1
|
Godineau C, Theodorou K, Spigler RB. Effect of the Seed Bank on Evolutionary Rescue in Small Populations: Univariate and Multivariate Demogenetic Dynamics. Am Nat 2024; 204:221-241. [PMID: 39179238 DOI: 10.1086/731402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
AbstractUnder global change, the impact of seed banks on evolutionary rescue is uncertain. They buffer plant populations from demographic and genetic stochasticity but extend generation time and can become a reservoir of maladapted alleles. We built analytical and individual-based models to predict the effect of seed banks on the persistence of small annual plant populations facing an abrupt or sustained directional change in uni- or multivariate trait optima. Demogenetic dynamics predict that under most scenarios seed banks increase the lag yet enhance persistence to 200-250 years by absorbing demographic losses. Simulations indicate that the seed bank has a minimal impact on the genetic skew, although we suggest that this result could depend on the fitness component under selection. Our multivariate model reveals that by enlarging and reshaping the G matrix, seed banks can diminish the impact of mutational correlation and even accelerate adaptation under antagonistic pleiotropy relative to populations without a bank. We illustrate how the magnitude of optimum fluctuations, type and degree of optimum change, selection strength, and vital rates are weights that tip the scales determining persistence. Finally, our work highlights that migration from the past is not maladaptative when optimum fluctuations are large enough to create stepping stones to the new optimum.
Collapse
|
2
|
Fleming MB, Stanley L, Zallen R, Chansler MT, Brudvig LA, Lowry DB, Weber M, Telewski FW. The 141-year period for Dr. Beal's seed viability experiment: A hybrid surprise. AMERICAN JOURNAL OF BOTANY 2023; 110:e16250. [PMID: 37812737 DOI: 10.1002/ajb2.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
PREMISE In 1879, Dr. William Beal buried 20 glass bottles filled with seeds and sand at a single site at Michigan State University. The goal of the experiment was to understand seed longevity in the soil, a topic of general importance in ecology, restoration, conservation, and agriculture, by periodically assaying germinability of these seeds over 100 years. The interval between germination assays has been extended and the experiment will now end after 221 years, in 2100. METHODS We dug up the 16th bottle in April 2021 and attempted to germinate the 141-year-old seeds it contained. We grew germinants to maturity and identified these to species by vegetative and reproductive phenotypes. For the first time in the history of this experiment, genomic DNA was sequenced to confirm species identities. RESULTS Twenty seeds germinated over the 244-day assay. Eight germinated in the first 11 days. All 20 belonged to the Verbascum genus: Nineteen were V. blattaria according to phenotype and ITS2 genotype; and one had a hybrid V. blattaria × V. thapsus phenotype and ITS2 genotype. In total, 20/50 (40%) of the original Verbascum seeds in the bottle germinated in year 141. CONCLUSIONS While most species in the Beal experiment lost all seed viability in the first 60 years, a high percentage of Verbascum seeds can still germinate after 141 years in the soil. Long-term experiments such as this one are rare and invaluable for studying seed viability in natural soil conditions.
Collapse
Affiliation(s)
- Margaret B Fleming
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Lauren Stanley
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Robyn Zallen
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Matthew T Chansler
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- MSU Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Lars A Brudvig
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, 48824, USA
| | - David B Lowry
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Marjorie Weber
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Frank W Telewski
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- W. J. Beal Botanical Garden and Campus Arboretum, Office of the Provost, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
3
|
Xu K, Vision TJ, Servedio MR. Evolutionary rescue under demographic and environmental stochasticity. J Evol Biol 2023; 36:1525-1538. [PMID: 37776088 DOI: 10.1111/jeb.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 10/01/2023]
Abstract
Populations suffer two types of stochasticity: demographic stochasticity, from sampling error in offspring number, and environmental stochasticity, from temporal variation in the growth rate. By modelling evolution through phenotypic selection following an abrupt environmental change, we investigate how genetic and demographic dynamics, as well as effects on population survival of the genetic variance and of the strength of stabilizing selection, differ under the two types of stochasticity. We show that population survival probability declines sharply with stronger stabilizing selection under demographic stochasticity, but declines more continuously when environmental stochasticity is strengthened. However, the genetic variance that confers the highest population survival probability differs little under demographic and environmental stochasticity. Since the influence of demographic stochasticity is stronger when population size is smaller, a slow initial decline of genetic variance, which allows quicker evolution, is important for population persistence. In contrast, the influence of environmental stochasticity is population-size-independent, so higher initial fitness becomes important for survival under strong environmental stochasticity. The two types of stochasticity interact in a more than multiplicative way in reducing the population survival probability. Our work suggests the importance of explicitly distinguishing and measuring the forms of stochasticity during evolutionary rescue.
Collapse
Affiliation(s)
- Kuangyi Xu
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Todd J Vision
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Maria R Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Yamamichi M, Letten AD, Schreiber SJ. Eco-evolutionary maintenance of diversity in fluctuating environments. Ecol Lett 2023; 26 Suppl 1:S152-S167. [PMID: 37840028 DOI: 10.1111/ele.14286] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 10/17/2023]
Abstract
Growing evidence suggests that temporally fluctuating environments are important in maintaining variation both within and between species. To date, however, studies of genetic variation within a population have been largely conducted by evolutionary biologists (particularly population geneticists), while population and community ecologists have concentrated more on diversity at the species level. Despite considerable conceptual overlap, the commonalities and differences of these two alternative paradigms have yet to come under close scrutiny. Here, we review theoretical and empirical studies in population genetics and community ecology focusing on the 'temporal storage effect' and synthesise theories of diversity maintenance across different levels of biological organisation. Drawing on Chesson's coexistence theory, we explain how temporally fluctuating environments promote the maintenance of genetic variation and species diversity. We propose a further synthesis of the two disciplines by comparing models employing traditional frequency-dependent dynamics and those adopting density-dependent dynamics. We then address how temporal fluctuations promote genetic and species diversity simultaneously via rapid evolution and eco-evolutionary dynamics. Comparing and synthesising ecological and evolutionary approaches will accelerate our understanding of diversity maintenance in nature.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Andrew D Letten
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, California, USA
| |
Collapse
|
5
|
Schwartz DA, Shoemaker WR, Măgălie A, Weitz JS, Lennon JT. Bacteria-phage coevolution with a seed bank. THE ISME JOURNAL 2023:10.1038/s41396-023-01449-2. [PMID: 37286738 DOI: 10.1038/s41396-023-01449-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Dormancy is an adaptation to living in fluctuating environments. It allows individuals to enter a reversible state of reduced metabolic activity when challenged by unfavorable conditions. Dormancy can also influence species interactions by providing organisms with a refuge from predators and parasites. Here we test the hypothesis that, by generating a seed bank of protected individuals, dormancy can modify the patterns and processes of antagonistic coevolution. We conducted a factorially designed experiment where we passaged a bacterial host (Bacillus subtilis) and its phage (SPO1) in the presence versus absence of a seed bank consisting of dormant endospores. Owing in part to the inability of phages to attach to spores, seed banks stabilized population dynamics and resulted in minimum host densities that were 30-fold higher compared to bacteria that were unable to engage in dormancy. By supplying a refuge to phage-sensitive strains, we show that seed banks retained phenotypic diversity that was otherwise lost to selection. Dormancy also stored genetic diversity. After characterizing allelic variation with pooled population sequencing, we found that seed banks retained twice as many host genes with mutations, whether phages were present or not. Based on mutational trajectories over the course of the experiment, we demonstrate that seed banks can dampen bacteria-phage coevolution. Not only does dormancy create structure and memory that buffers populations against environmental fluctuations, it also modifies species interactions in ways that can feed back onto the eco-evolutionary dynamics of microbial communities.
Collapse
Affiliation(s)
- Daniel A Schwartz
- Department of Biology, Indiana University, Bloomington, Indiana, IN, USA
| | - William R Shoemaker
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy
| | - Andreea Măgălie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Institut de Biologie, École Normale Supérieure, Paris, France
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, IN, USA.
| |
Collapse
|
6
|
Benning JW, Faulkner A, Moeller DA. Rapid evolution during climate change: demographic and genetic constraints on adaptation to severe drought. Proc Biol Sci 2023; 290:20230336. [PMID: 37161337 PMCID: PMC10170215 DOI: 10.1098/rspb.2023.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 05/11/2023] Open
Abstract
Populations often vary in their evolutionary responses to a shared environmental perturbation. A key hurdle in building more predictive models of rapid evolution is understanding this variation-why do some populations and traits evolve while others do not? We combined long-term demographic and environmental data, estimates of quantitative genetic variance components, a resurrection experiment and individual-based evolutionary simulations to gain mechanistic insights into contrasting evolutionary responses to a severe multi-year drought. We examined five traits in two populations of a native California plant, Clarkia xantiana, at three time points over 7 years. Earlier flowering phenology evolved in only one of the two populations, though both populations experienced similar drought severity and demographic declines and were estimated to have considerable additive genetic variance for flowering phenology. Pairing demographic and experimental data with evolutionary simulations suggested that while seed banks in both populations probably constrained evolutionary responses, a stronger seed bank in the non-evolving population resulted in evolutionary stasis. Gene flow through time via germ banks may be an important, underappreciated control on rapid evolution in response to extreme environmental perturbations.
Collapse
Affiliation(s)
- John W. Benning
- Department of Botany, University of Wyoming, Laramie, WY 82071, USA
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55455, USA
| | - Alexai Faulkner
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55455, USA
| | - David A. Moeller
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55455, USA
| |
Collapse
|
7
|
Schmid M, Paniw M, Postuma M, Ozgul A, Guillaume F. A tradeoff between robustness to environmental fluctuations and speed of evolution. Am Nat 2022; 200:E16-E35. [DOI: 10.1086/719654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Agrawal AA, Hastings AP, Maron JL. Evolution and seed dormancy shape plant genotypic structure through a successional cycle. Proc Natl Acad Sci U S A 2021; 118:e2026212118. [PMID: 34400497 PMCID: PMC8403902 DOI: 10.1073/pnas.2026212118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dormancy has repeatedly evolved in plants, animals, and microbes and is hypothesized to facilitate persistence in the face of environmental change. Yet previous experiments have not tracked demography and trait evolution spanning a full successional cycle to ask whether early bouts of natural selection are later reinforced or erased during periods of population dormancy. In addition, it is unclear how well short-term measures of fitness predict long-term genotypic success for species with dormancy. Here, we address these issues using experimental field populations of the plant Oenothera biennis, which evolved over five generations in plots exposed to or protected from insect herbivory. While populations existed above ground, there was rapid evolution of defensive and life-history traits, but populations lost genetic diversity and crashed as succession proceeded. After >5 y of seed dormancy, we triggered germination from the seedbank and genotyped >3,000 colonizers. Resurrected populations showed restored genetic diversity that reduced earlier responses to selection and pushed population phenotypes toward the starting conditions of a decade earlier. Nonetheless, four defense and life-history traits remained differentiated in populations with insect suppression compared with controls. These findings capture key missing elements of evolution during ecological cycles and demonstrate the impact of dormancy on future evolutionary responses to environmental change.
Collapse
Affiliation(s)
- Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853;
| | - Amy P Hastings
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853
| | - John L Maron
- Division of Biological Sciences, University of Montana, Missoula, MT 59803
| |
Collapse
|
9
|
Lennon JT, den Hollander F, Wilke-Berenguer M, Blath J. Principles of seed banks and the emergence of complexity from dormancy. Nat Commun 2021; 12:4807. [PMID: 34376641 PMCID: PMC8355185 DOI: 10.1038/s41467-021-24733-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Across the tree of life, populations have evolved the capacity to contend with suboptimal conditions by engaging in dormancy, whereby individuals enter a reversible state of reduced metabolic activity. The resulting seed banks are complex, storing information and imparting memory that gives rise to multi-scale structures and networks spanning collections of cells to entire ecosystems. We outline the fundamental attributes and emergent phenomena associated with dormancy and seed banks, with the vision for a unifying and mathematically based framework that can address problems in the life sciences, ranging from global change to cancer biology.
Collapse
Affiliation(s)
- Jay T. Lennon
- grid.411377.70000 0001 0790 959XIndiana University, Department of Biology, Bloomington, USA
| | - Frank den Hollander
- grid.5132.50000 0001 2312 1970Universiteit Leiden, Mathematical Institute, Leiden, Netherlands
| | - Maite Wilke-Berenguer
- grid.7468.d0000 0001 2248 7639Humboldt-Universität zu Berlin, Institute of Mathematics, Berlin, Germany
| | - Jochen Blath
- grid.6734.60000 0001 2292 8254Technische Universität Berlin, Institute of Mathematics, Berlin, Germany
| |
Collapse
|
10
|
Hays CG, Hanley TC, Hughes AR, Truskey SB, Zerebecki RA, Sotka EE. Local Adaptation in Marine Foundation Species at Microgeographic Scales. THE BIOLOGICAL BULLETIN 2021; 241:16-29. [PMID: 34436968 DOI: 10.1086/714821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractNearshore foundation species in coastal and estuarine systems (e.g., salt marsh grasses, mangroves, seagrasses, corals) drive the ecological functions of ecosystems and entire biomes by creating physical structure that alters local abiotic conditions and influences species interactions and composition. The resilience of foundation species and the ecosystem functions they provide depends on their phenotypic and genetic responses to spatial and temporal shifts in environmental conditions. In this review, we explore what is known about the causes and consequences of adaptive genetic differentiation in marine foundation species over spatial scales shorter than dispersal capabilities (i.e., microgeographic scales). We describe the strength of coupling field and laboratory experiments with population genetic techniques to illuminate patterns of local adaptation, and we illustrate this approach by using several foundation species. Among the major themes that emerge from our review include (1) adaptive differentiation of marine foundation species repeatedly evolves along vertical (i.e., elevation or depth) gradients, and (2) mating system and phenology may facilitate this differentiation. Microgeographic adaptation is an understudied mechanism potentially underpinning the resilience of many sessile marine species, and this evolutionary mechanism likely has particularly important consequences for the ecosystem functions provided by foundation species.
Collapse
|
11
|
Peniston JH, Barfield M, Holt RD, Orive ME. Environmental fluctuations dampen the effects of clonal reproduction on evolutionary rescue. J Evol Biol 2021; 34:710-722. [PMID: 33682225 DOI: 10.1111/jeb.13778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/19/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022]
Abstract
Evolutionary rescue occurs when genetic change allows a population to persist in response to an environmental change that would otherwise have led to extinction. Most studies of evolutionary rescue assume that species have either fully clonal or fully sexual reproduction; however, many species have partially clonal reproductive strategies in which they reproduce both clonally and sexually. Furthermore, the few evolutionary rescue studies that have evaluated partially clonal reproduction did not consider fluctuations in the environment, which are nearly ubiquitous in nature. Here, we use individual-based simulations to investigate how environmental fluctuations (either uncorrelated or positively autocorrelated) influence the effect of clonality on evolutionary rescue. We show that, for moderate magnitudes of environmental fluctuations, as was found in the absence of fluctuations, increasing the degree of clonality increases the probability of population persistence in response to an abrupt environmental change, but decreases persistence in response to a continuous, directional environmental change. However, with large magnitudes of fluctuations, both the benefits of clonality following a step change and the detrimental effects of clonality following a continuous, directional change are generally reduced; in fact, in the latter scenario, increasing clonality can even become beneficial if environmental fluctuations are autocorrelated. We also show that increased generational overlap dampens the effects of environmental fluctuations. Overall, we demonstrate that understanding the evolutionary rescue of partially clonal organisms requires not only knowledge of the species life history and the type of environmental change, but also an understanding of the magnitude and autocorrelation of environmental fluctuations.
Collapse
Affiliation(s)
- James H Peniston
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Michael Barfield
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Maria E Orive
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
12
|
Yamamichi M, Letten AD. Rapid evolution promotes fluctuation-dependent species coexistence. Ecol Lett 2021; 24:812-818. [PMID: 33617685 DOI: 10.1111/ele.13707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/11/2020] [Accepted: 01/27/2021] [Indexed: 11/30/2022]
Abstract
Recent studies have demonstrated that rapid contemporary evolution can play a significant role in regulating population dynamics on ecological timescales. Here we identify a previously unrecognised mode by which rapid evolution can promote species coexistence via temporal fluctuations and a trade-off between competitive ability and the speed of adaptive evolution. We show that this interaction between rapid evolution and temporal fluctuations not only increases the range of coexistence conditions under a gleaner-opportunist trade-off (i.e. low minimum resource requirement [R* ] vs. high maximum growth rate) but also yields stable coexistence in the absence of a classical gleaner-opportunist trade-off. Given the propensity for both oscillatory dynamics and different rates of adaptation between species (including rapid evolution and phenotypic plasticity) in the real world, we argue that this expansion of fluctuation-dependent coexistence theory provides an important overlooked solution to the so-called 'paradox of the plankton'.
Collapse
Affiliation(s)
- Masato Yamamichi
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.,Department of International Health and Medical Anthropology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Andrew D Letten
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
13
|
Pinek L, Mansour I, Lakovic M, Ryo M, Rillig MC. Rate of environmental change across scales in ecology. Biol Rev Camb Philos Soc 2020; 95:1798-1811. [PMID: 32761787 DOI: 10.1111/brv.12639] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
The rate of change (RoC) of environmental drivers matters: biotic and abiotic components respond differently when faced with a fast or slow change in their environment. This phenomenon occurs across spatial scales and thus levels of ecological organization. We investigated the RoC of environmental drivers in the ecological literature and examined publication trends across ecological levels, including prevalent types of evidence and drivers. Research interest in environmental driver RoC has increased over time (particularly in the last decade), however, the amount of research and type of studies were not equally distributed across levels of organization and different subfields of ecology use temporal terminology (e.g. 'abrupt' and 'gradual') differently, making it difficult to compare studies. At the level of individual organisms, evidence indicates that responses and underlying mechanisms are different when environmental driver treatments are applied at different rates, thus we propose including a time dimension into reaction norms. There is much less experimental evidence at higher levels of ecological organization (i.e. population, community, ecosystem), although theoretical work at the population level indicates the importance of RoC for evolutionary responses. We identified very few studies at the community and ecosystem levels, although existing evidence indicates that driver RoC is important at these scales and potentially could be particularly important for some processes, such as community stability and cascade effects. We recommend shifting from a categorical (e.g. abrupt versus gradual) to a quantitative and continuous (e.g. °C/h) RoC framework and explicit reporting of RoC parameters, including magnitude, duration and start and end points to ease cross-scale synthesis and alleviate ambiguity. Understanding how driver RoC affects individuals, populations, communities and ecosystems, and furthermore how these effects can feed back between levels is critical to making improved predictions about ecological responses to global change drivers. The application of a unified quantitative RoC framework for ecological studies investigating environmental driver RoC will both allow cross-scale synthesis to be accomplished more easily and has the potential for the generation of novel hypotheses.
Collapse
Affiliation(s)
- Liliana Pinek
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - India Mansour
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Milica Lakovic
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Masahiro Ryo
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| | - Matthias C Rillig
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, D-14195, Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195, Berlin, Germany
| |
Collapse
|