complicated diagnosis and the lack of effective treatment, prophylactic measures are suggested as the new standard to prevent the disease. Although VAP often manifests a polymicrobial nature, Pseudomonas aeruginosa remains one of the pathogens associated with the highest morbidity and mortality rates within these mechanically ventilated patients. In this paper, we report on the development of an antibacterial hydrogel coating using the polymyxin B (PMB) peptide to prevent bacterial adhesion to the polymeric substrate. We fully characterized the properties of the coating using atomic force microscopy (AFM), scanning electron microscopy (SEM), wettability analyses and Fourier-transform infrared (FTIR) and Raman spectroscopy. Furthermore, several biological assays confirmed the antibacterial and anti-biofilm effect of the tubing for at least 8 days against P. aeruginosa. On top of that, the produced coating is compliant with the requirements regarding cytocompatibility stated in the ISO (International Organization for Standardization) 10993 guidelines and an extended release of PMB over a period of at least 42 days was detected. In conclusion, this study serves as a foundation for peptide-releasing hydrogel formulas in the prevention of VAP.
Collapse
Affiliation(s)
- Milan Wouters
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| | - Emilia Choińska
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Joanna Idaszek
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Karol Szlązak
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Marcin K. Heljak
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Wojciech Święszkowski
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warsaw, Poland; (E.C.); (J.I.); (K.S.); (M.K.H.)
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, 2000 Antwerp, Belgium; (M.W.); (L.V.M.); (L.D.V.)
| |
Collapse
|
26
|
Jamwal V, Palmo T, Singh K. Understanding the mechanisms of antimicrobial resistance and potential therapeutic approaches against the Gram-negative pathogen Acinetobacter baumannii. RSC Med Chem 2024; 15:d4md00449c. [PMID: 39386059 PMCID: PMC11457259 DOI: 10.1039/d4md00449c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Globally, the emergence of anti-microbial resistance in pathogens has become a serious threat to human health and well-being. Infections caused by drug-resistant microorganisms in hospitals are associated with increased morbidity, mortality, and healthcare costs. Acinetobacter baumannii is a Gram-negative bacterium belonging to the ESKAPE group and is widely associated with nosocomial infections. It persists in hospitals and survives antibiotic treatment, prompting acute infections such as urinary tract infections, pneumonia, bacteremia, meningitis, and wound-related infections. An innovation void in drug discovery and the lack of new therapeutic measures against A. baumannii continue to afflict infection control against the rising drug-resistant cases. The emergence of drug-resistant A. baumannii strains has also led to the incessant collapse of newly discovered antibiotics. Therefore exploring novel strategies is requisite to give impetus to A. baumannii drug discovery. The present review discusses the bacterial research community's efforts in the field of A. baumannii, focusing on the strategies adapted to identify potent scaffolds and novel targets to bolster and diversify the chemical space available for drug discovery. Firstly, we have discussed existing chemotherapy and various anti-microbial resistance mechanisms in A. baumannii bacterial strains. Next, we elaborate on multidisciplinary approaches and strategies that may be the way forward to combat the current menace caused by the drug-resistant A. baumannii strains. The review highlights the recent advances in drug discovery, including combinational therapy, high-throughput screening, drug repurposing, nanotechnology, and anti-microbial peptides, which are imperative tools to fight bacterial pathogens in the future.
Collapse
Affiliation(s)
- Vishwani Jamwal
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Tashi Palmo
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
27
|
Xu C, Zhang Y, Ma L, Zhang G, Li C, Zhang C, Li Y, Zeng X, Li Y, Dong N. Valnemulin restores colistin sensitivity against multidrug-resistant gram-negative pathogens. Commun Biol 2024; 7:1122. [PMID: 39261709 PMCID: PMC11390741 DOI: 10.1038/s42003-024-06805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Colistin is one of the last-resort antibiotics in treating infections caused by multidrug-resistant (MDR) pathogens. Unfortunately, the emergence of colistin-resistant gram-negative strains limit its clinical application. Here, we identify an FDA-approved drug, valnemulin (Val), exhibit a synergistic effect with colistin in eradicating both colistin-resistant and colistin-susceptible gram-negative pathogens both in vitro and in the mouse infection model. Furthermore, Val acts synergistically with colistin in eliminating intracellular bacteria in vitro. Functional studies and transcriptional analysis confirm that the combinational use of Val and colistin could cause membrane permeabilization, proton motive force dissipation, reduction in intracellular ATP level, and suppression in bacterial motility, which result in bacterial membrane disruption and finally cell death. Our findings reveal the potential of Val as a colistin adjuvant to combat MDR bacterial pathogens and treat recalcitrant infections.
Collapse
Affiliation(s)
- Chen Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuan Zhang
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangfen Zhang
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Medical Microbiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chunli Li
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Medical Microbiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chenjie Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yunbing Li
- Department of Medical Microbiology, Experimental Center, Suzhou Medical College of Soochow Univesity, Suzhou, China
| | - Xiangkun Zeng
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Medical Microbiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuanyuan Li
- Department of Medical Microbiology, Experimental Center, Suzhou Medical College of Soochow Univesity, Suzhou, China.
| | - Ning Dong
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Medical Microbiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
- Department of Clinical Laboratory, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
28
|
Afonso L, Grzegorczyk KG, Salomão JM, Basso KR, Alves LC, Silva MCD, Chryssafidis AL, Gionco-Cano B, Yamada-Ogatta SF, Andrade G. Fluopsin C Promotes Biofilm Removal of XDR Acinetobacter baumannii and Presents an Additive Effect with Polymyxin B on Planktonic Cells. Antibiotics (Basel) 2024; 13:875. [PMID: 39335049 PMCID: PMC11428918 DOI: 10.3390/antibiotics13090875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Acinetobacter baumannii emerged as one of the most important pathogens for the development of new antimicrobials due to the worldwide detection of isolates resistant to all commercial antibiotics, especially in nosocomial infections. Biofilm formation enhances A. baumannii survival by impairing antimicrobial action, being an important target for new antimicrobials. Fluopsin C (FlpC) is an organocupric secondary metabolite with broad-spectrum antimicrobial activity. This study aimed to evaluate the antibiofilm activity of FlpC in established biofilms of extensively drug-resistant A. baumannii (XDRAb) and the effects of its combination with polymyxin B (PolB) on planktonic cells. XDRAb susceptibility profiles were determined by Vitek 2 Compact, disk diffusion, and broth microdilution. FlpC and PolB interaction was assessed using the microdilution checkerboard method and time-kill kinetics. Biofilms of XDRAb characterization and removal by FlpC exposure were assessed by biomass staining with crystal violet. Confocal Laser Scanning Microscopy was used to determine the temporal removal of the biofilms using DAPI, and cell viability using live/dead staining. The minimum inhibitory concentration (MIC) of FlpC on XDRAb was 3.5 µg mL-1. Combining FlpC + PolB culminated in an additive effect, increasing bacterial susceptibility to both antibiotics. FlpC-treated 24 h biofilms reached a major biomass removal of 92.40 ± 3.38% (isolate 230) using 7.0 µg mL-1 FlpC. Biomass removal occurred significantly over time through the dispersion of the extracellular matrix and decreasing cell number and viability. This is the first report of FlpC's activity on XDRAb and the compound showed a promissory response on planktonic and sessile cells, making it a candidate for the development of a new antimicrobial product.
Collapse
Affiliation(s)
- Leandro Afonso
- Microbial Ecology Laboratory, State University of Londrina, Londrina 86057-970, Brazil; (L.A.)
| | | | - Julio Martins Salomão
- Microbial Ecology Laboratory, State University of Londrina, Londrina 86057-970, Brazil; (L.A.)
| | - Kawany Roque Basso
- Microbial Ecology Laboratory, State University of Londrina, Londrina 86057-970, Brazil; (L.A.)
| | - Leonardo Cruz Alves
- Microbial Ecology Laboratory, State University of Londrina, Londrina 86057-970, Brazil; (L.A.)
| | - Maria Clara Davis Silva
- Microbial Ecology Laboratory, State University of Londrina, Londrina 86057-970, Brazil; (L.A.)
| | | | - Bárbara Gionco-Cano
- Microbial Ecology Laboratory, State University of Londrina, Londrina 86057-970, Brazil; (L.A.)
| | - Sueli Fumie Yamada-Ogatta
- Molecular Biology of Microorganisms Laboratory, State University of Londrina, Londrina 86057-970, Brazil;
| | - Galdino Andrade
- Microbial Ecology Laboratory, State University of Londrina, Londrina 86057-970, Brazil; (L.A.)
| |
Collapse
|
29
|
Najari E, Zamani S, Sheikh Arabi M, Ardebili A. Antimicrobial photodynamic effect of the photosensitizer riboflavin, alone and in combination with colistin, against pandrug-resistant Pseudomonas aeruginosa clinical isolates. J Infect Chemother 2024; 30:892-898. [PMID: 38432556 DOI: 10.1016/j.jiac.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/05/2024] [Accepted: 03/01/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Development of multi-, extensively-, and pandrug-resistant (MDR, XDR, and PDR) strains of Pseudomonas aeruginosa remains a major problem in medical care. The present study evaluated the effect of antimicrobial photodynamic therapy (aPDT) as a monotherapy and in combination with colistin against P. aeruginosa isolates. METHODS Two P. aeruginosa isolates recovered from patients with respiratory tract infections were examined in this study. Minimum inhibitory concentration (MIC) of colistin was determined by the colistin broth disk elution (CBDE) and the reference broth microdilution (rBMD) methods. aPDT was performed using the photosensitizer (Ps) riboflavin at several concentrations and a light-emitting diode (LED) emitting blue light for different irradiation times with or without colistin at 1/2 × MIC concentration. RESULTS Both PA1 and PA2 isolates were identified as colistin-resistant P. aeruginosa with a MIC ≥4 μg/mL by the CBDE and MICs of 512 μg/mL and 256 μg/mL, respectively, by the rBMD. In aPDT, neither riboflavin nor LED light alone had antibacterial effects. The values of colony forming units per milliliter (CFU/mL) in both isolates were significantly reduced by LED + Ps treatments in a time-dependent manner (LED irradiation time) and dose-dependent manner (Ps concentration). In comparison with control, treatment with Ps (50 μM) + LED (120 s) and Ps (100 μM) + LED (120 s) resulted in 0.27 log10 CFU/mL and 0.43 log10 CFU/mL reductions in PA1, and 0.28 log10 CFU/mL and 0.34 log10 CFU/mL reductions in PA2, respectively, (P < 0.01). The best results were obtained after the combination of aPDT followed by colistin, which increased bacterial reduction, resulting in a 0.41-0.7 log10 CFU/mL reduction for PA1 and 0.35-0.83 log10 CFU/mL reduction for PA2 (P = 0.001). CONCLUSIONS This study suggests the potential implications of aPDT in combination with antibiotics, such as colistin for treatment of difficult-to-treat P. aeruginosa infections.
Collapse
Affiliation(s)
- Ehsan Najari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Samin Zamani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Mehdi Sheikh Arabi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Abdollah Ardebili
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
30
|
Santos da Costa B, Peixoto RS, da Conceição Neto OC, da Silva Pontes L, Tavares E Oliveira TR, Tavares Teixeira CB, de Oliveira Santos IC, Silveira MC, Silva Rodrigues DC, Pribul BR, Rocha-de-Souza CM, D 'Alincourt Carvalho-Assef AP. Polymyxin resistance in Enterobacter cloacae complex in Brazil: phenotypic and molecular characterization. Braz J Microbiol 2024:10.1007/s42770-024-01464-1. [PMID: 39210190 DOI: 10.1007/s42770-024-01464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Enterobacter cloacae complex isolates have been reported as an important nosocomial multidrug resistance pathogen. In the present study, we investigated antimicrobial susceptibility and the colistin-resistance rates, their genetic determinants and clonality among clinical E. cloacae complex isolates from different Brazilian states. For this, an initial screening was carried out on 94 clinical isolates of E. clocacae complex received between 2016 and 2018 by LAPIH-FIOCRUZ, using EMB plates containing 4 μg/mL of colistin, followed MIC determination, resulting in the selection of 26 colistin-resistant isolates from the complex. The presence of carbapenemases encoding genes (blaKPC, blaNDM and blaOXA-48), plasmidial genes for resistance to polymyxins (mcr1-9) and mutations in chromosomal genes (pmrA, pmrB, phoP and phoQ) described as associated with resistance to polymyxin were screened by PCR and DNA sequencing. Finally, the hsp60 gene was sequenced to identify species of the E. cloacae complex and genetic diversity was evaluated by PFGE and MLST. The results have shown that among 94 E. cloacae complex isolates, 19 (20.2%) were colistin-resistant. The resistant strains exhibited MIC ranging from 4 to 128 µg / mL and E. hormaechei subsp. steigerwaltii was the prevalent species in the complex (31,6%), followed by E. cloacae subsp. cloacae (26,3%). The antimicrobials with the highest susceptibility rate were gentamicin (21%) and tigecycline (26%). Carbapenemases encoding genes (blaKPC n = 5, blaNDM n = 1) were detected in 6 isolates and mcr-9 in one. Among the modifications found in PmrA, PmrB, PhoP e PhoQ (two-component regulatory system), only the S175I substitution in PmrB found in E. cloacae subsp cloacae isolates were considered deleterious (according to the prediction of PROVEAN). By PFGE, 13 profiles were found among E. cloacae complex isolates, with EcD the most frequent. Furthermore, by MLST 10 ST's, and 1 new ST, were identified in E. cloacae. In conclusion, no prevalence of clones or association among carbapenemase production and polymyxin resistance was found between the E. cloacae. Thereby, the results suggest that the increased polymyxin-resistance is related to the selective pressure exerted by the indiscriminate use in hospitals. Lastly, this study highlights the urgent need to elucidate the mechanism involved in the resistance to polymyxin in the E. cloacae complex and the development of measures to control and prevent infections caused by these multiresistant bacteria.
Collapse
Affiliation(s)
- Bianca Santos da Costa
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Renata Stavracakis Peixoto
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Orlando Carlos da Conceição Neto
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Leilane da Silva Pontes
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Thamirys Rachel Tavares E Oliveira
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Camila Bastos Tavares Teixeira
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Ivson Cassiano de Oliveira Santos
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Melise Chaves Silveira
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Daiana Cristina Silva Rodrigues
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
| | - Bruno Rocha Pribul
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
- Coleção de Culturas de Bactérias de Origem Hospitalar (CCBH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, Rio de Janeiro,RJ, 436521045900, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil
- Coleção de Culturas de Bactérias de Origem Hospitalar (CCBH), Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Av. Brasil, Rio de Janeiro,RJ, 436521045900, Brazil
| | - Ana Paula D 'Alincourt Carvalho-Assef
- Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Laboratório de Bacteriologia Aplicada a Saúde Única E Resistência Antimicrobiana, Av. Brasil, Rio de Janeiro, RJ, 436521045900, Brazil.
| |
Collapse
|
31
|
Abdelmajed MA, El-Din KMB, Attia TZ, Omar MA. Full green assay of parenteral dosage forms of polymyxins utilizing xanthene dye: application to content uniformity testing. BMC Chem 2024; 18:158. [PMID: 39192355 DOI: 10.1186/s13065-024-01261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Due to the lack of other treatment options, a rebirth of polymyxins is urgently required. Colistin (also called polymyxin E) and polymyxin B are the only two examples of this antibiotic class that were effectively employed in such critical situations. In the present work, both of the two studied medications were quantified via a simple, green, and non-extracting spectrophotometric approach based on the formation of ion-pair complexes with Erythrosine B. Without using any organic solvents, the pink color of the created complexes was detected at wavelength = 558 nm. To achieve the highest intensity of absorbance, optimum conditions were established by the screening of many experimental factors such as pH, buffer volume, the volume of Erythrosine B, and the time consumed to undergo the reaction. For Colistin and Polymyxin B respectively, Beer-Lambert's law was observed at the concentration ranges of 1-6, 1-9 µg mL- 1. The technique was approved and validated following ICH recommendations. Lastly, the suggested approach has been successfully implemented to quantify the cited medications colorimetrically, for the first time, in their parenteral dosage forms with excellent recoveries. Also, Content uniformity testing was implemented.
Collapse
Affiliation(s)
- Mahmoud A Abdelmajed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Deraya University, New Minia, Egypt.
| | - Khalid M Badr El-Din
- Department of Analytical Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Tamer Z Attia
- Department of Analytical Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Mahmoud A Omar
- Department of Analytical Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medinah, Saudi Arabia
| |
Collapse
|
32
|
Singh AN, Wu M, Ye TT, Brown AC, Wittenberg NJ. Engineering Planar Gram-Negative Outer Membrane Mimics Using Bacterial Outer Membrane Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.11.570829. [PMID: 39229024 PMCID: PMC11370475 DOI: 10.1101/2023.12.11.570829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Antibiotic resistance is a major challenge in modern medicine. The unique double membrane structure of gram-negative bacteria limits the efficacy of many existing antibiotics and adds complexity to antibiotic development by limiting transport of antibiotics to the bacterial cytosol. New methods to mimic this barrier would enable high-throughput studies for antibiotic development. In this study, we introduce an innovative approach to modify outer membrane vesicles (OMVs) from Aggregatibacter actinomycetemcomitans, to generate planar supported lipid bilayer membranes. Our method first involves the incorporation of synthetic lipids into OMVs using a rapid freeze-thaw technique to form outer membrane hybrid vesicles (OM-Hybrids). Subsequently, these OM-Hybrids can spontaneously rupture when in contact with SiO2 surfaces to form a planar outer membrane supported bilayer (OM-SB). We assessed the formation of OM-Hybrids using dynamic light scattering and a fluorescence quenching assay. To analyze the formation of OM-SBs from OM-Hybrids we used quartz crystal microbalance with dissipation monitoring (QCM-D) and fluorescence recovery after photobleaching (FRAP). Additionally, we conducted assays to detect surface-associated DNA and proteins on OM-SBs. The interaction of an antimicrobial peptide, polymyxin B, with the OM-SBs was also assessed. These findings emphasize the capability of our platform to produce planar surfaces of bacterial outer membranes, which in turn, could function as a valuable tool for streamlining the development of antibiotics.
Collapse
Affiliation(s)
- Aarshi N. Singh
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA
| | - Meishan Wu
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Tiffany T. Ye
- Department of Chemistry, Lehigh University, Bethlehem, PA, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | | |
Collapse
|
33
|
Stepanova M, Levit M, Egorova T, Nashchekina Y, Sall T, Demyanova E, Guryanov I, Korzhikova-Vlakh E. Poly(2-Deoxy-2-Methacrylamido-D-Glucose)-Based Complex Conjugates of Colistin, Deferoxamine and Vitamin B12: Synthesis and Biological Evaluation. Pharmaceutics 2024; 16:1080. [PMID: 39204425 PMCID: PMC11359296 DOI: 10.3390/pharmaceutics16081080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Growing resistance to traditional antibiotics poses a global threat to public health. In this regard, modification of known antibiotics, but with limited applications due to side effects, is one of the extremely promising approaches at present. In this study, we proposed the synthesis of novel complex polymeric conjugates of the peptide antibiotic colistin (CT). A biocompatible and water-soluble synthetic glycopolymer, namely, poly(2-deoxy-2-methacrylamido-D-glucose) (PMAG), was used as a polymer carrier. In addition to monoconjugates containing CT linked to PMAG by hydrolyzable and stable bonds, a set of complex conjugates also containing the siderophore deferoxamine (DFOA) and vitamin B12 was developed. The structures of the conjugates were confirmed by 1H NMR and FTIR-spectroscopy, while the compositions of conjugates were determined by UV-Vis spectrophotometry and HPLC analysis. The buffer media with pH 7.4, corresponding to blood or ileum pH, and 5.2, corresponding to the intestinal pH after ingestion or pH in the focus of inflammation, were used to study the release of CT. The resulting conjugates were examined for cytotoxicity and antimicrobial activity. All conjugates showed less cytotoxicity than free colistin. A Caco-2 cell permeability assay was carried out for complex conjugates to simulate the drug absorption in the intestine. In contrast to free CT, which showed very low permeability through the Caco-2 monolayer, the complex polymeric conjugates of vitamin B12 and CT provided significant transport. The antimicrobial activity of the conjugates depended on the conjugate composition. It was found that conjugates containing CT linked to the polymer by a hydrolyzable bond were found to be more active than conjugates with a non-hydrolyzable bond between CT and PMAG. Conjugates containing DFOA complexed with Fe3+ were characterized by enhanced antimicrobial activity against Pseudomonas aeruginosa compared to other conjugates.
Collapse
Affiliation(s)
- Mariia Stepanova
- Institute of Macromolecular Compounds of Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (M.L.)
| | - Mariia Levit
- Institute of Macromolecular Compounds of Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (M.L.)
| | - Tatiana Egorova
- Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.E.); (E.D.)
| | - Yulia Nashchekina
- Institute of Cytology of Russian Academy of Sciences, 194064 St. Petersburg, Russia;
| | - Tatiana Sall
- Institute of Experimental Medicine, 197022 St. Petersburg, Russia;
| | - Elena Demyanova
- Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.E.); (E.D.)
| | - Ivan Guryanov
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Evgenia Korzhikova-Vlakh
- Institute of Macromolecular Compounds of Russian Academy of Sciences, 199004 St. Petersburg, Russia; (M.S.); (M.L.)
| |
Collapse
|
34
|
Chunduru J, LaRoe N, Garza J, Hamood AN, Paré PW. Nosocomial Bacteria Inhibition with Polymyxin B: In Silico Gene Mining and In Vitro Analysis. Antibiotics (Basel) 2024; 13:745. [PMID: 39200045 PMCID: PMC11350920 DOI: 10.3390/antibiotics13080745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Multidrug-resistant bacteria present a significant public health challenge; such pathogens exhibit reduced susceptibility to conventional antibiotics, limiting current treatment options. Cationic non-ribosomal peptides (CNRPs) such as brevicidine and polymyxins have emerged as promising candidates to block Gram-negative bacteria. To investigate the capability of bacteria to biosynthesize CNRPs, and specifically polymyxins, over 11,000 bacterial genomes were mined in silico. Paenibacillus polymyxa was identified as having a robust biosynthetic capacity, based on multiple polymyxin gene clusters. P. polymyxa biosynthetic competence was confirmed by metabolite characterization via HPLC purification and MALDI TOF/TOF analysis. When grown in a selected medium, the metabolite yield was 4 mg/L with a 20-fold specific activity increase. Polymyxin B (PMB) was assayed with select nosocomial pathogens, including Pseudomonas aeruginosa, Klebsiella pneumonia, and Acinetobacter baumaii, which exhibited minimum inhibitory concentrations of 4, 1, and 1 µg/mL, respectively.
Collapse
Affiliation(s)
- Jayendra Chunduru
- Chemistry & Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA
| | - Nicholas LaRoe
- Chemistry & Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA
| | - Jeremy Garza
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA (A.N.H.)
| | - Abdul N. Hamood
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA (A.N.H.)
| | - Paul W. Paré
- Chemistry & Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
35
|
Dwibedy SK, Padhy I, Panda AK, Mohapatra SS. Prevalence of polymyxin-resistant bacterial strains in India: a systematic review and meta-analysis. J Antimicrob Chemother 2024; 79:1762-1774. [PMID: 38717452 DOI: 10.1093/jac/dkae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/15/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Polymyxins, the cationic lipopeptide antibiotics, are the last line of therapeutics against the MDR Gram-negative bacterial (GNB) pathogens. Unfortunately, the rising cases of polymyxin-resistant strains from across the globe have adversely impacted their utility. While the molecular mechanisms responsible for developing polymyxin resistance (PolR) are largely understood, the prevalence of PolR strains in India has not been investigated systematically. The current study was undertaken to primarily determine the prevalence of PolR strains in India. Moreover, the extent of the spread of mobile colistin resistance (mcr) genes among the GNB strains in India was also determined. METHOD A systematic search for articles using the relevant inclusion and exclusion criteria was performed in the applicable databases for the period January 2015 to December 2023. The included 41 studies were subjected to a meta-analysis using the Comprehensive Meta-Analysis software (V4.0). Publication biases were assessed using funnel plots and Egger's regression analysis. RESULT Considering a total of 41 studies including 24 589 bacterial isolates the present meta-analysis found the rate of PolR bacteria in India to be at 15.0% (95% CI: 11.2 to 19.8). Among the Indian States, Tamil Nadu topped with the highest prevalence of PolR at 28.3%. Investigating the contribution of the mcr genes, it was observed that among the PolR strains, 8.4% (95% CI: 4.8 to 14.3) were mcr positive. CONCLUSION The study determined the prevalence of PolR strains in India at 15.0%, which is higher than that of the global average at 10%. The study also determined that 8.4% of the PolR strains carried the mcr genes. The mcr-positive strains reported from India could be an underestimation of the actual numbers due to the non-inclusion of mcr screening in many previous studies. This study provides insight into the state of the PolR situation in India, which may be useful to develop a monitoring strategy to contain the spread of such strains and preserve the efficacy of the polymyxins.
Collapse
Affiliation(s)
- Sambit K Dwibedy
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
- Department of Zoology, SBRG Women's College, Berhampur 760001, Odisha, India
| | - Indira Padhy
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Aditya K Panda
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
- Centre of Excellence on Bioprospecting of Ethno-pharmaceuticals of Southern Odisha (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Saswat S Mohapatra
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
- Centre of Excellence on Bioprospecting of Ethno-pharmaceuticals of Southern Odisha (CoE-BESO), Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| |
Collapse
|
36
|
Cerqueira Melo RDC, Martins AA, Melo ALF, Vicente JCP, Sturaro MC, Arantes JP, Rossato L, de Souza GHDA, Simionatto S. Investigating the Antimicrobial Potential of 560 Compounds from the Pandemic Response Box and COVID Box against Resistant Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:723. [PMID: 39200023 PMCID: PMC11350835 DOI: 10.3390/antibiotics13080723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a significant threat to public health, particularly in infections caused by critically important Gram-negative bacteria. The development of novel antibiotics has its limitations, and therefore it is crucial to explore alternative strategies to effectively combat infections with resistant pathogens. In this context, the present study investigated the antibacterial potency of 560 compounds against the multidrug-resistant (MDR) strains of Klebsiella pneumoniae and Serratia marcescens. The evaluated compounds were selected from the Pandemic Response Box (PRB) and COVID Box (CB) and subjected to assays to determine the inhibitory concentration (IC), minimum bactericidal concentration (MBC), and biofilm formation. Further, the effects of these compounds on membrane integrity were assessed through protein quantification. Several of the evaluated compounds, including fusidic acid, MMV1580853, and MMV1634399, exhibited a significant reduction in biofilm formation and growth in K. pneumoniae. Trimethoprim exhibited potential against S. marcescens. The IC values of the compounds indicated significant microbial growth inhibition at various concentrations. These findings underscore the potency of the existing antibiotics and novel compounds in combating the MDR strains of bacteria. The importance of reconsidering the known antibiotics and utilizing drug repositioning strategies to address the increasing risk of AMR is highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Simone Simionatto
- Health Sciences Research Laboratory, Federal University of Grande Dourados (UFGD), Dourados 79804970, Mato Grosso do Sul, Brazil; (R.d.C.C.M.)
| |
Collapse
|
37
|
Pimentel Arantes J, Dillis Faccin I, Coutinho EJ, Lima Cardoso CA, Lopes Fernandes SS, Rossato L, Simionatto E, Simionatto S. An approach to combat multidrug-resistant K. pneumoniae strain using synergistic effects of Ocotea diospyrifolia essential oil in combination with amikacin. Microb Pathog 2024; 193:106782. [PMID: 38969186 DOI: 10.1016/j.micpath.2024.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/18/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The natural antimicrobial properties of essential oils (EOs) have contributed to the battle against multidrug-resistant microorganisms by providing new ways to develop more effective antibiotic agents. In this study, we investigated the chemical composition of Ocotea diospyrifolia essential oil (OdOE) and its antimicrobial properties combined with amikacin (AMK). Through gas chromatography-mass spectrometry (GCMS) analysis, the primary constituents of OdOE were identified as α-bisabolol (45.8 %), β-bisabolene (9.4 %), γ-elemene (7.6 %), (Z)- β-farnesene (5.2 %), spathulenol (3.5 %), (Z)-caryophyllene (3.3 %), and (E)-caryophyllene (3.1 %). In vitro assessments showed that the combined administration of OdOE and AMK exerted a synergistic antibacterial effect on the multidrug-resistant K. pneumoniae strain. This synergistic effect demonstrated bacteriostatic action. OdEO combined with amikacin showed protein extravasation within 2 h of treatment, leading to bacterial death, which was determined by a reduction in viable cell count. The effective concentrations showed hemocompatibility. In vivo assessments using Caenorhabditis elegans as a model showed the survival of 85 % of infected nematodes. Therefore, the combination OdEO combined with amikacin exhibited antimicrobial activity against a multidrug-resistant K. pneumoniae strain. Thus, OdOE is a promising agent that may be considered for development of antimicrobial treatment.
Collapse
Affiliation(s)
- Julia Pimentel Arantes
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Izadora Dillis Faccin
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Eduardo João Coutinho
- Universidade Estadual de Mato Grosso do Sul - UEMS, Naviraí, Mato Grosso do Sul, Brazil
| | | | | | - Luana Rossato
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil
| | - Euclésio Simionatto
- Universidade Estadual de Mato Grosso do Sul - UEMS, Naviraí, Mato Grosso do Sul, Brazil
| | - Simone Simionatto
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil.
| |
Collapse
|
38
|
Rudzite M, O’Toole GA. An energy coupling factor transporter of Streptococcus sanguinis impacts antibiotic susceptibility as well as metal and membrane homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603315. [PMID: 39026867 PMCID: PMC11257530 DOI: 10.1101/2024.07.12.603315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Streptococcus sanguinis is a prevalent member of human microbiome capable of acting as a causative agent of oral and respiratory infections. S. sanguinis competitive success within the infection niche is dependent on acquisition of metal ions and vitamins. Among the systems that bacteria use for micronutrient uptake is the energy coupling factor (ECF) transporter system EcfAAT. Here we describe physiological changes arising from EcfAAT transporter disruption. We found that EcfAAT contributes to S. sanguinis antibiotic sensitivity as well as metal and membrane homeostasis. Specifically, our work found that disruption of EcfAAT results in increased polymyxin susceptibility. We performed assessment of cell-associated metal content and found depletion of iron, magnesium, and manganese. Furthermore, membrane composition analysis revealed significant enrichment in unsaturated fatty acid species resulting in increased membrane fluidity. Our results demonstrate how disruption of a single EcfAAT transporter can have broad consequences on bacterial cell homeostasis. ECF transporters are of interest within the context of infection biology in bacterial species other than streptococci, hence work described here will further the understanding of how micronutrient uptake systems contribute to bacterial pathogenesis.
Collapse
Affiliation(s)
- Marta Rudzite
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
39
|
Barla I, Dagla IV, Daskalopoulou A, Panagiotopoulou M, Kritikaki M, Dalezis P, Thomaidis N, Tsarbopoulos A, Trafalis D, Gikas E. Metabolomics highlights biochemical perturbations occurring in the kidney and liver of mice administered a human dose of colistin. Front Mol Biosci 2024; 11:1338497. [PMID: 39050734 PMCID: PMC11266156 DOI: 10.3389/fmolb.2024.1338497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/23/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Colistin (CMS) is used for the curation of infections caused by multidrug-resistant bacteria. CMS is constrained by toxicity, particularly in kidney and neuronal cells. The recommended human doses are 2.5-5 mg/kg/day, and the toxicity is linked to higher doses. So far, the in vivo toxicity studies have used doses even 10-fold higher than human doses. It is essential to investigate the impact of metabolic response of doses, that are comparable to human doses, to identify biomarkers of latent toxicity. The innovation of the current study is the in vivo stimulation of CMS's impact using a range of CMS doses that have never been investigated before, i.e., 1 and 1.5 mg/kg. The 1 and 1.5 mg/kg, administered in mice, correspond to the therapeutic and toxic human doses, based on previous expertise of our team, regarding the human exposure. The study mainly focused on the biochemical impact of CMS on the metabolome, and on the alterations provoked by 50%-fold of dose increase. The main objectives were i) the comprehension of the biochemical changes resulting after CMS administration and ii) from its dose increase; and iii) the determination of dose-related metabolites that could be considered as toxicity monitoring biomarkers. Methods: The in vivo experiment employed two doses of CMS versus a control group treated with normal saline, and samples of plasma, kidney, and liver were analysed with a UPLC-MS-based metabolomics protocol. Both univariate and multivariate statistical approaches (PCA, OPLS-DA, PLS regression, ROC) and pathway analysis were combined for the data interpretation. Results: The results pointed out six dose-responding metabolites (PAA, DA4S, 2,8-DHA, etc.), dysregulation of renal dopamine, and extended perturbations in renal purine metabolism. Also, the study determined altered levels of liver suberylglycine, a metabolite linked to hepatic steatosis. One of the most intriguing findings was the detection of elevated levels of renal xanthine and uric acid, that act as AChE activators, leading to the rapid degradation of acetylcholine. This evidence provides a naïve hypothesis, for the potential association between the CMS induced nephrotoxicity and CMS induced 39 neurotoxicity, that should be further investigated.
Collapse
Affiliation(s)
- I. Barla
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - I. V. Dagla
- GAIA Research Center, The Goulandris Natural History Museum, Kifissia, Greece
| | - A. Daskalopoulou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, School of Health Science, National and Kapodistrian University of Athens, Athens, Greece
| | - M. Panagiotopoulou
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, School of Health Science, National and Kapodistrian University of Athens, Athens, Greece
| | - M. Kritikaki
- Laboratory of Pharmaceutical Analysis, Department of Pharmacy, School of Health Science, National and Kapodistrian University of Athens, Athens, Greece
| | - P. Dalezis
- Laboratory of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - N. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A. Tsarbopoulos
- Laboratory of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - D. Trafalis
- Laboratory of Pharmacology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - E. Gikas
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
40
|
Wang Y, Feng J, Yu J, Wen L, Chen L, An H, Xiao W, Zhang B, Feng H, Zhou M, Jiang Z. Potent synergy and sustained bactericidal activity of polymyxins combined with Gram-positive only class of antibiotics versus four Gram-negative bacteria. Ann Clin Microbiol Antimicrob 2024; 23:60. [PMID: 38965559 PMCID: PMC11225234 DOI: 10.1186/s12941-024-00720-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Gram-negative bacteria (GNB) are becoming increasingly resistant to a wide variety of antibiotics. There are currently limited treatments for GNB, and the combination of antibiotics with complementary mechanisms has been reported to be a feasible strategy for treating GNB infection. The inability to cross the GNB outer membrane (OM) is an important reason that a broad spectrum of Gram-positive only class of antibiotics (GPOAs) is lacking. Polymyxins may help GPOAs to permeate by disrupting OM of GNB. OBJECTIVE To identify what kind of GPOAs can be aided to broaden their anti-GNB spectrum by polymyxins, we systematically investigated the synergy of eight GPOAs in combination with colistin (COL) and polymyxin B (PMB) against GNB in vitro. METHODS The synergistic effect of COL or PMB and GPOAs combinations against GNB reference strains and clinical isolates were determined by checkerboard tests. The killing kinetics of the combinations were assessed using time-kill assays. RESULTS In the checkerboard tests, polymyxins-GPOAs combinations exert synergistic effects characterized by species and strain specificity. The synergistic interactions on P. aeruginosa strains are significantly lower than those on strains of A. baumannii, K. pneumoniae and E. coli. Among all the combinations, COL has shown the best synergistic effect in combination with dalbavancin (DAL) or oritavancin (ORI) versus almost all of the strains tested, with FICIs from 0.16 to 0.50 and 0.13 to < 0.28, respectively. In addition, the time-kill assays demonstrated that COL/DAL and COL/ORI had sustained bactericidal activity. CONCLUSIONS Our results indicated that polymyxins could help GPOAs to permeate the OM of specific GNB, thus showed synergistic effects and bactericidal effects in the in vitro assays. In vivo combination studies should be further conducted to validate the results of this study.
Collapse
Affiliation(s)
- Yan Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, General Hospital of Southern Theatre Command, Guangzhou, 510010, China
| | - Jianwen Feng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Pharmacy, General Hospital of Southern Theatre Command, Guangzhou, 510010, China
| | - Jiameng Yu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lirong Wen
- School of Pharmaceutical Sciences, Dali University, Dali, 671003, China
| | - Lidan Chen
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command, Guangzhou, 510010, China
| | - Huijie An
- Department of Pharmacy, General Hospital of Southern Theatre Command, Guangzhou, 510010, China
| | - Weibin Xiao
- Department of Clinical Pharmacy, General Hospital of Southern Theatre Command, Guangzhou, 510010, China
| | - Bing Zhang
- Department of Healthcare, General Hospital of Southern Theatre Command, Guangzhou, 510010, China
| | - Huanhuan Feng
- Department of Healthcare, General Hospital of Southern Theatre Command, Guangzhou, 510010, China
| | - Mou Zhou
- Department of Blood Transfusion Medicine, General Hospital of Southern Theatre Command, Guangzhou, 510010, China
| | - Zhihui Jiang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Department of Pharmacy, General Hospital of Southern Theatre Command, Guangzhou, 510010, China.
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
41
|
de Souza CM, Silvério de Oliveira W, Fleitas Martínez O, Dos Santos Neto NA, Buccini DF, Nieto Marín V, de Faria Júnior C, Rocha Maximiano M, Soller Ramada MH, Franco OL. Evaluating virulence features of Acinetobacter baumannii resistant to polymyxin B. Lett Appl Microbiol 2024; 77:ovae061. [PMID: 38942450 DOI: 10.1093/lambio/ovae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024]
Abstract
The increasing resistance to polymyxins in Acinetobacter baumannii has made it even more urgent to develop new treatments. Anti-virulence compounds have been researched as a new solution. Here, we evaluated the modification of virulence features of A. baumannii after acquiring resistance to polymyxin B. The results showed lineages attaining unstable resistance to polymyxin B, except for Ab7 (A. baumannii polymyxin B resistant lineage), which showed stable resistance without an associated fitness cost. Analysis of virulence by a murine sepsis model indicated diminished virulence in Ab7 (A. baumannii polymyxin B resistant lineage) compared with Ab0 (A. baumannii polymyxin B susceptible lineage). Similarly, downregulation of virulence genes was observed by qPCR at 1 and 3 h of growth. However, an increase in bauE, abaI, and pgAB expression was observed after 6 h of growth. Comparison analysis of Ab0, Ab7, and Pseudomonas aeruginosa suggested no biofilm formation by Ab7. In general, although a decrease in virulence was observed in Ab7 when compared with Ab0, some virulence feature that enables infection could be maintained. In light of this, virulence genes bauE, abaI, and pgAB showed a potential relevance in the maintenance of virulence in polymyxin B-resistant strains, making them promising anti-virulence targets.
Collapse
Affiliation(s)
- Camila Maurmann de Souza
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| | - Warley Silvério de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | - Osmel Fleitas Martínez
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | | | - Danieli Fernanda Buccini
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| | - Valentina Nieto Marín
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| | - Célio de Faria Júnior
- Microbiology Department, Laboratório Central de Saúde Pública LACEN, Brasília 70830-010, Brazil
| | - Mariana Rocha Maximiano
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| | - Marcelo Henrique Soller Ramada
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília 70790-160, Brazil
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande CEP 79.117-900, Brazil
| |
Collapse
|
42
|
Bhushan G, Castano V, Wong Fok Lung T, Chandler C, McConville TH, Ernst RK, Prince AS, Ahn D. Lipid A modification of colistin-resistant Klebsiella pneumoniae does not alter innate immune response in a mouse model of pneumonia. Infect Immun 2024; 92:e0001624. [PMID: 38771050 PMCID: PMC11237409 DOI: 10.1128/iai.00016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Polymyxin resistance in carbapenem-resistant Klebsiella pneumoniae bacteria is associated with high morbidity and mortality in vulnerable populations throughout the world. Ineffective antimicrobial activity by these last resort therapeutics can occur by transfer of mcr-1, a plasmid-mediated resistance gene, causing modification of the lipid A portion of lipopolysaccharide (LPS) and disruption of the interactions between polymyxins and lipid A. Whether this modification alters the innate host immune response or carries a high fitness cost in the bacteria is not well established. To investigate this, we studied infection with K. pneumoniae (KP) ATCC 13883 harboring either the mcr-1 plasmid (pmcr-1) or the vector control (pBCSK) ATCC 13883. Bacterial fitness characteristics of mcr-1 acquisition were evaluated. Differentiated human monocytes (THP-1s) were stimulated with KP bacterial strains or purified LPS from both parent isolates and isolates harboring mcr-1. Cell culture supernatants were analyzed for cytokine production. A bacterial pneumonia model in WT C57/BL6J mice was used to monitor immune cell recruitment, cytokine induction, and bacterial clearance in the bronchoalveolar lavage fluid (BALF). Isolates harboring mcr-1 had increased colistin MIC compared to the parent isolates but did not alter bacterial fitness. Few differences in cytokines were observed with purified LPS from mcr-1 expressing bacteria in vitro. However, in a mouse pneumonia model, no bacterial clearance defect was observed between pmcr-1-harboring KP and parent isolates. Consistently, no differences in cytokine production or immune cell recruitment in the BALF were observed, suggesting that other mechanisms outweigh the effect of these lipid A mutations in LPS.
Collapse
Affiliation(s)
- Gitanjali Bhushan
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Victor Castano
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Tania Wong Fok Lung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Courtney Chandler
- Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, Baltimore, Maryland, USA
| | - Thomas H McConville
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland, School of Dentistry, Baltimore, Maryland, USA
| | - Alice S Prince
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Danielle Ahn
- Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
43
|
Mithun FH, Bhuiyan MEJ, Hossain MG, Debnath C, Nazir KHMNH, Akter S. Protective potentials of polymyxin B and honey against bacterial lipopolysaccharide-induced endotoxemia in mice. J Adv Vet Anim Res 2024; 11:503-515. [PMID: 39101083 PMCID: PMC11296191 DOI: 10.5455/javar.2024.k800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 08/06/2024] Open
Abstract
Objective The experiment aimed to determine the effects of lipopolysaccharide (LPS), polymyxin B, and honey on survival rates, hematological parameters, liver and kidney biomarkers, blood glucose levels, serum insulin levels, and histopathology of the liver, kidney, lungs, brain, and pancreas in LPS-challenged mice. Materials and Methods 50 male Swiss Albino mice (Mus musculus), aged 3 weeks, were randomly assigned into 5 groups (10 mice per group): Control group (A), LPS (2 mg/kg bwt/day IP in NS) treated group (B), polymyxin B (1.2 mg/kg bwt/day IM) pre-treated plus LPS (2 mg/kg bwt/day IP in NS) treated group (C), honey (10 gm/kg bwt/day PO) pre-treated plus LPS (2 mg/kg bwt/day IP in NS) treated group (D), both polymyxin B (1.2 mg/kg bwt/day IM) and honey (10 gm/kg bwt/day PO) pre-treated plus LPS (2 mg/kg bwt/day IP in NS) treated group (E). The LPS was administered intraperitoneally (IP) at 80 µg/mice/day, diluting in normal saline. After 16 weeks, the mice were sacrificed, and blood samples and organs (liver, kidney, lung, brain, and pancreas) were collected for laboratory tests. Results The results revealed that in LPS-treated mice, the mortality rate was the highest, and hemato-biochemical parameters were altered. Histopathological examination in the group treated with LPS showed disarrangement of hepatocytes, cellular infiltrations in the glomerulus, alveolar congestion in the lungs, several nerve fiber degenerations in the brain, and degenerative changes in pancreatic islets. The mortality rate and hemato-biochemical and histopathological changes were restored by the combined treatment of polymyxin B and honey. Conclusion LPS has detrimental effects on survival rate and hemato-biochemistry, which are lessened by taking honey and polymyxin B supplements.
Collapse
Affiliation(s)
- Ferdous Hasan Mithun
- Department of Physiology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | - Md. Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Chirojit Debnath
- Department of Hepatology, Mymensingh Medical College, Mymensingh, Bangladesh
| | | | - Sharmin Akter
- Department of Physiology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
44
|
Ammazzalorso A, Granese A, De Filippis B. Recent trends and challenges to overcome Pseudomonas aeruginosa infections. Expert Opin Ther Pat 2024; 34:493-509. [PMID: 38683024 DOI: 10.1080/13543776.2024.2348602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION Pseudomonas aeruginosa (PA) is a Gram-negative bacterium that can cause a wide range of severe infections in immunocompromised patients. The most difficult challenge is due to its ability to rapidly develop multi drug-resistance. New strategies are urgently required to improve the outcome of patients with PA infections. The present patent review highlights the new molecules acting on different targets involved in the antibiotic resistance. AREA COVERED This review offers an insight into new potential PA treatment disclosed in patent literature. From a broad search of documents claiming new PA inhibitors, we selected and summarized molecules that showed in vitro and in vivo activity against PA spp. in the period 2020 and 2023. We collected the search results basing on the targets explored. EXPERT OPINION This review examined the main patented compounds published in the last three years, with regard to the structural novelty and the identification of innovative targets. The main areas of antibiotic resistance have been explored. The compounds are structurally unrelated to earlier antibiotics, characterized by a medium-high molecular weight and the presence of heterocycle rings. Peptides and antibodies have also been reported as potential alternatives to chemical treatment, hereby expanding the therapeutic possibilities in this field.
Collapse
Affiliation(s)
| | - Arianna Granese
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, Rome, Italy
| | | |
Collapse
|
45
|
Padhy I, Dwibedy SK, Mohapatra SS. A molecular overview of the polymyxin-LPS interaction in the context of its mode of action and resistance development. Microbiol Res 2024; 283:127679. [PMID: 38508087 DOI: 10.1016/j.micres.2024.127679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
With the rising incidences of antimicrobial resistance (AMR) and the diminishing options of novel antimicrobial agents, it is paramount to decipher the molecular mechanisms of action and the emergence of resistance to the existing drugs. Polymyxin, a cationic antimicrobial lipopeptide, is used to treat infections by Gram-negative bacterial pathogens as a last option. Though polymyxins were identified almost seventy years back, their use has been restricted owing to toxicity issues in humans. However, their clinical use has been increasing in recent times resulting in the rise of polymyxin resistance. Moreover, the detection of "mobile colistin resistance (mcr)" genes in the environment and their spread across the globe have complicated the scenario. The mechanism of polymyxin action and the development of resistance is not thoroughly understood. Specifically, the polymyxin-bacterial lipopolysaccharide (LPS) interaction is a challenging area of investigation. The use of advanced biophysical techniques and improvement in molecular dynamics simulation approaches have furthered our understanding of this interaction, which will help develop polymyxin analogs with better bactericidal effects and lesser toxicity in the future. In this review, we have delved deeper into the mechanisms of polymyxin-LPS interactions, highlighting several models proposed, and the mechanisms of polymyxin resistance development in some of the most critical Gram-negative pathogens.
Collapse
Affiliation(s)
- Indira Padhy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India.
| |
Collapse
|
46
|
Ralhan K, Iyer KA, Diaz LL, Bird R, Maind A, Zhou QA. Navigating Antibacterial Frontiers: A Panoramic Exploration of Antibacterial Landscapes, Resistance Mechanisms, and Emerging Therapeutic Strategies. ACS Infect Dis 2024; 10:1483-1519. [PMID: 38691668 PMCID: PMC11091902 DOI: 10.1021/acsinfecdis.4c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
The development of effective antibacterial solutions has become paramount in maintaining global health in this era of increasing bacterial threats and rampant antibiotic resistance. Traditional antibiotics have played a significant role in combating bacterial infections throughout history. However, the emergence of novel resistant strains necessitates constant innovation in antibacterial research. We have analyzed the data on antibacterials from the CAS Content Collection, the largest human-curated collection of published scientific knowledge, which has proven valuable for quantitative analysis of global scientific knowledge. Our analysis focuses on mining the CAS Content Collection data for recent publications (since 2012). This article aims to explore the intricate landscape of antibacterial research while reviewing the advancement from traditional antibiotics to novel and emerging antibacterial strategies. By delving into the resistance mechanisms, this paper highlights the need to find alternate strategies to address the growing concern.
Collapse
Affiliation(s)
| | | | - Leilani Lotti Diaz
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Robert Bird
- CAS,
A Division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Ankush Maind
- ACS
International India Pvt. Ltd., Pune 411044, India
| | | |
Collapse
|
47
|
Li S, Wang Z, Song S, Tang Y, Zhou J, Liu X, Zhang X, Chang M, Wang K, Peng Y. Membrane-Active All-Hydrocarbon-Stapled α-Helical Amphiphilic Tat Peptides: Broad-Spectrum Antibacterial Activity and Low Incidence of Drug Resistance. ACS Infect Dis 2024; 10:1839-1855. [PMID: 38725407 DOI: 10.1021/acsinfecdis.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Multidrug resistance against conventional antibiotics has dramatically increased the difficulty of treatment and accelerated the need for novel antibacterial agents. The peptide Tat (47-57) is derived from the transactivating transcriptional activator of human immunodeficiency virus 1, which is well-known as a cell-penetrating peptide in mammalian cells. However, it is also reported that the Tat peptide (47-57) has antifungal activity. In this study, a series of membrane-active hydrocarbon-stapled α-helical amphiphilic peptides were synthesized and evaluated as antibacterial agents against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. The impact of hydrocarbon staple, the position of aromatic amino acid residue in the hydrophobic face, the various types of aromatic amino acids, and the hydrophobicity on bioactivity were also investigated and discussed in this study. Among those synthesized peptides, analogues P3 and P10 bearing a l-2-naphthylalanine (Φ) residue at the first position and a Tyr residue at the eighth position demonstrated the highest antimicrobial activity and negligible hemolytic toxicity. Notably, P3 and P10 showed obviously enhanced antimicrobial activity against multidrug-resistant bacteria, low drug resistance, high cell selectivity, extended half-life in plasma, and excellent performance against biofilm. The antibacterial mechanisms of P3 and P10 were also preliminarily investigated in this effort. In conclusion, P3 and P10 are promising antimicrobial alternatives for the treatment of the antimicrobial-resistance crisis.
Collapse
Affiliation(s)
- Shu Li
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, P. R. China
| | - Zhaopeng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shibo Song
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuanyuan Tang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaojing Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xingjiao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yali Peng
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
48
|
Papazachariou A, Tziolos RN, Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Treatment Strategies of Colistin Resistance Acinetobacter baumannii Infections. Antibiotics (Basel) 2024; 13:423. [PMID: 38786151 PMCID: PMC11117269 DOI: 10.3390/antibiotics13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Acinetobacter baumannii has emerged as a pressing challenge in clinical practice, mainly due to the development of resistance to multiple antibiotics, including colistin, one of the last-resort treatments. This review highlights all the possible mechanisms of colistin resistance and the genetic basis contributing to this resistance, such as modifications to lipopolysaccharide or lipid A structures, alterations in outer membrane permeability via porins and heteroresistance. In light of this escalating threat, the review also evaluates available treatment options. The development of new antibiotics (cefiderocol, sulbactam/durlobactam) although not available everywhere, and the use of various combinations and synergistic drug combinations (including two or more of the following: a polymyxin, ampicillin/sulbactam, carbapenems, fosfomycin, tigecycline/minocycline, a rifamycin, and aminoglycosides) are discussed in the context of overcoming colistin resistance of A. baumannii infections. Although most studied combinations are polymyxin-based combinations, non-polymyxin-based combinations have been emerging as promising options. However, clinical data remain limited and continued investigation is essential to determine optimal therapeutic strategies against colistin-resistant A. baumannii.
Collapse
Affiliation(s)
- Andria Papazachariou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Renatos-Nikolaos Tziolos
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Stamatis Karakonstantis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| | - George Samonis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
- Metropolitan Hospital, Neon Faliron, 18547 Athens, Greece
| | - Diamantis P. Kofteridis
- Department of Internal Medicine & Infectious Diseases, University General Hospital of Heraklion, 71500 Heraklion, Greece; (A.P.); (R.-N.T.); (S.K.)
| |
Collapse
|
49
|
Gontijo M, Pereira Teles M, Martins Correia H, Pérez Jorge G, Rodrigues Santos Goes IC, Fasabi Flores AJ, Braz M, de Moraes Ceseti L, Zonzini Ramos P, Rosa e Silva I, Pereira Vidigal PM, Kobarg J, Miguez Couñago R, Alvarez-Martinez CE, Pereira C, Freire CSR, Almeida A, Brocchi M. Combined effect of SAR-endolysin LysKpV475 with polymyxin B and Salmonella bacteriophage phSE-5. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001462. [PMID: 38739436 PMCID: PMC11170124 DOI: 10.1099/mic.0.001462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 μg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 μg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 μg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 μg ml-1) and P. aeruginosa P2307 (65.00 μg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.
Collapse
Affiliation(s)
- Marco Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Mateus Pereira Teles
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Hugo Martins Correia
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Genesy Pérez Jorge
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
- Research Group Statistics and Mathematical Modeling Applied to Educational Quality (GEMMA), University of Sucre, Sincelejo, Sucre, Colombia
| | - Isabella Carolina Rodrigues Santos Goes
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Anthony Jhoao Fasabi Flores
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Márcia Braz
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Lucas de Moraes Ceseti
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Priscila Zonzini Ramos
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Ivan Rosa e Silva
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Viçosa, MG 36570-900, Brazil
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Rafael Miguez Couñago
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Cristina Elisa Alvarez-Martinez
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Carla Pereira
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Carmen S. R. Freire
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| |
Collapse
|
50
|
Pauzé-Foixet J, Mathieu-Denoncourt A, Duperthuy M. Elevated concentrations of polymyxin B elicit a biofilm-specific resistance mechanism in Vibrio cholerae. Res Microbiol 2024; 175:104179. [PMID: 38185395 DOI: 10.1016/j.resmic.2023.104179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Vibrio cholerae can form biofilms in the aquatic environment and in the human intestine, facilitating the release of hyper-infectious aggregates. Due to the increasing antibiotic resistance, alternatives need to be found. One of these alternatives is antimicrobial peptides, including polymyxin B (PmB). In this study, we first investigated the resistance of V. cholerae O1 El Tor strain A1552 to various antimicrobials under aerobic and anaerobic conditions. An increased resistance to PmB is observed in anaerobiosis, with a 3-fold increase in the dose required for 50 % growth inhibition. We then studied the impact of the PmB on the formation and the degradation of V. cholerae biofilms to PmB. Our results show that PmB affects more efficiently biofilm formation under anaerobic conditions. On the other hand, preformed biofilms are susceptible to degradation by PmB at concentrations close to the minimal inhibitory concentration. At higher concentrations, we observe an opacification of the biofilm structures within 20 min post-treatment, suggesting a densification of the structure. This densification does not seem to result from the overexpression of matrix genes but rather from DNA release through massive cell lysis, likely forming a protective shield that limits the penetration of the PmB into the biofilm.
Collapse
Affiliation(s)
- Julien Pauzé-Foixet
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Annabelle Mathieu-Denoncourt
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marylise Duperthuy
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|