1
|
Irshad I, Alqahtani SA, Ikejima K, Yu ML, Romero-Gomez M, Eslam M. Energy metabolism: An emerging therapeutic frontier in liver fibrosis. Ann Hepatol 2025:101896. [PMID: 40057035 DOI: 10.1016/j.aohep.2025.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/18/2025]
Abstract
Liver fibrosis is a progressive response to chronic liver diseases characterized by a wound-healing process that leads to the accumulation of fibrillary extracellular matrix (ECM) proteins in and around the liver tissue. If left untreated, liver fibrosis can advance to cirrhosis and ultimately result in liver failure. Although there have been significant advancements in understanding the molecular mechanisms involved in liver fibrosis, effective therapeutic strategies to reverse or halt the condition remain limited. Recent research has underscored the critical role of energy metabolism in the initiation and progression of liver fibrosis. In response to liver injury, hepatic cells undergo metabolic reprogramming to meet the energy demands of myofibroblasts. This reprogramming involves various metabolic changes, including mitochondrial dysfunction, alterations in cellular bioenergetics, shifts in glycolysis and oxidative phosphorylation, as well as changes in lipid metabolism. These modifications can disrupt cellular energy homeostasis and increase energy release, activating hepatic cells, primarily hepatic stellate cells (HSCs). Activated HSCs then stimulate fibrogenic pathways, leading to the accumulation of ECM proteins in the liver, which exacerbates the progression of fibrosis. This review aims to explore the emerging connection between energy metabolism and liver fibrosis, focusing on the metabolic alterations and molecular mechanisms that drive this condition. We also examine the therapeutic implications of modulating energy metabolism to reduce energy release and mitigate liver fibrosis. Altering energy metabolism to decrease energy release may represent a promising approach for treating liver fibrosis and chronic liver diseases.
Collapse
Affiliation(s)
- Iram Irshad
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Saleh A Alqahtani
- Liver, Digestive, & Lifestyle Health Research Section, and Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Kenichi Ikejima
- Department of Gastroenterology, Juntendo University School of Medicine, Japan
| | - Ming-Lung Yu
- School of Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan; Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Manuel Romero-Gomez
- Digestive Diseases Department and Ciberehd, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), University of Seville, Seville, Spain
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
2
|
Meng D, Chang M, Dai X, Kuang Q, Wang G. GTPBP8 mitigates nonalcoholic steatohepatitis (NASH) by depressing hepatic oxidative stress and mitochondrial dysfunction via PGC-1α signaling. Free Radic Biol Med 2025; 229:312-332. [PMID: 39341301 DOI: 10.1016/j.freeradbiomed.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) is emerging as a major cause of liver transplantation and hepatocellular carcinoma (HCC). Regrettably, its pathological mechanisms are still not fully comprehended. GTP-binding protein 8 (GTPBP8), belonging to the GTP-binding protein superfamily, assumes a crucial role in RNA metabolism, cell proliferation, differentiation, and signal transduction. Its aberrant expression is associated with oxidative stress and mitochondrial dysfunctions. Nevertheless, its specific functions and mechanisms of action, particularly in NASH, remain elusive. In our current study, we initially discovered that human hepatocytes L02 displayed evident mitochondrial respiratory anomaly, mitochondrial damage, and dysfunction upon treatment with palmitic acids and oleic acids (PO), accompanied by significantly reduced GTPBP8 expression levels through RNA-Seq, RT-qPCR, western blotting, and immunofluorescence assays. We then demonstrated that GTPBP8 overexpression mediated by adenovirus vector (Ad-GTPBP8) markedly attenuate lipid accumulation, inflammatory response, and mitochondrial impair and dysfunction in hepatocytes stimulated by PO. Conversely, adenovirus vector-mediated GTPBP8 knockdown (Ad-shGTPBP8) significantly accelerated lipid deposition, inflammation and mitochondrial damage in PO-treated hepatocytes in vitro. Furthermore, we constructed an in vivo NASH murine model by giving a 16-week high fat high cholesterol diet (HFHC) diet to hepatocyte specific GTPBP8-knockout (GTPBP8HKO) mice. We firstly found that HFHC feeding led to metabolic disorder in mice, including high body weight, blood glucose and insulin levels, and liver dysfunctions, which were accelerated in these NASH mice with GTPBP8 deficiency in hepatocytes. Consistently, GTPBP8HKO remarkably exacerbated the progression of NASH phenotypes induced by HFHC, as proved by the anabatic lipid accumulation, inflammation, fibrosis and reactive oxygen species (ROS) production in liver tissues, which could be largely attributed to the severe mitochondrial damage and dysfunction. Mechanistically, we further identified that GTPBP8 interacted with peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in hepatocytes. Importantly, the hepaprotective effects of GTPBP8 against mitochondrial dysfunction, oxidative stress and inflammation was largely dependent on PGC-1α expression. Collectively, GTPBP8 may exert a protective role in the progression of NASH, and targeting the GTPBP8/PGC-1α axis may represent a potential strategy for NASH treatment by improving mitochondrial functions.
Collapse
Affiliation(s)
- Dongxiao Meng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, PR China
| | - Minghui Chang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, PR China
| | - Xianling Dai
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Qin Kuang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Guangchuan Wang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, PR China.
| |
Collapse
|
3
|
Koch RL, Stanton JB, McClatchy S, Churchill GA, Craig SW, Williams DN, Johns ME, Chase KR, Thiesfeldt DL, Flynt JC, Pazdro R. Discovery of genomic loci for liver health and steatosis reveals overlap with glutathione redox genetics. Redox Biol 2024; 75:103248. [PMID: 38917671 PMCID: PMC11254179 DOI: 10.1016/j.redox.2024.103248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition in the United States, encompassing a wide spectrum of liver pathologies including steatosis, steatohepatitis, fibrosis, and cirrhosis. Despite its high prevalence, there are no medications currently approved by the Food and Drug Administration for the treatment of NAFLD. Recent work has suggested that NAFLD has a strong genetic component and identifying causative genes will improve our understanding of the molecular mechanisms contributing to NAFLD and yield targets for future therapeutic investigations. Oxidative stress is known to play an important role in NAFLD pathogenesis, yet the underlying mechanisms accounting for disturbances in redox status are not entirely understood. To better understand the relationship between the glutathione redox system and signs of NAFLD in a genetically-diverse population, we measured liver weight, serum biomarkers aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and graded liver pathology in a large cohort of Diversity Outbred mice. We compared hepatic endpoints to those of the glutathione redox system previously measured in the livers and kidneys of the same mice, and we screened for statistical and genetic associations using the R/qtl2 software. We discovered several novel genetic loci associated with markers of liver health, including loci that were associated with both liver steatosis and glutathione redox status. Candidate genes within each locus point to possible new mechanisms underlying the complex relationship between NAFLD and the glutathione redox system, which could have translational implications for future studies targeting NAFLD pathology.
Collapse
Affiliation(s)
- Rebecca L Koch
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - James B Stanton
- Department of Pathology, University of Georgia, Athens, GA, USA, 30602
| | | | | | - Steven W Craig
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Darian N Williams
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Mallory E Johns
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Kylah R Chase
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Dana L Thiesfeldt
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Jessica C Flynt
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602
| | - Robert Pazdro
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA, 30602.
| |
Collapse
|
4
|
Pan Z, Khatry MA, Yu ML, Choudhury A, Sebastiani G, Alqahtani SA, Eslam M. MAFLD: an ideal framework for understanding disease phenotype in individuals of normal weight. Ther Adv Endocrinol Metab 2024; 15:20420188241252543. [PMID: 38808010 PMCID: PMC11131400 DOI: 10.1177/20420188241252543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 05/30/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) is significant, impacting almost one-third of the global population. MAFLD constitutes a primary cause of end-stage liver disease, liver cancer and the need for liver transplantation. Moreover, it has a strong association with increased mortality rates due to various extrahepatic complications, notably cardiometabolic diseases. While MAFLD is typically correlated with obesity, not all individuals with obesity develop the disease and a significant percentage of MAFLD occurs in patients without obesity, termed lean MAFLD. The clinical features, progression and underlying physiological mechanisms of patients with lean MAFLD remain inadequately characterized. The present review aims to provide a comprehensive summary of current knowledge on lean MAFLD and offer a perspective on defining MAFLD in individuals with normal weight. Key to this process is the concept of metabolic health and flexibility, which links states of dysmetabolism to the development of lean MAFLD. This perspective offers a more nuanced understanding of MAFLD and its underlying mechanisms and highlights the importance of considering the broader metabolic context in which the disease occurs. It also bridges the knowledge gap and offers insights that can inform clinical practice.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Maryam Al Khatry
- Department of Gastroenterology, Obaidullah Hospital, Emirates Health Services, Ministry of Health, Ras Al Khaimah, United Arab Emirates
| | - Ming-Lung Yu
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ashok Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC, Canada
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, 176 Hawkesbury Road, Westmead 2145, NSW, Australia
| |
Collapse
|
5
|
Pan Z, Bayoumi A, Metwally M, George J, Eslam M. Exportin 4 DNA promoter methylation in liver fibrosis. PLoS One 2024; 19:e0302786. [PMID: 38722973 PMCID: PMC11081319 DOI: 10.1371/journal.pone.0302786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
A role for exportin 4 (XPO4) in the pathogenesis of liver fibrosis was recently identified. We sought to determine changes in hepatic XPO4 promoter methylation levels during liver fibrosis. The quantitative real-time RT-PCR technique was used to quantify the mRNA level of XPO4. Additionally, pyrosequencing was utilized to assess the promoter methylation status of XPO4. The methylation rate of the XPO4 promoter was significantly increased with fibrosis in human and mouse models, while XPO4 mRNA expression negatively correlated with methylation of its promoter. DNA methyltransferases (DNMTs) levels (enzymes that drive DNA methylation) were upregulated in patients with liver fibrosis compared to healthy controls and in hepatic stellate cells upon transforming growth factor beta (TGFβ) stimulation. The DNA methylation inhibitor 5-Aza or specific siRNAs for these DNMTs led to restoration of XPO4 expression. The process of DNA methylation plays a crucial role in the repression of XPO4 transcription in the context of liver fibrosis development.
Collapse
Affiliation(s)
- Ziyan Pan
- Westmead Institute for Medical Research, Storr Liver Centre, Westmead Hospital and University of Sydney, NSW, Australia
| | - Ali Bayoumi
- Westmead Institute for Medical Research, Storr Liver Centre, Westmead Hospital and University of Sydney, NSW, Australia
| | - Mayada Metwally
- Westmead Institute for Medical Research, Storr Liver Centre, Westmead Hospital and University of Sydney, NSW, Australia
| | - Jacob George
- Westmead Institute for Medical Research, Storr Liver Centre, Westmead Hospital and University of Sydney, NSW, Australia
| | - Mohammed Eslam
- Westmead Institute for Medical Research, Storr Liver Centre, Westmead Hospital and University of Sydney, NSW, Australia
| |
Collapse
|
6
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
7
|
Alghamdi W, Mosli M, Alqahtani SA. Gut microbiota in MAFLD: therapeutic and diagnostic implications. Ther Adv Endocrinol Metab 2024; 15:20420188241242937. [PMID: 38628492 PMCID: PMC11020731 DOI: 10.1177/20420188241242937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/22/2024] [Indexed: 04/19/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease, is becoming a significant contributor to chronic liver disease globally, surpassing other etiologies, such as viral hepatitis. Prevention and early treatment strategies to curb its growing prevalence are urgently required. Recent evidence suggests that targeting the gut microbiota may help treat and alleviate disease progression in patients with MAFLD. This review aims to explore the complex relationship between MAFLD and the gut microbiota in relation to disease pathogenesis. Additionally, it delves into the therapeutic strategies targeting the gut microbiota, such as diet, exercise, antibiotics, probiotics, synbiotics, glucagon-like peptide-1 receptor agonists, and fecal microbiota transplantation, and discusses novel biomarkers, such as microbiota-derived testing and liquid biopsy, for their diagnostic and staging potential. Overall, the review emphasizes the urgent need for preventive and therapeutic strategies to address the devastating consequences of MAFLD at both individual and societal levels and recognizes that further exploration of the gut microbiota may open avenues for managing MAFLD effectively in the future.
Collapse
Affiliation(s)
- Waleed Alghamdi
- Division of Gastroenterology, Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmoud Mosli
- Division of Gastroenterology, Department of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh A. Alqahtani
- Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia
- Division of Gastroenterology & Hepatology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
8
|
Pan Z, El Sharkway R, Bayoumi A, Metwally M, Gloss BS, Brink R, Lu DB, Liddle C, Alqahtani SA, Yu J, O'Connell PJ, George J, Eslam M. Inhibition of MERTK reduces organ fibrosis in mouse models of fibrotic disease. Sci Transl Med 2024; 16:eadj0133. [PMID: 38569018 DOI: 10.1126/scitranslmed.adj0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Transforming growth factor-β (TGFβ) drives fibrosis and disease progression in a number of chronic disorders, but targeting this ubiquitously expressed cytokine may not yield a viable and safe antifibrotic therapy. Here, we sought to identify alternative ways to inhibit TGFβ signaling using human hepatic stellate cells and macrophages from humans and mice in vitro, as well as mouse models of liver, kidney, and lung fibrosis. We identified Mer tyrosine kinase (MERTK) as a TGFβ-inducible effector of fibrosis that was up-regulated during fibrosis in multiple organs in three mouse models. We confirmed these findings in liver biopsy samples from patients with metabolic dysfunction-associated fatty liver disease (MAFLD). MERTK also induced TGFβ expression and drove TGFβ signaling resulting in a positive feedback loop that promoted fibrosis in cultured cells. MERTK regulated both canonical and noncanonical TGFβ signaling in both mouse and human cells in vitro. MERTK increased transcription of genes regulating fibrosis by modulating chromatin accessibility and RNA polymerase II activity. In each of the three mouse models, disrupting the fibrosis-promoting signaling loop by reducing MERTK expression reduced organ fibrosis. Pharmacological inhibition of MERTK reduced fibrosis in these mouse models either when initiated immediately after injury or when initiated after fibrosis was established. Together, these data suggest that MERTK plays a role in modulating organ fibrosis and may be a potential target for treating fibrotic diseases.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| | - Rasha El Sharkway
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| | - Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| | - Mayada Metwally
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - David Bo Lu
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| | - Saleh A Alqahtani
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
9
|
Ramírez-Mejía MM, Qi X, Abenavoli L, Romero-Gómez M, Eslam M, Méndez-Sánchez N. Metabolic dysfunction: The silenced connection with fatty liver disease. Ann Hepatol 2023; 28:101138. [PMID: 37468095 DOI: 10.1016/j.aohep.2023.101138] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 07/21/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a global public health burden. Despite the increase in its prevalence, the disease has not received sufficient attention compared to the associated diseases such as diabetes mellitus and obesity. In 2020 it was proposed to rename NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD) in order to recognize the metabolic risk factors and the complex pathophysiological mechanisms associated with its development. Furthermore, along with the implementation of the proposed diagnostic criteria, the aim is to address the whole clinical spectrum of the disease, regardless of BMI and the presence of other hepatic comorbidities. As would it be expected with such a paradigm shift, differing viewpoints have emerged regarding the benefits and disadvantages of renaming fatty liver disease. The following review aims to describe the way to the MAFLD from a historical, pathophysiological and clinical perspective in order to highlight why MAFLD is the approach to follow.
Collapse
Affiliation(s)
- Mariana M Ramírez-Mejía
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico; Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Liaoning Province, China
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia of Catanzaro, Italy
| | - Manuel Romero-Gómez
- Digestive Diseases Unit, Department of Medicine, SeLiver Group, Institute of Biomedicine of Sevilla (HUVR/CSIC/US), University of Seville, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
10
|
Eslam M, George J. Two years on, a perspective on MAFLD. EGASTROENTEROLOGY 2023; 1:e100019. [PMID: 39943998 PMCID: PMC11770426 DOI: 10.1136/egastro-2023-100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 01/03/2025]
Abstract
To provide clarity for research studies and clinical care, a set of positive criteria for adults and children with metabolic (dysfunction) associated fatty liver disease (MAFLD) was recently published and has subsequently been widely endorsed. The development and subsequent validation of the criteria for MAFLD has created a positive momentum for change. During the course of the ongoing discussion on the redefinition, some concerns have surfaced that we thought needs clarification. In this review, we provide a perspective on MAFLD and bringing clarity to some of the key aspects that have been recently raised.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Pan Z, Alqahtani SA, Eslam M. MAFLD and chronic kidney disease: two sides of the same coin? Hepatol Int 2023; 17:519-521. [PMID: 37069420 DOI: 10.1007/s12072-023-10526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia
| | - Saleh A Alqahtani
- Liver Transplant Center, King Faisal Specialist Hospital and Research Center, Riyadh, 12713, Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|
12
|
Benegiamo G, von Alvensleben GV, Rodríguez-López S, Goeminne LJ, Bachmann AM, Morel JD, Broeckx E, Ma JY, Carreira V, Youssef SA, Azhar N, Reilly DF, D’Aquino K, Mullican S, Bou-Sleiman M, Auwerx J. The genetic background shapes the susceptibility to mitochondrial dysfunction and NASH progression. J Exp Med 2023; 220:213867. [PMID: 36787127 PMCID: PMC9960245 DOI: 10.1084/jem.20221738] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a global health concern without treatment. The challenge in finding effective therapies is due to the lack of good mouse models and the complexity of the disease, characterized by gene-environment interactions. We tested the susceptibility of seven mouse strains to develop NASH. The severity of the clinical phenotypes observed varied widely across strains. PWK/PhJ mice were the most prone to develop hepatic inflammation and the only strain to progress to NASH with extensive fibrosis, while CAST/EiJ mice were completely resistant. Levels of mitochondrial transcripts and proteins as well as mitochondrial function were robustly reduced specifically in the liver of PWK/PhJ mice, suggesting a central role of mitochondrial dysfunction in NASH progression. Importantly, the NASH gene expression profile of PWK/PhJ mice had the highest overlap with the human NASH signature. Our study exposes the limitations of using a single mouse genetic background in metabolic studies and describes a novel NASH mouse model with features of the human NASH.
Collapse
Affiliation(s)
- Giorgia Benegiamo
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland,Giorgia Benegiamo:
| | | | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Ludger J.E. Goeminne
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Alexis M. Bachmann
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Jean-David Morel
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Ellen Broeckx
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | - Jing Ying Ma
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | | | | | - Nabil Azhar
- Janssen Research and Development, LLC, Raritan, NJ, USA
| | | | | | | | - Maroun Bou-Sleiman
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École polytechnique fédérale de Lausanne, Lausanne, Switzerland,Correspondence to Johan Auwerx:
| |
Collapse
|
13
|
Wu N, Zhai X, Yuan F, Li J, Li D, Wang J, Zhang L, Shi Y, Ji G, He G, Liu B. Genetic variation in TBC1 domain family member 1 gene associates with the risk of lean NAFLD via high-density lipoprotein. Front Genet 2023; 13:1026725. [PMID: 36712867 PMCID: PMC9877292 DOI: 10.3389/fgene.2022.1026725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Objective: Non-alcoholic fatty liver disease (NAFLD) affects almost a quarter of the world's population. Although NAFLD often co-exists with obesity, a substantial proportion of NAFLD patients are lean which is relatively unexplored. This study aimed to examine the association between genetic variation in candidate genes, e.g., TBC1D1 and the risk of lean NAFLD in the elderly Chinese Han population. Methods: This is an extension of the research on physical examination in the Zhanjiang community center including 5387 residents, Shanghai, China, in 2017. According to the classification in adult Asian populations, participants were categorized into four groups: lean NAFLD (BMI <23, n = 106), non-lean NAFLD (BMI ≥23, n = 644), lean non-NAFLD (BMI <23, n = 216) and non-lean non-NAFLD (BMI ≥23, n = 253).116 NAFLD-related candidate genes, which cover 179 single nucleotide polymorphisms (SNPs) were included in the KEGG enrichment analysis. Independent samples t-test was adopted for the group comparison. The associations between genetic variations with the specific phenotype in five genetic models were analyzed with the "SNPassoc" R package and rechecked with logistic regression analysis. Mediation models were conducted to explore whether the certain phenotype can mediate the association between SNPs and the risk of lean NAFLD. Results: Compared with lean non-NAFLD individuals, lean NAFLD patients had higher BMI, low-density lipoprotein and triglyceride, and lower HDL. The AMPK signaling pathway, which includes TBC1D1 and ADIPOQ genes, was the most significant (p < .001). The A allele frequency of rs2279028 in TBC1D1 (p = .006) and G allele frequency of rs17366568 in ADIPOQ (p = .038) were significantly lower in lean NAFLD. The association between rs2279028 and the risk of lean NAFLD was mediated by HDL (p = .014). No significant mediation effect was found between rs17366568 and the risk of lean NAFLD. Conclusion: This study, for the first time, indicated that rs2279028 of TBC1D1 may contribute to the progression of lean NAFLD through HDL. This finding provides more evidence for exploring the mechanism of lean NAFLD and suggests practical solutions for the treatment of lean NAFLD.
Collapse
Affiliation(s)
- Na Wu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyu Zhai
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Li
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Li
- Zhangjiang Community Health Service Center of Pudong New District, Shanghai, China
| | - Jianying Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Guang Ji, ; Guang He, ; Baocheng Liu, ,
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Guang Ji, ; Guang He, ; Baocheng Liu, ,
| | - Baocheng Liu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Guang Ji, ; Guang He, ; Baocheng Liu, ,
| |
Collapse
|
14
|
Ismaiel A, Spinu M, Osan S, Leucuta DC, Popa SL, Chis BA, Farcas M, Popp RA, Olinic DM, Dumitrascu DL. MBOAT7 rs641738 variant in metabolic-dysfunction-associated fatty liver disease and cardiovascular risk. Med Pharm Rep 2023; 96:41-51. [PMID: 36818318 PMCID: PMC9924805 DOI: 10.15386/mpr-2504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Although metabolic-dysfunction-associated fatty liver disease (MAFLD) is associated with an increased cardiovascular risk, MAFLD predisposing genetic variants were not steadily related to cardiovascular events. Therefore, we aimed to assess whether membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) rs641738 variant is associated with an increased cardiovascular risk in in MAFLD patients. Methods We conducted an observational cross-sectional study including 77 subjects (38 MAFLD patients, 39 controls), between January-September 2020 using hepatic ultrasonography and SteatoTestTM to assess hepatic steatosis. Echocardiographic and Doppler ultrasound parameters were evaluated. Genomic DNA was extracted and rs641738 SNP was genotyped using TaqMan assays. Results The rs641738 variant was not significantly associated with MAFLD, with a p-value of 0.803, 0.5265, 0.9535, and 0.5751 for codominant, dominant, recessive, and overdominant genotypes, respectively. The rs641738 variant overdominant genotype significantly predicted atherosclerotic cardiovascular disease (ASCVD) risk algorithm in univariate analysis (-4.3 [95% CI -8.55 - -0.55, p-value= 0.048]), but lost significance after multivariate analysis (-3.98 [95% CI -7.9 - -0.05, p-value= 0.053]). The rs641738 variant recessive genotype significantly predicted ActiTest in univariate analysis (0.0963 [95% CI 0.0244 - 0.1681, p-value= 0.009]), but lost significance after multivariate analysis (0.0828 [95% CI -0.016 - 0.1816, p-value= 0.105]). Conclusion No significant association was observed between rs641738 variant and MAFLD in the studied population. The rs641738 variant was found to predict ASCVD risk score and ActiTest in univariate linear regression analysis. However, the significance of both associations was lost after performing multivariate analysis.
Collapse
|
15
|
Ismaiel A, Portincasa P, Dumitrascu DL. Natural History of Nonalcoholic Fatty Liver Disease. ESSENTIALS OF NON-ALCOHOLIC FATTY LIVER DISEASE 2023:19-43. [DOI: 10.1007/978-3-031-33548-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
NAFLD: genetics and its clinical implications. Clin Res Hepatol Gastroenterol 2022; 46:102003. [PMID: 35963605 DOI: 10.1016/j.clinre.2022.102003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Worldwide non-alcoholic fatty liver disease (NAFLD) is recognized as the most common type of liver disease and its burden increasing at an alarming rate. NAFLD entails steatosis, fibrosis, cirrhosis, and, finally, hepatocellular carcinoma (HCC). The substantial inter-patient variation during disease progression is the hallmark of individuals with NAFLD. The variability of NAFLD development and related complications among individuals is determined by genetic and environmental factors. Genome-wide association studies (GWAS) have discovered reproducible and robust associations between gene variants such as PNPLA3, TM6SF2, HSD17B13, MBOAT7, GCKR and NAFLD. Evidences have provided the new insights into the NAFLD biology and underlined potential pharmaceutical targets. Ideally, the candidate genes associated with the hereditability of NAFLD are mainly involved in assembly of lipid droplets, lipid remodeling, lipoprotein packing and secretion, redox status mitochondria, and de novo lipogenesis. In recent years, the ability to translate genetics into a clinical context has emerged substantially by combining genetic variants primarily associated with NAFLD into polygenic risk scores (PRS). These score in combination with metabolic factors could be utilized to identify the severe liver diseases in patients with the gene regulatory networks (GRNs). Hereby, we even have highlighted the current understanding related to the schedule therapeutic approach of an individual based on microbial colonization and dysbiosis reversal as a therapy for NAFLD. The premise of this review is to concentrate on the potential of genetic factors and their translation into the design of novel therapeutics, as well as their implications for future research into personalized medications using microbiota.
Collapse
|
17
|
Eslam M, El-Serag HB, Francque S, Sarin SK, Wei L, Bugianesi E, George J. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight. Nat Rev Gastroenterol Hepatol 2022; 19:638-651. [PMID: 35710982 DOI: 10.1038/s41575-022-00635-5] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) affects up to a third of the global population; its burden has grown in parallel with rising rates of type 2 diabetes mellitus and obesity. MAFLD increases the risk of end-stage liver disease, hepatocellular carcinoma, death and liver transplantation and has extrahepatic consequences, including cardiometabolic disease and cancers. Although typically associated with obesity, there is accumulating evidence that not all people with overweight or obesity develop fatty liver disease. On the other hand, a considerable proportion of patients with MAFLD are of normal weight, indicating the importance of metabolic health in the pathogenesis of the disease regardless of body mass index. The clinical profile, natural history and pathophysiology of patients with so-called lean MAFLD are not well characterized. In this Review, we provide epidemiological data on this group of patients and consider overall metabolic health and metabolic adaptation as a framework to best explain the pathogenesis of MAFLD and its heterogeneity in individuals of normal weight and in those who are above normal weight. This framework provides a conceptual schema for interrogating the MAFLD phenotype in individuals of normal weight that can translate to novel approaches for diagnosis and patient care.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium.,Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
18
|
Liao S, An K, Liu Z, He H, An Z, Su Q, Li S. Genetic variants associated with metabolic dysfunction-associated fatty liver disease in western China. J Clin Lab Anal 2022; 36:e24626. [PMID: 35881683 PMCID: PMC9459258 DOI: 10.1002/jcla.24626] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/21/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION We aimed to confirm the association between some single nucleotide polymorphisms (SNPs) and metabolic dysfunction-associated fatty liver disease (MAFLD) in western China. METHODS A total of 286 cases and 250 healthy controls were enrolled in our study. All samples were genotyped for patatin-like phospholipase domain containing 3 (PNPLA3) rs738409, transmembrane 6 superfamily member 2 (TM6SF2) rs58542926, membrane-bound O-acyltransferase domain containing 7 (MBOAT7) rs641738, glucokinase regulator (GCKR) rs1260326 and rs780094, and GATA zinc finger domain containing 2A (GATAD2A) rs4808199. Using logistic regression analysis, we evaluated the association between MAFLD and each SNP under different models. Multiple linear regression was used to find the association between SNPs and laboratory characteristics. Multifactor dimensionality reduction was applied to test SNP-SNP interactions. RESULTS The recessive model and additive model of PNPLA3 rs738409 variant were related to MAFLD (odds ratio [OR] = 1.791 and 1.377, respectively, p = 0.038 and 0.027, respectively). However, after Benjamini-Hochberg adjustment for multiple tests, all associations were no longer statistically significant. PNPLA3 rs738409 correlated with AST levels. GCKR rs780094 and rs1260326 negatively correlated with serum glucose but positively correlated with triglycerides in MAFLD. Based on MDR analysis, the best single-locus and multilocus models for MAFLD risk were rs738409 and six-locus models, respectively. CONCLUSIONS In the Han population in western China, no association was found between these SNPs and the risk of MAFLD. PNPLA3 rs738409 was associated with aspartate aminotransferase levels in MAFLD patients. GCKR variants were associated with increased triglyceride levels and reduced serum fasting glucose in patients with MAFLD.
Collapse
Affiliation(s)
- Shenling Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Kang An
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - He He
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenmei An
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Qiaoli Su
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Lu C, Zhu H, Zhao D, Zhang J, Yang K, Lv Y, Peng M, Xu X, Huang J, Shao Z, Xiao M, Li X. Oral-Gut Microbiome Analysis in Patients With Metabolic-Associated Fatty Liver Disease Having Different Tongue Image Feature. Front Cell Infect Microbiol 2022; 12:787143. [PMID: 35846747 PMCID: PMC9277304 DOI: 10.3389/fcimb.2022.787143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The objective of this study was to identify the biological correlation between the tongue coating color and oral and gut micro-characteristics in metabolic-associated fatty liver disease (MAFLD) patients. Method The characteristics of the tongue coating were examined using an automatic tongue diagnosis system. Tongue coating and stool samples were collected from 38 MAFLD patients, and 16S rDNA full-length assembly sequencing technology (16S-FAST) was used for bioinformatic analysis. Results Twenty-two and 16 subjects were included in two distinct clusters according to the white/yellow color of the tongue coating, which was assessed by the L*a*b* values of the image. Upon analyzing the microorganisms in the tongue coating, 66 and 62 pathognomonic bacterial genera were found in the White and Yellow Coating Groups, respectively. The abundance of Stomatobaculumis positively correlated with the a* values of the tongue coating in the White Coating Group, while Fusobacterium, Leptotrichia, and Tannerella abundance was significantly correlated with the b* values in the Yellow Coating Group. Function prediction mainly showed the involvement of protein families related to BRITE hierarchies and metabolism. The MHR (MONO%/high-density lipoprotein cholesterol) of the Yellow Coating Group was higher than that of the White Coating Group. Conclusion In MAFLD patients, lower a* values and higher b* values are indicators of a yellow tongue coating. There were also significant differences in the flora of different tongue coatings, with corresponding changes in the intestinal flora, indicating a correlation between carbohydrate metabolism disorders and inflammation in the oral microbiome.
Collapse
Affiliation(s)
- Chenxia Lu
- The Clinical Medical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Hui Zhu
- The Clinical Medical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Dan Zhao
- The Clinical Medical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jia Zhang
- Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Kai Yang
- Department of Research and Development, Germountx Company, Beijing, China
| | - Yi Lv
- Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Miao Peng
- Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xi Xu
- Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Jingjing Huang
- Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zuoyu Shao
- The Clinical Medical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China.,Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Institute of Liver Disease, Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China.,Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Mingzhong Xiao
- The Clinical Medical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China.,Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Institute of Liver Disease, Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China.,Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Xiaodong Li
- The Clinical Medical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China.,Department of Obesity, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China.,Institute of Liver Disease, Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China.,Hubei Key Laboratory of Theoretical and Applied Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
20
|
Combination Therapies for Nonalcoholic Fatty Liver Disease. J Pers Med 2022; 12:jpm12071166. [PMID: 35887662 PMCID: PMC9322793 DOI: 10.3390/jpm12071166] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/01/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered a highly prevalent disease associated with various co-morbidities that lead to socioeconomic burden. Despite large-scale investigation, no pharmacological treatment has been approved specifically for NAFLD to date. Lifestyle modifications and diet are regarded as highly beneficial for the management of NAFLD, albeit with poor compliance, thus rendering pharmacological treatment highly important. Based on the current failure to discover a “magic bullet” to treat all patients with NAFLD and considering the multifaceted pathophysiology of the disease, combination therapies may be considered to be a rational alternative approach. In this regard, several drug categories have been considered, including, but not limited to, lipid-lowering, anti-hypertensive, glucose-lowering, anti-obesity, anti-oxidant, anti-inflammatory and anti-fibrotic medications. The aim of this review is, in addition to summarizing some of the multiple factors contributing to the pathophysiology of NAFLD, to focus on the efficacy of pharmacological combinations on the management of NAFLD. This may provide evidence for a more personalized treatment of patients with NAFLD in the future.
Collapse
|
21
|
Metwally M, Berg T, Tsochatzis EA, Eslam M. Translation Reprogramming as a Novel Therapeutic Target in MAFLD. Adv Biol (Weinh) 2022; 6:e2101298. [PMID: 35240009 DOI: 10.1002/adbi.202101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/19/2022] [Indexed: 01/27/2023]
Abstract
Approved pharmacotherapies for metabolic-dysfunction-associated fatty liver disease (MAFLD) are lacking. Novel approaches and therapeutic targets that are likely to translate to clinical benefit are required. Targeting components of the translation machinery hold promise as a novel therapeutic approach that can overcome the well-known disease heterogeneity, as dysregulation of mRNA translation is a common feature independent of the MAFLD drivers. In this perspective, recent advances in understanding the role of mRNA translation in MAFLD are discussed, with a particular focus on the potential implications and challenges to "translate" these findings to the clinic, and an overview of similar recent efforts in other diseases is provided.
Collapse
Affiliation(s)
- Mayada Metwally
- Department of Internal Medicine, Minia University, Minia, 61111, Egypt
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, NW3 2QG, UK
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, 2145, Australia
| |
Collapse
|
22
|
Alharthi J, Eslam M. Biomarkers of Metabolic (Dysfunction)-associated Fatty Liver Disease: An Update. J Clin Transl Hepatol 2022; 10:134-139. [PMID: 35233382 PMCID: PMC8845164 DOI: 10.14218/jcth.2021.00248] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022] Open
Abstract
The prevalence of metabolic (dysfunction)-associated fatty liver disease (MAFLD) is rapidly increasing and affects up to two billion individuals globally, and this has also resulted in increased risks for cirrhosis, hepatocellular carcinoma, and liver transplants. In addition, it has also been linked to extrahepatic consequences, such as cardiovascular disease, diabetes, and various types of cancers. However, only a small proportion of patients with MAFLD develop these complications. Therefore, the identification of high-risk patients is paramount. Liver fibrosis is the major determinant in developing these complications. Although, liver biopsy is still considered the gold standard for the assessment of patients with MAFLD. Because of its invasive nature, among many other limitations, the search for noninvasive biomarkers for MAFLD remains an area of intensive research. In this review, we provide an update on the current and future biomarkers of MAFLD, including a discussion of the associated genetics, epigenetics, microbiota, and metabolomics. We also touch on the next wave of multiomic-based biomarkers.
Collapse
Affiliation(s)
- Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
- Correspondence to: Mohammed Eslam, Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead 2145, NSW, Australia. ORCID: https://orcid.org/0000-0002-4315-4144. Tel: +61-2-8890-7705, Fax: +61-2-9635-7582, E-mail:
| |
Collapse
|
23
|
Gaber Y, AbdAllah M, Salama A, Sayed M, Abdel Alem S, Nafady S. Metabolic-associated fatty liver disease and autoimmune hepatitis: an overlooked interaction. Expert Rev Gastroenterol Hepatol 2021; 15:1181-1189. [PMID: 34263707 DOI: 10.1080/17474124.2021.1952867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Metabolic-associated fatty liver disease (MAFLD) is the most common liver disease globally, and affects about a quarter of the general population. Autoimmune hepatitis (AIH) is a severe (sometimes fatal) liver disease that affects children and adults, with a rising prevalence. Thus, not surprisingly, both conditions can frequently coexist, with potential synergistic impact on the course of the disease and response to therapy of both entities. AREAS COVERED In this work, the authors aimed to provide a narrative updated review on this interaction, diagnosis, and management of MAFLD/AIH and the current challenges. EXPERT OPINION Clarifying the nature of the complex interaction between the two diseases was hampered by a myriad of factors, particularly the previous diagnosis of exclusion for fatty liver disease associated with metabolic dysfunction. The recent redefinition of fatty liver disease that led to the development of positive diagnostic criteria for MAFLD has the premise to help in circumventing some of these challenges.
Collapse
Affiliation(s)
- Yasmine Gaber
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed AbdAllah
- Medical Research Division, National Research Center, Giza, Egypt
| | - Asmaa Salama
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Beni-Suef University, Beni-suef, Egypt
| | - Manar Sayed
- Tropical Medicine Department, Faculty of Medicine, Fayoum University, Al Fayoum, Egypt
| | - Shereen Abdel Alem
- Endemic Medicine and Hepatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shaymaa Nafady
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Beni-Suef University, Beni-suef, Egypt
| |
Collapse
|
24
|
Zaiou M, Amrani R, Rihn B, Hajri T. Dietary Patterns Influence Target Gene Expression through Emerging Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease. Biomedicines 2021; 9:1256. [PMID: 34572442 PMCID: PMC8468830 DOI: 10.3390/biomedicines9091256] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) refers to the pathologic buildup of extra fat in the form of triglycerides in liver cells without excessive alcohol intake. NAFLD became the most common cause of chronic liver disease that is tightly associated with key aspects of metabolic disorders, including insulin resistance, obesity, diabetes, and metabolic syndrome. It is generally accepted that multiple mechanisms and pathways are involved in the pathogenesis of NAFLD. Heredity, sedentary lifestyle, westernized high sugar saturated fat diet, metabolic derangements, and gut microbiota, all may interact on a on genetically susceptible individual to cause the disease initiation and progression. While there is an unquestionable role for gene-diet interaction in the etiopathogenesis of NAFLD, it is increasingly apparent that epigenetic processes can orchestrate many aspects of this interaction and provide additional mechanistic insight. Exciting research demonstrated that epigenetic alterations in chromatin can influence gene expression chiefly at the transcriptional level in response to unbalanced diet, and therefore predispose an individual to NAFLD. Thus, further discoveries into molecular epigenetic mechanisms underlying the link between nutrition and aberrant hepatic gene expression can yield new insights into the pathogenesis of NAFLD, and allow innovative epigenetic-based strategies for its early prevention and targeted therapies. Herein, we outline the current knowledge of the interactive role of a high-fat high-calories diet and gene expression through DNA methylation and histone modifications on the pathogenesis of NAFLD. We also provide perspectives on the advancement of the epigenomics in the field and possible shortcomings and limitations ahead.
Collapse
Affiliation(s)
- Mohamed Zaiou
- The Jean-Lamour Institute, UMR 7198 CNRS, University of Lorraine, F-54000 Nancy, France;
| | - Rim Amrani
- Department of Neonatology, University Mohammed First, Oujda 60000, Morocco;
| | - Bertrand Rihn
- The Jean-Lamour Institute, UMR 7198 CNRS, University of Lorraine, F-54000 Nancy, France;
| | - Tahar Hajri
- Department of Human Ecology, Delaware State University, Dover, DE 1191, USA;
| |
Collapse
|
25
|
Jin H, Xu X, Pang B, Yang R, Sun H, Jiang C, Shao D, Shi J. Probiotic and prebiotic interventions for non-alcoholic fatty liver disease: a systematic review and network meta-analysis. Benef Microbes 2021; 12:517-529. [PMID: 34511051 DOI: 10.3920/bm2020.0183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Many studies have associated altered intestinal bacterial communities and non-alcoholic fatty liver disease, but the putative effects are inconclusive. The purpose of this network meta-analysis (NMA) was to evaluate the effects of probiotics, prebiotics, and synbiotics on non-alcoholic fatty liver disease through randomised intervention trials. Literature searches were performed until March 2020. For each outcome, a random NMA was performed, the surface under the cumulative ranking curve (SUCRA) was determined. A total of 22 randomised trials comparing prebiotic, probiotic, and synbiotic treatments included 1301 participants. Considering all seven results (aspartate aminotransferase, alanine aminotransferase, body mass index, weight, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol) together, the highest SUCRA values are probiotics (94%), synbiotics (61%) and prebiotics (56%), respectively. NMA results provide evidence that probiotics, prebiotics, and synbiotics can alleviate non-alcoholic fatty liver disease. However, due to the lack of high-quality randomised trials, this research also has some limitations.
Collapse
Affiliation(s)
- H Jin
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R
| | - X Xu
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R
| | - B Pang
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R
| | - R Yang
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R
| | - H Sun
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R.,School of Hospitality Management, Guilin Tourism University, 26 Liangfeng Road, Yanshan District, Guilin City, Guangxi Province 541006, China P.R
| | - C Jiang
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R
| | - D Shao
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R
| | - J Shi
- A Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China P.R
| |
Collapse
|
26
|
Wang M, Zhang R, Wang M, Zhang L, Ding Y, Tang Z, Wang H, Zhang W, Chen Y, Wang J. Genetic Polymorphism of Vitamin D Family Genes CYP2R1, CYP24A1, and CYP27B1 Are Associated With a High Risk of Non-alcoholic Fatty Liver Disease: A Case-Control Study. Front Genet 2021; 12:717533. [PMID: 34484304 PMCID: PMC8415785 DOI: 10.3389/fgene.2021.717533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 12/30/2022] Open
Abstract
Background Previous studies have highlighted the important role of vitamin D and calcium pathway genes in immune modulation, cell differentiation and proliferation, and inflammation regulation, all closely implicated in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Objective This study aims to investigate whether 11 candidate single nucleotide polymorphisms (SNPs) in vitamin D and calcium pathway genes (CYP2R1, CYP24A1, and CYP27B1) are associated with the risk of NAFLD. Methods In this case-control study, a total of 3,023 subjects were enrolled, including 1,114 NAFLD cases and 1,909 controls. Eleven genetic variants in CYP2R1, CYP24A1, and CYP27B1 genes were genotyped. Logistic regression analysis was used to assess the effects of these variants on NAFLD risk. The functional annotations of positive SNPs were further evaluated by bioinformatics analysis. Results After adjusting for age, gender, and metabolic measures, we identified that CYP24A1 rs2296241 variant genotypes (recessive model: OR, 1.316; 95% CI, 1.048–1.653; p = 0.018), rs2248359 variant genotypes (recessive model: OR, 1.315; 95% CI, 1.033–1.674; p = 0.026), and CYP27B1 rs4646536 variant genotypes (additive model: OR, 1.147; 95% CI, 1.005–1.310; p = 0.042) were associated with an elevated risk of NAFLD. In combined effects analysis, we found that NAFLD risk significantly increased among patients carrying more rs2296241-A, rs2248359-T, and rs4646536-T alleles (ptrend = 0.049). Multivariate stepwise analysis indicated that age, visceral obesity, ALT, γ-GT, hypertriglyceridemia, hypertension, low HDL-C, hyperglycemia, and unfavorable alleles were independent predictors of NAFLD (all p < 0.05). The area under the receiver operating characteristic curve was 0.789 for all the above factors. Conclusion The polymorphisms of vitamin family genes CYP24A1 (rs2296241, CYP24A1, and rs2248359) and CYP27B1 (rs4646536) were associated with NAFLD risk in Chinese Han population, which might provide new insight into NAFLD pathogenesis and tools for screening high-risk population.
Collapse
Affiliation(s)
- Minxian Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Ru Zhang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Liuxin Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Ding
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Zongzhe Tang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Hongliang Wang
- Ninghai Road Community Health Service Center of Nanjing, Nanjing, China
| | - Wei Zhang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Yue Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| |
Collapse
|
27
|
A Sequential Algorithm Combining ADAPT and Liver Stiffness Can Stage Metabolic-Associated Fatty Liver Disease in Hospital-Based and Primary Care Patients. Am J Gastroenterol 2021; 116:984-993. [PMID: 33252454 DOI: 10.14309/ajg.0000000000001059] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Metabolic-associated fatty liver disease is common, with fibrosis the major determinant of adverse outcomes. Population-based screening tools with high diagnostic accuracy for the staging of fibrosis are lacking. METHODS Three independent cohorts, 2 with both liver biopsy and liver stiffness measurements (LSMs, n = 254 and 65) and a population sample (n = 713), were studied. The performance of a recently developed noninvasive algorithm (ADAPT [age, diabetes, PRO-C3 and platelets panel]) as well as aspartate aminotransferase-to-platelet ratio index, fibrosis-4, nonalcoholic fatty liver disease fibrosis score, and LSM was used to stage patients for significant (≥F2) and advanced (≥F3) fibrosis. RESULTS In the hospital-based cohorts, the N-terminal propeptide of type 3 collagen (Pro-C3) increased with fibrosis stage (P < 0.0001) and independently associated with advanced fibrosis (odds ratio = 1.091, 95% confidence interval [CI]: 1.053-1.113, P = 0.0001). ADAPT showed areas under the receiver operating characteristics curve of 0.831 (95% CI: 0.779-0.875) in the derivation and 0.879 (95% CI: 0.774-0.946) in the validation cohort for advanced fibrosis. This was superior to the existing fibrosis scores, aspartate aminotransferase-to-platelet ratio index, fibrosis-4, BARD (BMI, aspartate aminotransferase to alanine aminotransferase ratio [AAR], diabetes), and nonalcoholic fatty liver disease fibrosis score in most comparisons and comparable with LSM. Serial use of ADAPT and LSM had diagnostic accuracy of 92.5%, with 98% and 100% negative predictive value in the derivation and validation cohorts, respectively. In the population cohort, PRO-C3 associated with advanced fibrosis (P = 0.04), while ADAPT had a negative predictive value of 98% for excluding advanced fibrosis. DISCUSSION PRO-C3 and ADAPT reliably exclude advanced fibrosis in low-risk populations. The serial combination of ADAPT with LSM has high diagnostic accuracy with a low requirement for liver biopsy. The proposed algorithm would help stratify those who need biopsies and narrow down those patients who would need to be referred to specialty clinics.
Collapse
|
28
|
Albhaisi S, Sanyal AJ. Gene-Environmental Interactions as Metabolic Drivers of Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2021; 12:665987. [PMID: 34040583 PMCID: PMC8142267 DOI: 10.3389/fendo.2021.665987] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of chronic liver disease worldwide in the past few decades as a consequence of the global obesity epidemic and is associated with significant morbidity and mortality. NAFLD is closely associated with components of the metabolic syndrome, type 2 diabetes mellitus and cardiovascular disease, suggesting a plausible metabolic mechanistic basis. Metabolic inflexibility is considered a nidus for NAFLD pathogenesis, causing lipotoxicity, mitochondrial dysfunction and cellular stress leading to inflammation, apoptosis and fibrogenesis, thus mediating disease progression into nonalcoholic steatohepatitis (NASH) and ultimately cirrhosis. In this review, we describe they key metabolic drivers that contribute to development of NAFLD and NASH, and we explain how NASH is a metabolic disease. Understanding the metabolic basis of NASH is crucial for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Somaya Albhaisi
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Arun J. Sanyal,
| |
Collapse
|
29
|
Ismaiel A, Dumitrascu DL. Genetic predisposition in metabolic-dysfunction-associated fatty liver disease and cardiovascular outcomes-Systematic review. Eur J Clin Invest 2020; 50:e13331. [PMID: 32589269 DOI: 10.1111/eci.13331] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite the demonstrated increased cardiovascular (CV) risk associated with metabolic-dysfunction-associated fatty liver disease (MAFLD), genetic variants predisposing to MAFLD were not constantly associated with CV events. Recently, rs641738C > T near membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) has been studied in MAFLD and CV outcomes. Therefore, we aimed to evaluate the association between rs641738C > T in the presence and severity of hepatic steatosis, fibrosis, biochemical markers and progression to hepatocellular carcinoma (HCC), in addition to CV outcomes in MAFLD. MATERIALS AND METHODS An electronic search on PubMed, Embase and Cochrane Library for articles published till 23 March 2020 was systematically performed. Articles were screened, and data extracted from eligible studies by two reviewers independently. RESULTS Studies conducted on adults with MAFLD involving European, Hispanic and African American populations evaluating rs641738 reported reduced hepatic expression of MBOAT7, increased hepatic fat content, severity of MAFLD, susceptibility to develop NASH, advanced fibrosis and HCC in adults. However, most articles involving Asian individuals contradicted these findings. Studies involving obese children associated rs641738 with increased plasma alanine aminotransferase (ALT) levels, while its association with MAFLD remains inconsistent. The rs641738 variant was assessed as a MAFLD susceptibility gene in coronary artery disease (CAD) reporting neutral effects. CONCLUSIONS Despite inconclusive results in Asian populations, rs641738C > T near MBOAT7 is associated with increased hepatic fat, MAFLD severity, susceptibility to develop NASH, advanced fibrosis and HCC in adults from Caucasian, Hispanic and African American ethnicities with MAFLD, as well as elevated ALT levels in children, while exerting neutral effects in CAD.
Collapse
Affiliation(s)
- Abdulrahman Ismaiel
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,2nd Department of Internal Medicine, Cluj-Napoca, Romania
| | - Dan L Dumitrascu
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,2nd Department of Internal Medicine, Cluj-Napoca, Romania
| |
Collapse
|
30
|
Lonardo A, Leoni S, Alswat KA, Fouad Y. History of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:E5888. [PMID: 32824337 PMCID: PMC7460697 DOI: 10.3390/ijms21165888] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Based on the assumption that characterizing the history of a disease will help in improving practice while offering a clue to research, this article aims at reviewing the history of nonalcoholic fatty liver disease (NAFLD) in adults and children. To this end, we address the history of NAFLD histopathology, which begins in 1980 with Ludwig's seminal studies, although previous studies date back to the 19th century. Moreover, the principal milestones in the definition of genetic NAFLD are summarized. Next, a specific account is given of the evolution, over time, of our understanding of the association of NAFLD with metabolic syndrome, spanning from the outdated concept of "NAFLD as a manifestation of the Metabolic Syndrome", to the more appropriate consideration that NAFLD has, with metabolic syndrome, a mutual and bi-directional relationship. In addition, we also report on the evolution from first intuitions to more recent studies, supporting NAFLD as an independent risk factor for cardiovascular disease. This association probably has deep roots, going back to ancient Middle Eastern cultures, wherein the liver had a significance similar to that which the heart holds in contemporary society. Conversely, the notions that NAFLD is a forerunner of hepatocellular carcinoma and extra-hepatic cancers is definitely more modern. Interestingly, guidelines issued by hepatological societies have lagged behind the identification of NAFLD by decades. A comparative analysis of these documents defines both shared attitudes (e.g., ultrasonography and lifestyle changes as the first approaches) and diverging key points (e.g., the threshold of alcohol consumption, screening methods, optimal non-invasive assessment of liver fibrosis and drug treatment options). Finally, the principal historical steps in the general, cellular and molecular pathogenesis of NAFLD are reviewed. We conclude that an in-depth understanding of the history of the disease permits us to better comprehend the disease itself, as well as to anticipate the lines of development of future NAFLD research.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Ospedale Civile di Baggiovara, UOC Medicina Metabolica, Dipartimento di Medicina Interna Generale, d’Urgenza e post Acuzie, Azienda Ospedaliero-Universitaria di Modena, Via Giardini 1135, 41125 Modena, Italy
| | - Simona Leoni
- Internal Medicine Unit, Department of Digestive Diseases, S.Orsola-Malpighi Hospital, Via Massarenti 9, 40136 Bologna, Italy;
| | - Khalid A. Alswat
- Liver Research Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11322, Saudi Arabia;
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Minya 19111, Egypt;
| |
Collapse
|
31
|
Association of Genetic and Environmental Factors with Non-Alcoholic Fatty Liver Disease in a Chinese Han Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145217. [PMID: 32698306 PMCID: PMC7399983 DOI: 10.3390/ijerph17145217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 01/31/2023]
Abstract
Lifestyle choices such as the intake of sweets, history of diseases, and genetic variants seem to play a role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). To explore which genetic and environmental factors are associated with NAFLD in a Chinese Han population, we conducted this study. We collected the medical reports, lifestyle details, and blood samples of individuals and used the polymerase chain reaction-ligase detection reaction method to genotype the single-nucleotide polymorphism (SNPs) from the 2113 eligible people. The GG genotype of the additive model of rs7493 in the PON2, the CC genotype of the additive and recessive models of rs7593130 in the ADCY3, together with dyslipidemia, regular intake of egg and sweets and hypertension, increased the risk of NAFLD (adjusted OR > 1, p < 0.05). The TT genotype of the additive and dominant models of rs11583680 in the PCSK9, together with the regular intake of vegetable, reduced the risk of NAFLD (adjusted OR < 1, p < 0.05). In addition, interactions between some variables were found. Eventually, we identified three SNPs and six environmental factors associated with NAFLD. These results provide the theoretical basis for gene and other risk factors screening to prevent NAFLD.
Collapse
|
32
|
DiStefano JK. Fructose-mediated effects on gene expression and epigenetic mechanisms associated with NAFLD pathogenesis. Cell Mol Life Sci 2020; 77:2079-2090. [PMID: 31760464 PMCID: PMC7440926 DOI: 10.1007/s00018-019-03390-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic, frequently progressive condition that develops in response to excessive hepatocyte fat accumulation (i.e., steatosis) in the absence of significant alcohol consumption. Liver steatosis develops as a result of imbalanced lipid metabolism, driven largely by increased rates of de novo lipogenesis and hepatic fatty acid uptake and reduced fatty acid oxidation and/or disposal to the circulation. Fructose is a naturally occurring simple sugar, which is most commonly consumed in modern diets in the form of sucrose, a disaccharide comprised of one molecule of fructose covalently bonded with one molecule of glucose. A number of observational and experimental studies have demonstrated detrimental effects of dietary fructose consumption not only on diverse metabolic outcomes such as insulin resistance and obesity, but also on hepatic steatosis and NAFLD-related fibrosis. Despite the compelling evidence that excessive fructose consumption is associated with the presence of NAFLD and may even promote the development and progression of NAFLD to more clinically severe phenotypes, the molecular mechanisms by which fructose elicits effects on dysregulated liver metabolism remain unclear. Emerging data suggest that dietary fructose may directly alter the expression of genes involved in lipid metabolism, including those that increase hepatic fat accumulation or reduce hepatic fat removal. The aim of this review is to summarize the current research supporting a role for dietary fructose intake in the modulation of transcriptomic and epigenetic mechanisms underlying the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Johanna K DiStefano
- Diabetes and Fibrotic Disease Unit, Translational Genomics Research Institute, 445 N 5th Street, Phoenix, AZ, 85004, USA.
| |
Collapse
|
33
|
Eslam M, Sanyal AJ, George J, Neuschwander-Tetri B, Tiribelli C, Kleiner DE, Brunt E, Bugianesi E, Yki-Järvinen H, Grønbæk H, Cortez-Pinto H, George J, Fan J, Valenti L, Abdelmalek M, Romero-Gomez M, Rinella M, Arrese M, Eslam M, Bedossa P, Newsome PN, Anstee QM, Jalan R, Bataller R, Loomba R, Sookoian S, Sarin SK, Harrison S, Kawaguchi T, Wong VWS, Ratziu V, Yilmaz Y, Younossi Z. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020; 158:1999-2014.e1. [PMID: 32044314 DOI: 10.1053/j.gastro.2019.11.312] [Citation(s) in RCA: 2054] [Impact Index Per Article: 410.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/27/2019] [Accepted: 11/05/2019] [Indexed: 12/02/2022]
Abstract
Fatty liver associated with metabolic dysfunction is common, affects a quarter of the population, and has no approved drug therapy. Although pharmacotherapies are in development, response rates appear modest. The heterogeneous pathogenesis of metabolic fatty liver diseases and inaccuracies in terminology and definitions necessitate a reappraisal of nomenclature to inform clinical trial design and drug development. A group of experts sought to integrate current understanding of patient heterogeneity captured under the acronym nonalcoholic fatty liver disease (NAFLD) and provide suggestions on terminology that more accurately reflects pathogenesis and can help in patient stratification for management. Experts reached consensus that NAFLD does not reflect current knowledge, and metabolic (dysfunction) associated fatty liver disease "MAFLD" was suggested as a more appropriate overarching term. This opens the door for efforts from the research community to update the nomenclature and subphenotype the disease to accelerate the translational path to new treatments.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Arun J Sanyal
- Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Alharthi J, Latchoumanin O, George J, Eslam M. Macrophages in metabolic associated fatty liver disease. World J Gastroenterol 2020; 26:1861-1878. [PMID: 32390698 PMCID: PMC7201150 DOI: 10.3748/wjg.v26.i16.1861] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/10/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolic associated fatty liver disease (MAFLD), formerly named non-alcoholic fatty liver disease is the most common liver disorder in many countries. The inflammatory subtype termed steatohepatitis is a driver of disease progression to cirrhosis, hepatocellular carcinoma, liver transplantation, and death, but also to extrahepatic complications including cardiovascular disease, diabetes and chronic kidney disease. The plasticity of macrophages in response to various environmental cues and the fact that they can orchestrate cross talk between different cellular players during disease development and progression render them an ideal target for drug development. This report reviews recent advances in our understanding of macrophage biology during the entire spectrum of MAFLD including steatosis, inflammation, fibrosis, and hepatocellular carcinoma, as well as for the extra-hepatic manifestations of MAFLD. We discuss the underlying molecular mechanisms of macrophage activation and polarization as well as cross talk with other cell types such as hepatocytes, hepatic stellate cells, and adipose tissue. We conclude with a discussion on the potential translational implications and challenges for macrophage based therapeutics for MAFLD.
Collapse
Affiliation(s)
- Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney 2145, NSW, Australia
| |
Collapse
|
35
|
Bayoumi A, Grønbæk H, George J, Eslam M. The Epigenetic Drug Discovery Landscape for Metabolic-associated Fatty Liver Disease. Trends Genet 2020; 36:429-441. [PMID: 32396836 DOI: 10.1016/j.tig.2020.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Despite decades of research, effective therapies for metabolic (dysfunction)-associated fatty liver disease (MAFLD) are lacking. An increasing body of evidence suggests that epigenetic dysregulation is frequent in MAFLD, and orchestrates many aspects of its development and progression. Furthermore, the high plasticity of epigenetic modifications in response to environmental cues renders epigenetics a novel area for therapeutic drug discovery. Over recent years, several epigenetics-based drugs and diagnostic biomarkers have entered clinical development and/or obtained regulatory approval. Here, we review recent advances in our understanding of epigenetic regulation and programming during MAFLD, including DNA methylation, histone modifications, chromatin remodelling, transcriptional control, and noncoding (nc)RNAs. We also discuss the potential translational implications and challenges of epigenetics in the context of MAFLD.
Collapse
Affiliation(s)
- Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
36
|
Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology. Nat Rev Gastroenterol Hepatol 2020; 17:40-52. [PMID: 31641249 DOI: 10.1038/s41575-019-0212-0] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2019] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects around a quarter of the global population, paralleling worldwide increases in obesity and metabolic syndrome. NAFLD arises in the context of systemic metabolic dysfunction that concomitantly amplifies the risk of cardiovascular disease and diabetes. These interrelated conditions have long been recognized to have a heritable component, and advances using unbiased association studies followed by functional characterization have created a paradigm for unravelling the genetic architecture of these conditions. A novel perspective is to characterize the shared genetic basis of NAFLD and other related disorders. This information on shared genetic risks and their biological overlap should in future enable the development of precision medicine approaches through better patient stratification, and enable the identification of preventive and therapeutic strategies. In this Review, we discuss current knowledge of the genetic basis of NAFLD and of possible pleiotropy between NAFLD and other liver diseases as well as other related metabolic disorders. We also discuss evidence of causality in NAFLD and other related diseases and the translational significance of such evidence, and future challenges from the study of genetic pleiotropy.
Collapse
|
37
|
Iruarrizaga-Lejarreta M, Arretxe E, Alonso C. Using metabolomics to develop precision medicine strategies to treat nonalcoholic steatohepatitis. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1685379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Enara Arretxe
- OWL Metabolomics, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Cristina Alonso
- OWL Metabolomics, Parque Tecnológico de Bizkaia, Derio, Spain
| |
Collapse
|
38
|
Eslam M, Sanyal AJ, George J. Toward More Accurate Nomenclature for Fatty Liver Diseases. Gastroenterology 2019; 157:590-593. [PMID: 31158374 DOI: 10.1053/j.gastro.2019.05.064] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/25/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia.
| | - Arun J Sanyal
- Virginia Commonwealth University, School of Medicine, Richmond, Virginia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
39
|
Eslam M, George J. Genetic Insights for Drug Development in NAFLD. Trends Pharmacol Sci 2019; 40:506-516. [PMID: 31160124 DOI: 10.1016/j.tips.2019.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 12/21/2022]
Abstract
Drug development is a costly, time-consuming, and challenging endeavour, with only a few agents reaching the threshold of approval for clinical use. Therefore, approaches to more efficiently identify targets that are likely to translate to clinical benefit are required. Interrogation of the human genome in large patient cohorts has rapidly advanced our knowledge of the genetic architecture and underlying mechanisms of many diseases, including nonalcoholic fatty liver disease (NAFLD). There are no approved pharmacotherapies for NAFLD currently. Genetic insights provide a powerful and new approach to infer and prioritise candidate drugs, with such selection avoiding myriad pitfalls, while defining likely benefits. In this review, we discuss the prospects and challenges for the optimal utilisation of genetic findings for improving and accelerating the NAFLD drug discovery pipeline.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
40
|
Metwally M, Bayoumi A, Romero-Gomez M, Thabet K, John M, Adams LA, Huo X, Aller R, García-Monzón C, Teresa Arias-Loste M, Bugianesi E, Miele L, Gallego-Durán R, Fischer J, Berg T, Liddle C, Qiao L, George J, Eslam M. A polymorphism in the Irisin-encoding gene (FNDC5) associates with hepatic steatosis by differential miRNA binding to the 3'UTR. J Hepatol 2019; 70:494-500. [PMID: 30389552 DOI: 10.1016/j.jhep.2018.10.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 10/09/2018] [Accepted: 10/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Irisin, the cleaved extra-cellular fragment of the Fibronectin type III domain-containing protein 5 (FNDC5) is a myokine that is proposed to have favorable metabolic activity. We aimed to elucidate the currently undefined role of variants in the FNDC5 gene in non-alcoholic fatty liver disease (NAFLD). METHODS We prioritized single nucleotide polymorphisms in FNDC5 on the basis of their putative biological function and identified rs3480 in the 3' untranslated region (3'UTR). We studied the association of rs3480 with liver disease severity and the metabolic profile of 987 Caucasian patients with NAFLD. Functional investigations were undertaken using luciferase reporter assays of the 3'UTR of human FNDC5, pyrosequencing for allele-specific expression of FNDC5 in liver, measurement of serum irisin, and bioinformatics analysis. RESULTS The rs3480 (G) allele was associated with advanced steatosis (OR 1.29; 95% CI 1.08-1.55; p = 0.004), but not with other histological features. This effect was independent but additive to PNPLA3 and TM6SF2. The rs3480 polymorphism influenced FNDC5 mRNA stability and the binding of miR-135a-5P. Compared with controls, hepatic expression of this microRNA was upregulated while FNDC5 expression was downregulated. Elevated serum irisin was associated with reduced steatosis, and an improved metabolic profile. CONCLUSIONS Carriage of the FNDC5 rs3480 minor (G) allele is associated with more severe steatosis in NAFLD through a microRNA-mediated mechanism controlling FNDC5 mRNA stability. Irisin is likely to have a favorable metabolic impact on NAFLD. LAY SUMMARY Irisin is a novel protein produced mainly by muscle, which is known to be released into the circulation, with an unclear role in liver fat deposition. This study demonstrates that genetic variants in the gene encoding the irisin protein modulate the risk of liver fat in patients with fatty liver disease. Interestingly, these effects are independent of, but additive to those of other recently described genetic variants that contribute to liver fat. In functional studies, we have deciphered the detailed molecular mechanisms by which this genetic variant mediates its effects.
Collapse
Affiliation(s)
- Mayada Metwally
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Manuel Romero-Gomez
- Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, Sevilla, Spain
| | - Khaled Thabet
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia; Department of Biochemistry, Faculty of Pharmacy, Minia University, Egypt
| | - Miya John
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Leon A Adams
- Medical School, Sir Charles Gairdner Hospital Unit, University of Western Australia, Nedlands, WA, Australia
| | - Xiaoqi Huo
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Rocio Aller
- Center of Investigation of Endocrinology and Nutrition, School of Medicine, and Unit of Investigation, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Instituto de Investigacion Sanitaria Princesa, University Hospital Santa Cristina, CIBERehd, Madrid, Spain
| | - María Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Science, University of Turin, Turin, Italy
| | - Luca Miele
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Rocio Gallego-Durán
- Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, Sevilla, Spain
| | - Janett Fischer
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| |
Collapse
|
41
|
Vespasiani-Gentilucci U, Gallo P, Dell’Unto C, Volpentesta M, Antonelli-Incalzi R, Picardi A. Promoting genetics in non-alcoholic fatty liver disease: Combined risk score through polymorphisms and clinical variables. World J Gastroenterol 2018; 24:4835-4845. [PMID: 30487694 PMCID: PMC6250919 DOI: 10.3748/wjg.v24.i43.4835] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/22/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has a prevalence of approximately 30% in western countries, and is emerging as the first cause of liver cirrhosis and hepatocellular carcinoma (HCC). Therefore, risk stratification emerges as fundamental in order to optimize human and economic resources, and genetics displays intrinsic characteristics suitable to fulfill this task. According to the available data, heritability estimates for hepatic fat content range from 20% to 70%, and an almost 80% of shared heritability has been found between hepatic fat content and fibrosis. The rs738409 single nucleotide polymorphism (SNP) in patatin-like phospholipase domain-containing protein 3 gene and the rs58542926 SNP in transmembrane 6 superfamily member 2 gene have been robustly associated with NAFLD and with its progression, but promising results have been obtained with many other SNPs. Moreover, there has been proof of the additive role of the different SNPs in determining liver damage, and there have been preliminary experiences in which risk scores created through a few genetic variants, alone or in combination with clinical variables, were associated with a strongly potentiated risk of NAFLD, non-alcoholic steatohepatitis (NASH), NASH fibrosis or NAFLD-HCC. However, to date, clinical translation of genetics in the field of NAFLD has been poor or absent. Fortunately, the research we have done seems to have placed us on the right path: We should rely on longitudinal rather than on cross-sectional studies; we should focus on relevant outcomes rather than on simple liver fat accumulation; and we should put together the genetic and clinical information. The hope is that combined genetic/clinical scores, derived from longitudinal studies and built on a few strong genetic variants and relevant clinical variables, will reach a significant predictive power, such as to have clinical utility for risk stratification at the single patient level and even to esteem the impact of intervention on the risk of disease-related outcomes. Well-structured future studies would demonstrate if this vision can become a reality.
Collapse
Affiliation(s)
| | - Paolo Gallo
- Unit of Internal Medicine and Hepatology, Department of Medicine, University Campus Bio-Medico, Rome 00128, Italy
| | - Chiara Dell’Unto
- Unit of Internal Medicine and Hepatology, Department of Medicine, University Campus Bio-Medico, Rome 00128, Italy
| | - Mara Volpentesta
- Unit of Internal Medicine and Hepatology, Department of Medicine, University Campus Bio-Medico, Rome 00128, Italy
| | - Raffaele Antonelli-Incalzi
- Unit of Internal Medicine and Hepatology, Department of Medicine, University Campus Bio-Medico, Rome 00128, Italy
| | - Antonio Picardi
- Unit of Internal Medicine and Hepatology, Department of Medicine, University Campus Bio-Medico, Rome 00128, Italy
| |
Collapse
|
42
|
Yu X, Ren LP, Wang C, Zhu YJ, Xing HY, Zhao J, Song GY. Role of X-Box Binding Protein-1 in Fructose-Induced De Novo Lipogenesis in HepG2 Cells. Chin Med J (Engl) 2018; 131:2310-2319. [PMID: 30246717 PMCID: PMC6166463 DOI: 10.4103/0366-6999.241799] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A high consumption of fructose leads to hepatic steatosis. About 20-30% of triglycerides are synthesized via de novo lipogenesis. Some studies showed that endoplasmic reticulum stress (ERS) is involved in this process, while others showed that a lipotoxic environment directly influences ER homeostasis. Here, our aim was to investigate the causal relationship between ERS and fatty acid synthesis and the effect of X-box binding protein-1 (XBP-1), one marker of ERS, on hepatic lipid accumulation stimulated by high fructose. METHODS HepG2 cells were incubated with different concentrations of fructose. Upstream regulators of de novo lipogenesis (i.e., carbohydrate response element-binding protein [ChREBP] and sterol regulatory element-binding protein 1c [SREBP-1c]) were measured by polymerase chain reaction and key lipogenic enzymes (acetyl-CoA carboxylase [ACC], fatty acid synthase [FAS], and stearoyl-CoA desaturase-1 [SCD-1]) by Western blotting. The same lipogenesis-associated factors were then evaluated after exposure of HepG2 cells to high fructose followed by the ERS inhibitor tauroursodeoxycholic acid (TUDCA) or the ERS inducer thapsigargin. Finally, the same lipogenesis-associated factors were evaluated in HepG2 cells after XBP-1 upregulation or downregulation through cell transfection. RESULTS Exposure to high fructose increased triglyceride levels in a dose- and time-dependent manner and significantly increased mRNA levels of SREBP-1c and ChREBP and protein levels of FAS, ACC, and SCD-1, concomitant with XBP-1 conversion to an active spliced form. Lipogenesis-associated factors induced by high fructose were inhibited by TUDCA and induced by thapsigargin. Triglyceride level in XBP-1-deficient group decreased significantly compared with high-fructose group (4.41 ± 0.54 μmol/g vs. 6.52 ± 0.38 μmol/g, P < 0.001), as mRNA expressions of SREBP-1c (2.92 ± 0.46 vs. 5.08 ± 0.41, P < 0.01) and protein levels of FAS (0.53 ± 0.06 vs. 0.85 ± 0.05, P = 0.01), SCD-1 (0.65 ± 0.06 vs. 0.90 ± 0.04, P = 0.04), and ACC (0.38 ± 0.03 vs. 0.95 ± 0.06, P < 0.01) decreased. Conversely, levels of triglyceride (4.22 ± 0.54 μmol/g vs. 2.41 ± 0.35 μmol/g, P < 0.001), mRNA expression of SREBP-1c (2.70 ± 0.33 vs. 1.00 ± 0.00, P < 0.01), and protein expression of SCD-1 (0.93 ± 0.06 vs. 0.26 ± 0.05, P < 0.01), ACC (0.98 ± 0.09 vs. 0.43 ± 0.03, P < 0.01), and FAS (0.90 ± 0.33 vs. 0.71 ± 0.02, P = 0.04) in XBP-1s-upregulated group increased compared with the untransfected group. CONCLUSIONS ERS is associated with de novo lipogenesis, and XBP-1 partially mediates high-fructose-induced lipid accumulation in HepG2 cells through augmentation of de novo lipogenesis.
Collapse
Affiliation(s)
- Xian Yu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Lu-Ping Ren
- Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Ya-Jun Zhu
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Han-Ying Xing
- Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Jing Zhao
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Guang-Yao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050051, China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
- Hebei Key Laboratory of Metabolic Disease, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
43
|
The Role of Long Non-Coding RNAs (lncRNAs) in the Development and Progression of Fibrosis Associated with Nonalcoholic Fatty Liver Disease (NAFLD). Noncoding RNA 2018; 4:ncrna4030018. [PMID: 30134610 PMCID: PMC6162709 DOI: 10.3390/ncrna4030018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/14/2018] [Accepted: 08/17/2018] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of conditions ranging from hepatic steatosis to inflammation (nonalcoholic steatohepatitis or NASH) with or without fibrosis, in the absence of significant alcohol consumption. The presence of fibrosis in NASH patients is associated with greater liver-related morbidity and mortality; however, the molecular mechanisms underlying the development of fibrosis and cirrhosis in NAFLD patients remain poorly understood. Long non-coding RNAs (lncRNAs) are emerging as key contributors to biological processes that are underpinning the initiation and progression of NAFLD fibrosis. This review summarizes the experimental findings that have been obtained to date in animal models of liver fibrosis and NAFLD patients with fibrosis. We also discuss the potential applicability of circulating lncRNAs to serve as biomarkers for the diagnosis and prognosis of NAFLD fibrosis. A better understanding of the role played by lncRNAs in NAFLD fibrosis is critical for the identification of novel therapeutic targets for drug development and improved, noninvasive methods for disease diagnosis.
Collapse
|
44
|
Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J Hepatol 2018; 68:268-279. [PMID: 29122391 DOI: 10.1016/j.jhep.2017.09.003] [Citation(s) in RCA: 638] [Impact Index Per Article: 91.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is now recognised as the most common liver disease worldwide. It encompasses a broad spectrum of conditions, from simple steatosis, through non-alcoholic steatohepatitis, to fibrosis and ultimately cirrhosis and hepatocellular carcinoma. A hallmark of NAFLD is the substantial inter-patient variation in disease progression. NAFLD is considered a complex disease trait such that interactions between the environment and a susceptible polygenic host background determine disease phenotype and influence progression. Recent years have witnessed multiple genome-wide association and large candidate gene studies, which have enriched our understanding of the genetic basis of NAFLD. Notably, the I148M PNPLA3 variant has been identified as the major common genetic determinant of NAFLD. Variants with moderate effect size in TM6SF2, MBOAT7 and GCKR have also been shown to have a significant contribution. The premise for this review is to discuss the status of research into important genetic and epigenetic modifiers of NAFLD progression. The potential to translate the accumulating wealth of genetic data into the design of novel therapeutics and the clinical implementation of diagnostic/prognostic biomarkers will be explored. Finally, personalised medicine and the opportunities for future research and challenges in the immediate post genetics era will be illustrated and discussed.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Luca Valenti
- Internal Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Policlinico Milano, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
45
|
Manzhalii E, Virchenko O, Falalyeyeva T, Beregova T, Stremmel W. Treatment efficacy of a probiotic preparation for non-alcoholic steatohepatitis: A pilot trial. J Dig Dis 2017; 18:698-703. [PMID: 29148175 DOI: 10.1111/1751-2980.12561] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/27/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate the therapeutic effect of a probiotic cocktail containing Lactobacilli, Bifidobacteria and Streptococcus thermophilus on non-alcoholic steatohepatitis (NASH). METHODS In this open-label trial, 75 patients with NASH fed a low-fat/low-calorie diet were randomly divided into the control group and experimental group, with the latter receiving the probiotic cocktail once daily for 12 weeks. RESULTS All patients were diagnosed with fatty liver by ultrasound examination and had elevated levels of γ-glutamyl transferase (GGT) and alanine aminotransferase (ALT), and slightly increased body mass index (BMI) and cholesterol levels. BMI and serum cholesterol were reduced by the low-fat/low-calorie diet but ALT was not. However, the short-term (12-week) treatment with the probiotic cocktail caused a significant (by >20%) reduction of serum ALT compared with controls, indicating mitigation of inflammation. Accordingly, liver stiffness was decreased in the probiotic-treated group compared with the control group (P < 0.05). Moreover, a more significant decrease in the BMI and serum cholesterol was observed in the probiotic-treated group compared with control (P < 0.05). However, the reduction of GGT as a steatosis marker was insignificant. The composition of stool microbiota in probiotic-treated patients demonstrated a shift towards a normal pattern for all bacterial species examined. No adverse events were observed in any patient during the trial. CONCLUSION Short-term treatment with the probiotic cocktail caused significant improvement of liver inflammation without adverse events and, thus, may represent a promising candidate therapeutic approach for NASH.
Collapse
Affiliation(s)
- Elina Manzhalii
- Department of Internal Medicine of Propedeutics No. 2, Bogomolets National Medical University and Diagnostic Center of Podil Community, Kiev, Ukraine
| | - Oleksandr Virchenko
- Institute of Biology and Medicine, Taras Shevchenko National University, Kiev, Ukraine
| | - Tetyana Falalyeyeva
- Institute of Biology and Medicine, Taras Shevchenko National University, Kiev, Ukraine
| | - Tetyana Beregova
- Institute of Biology and Medicine, Taras Shevchenko National University, Kiev, Ukraine
| | - Wolfgang Stremmel
- Department of Internal Medicine (Gastroenterology), University Clinics of Heidelberg, Heidelberg, Germany
| |
Collapse
|
46
|
Umeda S, Kanda M, Sugimoto H, Tanaka H, Hayashi M, Yamada S, Fujii T, Takami H, Niwa Y, Iwata N, Tanaka C, Kobayashi D, Fujiwara M, Kodera Y. Downregulation of GPR155 as a prognostic factor after curative resection of hepatocellular carcinoma. BMC Cancer 2017; 17:610. [PMID: 28863781 PMCID: PMC5580443 DOI: 10.1186/s12885-017-3629-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
Background Molecular biomarkers capable of predicting recurrence patterns and prognosis are helpful for risk stratification and providing appropriate treatment to patients with hepatocellular carcinoma (HCC). In this study, we focused on G protein-coupled receptor 155 (GPR155), a cell surface signaling protein, as a candidate biomarker. Methods We analyzed GPR155 expression, DNA methylation, and copy number in HCC cell lines. The clinical significance of GPR155 expression was evaluated using 144 pairs of surgically resected liver and normal tissues with subgroup analysis based on hepatitis virus infection. Results GPR155 mRNA expression levels were differential and were decreased in 89% of HCC cell lines. No DNA methylation was detected, whereas copy number alterations were present in five (56%) HCC cell lines. GPR155 mRNA expression level was independent of background liver status and significantly lower in HCC tissues than corresponding normal liver tissues. The expression patterns of GPR155 protein by immunohistochemical staining were significantly associated with those of GPR155 mRNA. Downregulation of GPR155 was significantly associated with more aggressive HCC phenotypes including high preoperative α-fetoprotein, poor differentiation, serosal infiltration, vascular invasion, and advanced disease stage. Patients with downregulation of GPR155 were more likely to have worse prognosis after curative resection irrespective of hepatitis virus infection. Patients who experienced extrahepatic (distant) recurrences had significantly lower GPR155 expression than those with intrahepatic (liver confined) recurrences. Conclusions Downregulation of GPR155 may serve as a prognosticator that also predicts initial recurrence sites independent of hepatitis virus infection. Electronic supplementary material The online version of this article (10.1186/s12885-017-3629-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shinichi Umeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Hiroyuki Sugimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yukiko Niwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Naoki Iwata
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
47
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common and important chronic liver disease in the world. As the prevalence of obesity increases in adults and children, the incidence of NAFLD has increased rapidly, reaching 17% to 33%. NAFLD is clinically divided into two forms: simple fatty liver (SFL) and non-alcoholic steatohepatitis (NASH), with NASH accounting for 1/3-1/2 of all NAFLD cases. The probability of developing cirrhosis is 0.6%-3.0% in patients with SFL for 10-20 years, and as high as 15%-25% in patients with NASH for 10-15 years. Approximately 1% of cirrhosis cases develop hepatocellular carcinoma each year. The pathogenesis of NAFLD is still not completely clear. It is generally believed that age, sex, obesity, insulin resistance, cytokines, gene polymorphism, and intestinal microflora are involved in the pathogenesis of NAFLD. An in-depth understanding of the pathogenesis of NAFLD can provide a basis for treatment of this disease. In recent years, cytokines or genes have been reported as targets for NAFLD treatment with appreciated effects. Since there is currently no specific treatment for NAFLD, targeted therapy may have a profound impact on the prognosis of the disease.
Collapse
|
48
|
Metrakos P, Nilsson T. Non-alcoholic fatty liver disease--a chronic disease of the 21<sup>st</sup> century. J Biomed Res 2017; 32:327-335. [PMID: 28550272 PMCID: PMC6163117 DOI: 10.7555/jbr.31.20160153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of metabolic states ranging from simple steatosis to inflammation with associated fibrosis to cirrhosis. Though accumulation of hepatic fat is not associated with a significant increase in mortality rates, hepatic inflammation is, as this augments the risk of terminal liver disease, i.e., cirrhosis, hepatic decompensation (liver failure) and/or hepatocellular carcinoma. Disease progression is usually slow, over a decade or more and, for the most part, remains asymptomatic. Recent estimates suggest that the global prevalence of NAFLD is high, about one in four. In most cases, NAFLD overlaps with overweight, obesity, cardiovascular disease and the metabolic syndrome with numerous contributing parameters including a dysregulation of adipose tissue, insulin resistance, type 2 diabetes, changes in the gut microbiome, neuronal and hormonal dysregulation and metabolic stress. NAFLD is diagnosed incidentally, despite its high prevalence. Non-invasive imaging techniques have emerged, making it possible to determine degree of steatosis as well asfibrosis. Despite this, the benefit of routine diagnostics remains uncertain. A better understanding of the (molecular) pathogenesis of NAFLD is needed combined with long-term studies where benefits of treatment can be assessed to determine cost-benefit ratios. This review summarizes the current state of knowledge and possible areas of treatment.
Collapse
Affiliation(s)
- Peter Metrakos
- Cancer Research Program, Block-E, The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal QC H4A 3J1, Canada
| | - Tommy Nilsson
- Cancer Research Program, Block-E, The Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal QC H4A 3J1, Canada
| |
Collapse
|
49
|
Ye Q, Qian BX, Yin WL, Wang FM, Han T. Association between the HFE C282Y, H63D Polymorphisms and the Risks of Non-Alcoholic Fatty Liver Disease, Liver Cirrhosis and Hepatocellular Carcinoma: An Updated Systematic Review and Meta-Analysis of 5,758 Cases and 14,741 Controls. PLoS One 2016; 11:e0163423. [PMID: 27657935 PMCID: PMC5033482 DOI: 10.1371/journal.pone.0163423] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Conflicting results have been obtained for the association between two common polymorphisms (C282Y, H63D) of human HFE (hereditary hemochromatosis) gene and the risks of the liver diseases, including non-alcoholic fatty liver disease (NAFLD), liver cirrhosis and hepatocellular carcinoma (HCC). METHODS An updated systematic review and meta-analysis was conducted to evaluate the potential role of HFE polymorphisms in the susceptibility to NAFLD, liver cirrhosis and HCC. After retrieving articles from online databases, eligible studies were enrolled according to the selection criteria. Stata/SE 12.0 software was utilized to perform the statistical analysis. RESULTS In total, 43 articles with 5,758 cases and 14,741 controls were selected. Compared with the control group, a significantly increased risk of NAFLD was observed for the C282Y polymorphism in the Caucasian population under all genetic models and for the H63D polymorphism under the allele, heterozygote and dominant models (all OR>1, Passociation<0.05). However, no significant difference between liver cirrhosis cases and the control group was observed for HFE C282Y and H63D (all Passociation>0.05). In addition, we found that HFE C282Y was statistically associated with increased HCC susceptibility in the overall population, while H63D increased the odds of developing non-cirrhotic HCC in the African population (all OR>1, Passociation<0.05). Moreover, a positive association between compound heterozygosity for C282Y/H63D and the risk of NAFLD and HCC, but not liver cirrhosis, was observed. CONCLUSION Our meta-analysis provides evidence that the HFE C282Y and H63D polymorphisms confer increased genetic susceptibility to NAFLD and HCC but not liver cirrhosis. Additional well-powered studies are required to confirm our conclusion.
Collapse
Affiliation(s)
- Qing Ye
- The Third Central clinical college of Tianjin Medical University, Tianjin, PR China
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, PR China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, PR China
- Tianjin Key Laboratory of Artificial Cells, Tianjin, PR China
| | - Bao-Xin Qian
- The Third Central clinical college of Tianjin Medical University, Tianjin, PR China
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, PR China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, PR China
- Tianjin Key Laboratory of Artificial Cells, Tianjin, PR China
| | - Wei-Li Yin
- The Third Central clinical college of Tianjin Medical University, Tianjin, PR China
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, PR China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, PR China
- Tianjin Key Laboratory of Artificial Cells, Tianjin, PR China
| | - Feng-Mei Wang
- The Third Central clinical college of Tianjin Medical University, Tianjin, PR China
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, PR China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, PR China
- Tianjin Key Laboratory of Artificial Cells, Tianjin, PR China
| | - Tao Han
- The Third Central clinical college of Tianjin Medical University, Tianjin, PR China
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, PR China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, PR China
- Tianjin Key Laboratory of Artificial Cells, Tianjin, PR China
- * E-mail:
| |
Collapse
|