1
|
Maxwell JR, Noor S, Pavlik N, Rodriguez DE, Enriquez Marquez L, DiDomenico J, Blossom SJ, Bakhireva LN. Moderate Prenatal Alcohol Exposure Increases Toll-like Receptor Activity in Umbilical Cord Blood at Birth: A Pilot Study. Int J Mol Sci 2024; 25:7019. [PMID: 39000127 PMCID: PMC11241342 DOI: 10.3390/ijms25137019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
The prevalence of prenatal alcohol exposure (PAE) is increasing, with evidence suggesting that PAE is linked to an increased risk of infections. PAE is hypothesized to affect the innate immune system, which identifies pathogens through pattern recognition receptors, of which toll-like receptors (TLRs) are key components. We hypothesized that light-to-moderate PAE would impair immune responses, as measured by a heightened response in cytokine levels following TLR stimulation. Umbilical cord samples (10 controls and 8 PAE) from a subset of the Ethanol, Neurodevelopment, Infant and Child Health Study-2 cohort were included. Peripheral blood mononuclear cells (PMBCs) were stimulated with one agonist (TLR2, TLR3, TLR4, or TLR9). TLR2 agonist stimulation significantly increased pro-inflammatory interleukin-1-beta in the PAE group after 24 h. Pro- and anti-inflammatory cytokines were increased following stimulation with the TLR2 agonists. Stimulation with TLR3 or TLR9 agonists displayed minimal impact overall, but there were significant increases in the percent change of the control compared to PAE after 24 h. The results of this pilot investigation support further work into the impact on TLR2 and TLR4 response following PAE to delineate if alterations in levels of pro- and anti-inflammatory cytokines have clinical significance that could be used in patient management and/or attention to follow-up.
Collapse
Affiliation(s)
- Jessie R. Maxwell
- Department of Pediatrics, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Shahani Noor
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Nathaniel Pavlik
- Department of Pediatrics, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | - Jared DiDomenico
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Sarah J. Blossom
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ludmila N. Bakhireva
- Substance Use Research and Education (SURE) Center, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
2
|
Redwan EM, Aljadawi AA, Uversky VN. Hepatitis C Virus Infection and Intrinsic Disorder in the Signaling Pathways Induced by Toll-Like Receptors. BIOLOGY 2022; 11:1091. [PMID: 36101469 PMCID: PMC9312352 DOI: 10.3390/biology11071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
In this study, we examined the interplay between protein intrinsic disorder, hepatitis C virus (HCV) infection, and signaling pathways induced by Toll-like receptors (TLRs). To this end, 10 HCV proteins, 10 human TLRs, and 41 proteins from the TLR-induced downstream pathways were considered from the prevalence of intrinsic disorder. Mapping of the intrinsic disorder to the HCV-TLR interactome and to the TLR-based pathways of human innate immune response to the HCV infection demonstrates that substantial levels of intrinsic disorder are characteristic for proteins involved in the regulation and execution of these innate immunity pathways and in HCV-TLR interaction. Disordered regions, being commonly enriched in sites of various posttranslational modifications, may play important functional roles by promoting protein-protein interactions and support the binding of the analyzed proteins to other partners such as nucleic acids. It seems that this system represents an important illustration of the role of intrinsic disorder in virus-host warfare.
Collapse
Affiliation(s)
- Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.R.); (A.A.A.)
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Abdullah A. Aljadawi
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.R.); (A.A.A.)
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.R.); (A.A.A.)
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Toll-like Receptor Response to Hepatitis C Virus Infection: A Recent Overview. Int J Mol Sci 2022; 23:ijms23105475. [PMID: 35628287 PMCID: PMC9141274 DOI: 10.3390/ijms23105475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) infection remains a major global health burden, causing chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that detect pathogen-associated molecular patterns and activate downstream signaling to induce proinflammatory cytokine and chemokine production. An increasing number of studies have suggested the importance of TLR responses in the outcome of HCV infection. However, the exact role of innate immune responses, including TLR response, in controlling chronic HCV infection remains to be established. A proper understanding of the TLR response in HCV infection is essential for devising new therapeutic approaches against HCV infection. In this review, we discuss the progress made in our understanding of the host innate immune response to HCV infection, with a particular focus on the TLR response. In addition, we discuss the mechanisms adopted by HCV to avoid immune surveillance mediated by TLRs.
Collapse
|
4
|
Gao Y, Nepal N, Jin SZ. Toll-like receptors and hepatitis C virus infection. Hepatobiliary Pancreat Dis Int 2021; 20:521-529. [PMID: 34419367 DOI: 10.1016/j.hbpd.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a worldwide issue. However, the current treatment for hepatitis C has many shortcomings. Toll-like receptors (TLRs) are pattern recognition receptors involved in HCV infection, and an increasing number of studies are focusing on the role of TLRs in the progression of hepatitis C. DATA SOURCES We performed a PubMed search up to January 2021 with the following keywords: hepatitis C, toll-like receptors, interferons, inflammation, and immune evasion. We also used terms such as single-nucleotide polymorphisms (SNPs), susceptibility, fibrosis, cirrhosis, direct-acting antiviral agents, agonists, and antagonists to supplement the query results. We reviewed relevant publications analyzing the correlation between hepatitis C and TLRs and the role of TLRs in HCV infection. RESULTS TLRs 1-4 and 6-9 are involved in the process of HCV infection. When the host is exposed to the HCV, TLRs, as important participants in HCV immune evasion, trigger innate immunity to remove the virus and also promote inflammation and liver fibrosis. TLR gene SNPs affect hepatitis C susceptibility, treatment, and prognosis. The contribution of each TLR to HCV is different. Drugs targeting various TLRs are developed and validated, and TLRs can synergize with classic hepatitis C drugs, including interferon and direct-acting antiviral agents, constituting a new direction for the treatment of hepatitis C. CONCLUSIONS TLRs are important receptors in HCV infection. Different TLRs induce different mechanisms of virus clearance and inflammatory response. Although TLR-related antiviral therapy strategies exist, more studies are needed to explore the clinical application of TLR-related drugs.
Collapse
Affiliation(s)
- Yang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Narayan Nepal
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Shi-Zhu Jin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
5
|
Zeng M, Chen S, Zhang W, Duan Y, Jiang B, Pan X, Wang M, Jia R, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Ou X, Mao S, Tian B, Gao Q, Cheng A. Nuclear localization of duck Tembusu virus NS5 protein attenuates viral replication in vitro and NS5-NS2B3 interaction. Vet Microbiol 2021; 262:109239. [PMID: 34555732 DOI: 10.1016/j.vetmic.2021.109239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/11/2021] [Indexed: 11/15/2022]
Abstract
Duck Tembusu virus (TMUV) belongs to the flavivirus genus whose genome replication involved in capping and RNA synthesis dominating by nonstructural protein 5 (NS5). Flaviviral replication has been well documented to occur in the cytoplasm, but the effect of NS5 to gain access to the nucleus remains controversial. Here, TMUV NS5 was observed to localize within the cytoplasm of transfected and infected cells and co-localized with the endoplasmic reticulum. We introduced two arginine mutations into the N390 and Q392 (N390R and Q392R) of the NS5 bipartite nuclear localization sequence (α/βNLS) and designated that mutagenesis as NS5NLSmut, which has shown the ability to access the nucleus and hence attenuates viral replication and production in vitro. Additionally, there was no significant difference between the recovered wild-type TMUV (rTMUV-WT) and engineered mutant (rTMUV-NS5NLSmut) on plaque morphology, survival rate of infected duck embryos or virus copies in tissues. Considering that NS5NLSmut is mainly located in the cytoplasm of rTMUV-NS5NLSmut infected cells at the early stage of infection. We further confirmed that NS5NLSmut attenuated its interaction with nonstructural NS2B-NS3 (NS2B3) following transfection and infection. Meanwhile, the rTMUV-NS5NLSmut tended to stimulate more interferon beta (IFNβ) than rTMUV-WT. However, preliminary study on transient NS5 and NS5NLSmut detected the same levels of IFNβ mRNA mediated by RIG-I detection of NS5 RNA polymerase activity in cell. In summary, these results provide further insights into the relationship between the viral property and subcellular localization of flavivirus NS5 in terms of the NS5-NS2B3 interaction.
Collapse
Affiliation(s)
- Miao Zeng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China.
| | - Wei Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Yanping Duan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Bowen Jiang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Xin Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang District, Chengdu City, Sichuan Province, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Wenjiang District, Chengdu City, Sichuan Province, 611130, China.
| |
Collapse
|
6
|
Wang W, Zhou Z, Xiao X, Tian Z, Dong X, Wang C, Li L, Ren L, Lei X, Xiang Z, Wang J. SARS-CoV-2 nsp12 attenuates type I interferon production by inhibiting IRF3 nuclear translocation. Cell Mol Immunol 2021; 18:945-953. [PMID: 33637958 PMCID: PMC7907794 DOI: 10.1038/s41423-020-00619-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 is the pathogenic agent of COVID-19, which has evolved into a global pandemic. Compared with some other respiratory RNA viruses, SARS-CoV-2 is a poor inducer of type I interferon (IFN). Here, we report that SARS-CoV-2 nsp12, the viral RNA-dependent RNA polymerase (RdRp), suppresses host antiviral responses. SARS-CoV-2 nsp12 attenuated Sendai virus (SeV)- or poly(I:C)-induced IFN-β promoter activation in a dose-dependent manner. It also inhibited IFN promoter activation triggered by RIG-I, MDA5, MAVS, and IRF3 overexpression. Nsp12 did not impair IRF3 phosphorylation but suppressed the nuclear translocation of IRF3. Mutational analyses suggested that this suppression was not dependent on the polymerase activity of nsp12. Given these findings, our study reveals that SARS-CoV-2 RdRp can antagonize host antiviral innate immunity and thus provides insights into viral pathogenesis.
Collapse
Affiliation(s)
- Wenjing Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Zhuo Zhou
- Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University Genome Editing Research Center, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xia Xiao
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Zhongqin Tian
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaojing Dong
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Conghui Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Li Li
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Lili Ren
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China
| | - Xiaobo Lei
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China.
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
| | - Zichun Xiang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China.
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
| | - Jianwei Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China.
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, PR China.
| |
Collapse
|
7
|
Yu P, Li Y, Li Y, Miao Z, Wang Y, Peppelenbosch MP, Pan Q. Murine norovirus replicase augments RIG-I-like receptors-mediated antiviral interferon response. Antiviral Res 2020; 182:104877. [PMID: 32755662 DOI: 10.1016/j.antiviral.2020.104877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 01/02/2023]
Abstract
Noroviruses are the main causative agents for acute viral gastroenteritis worldwide. RIG-I-like receptors (RLRs) triggered interferon (IFN) activation is essential for host defense against viral infections. In turn, viruses have developed sophisticated strategies to counteract host antiviral response. This study aims to investigate how murine norovirus (MNV) replicase interacts with RLRs-mediated antiviral IFN response. Counterintuitively, we found that the MNV replicase NS7 enhances the activation of poly (I:C)-induced IFN response and the transcription of downstream interferon-stimulated genes (ISGs). Interestingly, NS7 protein augments RIG-I and MDA5-triggered antiviral IFN response, which conceivably involves direct interactions with the caspase activation and recruitment domains (CARDs) of RIG-I and MDA5. Consistently, RIG-I and MDA5 exert anti-MNV activity in human HEK293T cells with ectopic expression of viral receptor CD300lf. This effect requires the activation of JAK/STAT pathway, and is further enhanced by NS7 overexpression. These findings revealed an unconventional role of MNV NS7 as augmenting RLRs-mediated IFN response to inhibit viral replication.
Collapse
Affiliation(s)
- Peifa Yu
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Zhijiang Miao
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Yining Wang
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Suzuki R, Matsuda M, Shimoike T, Watashi K, Aizaki H, Kato T, Suzuki T, Muramatsu M, Wakita T. Activation of protein kinase R by hepatitis C virus RNA-dependent RNA polymerase. Virology 2019; 529:226-233. [PMID: 30738360 DOI: 10.1016/j.virol.2019.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) was shown to activate protein kinase R (PKR), which inhibits expression of interferon (IFN) and IFN-stimulated genes by controlling the translation of newly transcribed mRNAs. However, it is unknown exactly how HCV activates PKR. To address the molecular mechanism(s) of PKR activation mediated by HCV infection, we examined the effects of viral proteins on PKR activation. Here, we show that expression of HCV NS5B strongly induced PKR and eIF2α phosphorylation, and attenuated MHC class I expression. In contrast, expression of Japanese encephalitis virus RNA-dependent RNA polymerase did not induce phosphorylation of PKR. Co-immunoprecipitation analyses showed that HCV NS5B interacted with PKR. Furthermore, expression of NS5B with polymerase activity-deficient mutation failed to phosphorylate PKR, suggesting that RNA polymerase activity is required for PKR activation. These results suggest that HCV activates PKR by association with NS5B, resulting in translational suppression of MHC class I to establish chronic infection.
Collapse
Affiliation(s)
- Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama-shi, Tokyo 208-0011, Japan.
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takashi Shimoike
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama-shi, Tokyo 208-0011, Japan.
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka, Japan.
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
9
|
Matz KM, Guzman RM, Goodman AG. The Role of Nucleic Acid Sensing in Controlling Microbial and Autoimmune Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:35-136. [PMID: 30904196 PMCID: PMC6445394 DOI: 10.1016/bs.ircmb.2018.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Innate immunity, the first line of defense against invading pathogens, is an ancient form of host defense found in all animals, from sponges to humans. During infection, innate immune receptors recognize conserved molecular patterns, such as microbial surface molecules, metabolites produces during infection, or nucleic acids of the microbe's genome. When initiated, the innate immune response activates a host defense program that leads to the synthesis proteins capable of pathogen killing. In mammals, the induction of cytokines during the innate immune response leads to the recruitment of professional immune cells to the site of infection, leading to an adaptive immune response. While a fully functional innate immune response is crucial for a proper host response and curbing microbial infection, if the innate immune response is dysfunctional and is activated in the absence of infection, autoinflammation and autoimmune disorders can develop. Therefore, it follows that the innate immune response must be tightly controlled to avoid an autoimmune response from host-derived molecules, yet still unencumbered to respond to infection. In this review, we will focus on the innate immune response activated from cytosolic nucleic acids, derived from the microbe or host itself. We will depict how viruses and bacteria activate these nucleic acid sensing pathways and their mechanisms to inhibit the pathways. We will also describe the autoinflammatory and autoimmune disorders that develop when these pathways are hyperactive. Finally, we will discuss gaps in knowledge with regard to innate immune response failure and identify where further research is needed.
Collapse
Affiliation(s)
- Keesha M Matz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - R Marena Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States; Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, United States.
| |
Collapse
|
10
|
Li Z, Liu Q. Proprotein convertase subtilisin/kexin type 9 inhibits interferon β expression through interacting with ATF-2. FEBS Lett 2018; 592:2323-2333. [PMID: 29885262 DOI: 10.1002/1873-3468.13152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/23/2018] [Accepted: 06/02/2018] [Indexed: 02/06/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates lipid metabolism. A mutual interplay of lipid homeostasis and innate immune system has been increasingly recognized. We, therefore, studied the effect of PCSK9 on interferon (IFN) β expression. We show that PCSK9 decreases IFNβ promoter/enhancer activity, mRNA and protein levels, and its downstream 2',5'-oligoadenylate synthetase-1 mRNA level. ProPCSK9, but not the cleaved PCSK9, down-regulates IFNβ promoter/enhancer activity. Moreover, PCSK9 decreases IFNβ promoter/enhancer activity through the positive regulatory domain IV region where the activating transcription factor-2 (ATF-2)/c-Jun heterodimer binds. Mechanistically, we demonstrate an interaction between PCSK9 and ATF-2, which reduces ATF-2/c-Jun dimerization and ATF-2/c-Jun binding to the IFNβ enhancer. This novel function of PCSK9 should have important implications in optimizing the clinical use of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Zhubing Li
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), School of Public Health Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Canada
| | - Qiang Liu
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), School of Public Health Vaccinology and Immunotherapeutics, Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
11
|
Vegna S, Gregoire D, Moreau M, Lassus P, Durantel D, Assenat E, Hibner U, Simonin Y. NOD1 Participates in the Innate Immune Response Triggered by Hepatitis C Virus Polymerase. J Virol 2016; 90:6022-6035. [PMID: 27099311 PMCID: PMC4907226 DOI: 10.1128/jvi.03230-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/13/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) triggers innate immunity signaling in the infected cell. Replication of the viral genome is dispensable for this phenotype, and we along with others have recently shown that NS5B, the viral RNA-dependent RNA polymerase, synthesizes double-stranded RNA (dsRNA) from cellular templates, thus eliciting an inflammatory response, notably via activation of type I interferon and lymphotoxin β. Here, we investigated intracellular signal transduction pathways involved in this process. Using HepaRG cells, a model that largely recapitulates the in vivo complexities of the innate immunity receptor signaling, we have confirmed that NS5B triggered increased expression of the canonical pattern recognition receptors (PRRs) specific for dsRNA, namely, RIG-I, MDA5, and Toll-like receptor 3 (TLR3). Unexpectedly, intracellular dsRNA also led to accumulation of NOD1, a receptor classically involved in recognition of bacterial peptidoglycans. NOD1 activation, confirmed by analysis of its downstream targets, was likely due to its interaction with dsRNA and was independent of RIG-I and mitochondrial antiviral signaling protein (MAVS/IPS-1/Cardif/VISA) signaling. It is likely to have a functional significance in the cellular response in the context of HCV infection since interference with the NOD1 pathway severely reduced the inflammatory response elicited by NS5B. IMPORTANCE In this study, we show that NOD1, a PRR that normally senses bacterial peptidoglycans, is activated by HCV viral polymerase, probably through an interaction with dsRNA, suggesting that NOD1 acts as an RNA ligand recognition receptor. In consequence, interference with NOD1-mediated signaling significantly weakens the inflammatory response to dsRNA. These results add a new level of complexity to the understanding of the cross talk between different classes of pattern recognition receptors and may be related to certain complications of chronic hepatitis C virus infection.
Collapse
Affiliation(s)
- Serena Vegna
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Damien Gregoire
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Marie Moreau
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Patrice Lassus
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon, University of Lyon, Lyon, France
| | - Eric Assenat
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
- Service d'Oncologie Médicale, CHU St. Eloi, Montpellier, France
| | - Urszula Hibner
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Yannick Simonin
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Classical swine fever virus NS5A protein changed inflammatory cytokine secretion in porcine alveolar macrophages by inhibiting the NF-κB signaling pathway. Virol J 2016; 13:101. [PMID: 27296632 PMCID: PMC4907015 DOI: 10.1186/s12985-016-0545-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/24/2016] [Indexed: 01/15/2023] Open
Abstract
Background Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious disease of the pigs. A number of studies have suggested that CSFV non-structural (NS) 5A protein is involved in CSFV-associated pathogenesis, but its mechanism is still uncertain. The aim of this study was to investigate the roles of NS5A protein in CSFV-associated pathogenesis in cultured porcine alveolar macrophages (PAMs). Methods After PAMs cultured in vitro were transfected with CSFV NS5A, the alterations in IL-1β, IL-6 and TNF-α expression were determined by ELISA, the RIG-I signaling activity related to inflammatory cytokine secretion was investigated by Western blot and Immunofluorescent staining. Results It was suggested that, the stable expressed CSFV NS5A solely had no influence on the expressions of inflammatory cytokines IL-1β, IL-6 and TNF-α in PAMs Moreover, NS5A protein could suppressed IL-1β, IL-6 and TNF-α expression induced by poly(I:C). It was also showed that NS5A protein did not impair the expressions of RIG-I, MDA5, IPS-1, NF-κB and IkBα in cells without poly(I:C) stimulation. Protein expressions of RIG-I, MDA5, IPS-1, NF-κB were not disrupted by NS5A protein in poly(I:C)-stimulated cells, while poly(I:C)-induced NF-κB nuclear translocation and activity was obviously suppressed by this protein. A suppression in poly(I:C)-induced IkBα degradation in NS5A-expressing cells was also observed. Conclusion These data indicated that CSFV NS5A protein could inhibit the secretion of inflammatory cytokine induced by poly(I:C) through the suppression of the NF-κB signaling pathway, indicating the participation of CSFV NS5A protein in the pathogenesis of CSFV.
Collapse
|
13
|
Errett JS, Gale M. Emerging complexity and new roles for the RIG-I-like receptors in innate antiviral immunity. Virol Sin 2015; 30:163-73. [PMID: 25997992 PMCID: PMC7090589 DOI: 10.1007/s12250-015-3604-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is critical for the control of virus infection and operates to restrict viral susceptibility and direct antiviral immunity for protection from acute or chronic viral-associated diseases including cancer. RIG-I like receptors (RLRs) are cytosolic RNA helicases that function as pathogen recognition receptors to detect RNA pathogen associated molecular patterns (PAMPs) of virus infection. The RLRs include RIG-I, MDA5, and LGP2. They function to recognize and bind to PAMP motifs within viral RNA in a process that directs the RLR to trigger downstream signaling cascades that induce innate immunity that controls viral replication and spread. Products of RLR signaling also serve to modulate the adaptive immune response to infection. Recent studies have additionally connected RLRs to signaling cascades that impart inflammatory and apoptotic responses to virus infection. Viral evasion of RLR signaling supports viral outgrowth and pathogenesis, including the onset of viral-associated cancer.
Collapse
Affiliation(s)
- John S Errett
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine, University of Washington, Seattle, 98109, USA
| | | |
Collapse
|
14
|
Osna NA, Ganesan M, Kharbanda KK. Hepatitis C, innate immunity and alcohol: friends or foes? Biomolecules 2015; 5:76-94. [PMID: 25664450 PMCID: PMC4384112 DOI: 10.3390/biom5010076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/19/2015] [Accepted: 01/24/2015] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV)-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling-a crucial point for activation of anti-viral genes to protect cells from virus-and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.
Collapse
Affiliation(s)
- Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, 4101 Woolworth Ave, Omaha, NE 68105, USA.
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| |
Collapse
|
15
|
Maringer K, Fernandez-Sesma A. Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection. Cytokine Growth Factor Rev 2014; 25:669-79. [PMID: 25212897 PMCID: PMC4330990 DOI: 10.1016/j.cytogfr.2014.08.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 02/08/2023]
Abstract
STING has emerged in recent years as an important signalling adaptor in the activation of type I interferon responses during infection with DNA viruses and bacteria. An increasing body of evidence suggests that STING also modulates responses to RNA viruses, though the mechanisms remain less clear. In this review, we give a brief overview of the ways in which STING facilitates sensing of RNA viruses. These include modulation of RIG-I-dependent responses through STING's interaction with MAVS, and more speculative mechanisms involving the DNA sensor cGAS and sensing of membrane remodelling events. We then provide an in-depth literature review to summarise the known mechanisms by which RNA viruses of the families Flaviviridae and Coronaviridae evade sensing through STING. Our own work has shown that the NS2B/3 protease complex of the flavivirus dengue virus binds and cleaves STING, and that an inability to degrade murine STING may contribute to host restriction in this virus. We contrast this to the mechanism employed by the distantly related hepacivirus hepatitis C virus, in which STING is bound and inactivated by the NS4B protein. Finally, we discuss STING antagonism in the coronaviruses SARS coronavirus and human coronavirus NL63, which disrupt K63-linked polyubiquitination and dimerisation of STING (both of which are required for STING-mediated activation of IRF-3) via their papain-like proteases. We draw parallels with less-well characterised mechanisms of STING antagonism in related viruses, and place our current knowledge in the context of species tropism restrictions that potentially affect the emergence of new human pathogens.
Collapse
Affiliation(s)
- Kevin Maringer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; School of Cellular and Molecular Medicine, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
16
|
Sato M, Kato N, Tateishi R, Muroyama R, Kowatari N, Li W, Goto K, Otsuka M, Shiina S, Yoshida H, Omata M, Koike K. IL28B minor allele is associated with a younger age of onset of hepatocellular carcinoma in patients with chronic hepatitis C virus infection. J Gastroenterol 2014; 49:748-54. [PMID: 23689989 DOI: 10.1007/s00535-013-0826-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 04/22/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND IL28B polymorphisms were shown to be associated with a response to peg-interferon-based treatment in chronic hepatitis C (CHC) and spontaneous clearance. However, little is known about how this polymorphism affects the course of CHC, including the development of hepatocellular carcinoma (HCC). We evaluated the influence of IL28B polymorphisms on hepatocarcinogenesis in CHC patients. METHODS We genotyped the rs8099917 single-nucleotide polymorphism in 351 hepatitis C-associated HCC patients without history of IFN-based treatment, and correlated the age at onset of HCC in patients with each genotype. RESULTS Frequencies of TT, TG, and GG genotypes were 74.3 % (261/351), 24.8 % (87/351), and 0.9 % (3/351), respectively. The mean ages at onset of HCC for TT, TG, and GG genotypes were 69.9, 67.5 and 66.8, respectively. In multivariate analysis, IL28B minor allele (TG and GG genotypes) was an independent risk factor for younger age at onset of HCC (P = 0.02) in males (P < 0.001) with higher body mass index (BMI; P = 0.009). The IL28B minor allele was also associated with a lower probability of having aspartate aminotransferase-to-platelet ratio index (APRI) >1.5 (minor vs. major, 46.7 vs. 58.6 %; P = 0.01), lower AST (69.1 vs. 77.7 IU/L, P = 0.02), lower ALT (67.8 vs. 80.9 IU/L, P = 0.002), higher platelet count (12.8 vs. 11.2 × 10(4)/μL, P = 0.002), and higher prothrombin time (79.3 vs. 75.4 %, P = 0.002). CONCLUSIONS The IL28B minor allele was associated with lower inflammatory activity and less progressed fibrosis of the liver; however, it constituted a risk factor for younger-age onset of HCC in CHC patients.
Collapse
Affiliation(s)
- Masaya Sato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sato M, Kondo M, Tateishi R, Fujiwara N, Kato N, Yoshida H, Taguri M, Koike K. Impact of IL28B genetic variation on HCV-induced liver fibrosis, inflammation, and steatosis: a meta-analysis. PLoS One 2014; 9:e91822. [PMID: 24637774 PMCID: PMC3956722 DOI: 10.1371/journal.pone.0091822] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/15/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND & AIMS IL28B polymorphisms were shown to be strongly associated with the response to interferon therapy in chronic hepatitis C (CHC) and spontaneous viral clearance. However, little is known about how these polymorphisms affect the natural course of the disease. Thus, we conducted the present meta-analysis to assess the impact of IL28B polymorphisms on disease progression. METHODS A literature search was conducted using MEDLINE, EMBASE, and the Cochrane Library. Integrated odds ratios (OR) were calculated with a fixed-effects or random-effects model based on heterogeneity analyses. RESULTS We identified 28 studies that included 10,024 patients. The pooled results indicated that the rs12979860 genotype CC was significantly associated (vs. genotype CT/TT; OR, 1.122; 95%CI, 1.003-1.254; P = 0.044), and that the rs8099917 genotype TT tended to be (vs. genotype TG/GG; OR, 1.126; 95%CI, 0.988-1.284; P = 0.076) associated, with an increased possibility of severe fibrosis. Both rs12979860 CC (vs. CT/TT; OR, 1.288; 95%CI, 1.050-1.581; P = 0.015) and rs8099917 TT (vs. TG/GG; OR, 1.324; 95%CI, 1.110-1.579; P = 0.002) were significantly associated with a higher possibility of severe inflammation activity. Rs8099917 TT was also significantly associated with a lower possibility of severe steatosis (vs. TG/GG; OR, 0.580; 95%CI, 0.351-0.959; P = 0.034), whereas rs12979860 CC was not associated with hepatic steatosis (vs. CT/TT; OR, 1.062; 95%CI, 0.415-2.717; P = 0.901). CONCLUSIONS IL28B polymorphisms appeared to modify the natural course of disease in patients with CHC. Disease progression seems to be promoted in patients with the rs12979860 CC and rs8099917 TT genotypes.
Collapse
Affiliation(s)
- Masaya Sato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Mayuko Kondo
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naoto Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naoya Kato
- Unit of Disease Control Genome Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Haruhiko Yoshida
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masataka Taguri
- Department of Biostatistics and Epidemiology, Yokohama City University Medical Center, Yokohama, Kanagawa, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
18
|
Nikonov A, Mölder T, Sikut R, Kiiver K, Männik A, Toots U, Lulla A, Lulla V, Utt A, Merits A, Ustav M. RIG-I and MDA-5 detection of viral RNA-dependent RNA polymerase activity restricts positive-strand RNA virus replication. PLoS Pathog 2013; 9:e1003610. [PMID: 24039580 PMCID: PMC3764220 DOI: 10.1371/journal.ppat.1003610] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/25/2013] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFN) are important for antiviral responses. Melanoma differentiation-associated gene 5 (MDA-5) and retinoic acid-induced gene I (RIG-I) proteins detect cytosolic double-stranded RNA (dsRNA) or 5'-triphosphate (5'-ppp) RNA and mediate IFN production. Cytosolic 5'-ppp RNA and dsRNA are generated during viral RNA replication and transcription by viral RNA replicases [RNA-dependent RNA polymerases (RdRp)]. Here, we show that the Semliki Forest virus (SFV) RNA replicase can induce IFN-β independently of viral RNA replication and transcription. The SFV replicase converts host cell RNA into 5'-ppp dsRNA and induces IFN-β through the RIG-I and MDA-5 pathways. Inactivation of the SFV replicase RdRp activity prevents IFN-β induction. These IFN-inducing modified host cell RNAs are abundantly produced during both wild-type SFV and its non-pathogenic mutant infection. Furthermore, in contrast to the wild-type SFV replicase a non-pathogenic mutant replicase triggers increased IFN-β production, which leads to a shutdown of virus replication. These results suggest that host cells can restrict RNA virus replication by detecting the products of unspecific viral replicase RdRp activity.
Collapse
Affiliation(s)
- Andrei Nikonov
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Tarmo Mölder
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
- FIT Biotech Oy, Tartu, Estonia
| | | | - Kaja Kiiver
- FIT Biotech Oy, Tartu, Estonia
- Icosagen Cell Factory OÜ, Tartu, Estonia
| | - Andres Männik
- FIT Biotech Oy, Tartu, Estonia
- Icosagen Cell Factory OÜ, Tartu, Estonia
| | - Urve Toots
- FIT Biotech Oy, Tartu, Estonia
- Icosagen Cell Factory OÜ, Tartu, Estonia
| | - Aleksei Lulla
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Valeria Lulla
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Age Utt
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Ustav
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
- FIT Biotech Oy, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
19
|
Kalkeri G, Lin C, Gopilan J, Sloan K, Rijnbrand R, Kwong AD. Restoration of the activated Rig-I pathway in hepatitis C virus (HCV) replicon cells by HCV protease, polymerase, and NS5A inhibitors in vitro at clinically relevant concentrations. Antimicrob Agents Chemother 2013; 57:4417-26. [PMID: 23836176 PMCID: PMC3754339 DOI: 10.1128/aac.00399-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023] Open
Abstract
Development of persistent hepatitis C virus (HCV) infection may be mediated by HCV NS3 · 4A protease-dependent inhibition of host innate immunity. When double-stranded RNA (dsRNA) is detected in virus-infected cells, host innate immunity mounts an antiviral response by upregulating production of type I interferons (α/β interferon [IFN-α/β]); HCV counters by cleaving the IFN-β stimulator 1 (IPS-1) adaptor protein, decreasing synthesis of IFN-α/β. We evaluated HCV protease (telaprevir, boceprevir, and TMC435350), polymerase (HCV-796 and VX-222), and NS5A (BMS-790052) inhibitors for the ability to restore IPS-1-mediated Rig-I signaling by measuring Sendai virus-induced IFN-β promoter activation in HCV replicon cells after various exposure durations. All direct-acting HCV antivirals tested restored mitochondrial localization of IPS-1 and rescued Sendai virus-induced IRF3 signaling after 7 days by inhibiting HCV replication, thereby reducing the abundance of HCV NS3 · 4A protease. With 4-day treatment, HCV protease inhibitors, but not polymerase inhibitors, restored mitochondrial localization of IPS-1 and rescued IFN-β promoter activation in the presence of equivalent levels of NS3 protein in protease or polymerase inhibitor-treated cells. The concentrations of HCV protease and polymerase inhibitors needed to rescue IRF3-mediated signaling in vitro were in the range of those observed in vivo in the plasma of treated HCV patients. These findings suggest that (i) HCV protease, polymerase, and NS5A inhibitors can restore virus-induced IRF3 signaling by inhibiting viral replication, thereby reducing NS3 protease levels, and (ii) HCV protease inhibitors can restore innate immunity by directly inhibiting NS3 protease-mediated cleavage of IPS-1 at clinically achievable concentrations.
Collapse
Affiliation(s)
- Gururaj Kalkeri
- Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Hepatitis C virus and hepatocellular carcinoma. BIOLOGY 2013; 2:304-16. [PMID: 24832662 PMCID: PMC4009856 DOI: 10.3390/biology2010304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV), a hepatotropic virus, is a single stranded-positive RNA virus of ~9,600 nt. length belonging to the Flaviviridae family. HCV infection causes acute hepatitis, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that HCV-coding proteins interact with host-cell factors that are involved in cell cycle regulation, transcriptional regulation, cell proliferation and apoptosis. Severe inflammation and advanced liver fibrosis in the liver background are also associated with the incidence of HCV-related HCC. In this review, we discuss the mechanism of hepatocarcinogenesis in HCV-related liver diseases.
Collapse
|
21
|
Nitta S, Sakamoto N, Nakagawa M, Kakinuma S, Mishima K, Kusano-Kitazume A, Kiyohashi K, Murakawa M, Nishimura-Sakurai Y, Azuma S, Tasaka-Fujita M, Asahina Y, Yoneyama M, Fujita T, Watanabe M. Hepatitis C virus NS4B protein targets STING and abrogates RIG-I-mediated type I interferon-dependent innate immunity. Hepatology 2013; 57:46-58. [PMID: 22911572 DOI: 10.1002/hep.26017] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 07/24/2012] [Indexed: 12/20/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) infection blocks cellular interferon (IFN)-mediated antiviral signaling through cleavage of Cardif by HCV-NS3/4A serine protease. Like NS3/4A, NS4B protein strongly blocks IFN-β production signaling mediated by retinoic acid-inducible gene I (RIG-I); however, the underlying molecular mechanisms are not well understood. Recently, the stimulator of interferon genes (STING) was identified as an activator of RIG-I signaling. STING possesses a structural homology domain with flaviviral NS4B, which suggests a direct protein-protein interaction. In the present study, we investigated the molecular mechanisms by which NS4B targets RIG-I-induced and STING-mediated IFN-β production signaling. IFN-β promoter reporter assay showed that IFN-β promoter activation induced by RIG-I or Cardif was significantly suppressed by both NS4B and NS3/4A, whereas STING-induced IFN-β activation was suppressed by NS4B but not by NS3/4A, suggesting that NS4B had a distinct point of interaction. Immunostaining showed that STING colocalized with NS4B in the endoplasmic reticulum. Immunoprecipitation and bimolecular fluorescence complementation (BiFC) assays demonstrated that NS4B specifically bound STING. Intriguingly, NS4B expression blocked the protein interaction between STING and Cardif, which is required for robust IFN-β activation. NS4B truncation assays showed that its N terminus, containing the STING homology domain, was necessary for the suppression of IFN-β promoter activation. NS4B suppressed residual IFN-β activation by an NS3/4A-cleaved Cardif (Cardif1-508), suggesting that NS3/4A and NS4B may cooperate in the blockade of IFN-β production. CONCLUSION NS4B suppresses RIG-I-mediated IFN-β production signaling through a direct protein interaction with STING. Disruption of that interaction may restore cellular antiviral responses and may constitute a novel therapeutic strategy for the eradication of HCV.
Collapse
Affiliation(s)
- Sayuri Nitta
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Oliveira-Nascimento L, Massari P, Wetzler LM. The Role of TLR2 in Infection and Immunity. Front Immunol 2012; 3:79. [PMID: 22566960 PMCID: PMC3342043 DOI: 10.3389/fimmu.2012.00079] [Citation(s) in RCA: 493] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/28/2012] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptors (TLRs) are recognition molecules for multiple pathogens, including bacteria, viruses, fungi, and parasites. TLR2 forms heterodimers with TLR1 and TLR6, which is the initial step in a cascade of events leading to significant innate immune responses, development of adaptive immunity to pathogens and protection from immune sequelae related to infection with these pathogens. This review will discuss the current status of TLR2 mediated immune responses by recognition of pathogen-associated molecular patterns (PAMPS) on these organisms. We will emphasize both canonical and non-canonical responses to TLR2 ligands with emphasis on whether the inflammation induced by these responses contributes to the disease state or to protection from diseases.
Collapse
Affiliation(s)
- Laura Oliveira-Nascimento
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine Boston, MA, USA
| | | | | |
Collapse
|
23
|
Li S, Yu X, Guo Y, Kong L. Interaction networks of hepatitis C virus NS4B: implications for antiviral therapy. Cell Microbiol 2012; 14:994-1002. [PMID: 22329740 DOI: 10.1111/j.1462-5822.2012.01773.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is an important human pathogen infecting more than 170 million people worldwide with approximately three million new cases each year. HCV depends heavily on interactions between viral proteins and host factors for its survival and propagation. Among HCV viral proteins, the HCV non-structural protein 4B (NS4B) has been shown to mediate virus-host interactions that are essential for HCV replication and pathogenesis and emerged as the target for anti-HCV therapy. Here, we reviewed recent knowledge about the NS4B interaction networks with host factors and its possible regulatory mechanisms, which will both advance our understanding of the role of NS4B in HCV life cycle and illuminate potential viral and host therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | | | | | | |
Collapse
|
24
|
Tamura R, Kanda T, Imazeki F, Wu S, Nakamoto S, Tanaka T, Arai M, Fujiwara K, Saito K, Roger T, Wakita T, Shirasawa H, Yokosuka O. Hepatitis C Virus nonstructural 5A protein inhibits lipopolysaccharide-mediated apoptosis of hepatocytes by decreasing expression of Toll-like receptor 4. J Infect Dis 2011; 204:793-801. [PMID: 21844306 DOI: 10.1093/infdis/jir381] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) has been shown to modulate multiple cellular processes, including apoptosis. The aim of this study was to assess the effects of HCV NS5A on apoptosis induced by Toll-like receptor (TLR) 4 ligand, lipopolysaccharide (LPS). METHODS Apoptotic responses to TLR4 ligands and the expression of molecules involved in TLR signaling pathways in human hepatocytes were examined with or without expression of HCV NS5A. RESULTS HCV NS5A protected HepG2 hepatocytes against LPS-induced apoptosis, an effect linked to reduced TLR4 expression. A similar downregulation of TLR4 expression was observed in Huh-7-expressing genotype 1b and 2a. In agreement with these findings, NS5A inhibited the expression of numerous genes encoding for molecules involved in TLR4 signaling, such as CD14, MD-2, myeloid differentiation primary response gene 88, interferon regulatory factor 3, and nuclear factor-κB2. Consistent with a conferred prosurvival advantage, NS5A diminished the poly(adenosine diphosphate-ribose) polymerase cleavage and the activation of caspases 3, 7, 8, and 9 and increased the expression of anti-apoptotic molecules Bcl-2 and c-FLIP. CONCLUSIONS HCV NS5A downregulates TLR4 signaling and LPS-induced apoptotic pathways in human hepatocytes, suggesting that disruption of TLR4-mediated apoptosis may play a role in the pathogenesis of HCV infection.
Collapse
Affiliation(s)
- Ryo Tamura
- Department of Medicine and Clinical Oncology, Chiba University, Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ranjith-Kumar CT, Wen Y, Baxter N, Bhardwaj K, Cheng Kao C. A cell-based assay for RNA synthesis by the HCV polymerase reveals new insights on mechanism of polymerase inhibitors and modulation by NS5A. PLoS One 2011; 6:e22575. [PMID: 21799903 PMCID: PMC3142182 DOI: 10.1371/journal.pone.0022575] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/24/2011] [Indexed: 12/24/2022] Open
Abstract
RNA synthesis by the genotype 1b hepatitis C virus (HCV) polymerase (NS5B) transiently expressed in Human embryonic kidney 293T cells or liver hepatocytes was found to robustly stimulate RIG-I-dependent luciferase production from the interferon β promoter in the absence of exogenously provided ligand. This cell-based assay, henceforth named the 5BR assay, could be used to examine HCV polymerase activity in the absence of other HCV proteins. Mutations that decreased de novo initiated RNA synthesis in biochemical assays decreased activation of RIG-I signaling. In addition, NS5B that lacks the C-terminal transmembrane helix but remains competent for RNA synthesis could activate RIG-I signaling. The addition of cyclosporine A to the cells reduced luciferase levels without affecting agonist-induced RIG-I signaling. Furthermore, non-nucleoside inhibitor benzothiadiazines (BTDs) that bind within the template channel of the 1b NS5B were found to inhibit the readout from the 5BR assay. Mutation M414T in NS5B that rendered the HCV replicon resistant to BTD was also resistant to BTDs in the 5BR assay. Co-expression of the HCV NS5A protein along with NS5B and RIG-I was found to inhibit the readout from the 5BR assay. The inhibition by NS5A was decreased with the removal of the transmembrane helix in NS5B. Lastly, NS5B from all six major HCV genotypes showed robust activation of RIG-I in the 5BR assay. In summary, the 5BR assay could be used to validate inhibitors of the HCV polymerase as well as to elucidate requirements for HCV-dependent RNA synthesis.
Collapse
Affiliation(s)
- C. T. Ranjith-Kumar
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Yahong Wen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Nielson Baxter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Kanchan Bhardwaj
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - C. Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
26
|
Delayed cytosolic exposure of Japanese encephalitis virus double-stranded RNA impedes interferon activation and enhances viral dissemination in porcine cells. J Virol 2011; 85:6736-49. [PMID: 21525349 DOI: 10.1128/jvi.00233-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Interferon is a principal component of the host antiviral defense system. In this study, abortive focus formation by Japanese encephalitis virus (JEV) in primate cells was accompanied by early interferon induction, while productive focus formation in porcine cells was associated with a late interferon response. Neutralization antibodies against interferon relieved the restricted infection in primate cells, and increasingly larger foci were generated as treatment with exogenous interferon was delayed, thereby establishing a solid correlation between interferon response and viral dissemination. However, delayed interferon induction in JEV-infected porcine cells occurred in the absence of active inhibition by the virus. We further demonstrated that JEV mediates interferon activation through double-stranded RNA and cytosolic pattern recognition receptors. Immunofluorescence and subcellular fractionation studies revealed that double-stranded RNA is concealed in intracellular membranes at an early phase of infection but eventually appears in the cytosol at later periods, which could then allow detection by cytosolic pattern recognition receptors. Interestingly, cytosolic exposure of double-stranded RNA was delayed in porcine cells compared to primate cells, independent of total double-stranded RNA levels and in correlation with the timing of the interferon response. Furthermore, when double-stranded RNA was artificially introduced into the cytosol of porcine cells, more rapid and robust interferon activation was triggered than in viral infection. Thus, cytosolic exposure of JEV double-stranded RNA is imperative for interferon induction, but in cell lines (e.g., porcine cells) with delayed emergence of cytosolic double-stranded RNA, the interferon response is late and viral dissemination is consequently enhanced.
Collapse
|
27
|
Sermasathanasawadi R, Kato N, Muroyama R, Dharel N, Shao RX, Chang JH, Li CZ, Kawabe T, Omata M. Association of interferon regulatory factor-7 gene polymorphism with liver cirrhosis in chronic hepatitis C patients. Liver Int 2008; 28:798-806. [PMID: 18397234 DOI: 10.1111/j.1478-3231.2008.01725.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND AND AIMS Interferon (IFN) regulatory factor 7 (IRF-7) has been shown to play an essential role in the transcriptional activation of virus-inducible cellular genes, especially IFN genes. Polymorphisms of the IRF-7 gene may probably affect both the quality and the quantity of IRF-7. We investigated the role of IRF-7 polymorphisms in Japanese patients with chronic hepatitis C virus (HCV) infection. METHODS We studied a total of nine polymorphisms of the IRF-7 gene including SNP1047A/G (Lys/Glu) and SNP2157A/G (Gln/Arg) using the Taqman allelic discrimination and sequencing techniques in 406 Japanese patients with chronic HCV infection. We further performed functional analysis of SNP1047 and SNP2157 by transcriptional activation of the IFNA promoter. RESULTS We found that SNP1047AG and SNP2157AG genotypes were in complete linkage disequilibrium and were present in a significantly higher proportion in HCV-infected patients with cirrhosis (5.6%) than in those without cirrhosis (1.7%) (P=0.03). Multivariate analysis also revealed that SNP1047 and SNP2157 were independently associated with cirrhosis at an odds ratio of 2.5. Functional analysis revealed that SNP1047G and SNP2157G alleles increased IFNA expression. CONCLUSION SNP1047AG and SNP2157AG genotypes were strongly associated with cirrhosis. SNP1047G and SNP2157G alleles might be used as markers of host factors associated with a higher risk of cirrhosis in Japanese patients with chronic HCV infection.
Collapse
|