1
|
Viel T, Cocca M, Esposito R, Amato A, Russo T, Di Cosmo A, Polese G, Manfra L, Libralato G, Zupo V, Costantini M. Effect of biodegradable polymers upon grazing activity of the sea urchin Paracentrotus lividus (Lmk) revealed by morphological, histological and molecular analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172586. [PMID: 38657802 DOI: 10.1016/j.scitotenv.2024.172586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
In the last years biodegradable polymers (BPs) were largely used as real opportunity to solve plastic pollution. Otherwise, their wide use in commercial products, such as packaging sector, is causing a new pollution alarm, mainly because few data reported about their behaviour in the environment and toxicity on marine organisms. Our previous results showed that embryos of the sea urchin Paracentrotus lividus (Lmk) exposed to poly(ε-caprolactone) (PCL), poly(3-hydroxybutyrate) (PHB) and poly(lactic acid) (PLA) showed delay of their development and morphological malformations, also affecting at the molecular levels the expression of several genes involved in different functional responses. In the present work for the first time, we tested the effects of five microplastics (MPs) obtained from BPs such as PBS, poly(butylene succinate), PBSA, poly(butylene succinate-co-butylene adipate), PCL, PHB and PLA, upon grazing activity of the sea urchin revealed by: i. histological analysis seeing at the gonadic tissues; ii. morphological analysis of the deriving embryos; iii. molecular analyses on these embryos to detect variations of the gene expression of eighty-seven genes involved in stress response, detoxification, skeletogenesis, differentiation and development. All these results will help in understanding how MP accumulated inside various organs in the adult sea urchins, and more in general in marine invertebrates, could represent risks for the marine environment.
Collapse
Affiliation(s)
- Thomas Viel
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegri, 34, 80078 Pozzuoli, Napoli, Italy; Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Napoli, Italy
| | - Mariacristina Cocca
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegri, 34, 80078 Pozzuoli, Napoli, Italy
| | - Roberta Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Amalia Amato
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Napoli, Italy
| | - Tania Russo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Napoli, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Napoli, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Napoli, Italy
| | - Loredana Manfra
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Giovanni Libralato
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Napoli, Italy
| | - Valerio Zupo
- Stazione Zoologica, Sustainable Biotechnology Department. Ischia Marine Centre, Via Buonocore, Ischia, NA, Italy
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
2
|
Yesudas A, Vidyalakshmi D, Sivan G, Shameem K, Akhil Prakash E, Priyaja P. Comparative analysis of temporal variation of heavy metal accumulation by two sea urchin species from a harbour region, including pre and post COVID 19 lock down period. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162879. [PMID: 36933728 DOI: 10.1016/j.scitotenv.2023.162879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 05/06/2023]
Abstract
Sea urchins are marine invertebrates belonging to phylum Echinodermata, recognized as relevant biological tool for assessing environmental pollution. In the present study, we assessed the bioaccumulation potential of different heavy metals by two sea urchin species, Stomopneustes variolaris Lamarck, 1816 and Echinothrix diadema Linnaeus, 1758, collected from a harbour region, along the south west coast of India, during four different sampling periods for 2 years, from the same sea urchin bed. Heavy metals like Pb, Cr, As, Cd, Co, Se, Cu, Zn, Mn and Ni were analysed from water, sediment and different body parts of sea urchins, such as shell, spine, tooth, gut and gonad. The sampling periods also included the pre and post COVID 19 lockdown period during which the harbour activities were closed. The bio-water accumulation factor (BWAF), bio-sediment accumulation factor (BSAF) and the metal content/test weight index (MTWI) were calculated, in order to compare the bioaccumulation of metals by both the species. The results showed that S. variolaris had higher bioaccumulation potential than E. diadema, for metals like Pb, As, Cr, Co and Cd especially in the soft body parts like gut and gonad. The hard parts of S. variolaris like shell, spine, and tooth also accumulated more Pb, Cu, Ni and Mn than E. diadema. Following the lockdown period, there was a decline in the concentration of all heavy metals in water, whereas in sediment, Pb, Cr, and Cu levels were reduced. The gut and gonad tissues of both the urchins showed a decrease in the concentration of most of the heavy metals following the lockdown phase and no significant reduction was observed in the hard parts. This study reveals the use of S. variolaris as an excellent bioindicator of heavy metal contamination in the marine environment which can be employed for coastal monitoring programs.
Collapse
Affiliation(s)
- Aneena Yesudas
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India
| | - D Vidyalakshmi
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India
| | - Gopika Sivan
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India
| | - K Shameem
- Department of Chemical Oceanography, Cochin University of Science and Technology, Kerala, India
| | - E Akhil Prakash
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India
| | - P Priyaja
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Kerala, India.
| |
Collapse
|
3
|
Bonaventura R, Costa C, Deidda I, Zito F, Russo R. Gene Expression Analysis of the Stress Response to Lithium, Nickel, and Zinc in Paracentrotus lividus Embryos. TOXICS 2022; 10:toxics10060325. [PMID: 35736933 PMCID: PMC9231221 DOI: 10.3390/toxics10060325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023]
Abstract
Many anthropogenic pollutants such as metals are discharged into the marine environment through modern sources. Among these, lithium (Li), nickel (Ni), and zinc (Zn) can interfere with biological processes in many organisms when their concentration rises. These metals are toxic to sea urchin embryos, affecting their development. Indeed, animal/vegetal and dorso/ventral embryonic axes are differently perturbed: Li is a vegetalizing agent, Ni can disrupt dorso-ventral axis, Zn can be animalizing. To address the molecular response adopted by embryos to cope with these metals or involved in the gene networks regulating embryogenesis, and to detect new biomarkers for evaluating hazards in polluted environments in a well-known in vivo model, we applied a high-throughput screening approach to sea urchin embryos. After fertilization, Paracentrotus lividus embryos were exposed to Li, Ni, and Zn for 24/48 h. At both endpoints, RNAs were analyzed by NanoString nCounter technology. By in silico analyses, we selected a panel of 127 transcripts encoding for regulatory and structural proteins, ranked in categories: Apoptosis, Defense, Immune, Nervous, Development, and Biomineralization. The data analysis highlighted the dysregulation of many genes in a metal-dependent manner. A functional annotation analysis was performed by the KEEG Orthology database. This study provides a platform for research on metals biomarkers in sea urchins.
Collapse
|
4
|
Gharred C, Jenzri M, Bouraoui Z, Guerbej H, Jebali J, Gharred T. Application of the Paracentrotus lividus sea-urchin embryo-larval bioassay to the marine pollution biomonitoring program in the Tunisian coast. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:5787-5797. [PMID: 34427883 DOI: 10.1007/s11356-021-16101-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The pollution of the marine environment by treated and untreated effluents has increased due to human activities. Monitoring the marine ecosystem is nowadays a global concern. In this work, we evaluated the effect of contaminated and uncontaminated seawater, from different Tunisian coastal areas, on the fertilization, gastrulation, and embryo-larval development events of sea urchins (Paracentrotus lividus). The station of Salakta (SA) is considered as a control station, while the stations of Hamdoun Wadi (HW), Port of Monastir (PM), Karaia Monastir (KM), Teboulba (TE), and Khniss Lagoon (KL) are considered to be contaminated stations. The analysis of seawater physicochemical characteristics showed that levels of the total suspended matter (TSM), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total organic carbon (TOC), and nitrate (NO3-) were lower in the seawater of the reference site Salakta (SA) when compared to those of the contaminated seawater sites. In addition, a very strong variation in the levels of trace metals in seawaters sampled in the studied sites was noted. In fact, the highest concentrations of Pb and Cu were observed in Hamdoun Wadi (HW), port of Monastir (PM), and Karaia Monastir (KM), while the highest concentration of Zn was noted in the Teboulba lagoon (TE) and Khniss (LK). Alterations in physicochemical characteristics as well as elevated trace metal levels in the studied seawater samples were correlated with reduced fertility rate, gastrulation rate, and the frequency of normal sea urchin larvae. The total absence of normal sea urchin pluteus larvae in the sea waters of heavily polluted sites proves the great sensitivity of the larval frequency to mixed pollution. This work recommends the utility of urchin fertilization and gastrulation rates and normal pluteus larval frequencies as useful bioassays to monitor the exposure of marine ecosystems to mixed pollution.
Collapse
Affiliation(s)
- Chayma Gharred
- Research Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Avenue Tahar HAdded, 74,5000, Monastir, PB, Tunisia.
| | - Maroua Jenzri
- Research Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Avenue Tahar HAdded, 74,5000, Monastir, PB, Tunisia
| | - Zied Bouraoui
- Laboratory of Blue Biotechnology and Aquatic Bioproducts (B3Aqua), National Institute of Marine Sciences and Technology, 59, 5000, Monastir, BP, Tunisia
| | - Hamadi Guerbej
- Laboratory of Blue Biotechnology and Aquatic Bioproducts (B3Aqua), National Institute of Marine Sciences and Technology, 59, 5000, Monastir, BP, Tunisia
| | - Jamel Jebali
- Research Laboratory of Genetics, Biodiversity and Valorization of Bioresources (LR11ES41), Higher Institute of Biotechnology of Monastir, Avenue Tahar HAdded, 74, 5000, Monastir, PB, Tunisia
| | - Tahar Gharred
- Research Laboratory of Bioresources: Integrative Biology & Valorization (LR 14ES06), Higher Institute of Biotechnology of Monastir, Avenue Tahar HAdded, 74,5000, Monastir, PB, Tunisia
| |
Collapse
|
5
|
Bonaventura R, Zito F, Russo R, Costa C. A preliminary gene expression analysis on Paracentrotus lividus embryos exposed to UVB, Cadmium and their combination. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105770. [PMID: 33581547 DOI: 10.1016/j.aquatox.2021.105770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Paracentrotus lividus is a Mediterranean and Eastern Atlantic sea urchin species, very sensitive to chemical and physical environmental changes and widely used in eco-toxicological studies. Here, we applied a high throughput screening approach on P. lividus embryos exposed to UVB radiation (UV), Cadmium Chloride (Cd) and their combination (Cd/UV), to deeply characterize the molecular responses adopted by embryos to cope with these stressors. in vitro eco-toxicological assays were performed by exposing embryos to Cd (10-4 M) soon after fertilization, to UV (200 and 400J/m2) at early stage of development, while in co-exposure experiments, Cd-exposed embryos were irradiated with UV at 200 J/m2. By NanoString nCounter technology, custom-made probes were developed and hybridized on total RNA extracted from exposed embryos at 51h after fertilization. By in silico analyses, we selected and retrieved at the NCBI nucleotide database a panel of P. lividus transcripts encoding for many regulatory and structural proteins that we ranked in categories, i.e., Apoptosis, Biomineralization, Defense, Development, Immunity, Signaling and Transcription Factors. The analysis of 127 transcripts highlighted the dysregulation of many genes, some specifically activated to cope with stress agents, others involved in the complex molecular network of genes that regulate embryo development. We revealed the downregulation of Biomineralization and Development genes and the upregulation of Defensive genes in Cd and Cd/UV embryos. Our approach, using sea urchin embryo as an in vivomodel, contributes to advance our knowledge about cellular responses to UV, Cd and their combination.
Collapse
Affiliation(s)
- Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy.
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy.
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica, Via Ugo La Malfa 153, Palermo, 90146, Italy
| |
Collapse
|
6
|
Nash S, Rahman MS. Short‐term heat stress impairs testicular functions in the American oyster,Crassostrea virginica: Molecular mechanisms and induction of oxidative stress and apoptosis in spermatogenic cells. Mol Reprod Dev 2019; 86:1444-1458. [DOI: 10.1002/mrd.23268] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/28/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Sarah Nash
- School of Earth, Environmental, and Marine SciencesUniversity of Texas Rio Grande Valley Brownsville Texas
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine SciencesUniversity of Texas Rio Grande Valley Brownsville Texas
- Department of BiologyUniversity of Texas Rio Grande Valley Brownsville Texas
- Division of Biochemistry and Molecular BiologyUniversity of Texas Rio Grande Valley Brownsville Texas
| |
Collapse
|
7
|
Nash S, Johnstone J, Rahman MS. Elevated temperature attenuates ovarian functions and induces apoptosis and oxidative stress in the American oyster, Crassostrea virginica: potential mechanisms and signaling pathways. Cell Stress Chaperones 2019; 24:957-967. [PMID: 31363994 PMCID: PMC6717220 DOI: 10.1007/s12192-019-01023-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Global climate change is predicted to intensify thermal stress in marine and coastal organisms, affecting their development, growth, and reproductive functions. In this study, we performed histological observations on ovarian development, immunohistochemical analyses of ovarian heat shock protein-70 (HSP70), nitrotyrosine protein (NTP, an indicator of reactive nitrogen species (RNS)), and dinitrophenyl protein (DNP, an indicator of protein oxidation) expressions, in situ TUNEL assay for cellular apoptosis, biochemical analyses of ovarian caspase-3/7 activity and protein carbonyl (PC, a measure of reactive oxygen species (ROS)) contents, nitrate/nitrite (NOx) levels, and extrapallial fluid (EPF, an important body fluid) pH in the American oyster, Crassostrea virginica. Oysters were exposed to medium (28 °C) and high (32 °C) temperatures under controlled laboratory conditions for 1 week. Oysters exposed to higher temperatures significantly decreased the number and diameter of eggs, and EPF protein concentrations compared with controls (24 °C). In contrast, EPF pH, ovarian HSP70 mRNA levels, and protein expression were increased after heat exposure, consistent with increased ovarian apoptosis. The enhanced apoptosis in ovaries was associated with increased ovarian caspase-3/7 activity, PC contents, NOx levels, and NTP and DNP expressions in heat-exposed oysters. Collectively, these results suggest that higher temperatures drastically increase RNS and ROS levels, increasing incidence of apoptosis and subsequently reducing ovarian functions in oysters.
Collapse
Affiliation(s)
- Sarah Nash
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA
| | - Jackson Johnstone
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA
| | - Md Saydur Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA.
- Department of Biology, University of Texas Rio Grande Valley, Brownsville, Texas, 78520, USA.
| |
Collapse
|
8
|
Johnstone J, Nash S, Hernandez E, Rahman MS. Effects of elevated temperature on gonadal functions, cellular apoptosis, and oxidative stress in Atlantic sea urchin Arbacia punculata. MARINE ENVIRONMENTAL RESEARCH 2019; 149:40-49. [PMID: 31150926 DOI: 10.1016/j.marenvres.2019.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Increasing seawater temperature affects growth, reproduction and development in marine organisms. In this study, we examined the effects of elevated temperatures on reproductive functions, heat shock protein 70 (HSP70) and nitrotyrosine protein (NTP, an indicator of reactive nitrogen species) expressions, protein carbonyl (PC, an indicator of oxidative stress) contents, cellular apoptosis, and coelomic fluid (CF) conditions in Atlantic sea urchin. Sea urchins were housed in six aquaria with control (24 °C) and elevated temperatures (28 °C and 32 °C) for a 7-day period. After exposure, sea urchins exhibited decreased percentages of gametes (eggs/sperm), as well as increased HSP70 and NTP expressions in eggs and spermatogenic cells, increased gonadal apoptosis, and decreased CF pH compared to controls. PC contents were also significantly increased in gonadal tissues at higher temperatures. These results suggest that elevated temperature acidifies CF, increases oxidative stress and gonadal apoptosis, and results in impairment of reproductive functions in sea urchins.
Collapse
Affiliation(s)
- Jackson Johnstone
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Sarah Nash
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Eleazar Hernandez
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA
| | - Md Saydur Rahman
- School of Earth, Environmental and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA; Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, 78520, USA.
| |
Collapse
|
9
|
Bonaventura R, Matranga V. Overview of the molecular defense systems used by sea urchin embryos to cope with UV radiation. MARINE ENVIRONMENTAL RESEARCH 2017; 128:25-35. [PMID: 27252015 DOI: 10.1016/j.marenvres.2016.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 05/20/2023]
Abstract
The sea urchin embryo is a well-recognized developmental biology model and its use in toxicological studies has been widely appreciated. Many studies have focused on the evaluation of the effects of chemical stressors and their mixture in marine ecosystems using sea urchin embryos. These are well equipped with defense genes used to cope with chemical stressors. Recently, ultraviolet radiation (UVR), particularly UVB (280-315 nm), received more attention as a physical stressor. Mainly in the Polar Regions, but also at temperate latitudes, the penetration of UVB into the oceans increases as a consequence of the reduction of the Earth's ozone layer. In general, UVR induces oxidative stress in marine organisms affecting molecular targets such as DNA, proteins, and lipids. Depending on the UVR dose, developing sea urchin embryos show morphological perturbations affecting mainly the skeleton formation and patterning. Nevertheless, embryos are able to protect themselves against excessive UVR, using mechanisms acting at different levels: transcriptional, translational and post-translational. In this review, we recommend the sea urchin embryo as a suitable model for testing physical stressors such as UVR and summarize the mechanisms adopted to deal with UVR. Moreover, we review UV-induced apoptotic events and the combined effects of UVR and other stressors.
Collapse
Affiliation(s)
- Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
10
|
Ruocco N, Costantini S, Zupo V, Romano G, Ianora A, Fontana A, Costantini M. High-quality RNA extraction from the sea urchin Paracentrotus lividus embryos. PLoS One 2017; 12:e0172171. [PMID: 28199408 PMCID: PMC5310894 DOI: 10.1371/journal.pone.0172171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/31/2017] [Indexed: 01/03/2023] Open
Abstract
The sea urchin Paracentrotus lividus (Lamarck, 1816) is a keystone herbivore in the Mediterranean Sea due to its ability to transform macroalgal-dominated communities into barren areas characterized by increased cover of bare substrates and encrusting coralline algae, reduced biodiversity and altered ecosystem functions. P. lividus is also an excellent animal model for toxicology, physiology and biology investigations having been used for more than a century as a model for embryological studies with synchronously developing embryos which are easy to manipulate and analyze for morphological aberrations. Despite its importance for the scientific community, the complete genome is still not fully annotated. To date, only a few molecular tools are available and a few Next Generation Sequencing (NGS) studies have been performed. Here we aimed at setting-up an RNA extraction method to obtain high quality and sufficient quantity of RNA for NGS from P. lividus embryos at the pluteus stage. We compared five different RNA extraction protocols from four different pools of plutei (500, 1000, 2500 and 5000 embryos): TRIzol®, and four widely-used Silica Membrane kits, GenElute™ Mammalian Total RNA Miniprep Kit, RNAqueous® Micro Kit, RNeasy® Micro Kit and Aurum™ Total RNA Mini Kit. The quantity of RNA isolated was evaluated using NanoDrop. The quality, considering the purity, was measured as A260/A280 and A260/230 ratios. The integrity was measured by RNA Integrity Number (RIN). Our results demonstrated that the most efficient procedures were GenElute, RNeasy and Aurum, producing a sufficient quantity of RNA for NGS. The Bioanalyzer profiles and RIN values revealed that the most efficient methods guaranteeing for RNA integrity were RNeasy and Aurum combined with an initial preservation in RNAlater. This research represents the first attempt to standardize a method for high-quality RNA extraction from sea urchin embryos at the pluteus stage, providing a new resource for this established model marine organism.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia, Napoli, Italy
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori “Fondazione G. Pascale”, IRCCS, Napoli, Italy
| | - Valerio Zupo
- Center of Villa Dohrn Ischia-Benthic Ecology, Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, P.ta S. Pietro, Ischia, Naples, Italy
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, Naples, Italy
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy
| |
Collapse
|
11
|
Pinsino A, Bergami E, Della Torre C, Vannuccini ML, Addis P, Secci M, Dawson KA, Matranga V, Corsi I. Amino-modified polystyrene nanoparticles affect signalling pathways of the sea urchin (Paracentrotus lividus) embryos. Nanotoxicology 2017; 11:201-209. [PMID: 28091127 DOI: 10.1080/17435390.2017.1279360] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Polystyrene nanoparticles have been shown to pose serious risk to marine organisms including sea urchin embryos based on their surface properties and consequently behaviour in natural sea water. The aim of this study is to investigate the toxicity pathways of amino polystyrene nanoparticles (PS-NH2, 50 nm) in Paracentrotus lividus embryos in terms of development and signalling at both protein and gene levels. Two sub-lethal concentrations of 3 and 4 μg/mL of PS-NH2 were used to expose sea urchin embryos in natural sea water (PS-NH2 as aggregates of 143 ± 5 nm). At 24 and 48 h post-fertilisation (hpf) embryonic development was monitored and variations in the levels of key proteins involved in stress response and development (Hsp70, Hsp60, MnSOD, Phospho-p38 Mapk) as well as the modulation of target genes (Pl-Hsp70, Pl-Hsp60, Pl-Cytochrome b, Pl-p38 Mapk, Pl-Caspase 8, Pl-Univin) were measured. At 48 hpf various striking teratogenic effects were observed such as the occurrence of cells/masses randomly distributed, severe skeletal defects and delayed development. At 24 hpf a significant up-regulation of Pl-Hsp70, Pl-p38 Mapk, Pl-Univin and Pl-Cas8 genes was found, while at 48 hpf only for Pl-Univin was observed. Protein profile showed different patterns as a significant increase of Hsp70 and Hsp60 only after 48 hpf compared to controls. Conversely, P-p38 Mapk protein significantly increased at 24 hpf and decreased at 48 hpf. Our findings highlight that PS-NH2 are able to disrupt sea urchin embryos development by modulating protein and gene profile providing new understandings into the signalling pathways involved.
Collapse
Affiliation(s)
- Annalisa Pinsino
- a CNR - Institute of Biomedicine and Molecular Immunology "A. Monroy" , Palermo , Italy
| | - Elisa Bergami
- b Department of Physical, Earth and Environmental Sciences , University of Siena , Siena , Italy
| | | | - Maria Luisa Vannuccini
- b Department of Physical, Earth and Environmental Sciences , University of Siena , Siena , Italy
| | - Piero Addis
- d Department of Environmental and Life Sciences , University of Cagliari , Cagliari , Italy
| | - Marco Secci
- d Department of Environmental and Life Sciences , University of Cagliari , Cagliari , Italy
| | - Kenneth A Dawson
- e Centre for BioNano Interactions, School of Chemistry and Chemical Biology , University College Dublin , Dublin , Ireland
| | - Valeria Matranga
- a CNR - Institute of Biomedicine and Molecular Immunology "A. Monroy" , Palermo , Italy
| | - Ilaria Corsi
- b Department of Physical, Earth and Environmental Sciences , University of Siena , Siena , Italy
| |
Collapse
|
12
|
Ruocco N, Costantini M, Santella L. New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos. Sci Rep 2016; 6:32157. [PMID: 27562248 PMCID: PMC4999890 DOI: 10.1038/srep32157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022] Open
Abstract
The diffuse use of lithium in a number of industrial processes has produced a significant contamination of groundwater and surface water with it. The increased use of lithium has generated only scarce studies on its concentrations in ambient waters and on its effects on aquatic organisms. Only few contributions have focused on the toxicity of lithium in marine organisms (such as marine animals, algae and vegetables), showing that the toxic effect depends on the animal species. In the present study we describe the morphological and the molecular effects of lithium chloride (LiCl), using the sea urchin Paracentrotus lividus as a model organism. We show that LiCl, if added to the eggs before fertilization, induces malformations in the embryos in a dose-dependent manner. We have also followed by RT qPCR the expression levels of thirty seven genes (belonging to different classes of functional processes, such as stress, development, differentiation, skeletogenesis and detoxifications) to identify the molecular targets of LiCl. This study opens new perspectives for the understanding of the mechanism of action of lithium on marine organisms. The findings may also have relevance outside the world of marine organisms since lithium is widely prescribed for the treatment of human bipolar disorders.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126, Napoli, Italy.,Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, Naples 80078, Italy
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Luigia Santella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
13
|
Ruocco N, Varrella S, Romano G, Ianora A, Bentley MG, Somma D, Leonardi A, Mellone S, Zuppa A, Costantini M. Diatom-derived oxylipins induce cell death in sea urchin embryos activating caspase-8 and caspase 3/7. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:128-140. [PMID: 27130972 DOI: 10.1016/j.aquatox.2016.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
Diatoms are an important class of unicellular algae that produce bioactive secondary metabolites with cytotoxic activity collectively termed oxylipins, including polyunsaturated aldehydes (PUAs), hydroxyacids (HEPEs), oxo-acids and epoxyalcohols. Previous results showed that at higher concentrations, the PUA decadienal induced apoptosis on copepods and sea urchin embryos via caspase-3 activation; at lower concentrations decadienal affected the expression levels of the caspase-8 gene in embryos of the sea urchin Paracentrotus lividus. In the present work, we studied the effects of other common oxylipins produced by diatoms: two PUAs (heptadienal and octadienal) and four hydroxyacids (5-, 9- 11- and 15-HEPE) on P. lividus cell death and caspase activities. Our results showed that (i) at higher concentrations PUAs and HEPEs induced apoptosis in sea urchin embryos, detected by microscopic observation and through the activation of caspase-3/7 and caspase-8 measured by luminescent assays; (ii) at low concentrations, PUAs and HEPEs affected the expression levels of caspase-8 and caspase-3/7 (isolated for the first time here in P. lividus) genes, detected by Real Time qPCR. These findings have interesting implications from the ecological point of view, given the importance of diatom blooms in nutrient-rich aquatic environments.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Stefano Varrella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Matt G Bentley
- Faculty of Science and Technology, C227 Christchurch House, Bournemouth University, Talbot Campus, Poole, UK
| | - Domenico Somma
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy
| | - Stefano Mellone
- Istituto di Endocrinologia e Oncologia Sperimentale, CNR, Napoli, Italy
| | - Antonio Zuppa
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
14
|
Karakostis K, Costa C, Zito F, Brümmer F, Matranga V. Characterization of an Alpha Type Carbonic Anhydrase from Paracentrotus lividus Sea Urchin Embryos. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:384-395. [PMID: 27230618 DOI: 10.1007/s10126-016-9701-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
Carbonic anhydrases (CA) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the sea urchin, CA has a role in the formation of the calcitic skeleton during embryo development. Here, we report a newly identified mRNA sequence from embryos of the sea urchin Paracentrotus lividus, referred to as Pl-can. The complete coding sequence was identified with the aid of both EST databases and experimental procedures. Pl-CAN is a 447 aa-long protein, with an estimated molecular mass of 48.5 kDa and an isoelectric point of 6.83. The in silico study of functional domains showed, in addition to the alpha type CA-specific domain, the presence of an unexpected glycine-rich region at the N-terminal of the molecule. This is not found in any other species described so far, but probably it is restricted to the sea urchins. The phylogenetic analysis indicated that Pl-CAN is evolutionarily closer to human among chordates than to other species. The putative role(s) of the identified domains is discussed. The Pl-can temporal and spatial expression profiles, analyzed throughout embryo development by comparative qPCR and whole-mount in situ hybridization (WMISH), showed that Pl-can mRNA is specifically expressed in the primary mesenchyme cells (PMC) of the embryo and levels increase along with the growth of the embryonic skeleton, reaching a peak at the pluteus stage. A recombinant fusion protein was produced in E. coli and used to raise specific antibodies in mice recognized the endogenous Pl-CAN by Western blot in embryo extracts from gastrula and pluteus.
Collapse
Affiliation(s)
- Konstantinos Karakostis
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
- Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
- INSERM - UMR 1162, Institute de Génétique Moléculaire, Hôpital St. Louis, 27 rue Juliette Dodu, 75010, Paris, France
| | - Caterina Costa
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy.
| | - Francesca Zito
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
| | - Franz Brümmer
- Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Valeria Matranga
- Institute of Biomedicine and Molecular Immunology "A. Monroy", National Research Council, Via Ugo La Malfa, 153-90146, Palermo, Italy
| |
Collapse
|
15
|
Karakostis K, Zanella-Cléon I, Immel F, Guichard N, Dru P, Lepage T, Plasseraud L, Matranga V, Marin F. A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus lividus. J Proteomics 2016; 136:133-44. [DOI: 10.1016/j.jprot.2016.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/22/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
|
16
|
Morroni L, Pinsino A, Pellegrini D, Regoli F, Matranga V. Development of a new integrative toxicity index based on an improvement of the sea urchin embryo toxicity test. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 123:2-7. [PMID: 26477574 DOI: 10.1016/j.ecoenv.2015.09.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
The sea urchin embryo toxicity test is classically used to assess the noxious effects of contaminated marine waters and sediments. In Italian guidelines on quality of dredged sediments, the standard toxicity criteria used for this assay are based on a single endpoint at 48 hours of development, corresponding to the pluteus stage. Different typologies of abnormalities, including those which occur at earlier stages, are not categorized, thus preventing the evaluation of the actual teratogenic hazards. A new integrative toxicity index has been developed in this study based on the analysis of two developmental stages, at 24 and 48h post-fertilization, and the differentiation between development delays and germ layers impairments: the new toxicity index is calculated by integrating the frequency of abnormal embryos with the severity of such abnormalities. When tested on dredged sediments, the evaluation of increasing levels of toxicity affecting embryonic outcomes enhanced the capability to discriminate different samples, appearing particularly relevant to validate the sea urchin embryo toxicity assay, and supporting its utility in practical applications such as the sediments classification in harbor areas.
Collapse
Affiliation(s)
- L Morroni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy; Istituto Superiore per la Protezione e la Ricerca Ambientale, Livorno, Italy
| | - A Pinsino
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - D Pellegrini
- Istituto Superiore per la Protezione e la Ricerca Ambientale, Livorno, Italy
| | - F Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - V Matranga
- Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Consiglio Nazionale delle Ricerche, Palermo, Italy.
| |
Collapse
|
17
|
Wang BK, Yu XF, Wang JH, Li ZB, Li PH, Wang H, Song L, Chu PK, Li C. Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing. Biomaterials 2015; 78:27-39. [PMID: 26646625 DOI: 10.1016/j.biomaterials.2015.11.025] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/26/2015] [Accepted: 11/12/2015] [Indexed: 11/28/2022]
Abstract
Nanomaterials-mediated photothermal therapy (PTT) often suffers from the fundamental cellular defense mechanism of heat shock response which leads to therapeutic resistance of cancer cells and reduces the therapeutic efficacy. Herein, a gold nanorods (GNRs)-siRNA platform with gene silencing capability is produced to improve the PTT efficiency. After surface modification, the GNRs show the ability to deliver siRNA oligos targeting BAG3 which is an efficient gene to block the heat-shock response. The synthesized GNRs-siRNA nanoplex exhibits excellent ability in the delivery of siRNA into cancer cells with high silencing efficiency which is even better than that of commercial Lipofectamine 2000. The in vitro and in vivo studies demonstrate the ability of the GNRs-siRNA nanoplex to sensitize the cancer cells to PTT under moderate laser irradiation by down-regulating the increased BAG3 expression and enhancing apoptosis. The GNRs-siRNA mediated PTT has large potential in clinical cancer therapy due to the elimination of therapeutic resistance and enhanced photothermal therapeutic efficacy by means of gene silencing. It also suggests an efficient platform for gene delivery and controllable gene therapy.
Collapse
Affiliation(s)
- Bei-Ke Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei-MOST & Key, Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Xue-Feng Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China.
| | - Jia-Hong Wang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, PR China
| | - Zhi-Bin Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Peng-Hui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Li Song
- Department of Stomatology, The Second Affiliated Hospital to Nanchang University, Nanchang, 330006, PR China
| | - Paul K Chu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chengzhang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei-MOST & Key, Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
18
|
Migliaccio O, Castellano I, Cirino P, Romano G, Palumbo A. Maternal Exposure to Cadmium and Manganese Impairs Reproduction and Progeny Fitness in the Sea Urchin Paracentrotus lividus. PLoS One 2015; 10:e0131815. [PMID: 26125595 PMCID: PMC4488381 DOI: 10.1371/journal.pone.0131815] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/07/2015] [Indexed: 02/02/2023] Open
Abstract
Metal contamination represents one of the major sources of pollution in marine environments. In this study we investigated the short-term effects of ecologically relevant cadmium and manganese concentrations (10(-6) and 3.6 x 10(-5) M, respectively) on females of the sea urchin Paracentrotus lividus and their progeny, reared in the absence or presence of the metal. Cadmium is a well-known heavy metal, whereas manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. The effects of these agents were examined on both P. lividus adults and their offspring following reproductive state, morphology of embryos, nitric oxide (NO) production and differential gene expression. Here, we demonstrated that both metals differentially impaired the fertilization processes of the treated female sea urchins, causing modifications in the reproductive state and also affecting NO production in the ovaries. A detailed analysis of the progeny showed a high percentage of abnormal embryos, associated to an increase in the endogenous NO levels and variations in the transcriptional expression of several genes involved in stress response, skeletogenesis, detoxification, multi drug efflux processes and NO production. Moreover, we found significant differences in the progeny from females exposed to metals and reared in metal-containing sea water compared to embryos reared in non-contaminated sea water. Overall, these results greatly expanded previous studies on the toxic effects of metals on P. lividus and provided new insights into the molecular events induced in the progeny of sea urchins exposed to metals.
Collapse
Affiliation(s)
- Oriana Migliaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Paola Cirino
- Marine Resources for Research Service, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Giovanna Romano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| |
Collapse
|
19
|
Migliaccio O, Castellano I, Romano G, Palumbo A. Stress response to cadmium and manganese in Paracentrotus lividus developing embryos is mediated by nitric oxide. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:125-134. [PMID: 25181703 DOI: 10.1016/j.aquatox.2014.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 06/03/2023]
Abstract
Increasing concentrations of contaminants, often resulting from anthropogenic activities, have been reported to occur in the marine environment and affect marine organisms. Among these, the metal ions cadmium and manganese have been shown to induce developmental delay and abnormalities, mainly reflecting skeleton elongation perturbation, in the sea urchin Paracentrotus lividus, an established model for toxicological studies. Here, we provide evidence that the physiological messenger nitric oxide (NO), formed by l-arginine oxidation by NO synthase (NOS), mediates the stress response induced by cadmium and manganese in sea urchins. When NO levels were lowered by inhibiting NOS, the proportion of abnormal plutei increased. Quantitative expression of a panel of 19 genes involved in stress response, skeletogenesis, detoxification and multidrug efflux processes was followed at different developmental stages and under different conditions: metals alone, metals in the presence of NOS inhibitor, NO donor and NOS inhibitor alone. These data allowed the identification of different classes of genes whose metal-induced transcriptional expression was directly or indirectly mediated by NO. These results open new perspectives on the role of NO as a sensor of different stress agents in sea urchin developing embryos.
Collapse
Affiliation(s)
- Oriana Migliaccio
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Immacolata Castellano
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Giovanna Romano
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Anna Palumbo
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
20
|
Corsi I, Cherr GN, Lenihan HS, Labille J, Hassellov M, Canesi L, Dondero F, Frenzilli G, Hristozov D, Puntes V, Della Torre C, Pinsino A, Libralato G, Marcomini A, Sabbioni E, Matranga V. Common strategies and technologies for the ecosafety assessment and design of nanomaterials entering the marine environment. ACS NANO 2014; 8:9694-709. [PMID: 25265533 DOI: 10.1021/nn504684k] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The widespread use of engineered nanomaterials (ENMs) in a variety of technologies and consumer products inevitably causes their release into aquatic environments and final deposition into the oceans. In addition, a growing number of ENM products are being developed specifically for marine applications, such as antifouling coatings and environmental remediation systems, thus increasing the need to address any potential risks for marine organisms and ecosystems. To safeguard the marine environment, major scientific gaps related to assessing and designing ecosafe ENMs need to be filled. In this Nano Focus, we examine key issues related to the state-of-the-art models and analytical tools being developed to understand ecological risks and to design safeguards for marine organisms.
Collapse
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena , Siena 53100, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Varrella S, Romano G, Ianora A, Bentley MG, Ruocco N, Costantini M. Molecular response to toxic diatom-derived aldehydes in the sea urchin Paracentrotus lividus. Mar Drugs 2014; 12:2089-113. [PMID: 24714125 PMCID: PMC4012444 DOI: 10.3390/md12042089] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 12/24/2022] Open
Abstract
Diatoms are dominant photosynthetic organisms in the world’s oceans and represent a major food source for zooplankton and benthic filter-feeders. However, their beneficial role in sustaining marine food webs has been challenged after the discovery that they produce secondary metabolites, such as polyunsaturated aldehydes (PUAs), which negatively affect the reproductive success of many invertebrates. Here, we report the effects of two common diatom PUAs, heptadienal and octadienal, which have never been tested before at the molecular level, using the sea urchin, Paracentrotus lividus, as a model organism. We show that both PUAs are able to induce teratogenesis (i.e., malformations), as already reported for decadienal, the better-studied PUA of this group. Moreover, post-recovery experiments show that embryos can recover after treatment with all three PUAs, indicating that negative effects depend both on PUA concentrations and the exposure time of the embryos to these metabolites. We also identify the time range during which PUAs exert the greatest effect on sea urchin embryogenesis. Finally, we report the expression levels of thirty one genes (having a key role in a broad range of functional responses, such as stress, development, differentiation, skeletogenesis and detoxification processes) in order to identify the common targets affected by PUAs and their correlation with morphological abnormalities. This study opens new perspectives for understanding how marine organisms afford protection from environmental toxicants through an integrated network of genes.
Collapse
Affiliation(s)
- Stefano Varrella
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| | - Matt G Bentley
- Dove Marine Laboratory, School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, UK.
| | - Nadia Ruocco
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| | - Maria Costantini
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples 80121, Italy.
| |
Collapse
|
22
|
Russo R, Bonaventura R, Matranga V. Time- and dose-dependent gene expression in sea urchin embryos exposed to UVB. MARINE ENVIRONMENTAL RESEARCH 2014; 93:85-92. [PMID: 24011617 DOI: 10.1016/j.marenvres.2013.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/02/2013] [Accepted: 08/07/2013] [Indexed: 06/02/2023]
Abstract
The increase of UVB radiation reaching marine environment has harmful effects on living organisms. Paracentrotus lividus sea urchin embryos living in shallow water are exposed to radiations, providing a good model for studying the molecular mechanisms activated upon UV stress. Here, we report the modulated time- and dose-dependent expression of six genes, known to be involved in stress response, in embryos exposed at cleavage to 400 and 800 J/m(2) UVB, and collected at early (morula) and later (gastrula) stages. We analyzed their mRNA levels by QPCR and found that Pl-14-3-3 showed a dose-dependent induction, both early and late in development; Pl-c-jun was up-regulated proportionally to the UVB dose at early stages and only at 800 J/m(2) UVB at later stages; Pl-XPB-ERCC3, Pl-MT and Pl-NF-kB were highly up-regulated later in development at the high dose, with the exception of Pl-XPB-ERCC3 whose mRNA levels were high also at the lower dose; Pl-FOXO expression was not affected by UVB radiation. We believe that the identification of UVB-responsive genes in irradiated sea urchin embryos, reported for the first time in this study, will be helpful for the understanding of the involved molecular pathways. The correlation between the impaired morphogenesis, affecting endo-mesoderm differentiation, and gene modulations described herewith is also discussed.
Collapse
Affiliation(s)
- Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Valeria Matranga
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
23
|
Matranga V, Corsi I. Toxic effects of engineered nanoparticles in the marine environment: model organisms and molecular approaches. MARINE ENVIRONMENTAL RESEARCH 2012; 76:32-40. [PMID: 22391237 DOI: 10.1016/j.marenvres.2012.01.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/23/2012] [Accepted: 01/28/2012] [Indexed: 05/31/2023]
Abstract
Engineered nanoparticles (ENPs) have been produced by nano-biotech companies in recent decades to generate innovative goods in various fields, including agriculture, electronics, biomedicine, manufacturing, pharmaceuticals and cosmetics. The nano-scale size of the particles can confer novel and significantly improved physical, chemical and biological properties to scientific phenomena and processes. As their applications to science and technology expand, the need to understand the putative noxious effects of ENPs on humans and ecosystems is becoming increasingly important. ENPs are emerging as a new class of pollutants with eco-toxicological impacts on marine ecosystems because the particles can end up in waterways and reach the sea. Recent laboratory studies in invertebrates and fishes suggest that exposure to ENPs could have harmful effects. Because there is not much data available for gauging the effects of ENPs on marine wildlife, the ultimate ecotoxicological impacts of chronic exposure to ENPs should be investigated further using laboratory tests and field studies. We propose the use of model organisms to understand the molecular pathways involved in the mechanisms that may be affected by exposure to ENPs. Sensitive and innovative molecular methods will provide information regarding the hazards of ENPs that may exist in the marine environment. Model organisms that have not been conventionally used for risk assessment and the development of eco-toxicogenomic approaches will result in an improved understanding of the mechanistic modes of action of contaminating ENPs in the marine environment.
Collapse
Affiliation(s)
- Valeria Matranga
- CNR, Institute of Biomedicine and Molecular Immunology "A. Monroy", Palermo, Italy.
| | | |
Collapse
|
24
|
Marrone V, Piscopo M, Romano G, Ianora A, Palumbo A, Costantini M. Defensome against toxic diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS One 2012; 7:e31750. [PMID: 22363721 PMCID: PMC3282763 DOI: 10.1371/journal.pone.0031750] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 01/12/2012] [Indexed: 12/30/2022] Open
Abstract
Many diatom species produce polyunsaturated aldehydes, such as decadienal, which compromise embryonic and larval development in benthic organisms. Here newly fertilized Paracentrotus lividus sea urchins were exposed to low concentration of decadienal and the expression levels of sixteen genes, implicated in a broad range of functional responses, were followed by Real Time qPCR in order to identify potential decadienal targets. We show that at low decadienal concentrations the sea urchin Paracentrotus lividus places in motion different classes of genes to defend itself against this toxic aldehyde, activating hsp60 and two proteases, hat and BP10, at the blastula stage and hsp56 and several other genes (14-3-3ε, p38 MAPK, MTase, and GS) at the prism stage. At this latter stage all genes involved in skeletogenesis (Nec, uni, SM50 and SM30) were also down-expressed, following developmental abnormalities that mainly affected skeleton morphogenesis. Moreover, sea urchin embryos treated with increasing concentrations of decadienal revealed a dose-dependent response of activated target genes. Finally, we suggest that this orchestrated defense system against decadienal represents part of the chemical defensome of P. lividus affording protection from environmental toxicants.
Collapse
Affiliation(s)
- Vincenzo Marrone
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Marina Piscopo
- Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy
| | - Giovanna Romano
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Adrianna Ianora
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Anna Palumbo
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Maria Costantini
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Naples, Italy
- * E-mail:
| |
Collapse
|
25
|
Romano G, Costantini M, Buttino I, Ianora A, Palumbo A. Nitric oxide mediates the stress response induced by diatom aldehydes in the sea urchin Paracentrotus lividus. PLoS One 2011; 6:e25980. [PMID: 22022485 PMCID: PMC3191173 DOI: 10.1371/journal.pone.0025980] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/14/2011] [Indexed: 11/18/2022] Open
Abstract
Diatoms are ubiquitous and abundant primary producers that have been traditionally considered as a beneficial food source for grazers and for the transfer of carbon through marine food webs. However, many diatom species produce polyunsaturated aldehydes that disrupt development in the offspring of grazers that feed on these unicellular algae. Here we provide evidence that production of the physiological messenger nitric oxide increases after treatment with the polyunsaturated aldehyde decadienal in embryos of the sea urchin Paracentrotus lividus. At high decadienal concentrations, nitric oxide mediates initial apoptotic events leading to loss of mitochondrial functionality through the generation of peroxynitrite. At low decadienal concentrations, nitric oxide contributes to the activation of hsp70 gene expression thereby protecting embryos against the toxic effects of this aldehyde. When nitric oxide levels were lowered by inhibiting nitric oxide synthase activity, the expression of hsp70 in swimming blastula decreased and the proportion of abnormal plutei increased. However, in later pluteus stages nitric oxide was no longer able to exert this protective function: hsp70 and nitric oxide synthase expression decreased with a consequent increase in the expression of caspase-8. Our findings that nitric oxide production increases rapidly in response to a toxic exogenous stimulus opens new perspectives on the possible role of this gas as an important messenger to environmental stress in sea urchins and for understanding the cellular mechanisms underlying toxicity during diatom blooms.
Collapse
Affiliation(s)
- Giovanna Romano
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Maria Costantini
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Isabella Buttino
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Adrianna Ianora
- Laboratory of Functional and Evolutionary Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Anna Palumbo
- Laboratory of Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| |
Collapse
|