1
|
Normand-Gravier T, Solsona R, Dablainville V, Racinais S, Borrani F, Bernardi H, Sanchez AMJ. Effects of thermal interventions on skeletal muscle adaptations and regeneration: perspectives on epigenetics: a narrative review. Eur J Appl Physiol 2024:10.1007/s00421-024-05642-9. [PMID: 39607529 DOI: 10.1007/s00421-024-05642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/12/2024] [Indexed: 11/29/2024]
Abstract
Recovery methods, such as thermal interventions, have been developed to promote optimal recovery and maximize long-term training adaptations. However, the beneficial effects of these recovery strategies remain a source of controversy. This narrative review aims to provide a detailed understanding of how cold and heat interventions impact long-term training adaptations. Emphasis is placed on skeletal muscle adaptations, particularly the involvement of signaling pathways regulating protein turnover, ribosome and mitochondrial biogenesis, as well as the critical role of satellite cells in promoting myofiber regeneration following atrophy. The current literature suggests that cold interventions can blunt molecular adaptations (e.g., protein synthesis and satellite cell activation) and oxi-inflammatory responses after resistance exercise, resulting in diminished exercise-induced hypertrophy and lower gains in isometric strength during training protocols. Conversely, heat interventions appear promising for mitigating skeletal muscle degradation during immobilization and atrophy. Indeed, heat treatments (e.g., passive interventions such as sauna-bathing or diathermy) can enhance protein turnover and improve the maintenance of muscle mass in atrophic conditions, although their effects on uninjured skeletal muscles in both humans and rodents remain controversial. Nonetheless, heat treatment may serve as an important tool for attenuating atrophy and preserving mitochondrial function in immobilized or injured athletes. Finally, the potential interplay between exercise, thermal interventions and epigenetics is discussed. Future studies must be encouraged to clarify how repeated thermal interventions (heat and cold) affect long-term exercise training adaptations and to determine the optimal modalities (i.e., method of application, temperature, duration, relative humidity, and timing).
Collapse
Affiliation(s)
- Tom Normand-Gravier
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Robert Solsona
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France
| | - Valentin Dablainville
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
- Research and Scientific Support Department, Aspetar Orthopedic and Sports Medicine Hospital, 29222, Doha, Qatar
| | - Sébastien Racinais
- Environmental Stress Unit, CREPS Montpellier-Font-Romeu, Montpellier, France
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Henri Bernardi
- UMR866, Dynamique du Muscle et Métabolisme (DMeM), INRAE, University of Montpellier, Montpellier, France
| | - Anthony M J Sanchez
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- Laboratoire Interdisciplinaire Performance Santé Environnement de Montagne (LIPSEM), Faculty of Sports Sciences, University of Perpignan Via Domitia, UR 4640, 7 Avenue Pierre de Coubertin, 66120, Font-Romeu, France.
| |
Collapse
|
2
|
Meng S, Xing S, Xu H, Li J, Jiang Y, He H, Cai H, Li M. Integrated analysis of intestinal microbial community and muscle transcriptome profile in rabbits. Anim Biotechnol 2024; 35:2387015. [PMID: 39145993 DOI: 10.1080/10495398.2024.2387015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Intestinal microbial community plays an important part in maintaining health and skeletal muscle development in livestock. This study is the first of its kind in the world. In order to better understand the relationship between gut microbiota and gene expression in skeletal muscle of rabbits, caecum contents and longissimus dorsi tissues of rabbits at 0 d (S1), 35 d (S2) and 70d (S3) were collected and subjected for 16S rRNA sequencing and transcriptome sequencing. Our results showed that, among three groups of rabbits, Firmicutes and Bacteroidetes were the dominant phyla at the phylum level, while Akmansia, Bacteroides and Ruminobacter were the dominant genera at the genus level, and the relative abundance of Akmansia and Bacteroides increased firstly and then decreased from 0 d to 70 d. By analyzing the transcriptome sequencing data, we identified 2866, 2446 and 4541 differentially expressed genes (DEGs) in S1 vs S2, S2 vs S3 and S1 vs S3 groups, respectively. Finally, we performed correlation analysis between gut microbiota and the expression levels of muscle development-related genes of rabbits at 0 d and 70 d. Compared with 0 day old rabbits, in 70 day old rabbits Acinetobacter and Cronbacter with decreased abundance, and Ruminococcaceae_UCG-014 and Ruminococcus_1 with increase abundance is beneficial to caecum health in rabbits. These results will lay a foundation for further re-searches about the relationship between caecum microflora and muscle development in rabbits.
Collapse
Affiliation(s)
- Shengbo Meng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Shanshan Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Jing Li
- Animal Health Supervision Institute of Biyang, Henan, P.R. China
| | - Yixuan Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Hui He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| |
Collapse
|
3
|
Pryor JL, Sweet D, Rosbrook P, Qiao J, Hess HW, Looney DP. Resistance Training in the Heat: Mechanisms of Hypertrophy and Performance Enhancement. J Strength Cond Res 2024; 38:1350-1357. [PMID: 38775794 DOI: 10.1519/jsc.0000000000004815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
ABSTRACT Pryor, JL, Sweet, D, Rosbrook, P, Qiao, J, Hess, HW, and Looney, DP. Resistance training in the heat: Mechanisms of hypertrophy and performance enhancement. J Strength Cond Res 38(7): 1350-1357, 2024-The addition of heat stress to resistance exercise or heated resistance exercise (HRE) is growing in popularity as emerging evidence indicates altered neuromuscular function and an amplification of several mechanistic targets of protein synthesis. Studies demonstrating increased protein synthesis activity have shown temperature-dependent mammalian target of rapamycin phosphorylation, supplemental calcium release, augmented heat shock protein expression, and altered immune and hormone activity. These intriguing observations have largely stemmed from myotube, isolated muscle fiber, or rodent models using passive heating alone or in combination with immobilization or injury models. A growing number of translational studies in humans show comparable results employing local tissue or whole-body heat with and without resistance exercise. While few, these translational studies are immensely valuable as they are most applicable to sport and exercise. As such, this brief narrative review aims to discuss evidence primarily from human HRE studies detailing the neuromuscular, hormonal, and molecular responses to HRE and subsequent strength and hypertrophy adaptations. Much remains unknown in this exciting new area of inquiry from both a mechanistic and functional perspective warranting continued research.
Collapse
Affiliation(s)
- J Luke Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Daniel Sweet
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Paul Rosbrook
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - JianBo Qiao
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - Hayden W Hess
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York; and
| | - David P Looney
- United States Army Research Institute of Environmental Medicine (USARIEM), Natick, Massachusetts
| |
Collapse
|
4
|
Dunn RA, Luk HY, Appell CR, Jiwan NC, Keefe MS, Rolloque JJS, Sekiguchi Y. Eccentric muscle-damaging exercise in the heat lowers cellular stress prior to and immediately following future exertional heat exposure. Cell Stress Chaperones 2024; 29:472-482. [PMID: 38735625 PMCID: PMC11131061 DOI: 10.1016/j.cstres.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024] Open
Abstract
Muscle-damaging exercise (e.g., downhill running [DHR]) or heat exposure bouts potentially reduce physiological and/or cellular stress during future exertional heat exposure; however, the true extent of their combined preconditioning effects is unknown. Therefore, this study investigated the effect of muscle-damaging exercise in the heat on reducing physiological and cellular stress during future exertional heat exposure. Ten healthy males (mean ± Standard Definition; age, 23 ± 3 years; body mass, 78.7 ± 11.5 kg; height, 176.9 ± 4.7 cm) completed this study. Participants were randomly assigned into two preconditioning groups: (a) DHR in the heat (ambient temperature [Tamb], 35 °C; relative humidity [RH], 40%) and (b) DHR in thermoneutral (Tamb, 20 °C; RH, 20%). Seven days following DHR, participants performed a 45-min flat run in the heat (FlatHEAT [Tamb, 35 °C; RH, 40%]). During exercise, heart rate and rectal temperature (Trec) were recorded at baseline and every 5-min. Peripheral blood mononuclear cells were isolated to assess heat shock protein 72 (Hsp72) concentration between conditions at baseline, immediately post-DHR, and immediately pre-FlatHEAT and post-FlatHEAT. Mean Trec during FlatHEAT between hot (38.23 ± 0.38 °C) and thermoneutral DHR (38.26 ± 0.38 °C) was not significantly different (P = 0.68), with no mean heart rate differences during FlatHEAT between hot (172 ± 15 beats min-1) and thermoneutral conditions (174 ± 8 beats min-1; P = 0.58). Hsp72 concentration change from baseline to immediately pre-FlatHEAT was significantly lower in hot (-51.4%) compared to thermoneutral (+24.2%; P = 0.025) DHR, with Hsp72 change from baseline to immediately post-FlatHEAT also lower in hot (-52.6%) compared to thermoneutral conditions (+26.3%; P = 0.047). A bout of muscle-damaging exercise in the heat reduces cellular stress levels prior to and immediately following future exertional heat exposure.
Collapse
Affiliation(s)
- Ryan A Dunn
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Hui-Ying Luk
- Applied Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Casey R Appell
- Applied Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Nigel C Jiwan
- Applied Physiology Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Marcos S Keefe
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Jan-Joseph S Rolloque
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Yasuki Sekiguchi
- Sports Performance Laboratory, Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
5
|
Locke M, Bruccoleri G. Skeletal Muscle Heat Shock Protein Content and the Repeated Bout Effect. Int J Mol Sci 2024; 25:4017. [PMID: 38612826 PMCID: PMC11011896 DOI: 10.3390/ijms25074017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The "Repeated Bout Effect" (RBE) occurs when a skeletal muscle is preconditioned with a few lengthening contractions (LC) prior to exposing the muscle to a greater number of LC. The preconditioning (PC) results in significantly less damage and preservation of force. Since it takes only a few LC to increase muscle heat shock protein (HSP) content, it was of interest to examine the relationship between HSPs and the RBE. To do this, one tibialis anterior (TA) muscle from Sprague-Dawley rats (n = 5/group) was preconditioned with either 0, 5, or 15 lengthening contractions (LC) and exposed to a treatment of 60 LC 48 h later. Preconditioning TA muscles with 15 LC, but not 5 LC, significantly elevated muscle αB-crystallin (p < 0.05), HSP25 (p < 0.05), and HSP72 content (p < 0.001). These preconditioned TA muscles also showed a significantly (p < 0.05) reduced loss of active torque throughout the subsequent 60 LC. While there was a trend for all preconditioned muscles to maintain higher peak torque levels throughout the 60 LC, no significant differences were detected between the groups. Morphologically, preconditioned muscles appeared to show less discernible muscle fiber damage. In conclusion, an elevated skeletal muscle HSP content from preconditioning may contribute to the RBE.
Collapse
Affiliation(s)
- Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON M5S 2W6, Canada;
| | | |
Collapse
|
6
|
Bischof K, Stafilidis S, Bundschuh L, Oesser S, Baca A, König D. Reduction in systemic muscle stress markers after exercise-induced muscle damage following concurrent training and supplementation with specific collagen peptides - a randomized controlled trial. Front Nutr 2024; 11:1384112. [PMID: 38590831 PMCID: PMC10999617 DOI: 10.3389/fnut.2024.1384112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Collagen peptide supplementation in conjunction with exercise has been shown to improve structural and functional adaptations of both muscles and the extracellular matrix. This study aimed to explore whether specific collagen peptide (SCP) supplementation combined with a concurrent training intervention can improve muscular stress after exercise-induced muscle damage, verified by reliable blood markers. Methods 55 sedentary to moderately active males participating in a concurrent training (CT) intervention (3x/week) for 12 weeks were administered either 15 g of SCP or placebo (PLA) daily. Before (T1) and after the intervention (T2), 150 muscle-damaging drop jumps were performed. Blood samples were collected to measure creatine kinase (CK), lactate dehydrogenase (LDH), myoglobin (MYO) and high-sensitivity C-reactive protein (hsCRP) before, after, and at 2 h, 24 h and 48 h post exercise. Results A combination of concurrent training and SCP administration showed statistically significant interaction effects, implying a lower increase in the area under the curve (AUC) of MYO (p = 0.004, ηp2 = 0.184), CK (p = 0.01, ηp2 = 0.145) and LDH (p = 0.016, ηp2 = 0.133) in the SCP group. On closer examination, the absolute mean differences (ΔAUCs) showed statistical significance in MYO (p = 0.017, d = 0.771), CK (p = 0.039, d = 0.633) and LDH (p = 0.016, d = 0.764) by SCP supplementation. Conclusion In conclusion, 12 weeks of 15 g SCP supplementation combined with CT intervention reduced acute markers of exercise-induced muscle damage and improved post-exercise regenerative capacity, as evidenced by the altered post-exercise time course. The current findings indicate that SCP supplementation had a positive effect on the early phase of muscular recovery by either improving the structural integrity of the muscle and extracellular matrix during the training period or by accelerating membrane and cytoskeletal protein repair. Clinical trial registration https://www.clinicaltrials.gov/study/NCT05220371?cond=NCT05220371&rank=1, NCT05220371.
Collapse
Affiliation(s)
- Kevin Bischof
- Centre for Sports Science and University Sports, Department of Sports Science, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
| | - Savvas Stafilidis
- Centre for Sports Science and University Sports, Department for Biomechanics, Kinesiology and Computer Science in Sport, University of Vienna, Vienna, Austria
| | - Larissa Bundschuh
- Centre for Sports Science and University Sports, Department of Sports Science, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
| | | | - Arnold Baca
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
- Centre for Sports Science and University Sports, Department for Biomechanics, Kinesiology and Computer Science in Sport, University of Vienna, Vienna, Austria
| | - Daniel König
- Centre for Sports Science and University Sports, Department of Sports Science, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Vienna, Austria
- Faculty of Life Sciences, Department for Nutrition, Section for Nutrition, Exercise and Health, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Tan XR, Low ICC, Soong TW, Lee JKW. Pre-exercise hot water immersion increased circulatory heat shock proteins but did not alter muscle damage markers or endurance capacity after eccentric exercise. Temperature (Austin) 2024; 11:157-169. [PMID: 38846523 PMCID: PMC11152112 DOI: 10.1080/23328940.2024.2313954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 06/09/2024] Open
Abstract
Pre-exercise passive heating attenuates muscle damage caused by eccentric exercise in rats where the induction of heat shock proteins (HSPs) confers a myoprotective effect. We investigated whether pre-exercise hot water immersion (HWI) confers similar benefits in humans. Eleven recreational male athletes were immersed in 41°C water up to 60 min or until rectal temperatures reached 39.5°C. After a 6 h rest, the participants performed an eccentric downhill run for 1 h at -4% gradient to induce muscle damage. An endurance capacity test at 75% VO2max was conducted 18 h later. The control trial was similar except that participants were immersed at 34°C. Blood samples were collected to assess HSPs levels, creatine kinase, and lactate dehydrogenase activities. Plasma eHSP70 was higher post-immersion in HWI trials (1.3 ± 0.4 vs 1.1 ± 0.4; p = 0.005). Plasma eHSP27 was higher before (p = 0.049) and after (p = 0.015) endurance test in HWI. Leukocytic p-HSP27 was increased 18 h after HWI (0.97 ± 0.14 vs 0.67 ± 0.11; p = 0.04). Creatine kinase and lactate dehydrogenase activities were increased by 3-fold and 1.5-fold, respectively, after endurance test in HWI but did not differ across trials (p > 0.05). Mean heart rates were higher during eccentric run and endurance test in HWI as compared to control (p < 0.05). Endurance capacity was similar between trials (57.3 ± 11.5 min vs 55.0 ± 13.5 min; p = 0.564). Pre-exercise heating increased the expression of plasma eHSPs and leukocytic p-HSP27 but did not reduce muscle damage nor enhance endurance capacity.
Collapse
Affiliation(s)
- Xiang Ren Tan
- Health and Social Sciences, Singapore Institute of Technology, Singapore, Singapore
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ivan C. C. Low
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jason K. W. Lee
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Heat Resilience and Performance Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
8
|
Yoshihara T, Dobashi S, Naito H. Effects of preconditioning with heat stress on acute exercise-induced intracellular signaling in male rat gastrocnemius muscle. Physiol Rep 2024; 12:e15913. [PMID: 38185480 PMCID: PMC10771927 DOI: 10.14814/phy2.15913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Heat stress (HS) induces Akt/mTOR phosphorylation and FoxO3a signaling; however, whether a prior increase in heat shock protein 72 (HSP72) expression affects intracellular signaling following eccentric exercise remains unclear. We analyzed the effects of HS pretreatment on intramuscular signaling in response to acute exercise in 10-week-old male Wistar rats (n = 24). One leg of each rat was exposed to HS and the other served as an internal control (CT). Post-HS, rats were either rested or subjected to downhill treadmill running. Intramuscular signaling responses in the red and white regions of the gastrocnemius muscle were analyzed before, immediately after, or 1 h after exercise (n = 8/group). HS significantly increased HSP72 levels in both deep red and superficial white regions. Although HS did not affect exercise-induced mTOR signaling (S6K1/ERK) responses in the red region, mTOR phosphorylation in the white region was significantly higher in CT legs than in HS legs after exercise. Thr308 phosphorylation of Akt showed region-specific alteration with a decrease in the red region and an increase in the white region immediately after downhill running. Overall, a prior increase in HSP72 expression elicits fiber type-specific changes in exercise-induced Akt and mTOR phosphorylation in rat gastrocnemius muscle.
Collapse
Affiliation(s)
| | - Shohei Dobashi
- Graduate School of Health and Sports ScienceJuntendo UniversityChibaJapan
- Institute of Health and Sport SciencesUniversity of TsukubaIbarakiJapan
| | - Hisashi Naito
- Graduate School of Health and Sports ScienceJuntendo UniversityChibaJapan
| |
Collapse
|
9
|
Mikami T, Yamauchi H. Preconditioning with whole-body or regional hyperthermia attenuates exercise-induced muscle damage in rodents. Physiol Res 2022; 71:125-134. [PMID: 34505524 DOI: 10.33549/physiolres.934569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Our aim was to investigate whether hyperthermia before exercise protects against exercise-induced skeletal muscle damage. Two hyperthermia protocols were evaluated. In the first, male ICR mice were exposed to 30 min of whole-body heat in an environmental chamber at an ambient temperature of 42 °C. Heat-exposed and non-heat-exposed mice subsequently completed 60 min of downhill running on a treadmill, 24 h after exposure. Heat exposure significantly increased HSP70 and HSP25 content in the soleus muscle compared to controls. Plasma creatine kinase, muscle beta-glucuronidase, and histochemical (hematoxylin and eosin stain) analysis demonstrated that muscle damage was lower in the heat-exposed mice than in the non-heat-exposed mice. In the second, the effect of regional heating of the legs, by microwave diathermy, on the prevention of exercise-induced muscle damage was evaluated in male Wistar rats. Microwave-treated and non-microwave-treated rats again completed the running protocol 24 h after exposure. Microwave diathermy increased the muscle temperature to 40 °C, significantly increased HSP70 and HSP25 content in the soleus muscle, and significantly attenuated exercise-induced muscle damage. Therefore, hyperthermia before exercise increases skeletal muscle HSPs and attenuates the risk of exercise-induced muscle injury.
Collapse
Affiliation(s)
- T Mikami
- Department of Health and Sport Science, Nippon Medical School, Mushasino, Tokyo, Japan.
| | | |
Collapse
|
10
|
Liu J, Xu C, Yu X, Zuo Q. Expression profiles of SLC39A/ZIP7, ZIP8 and ZIP14 in response to exercise-induced skeletal muscle damage. J Trace Elem Med Biol 2021; 67:126784. [PMID: 34015658 DOI: 10.1016/j.jtemb.2021.126784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Zinc transporters are thought to facilitate the mobilization of zinc (Zn) and the role of Zn as a signaling mediator during cellular events. Little is known about the response of Zn movement and zinc transporters during muscle proliferation and differentiation processes after damage. METHODS After rats were subjected to one 90-min session of downhill running to cause muscle damage, the gastrocnemius muscles were harvested to assess the expression of zinc transporters SLC39A/ZIP7, ZIP8, ZIP14 and myogenic regulatory factors at the 0 h, 6 h, 12 h, 1 d, 2 d, 3 d, 1 w and 2 w time points after exercise. RESULTS SLC39A/ZIP7, ZIP8 and ZIP14 had translocated to different compartments of the cell following damage, and they exhibited differential expression profiles after eccentric exercise. The results regarding the myogenetic regulators showed that nf-κb was upregulated 2 d after exercise, and STAT3 and Akt1 mRNA levels were mostly expressed 2 w after exercise. The upregulation of phosphatidylinositol 3-kinase, catalytic subunit gamma (pik3cg), erk1 and erk2 mostly occurred at the early stage (6 h or 12 h) after exercise. In addition, we found that zip7, zip8 and zip14 expression was moderately correlated with certain markers of muscle regeneration. CONCLUSION The zinc transporters SLC39A/ZIP7, ZIP8 and ZIP14 have differential expression profiles upon eccentric exercise, and they might regulate muscle proliferation or differentiation processes through different cellular pathways after exercise-induced muscle damage.
Collapse
Affiliation(s)
- Jingyun Liu
- Shanghai University of Sport, Shanghai, 200438, China
| | - Chang Xu
- Shanghai University of Sport, Shanghai, 200438, China
| | - Xinkai Yu
- Shanghai University of Sport, Shanghai, 200438, China
| | - Qun Zuo
- Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
11
|
Hirunsai M, Srikuea R. Autophagy-lysosomal signaling responses to heat stress in tenotomy-induced rat skeletal muscle atrophy. Life Sci 2021; 275:119352. [PMID: 33771521 DOI: 10.1016/j.lfs.2021.119352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
AIMS The autophagy-lysosomal system plays a crucial role in maintaining muscle proteostasis. Excessive stimulation of the autophagic machinery is a major contributor to muscle atrophy induced by tendon transection. Hyperthermia is known to attenuate muscle protein loss during disuse conditions; however, little is known regarding the response of the autophagy pathway to heat stress following tenotomy-induced muscle atrophy. The purpose of this study was to evaluate whether heat stress would have a beneficial impact on the activation of autophagy in tenotomized soleus and plantaris muscles. MAIN METHODS Male Wistar rats were divided into control, control plus heat stress, tenotomy, and tenotomy plus heat stress groups. The effects of tenotomy were evaluated at 8 and 14 days with heat treatment applied using thermal blankets (30 min. day-1, at 40.5-41.5 °C, for 7 days). KEY FINDINGS Heat stress could normalize tenotomy-induced muscle loss and over-activation of autophagy-lysosomal signaling; this effect was evidently observed in soleus muscle tenotomized for 14 days. The autophagy-related proteins LC3B-II and LC3B-II/I tended to decrease, and lysosomal cathepsin L protein expression was significantly suppressed. While p62/SQSTM1 was not altered in response to intermittent heat exposure in tenotomized soleus muscle at day 14. Phosphorylation of the 4E-BP1 protein was significantly increased in tenotomized plantaris muscle; whereas heat stress had no impact on phosphorylation of Akt and FoxO3a proteins in both tenotomized muscles examined. SIGNIFICANCE Our results provide evidence that heat stress associated attenuation of tenotomy-induced muscle atrophy is mediated through limiting over-activation of the autophagy-lysosomal pathway in oxidative and glycolytic muscles.
Collapse
Affiliation(s)
- Muthita Hirunsai
- Department of Biopharmacy, Faculty of Pharmacy, Srinakharinwirot University, Nakhon Nayok 26120, Thailand.
| | - Ratchakrit Srikuea
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
12
|
Influence of post-exercise hot-water therapy on adaptations to training over 4 weeks in elite short-track speed skaters. J Exerc Sci Fit 2021; 19:134-142. [PMID: 33603794 PMCID: PMC7859300 DOI: 10.1016/j.jesf.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the effects of regular hot water bathing (HWB), undertaken 10 min after the last training session of the day, on chronic adaptations to training in elite athletes. Six short-track (ST) speed skaters completed four weeks of post-training HWB and four weeks of post-training passive recovery (PR) according to a randomized cross-over study. During HWB, participants sat in a jacuzzi (40 °C; 20 min). According to linear mixed models, maximal isometric strength of knee extensor muscles was significantly increased for training with HWB (p < 0.0001; d = 0.41) and a tendency (p = 0.0529) was observed concerning V˙O2max. No significant effect of training with PR or HWB was observed for several variables (p > 0.05), including aerobic peak power output, the decline rate of jump height during 1 min-continuous maximal countermovement jumps (i.e. anaerobic capacity index), and the force-velocity relationship. Regarding specific tasks on ice, a small effect of training was found on both half-lap time and total time during a 1.5-lap all-out exercise (p = 0.0487; d = 0.23 and p = 0.0332; d = 0.21, respectively) but no additional effect of HWB was observed. In summary, the regular HWB protocol used in this study can induce additional effects on maximal isometric strength without compromising aerobic and anaerobic adaptations or field performance in these athletes.
Collapse
|
13
|
Response of turkey pectoralis major muscle satellite cells to hot and cold thermal stress: Effect of growth selection on satellite cell proliferation and differentiation. Comp Biochem Physiol A Mol Integr Physiol 2020; 252:110823. [PMID: 33148517 DOI: 10.1016/j.cbpa.2020.110823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
Satellite cell (SCs), the main progenitors for post-hatch poultry muscle growth, has maximal mitotic activity and sensitivity to temperature during the first week after hatch. The objective of the present study was to determine the effect of hot and cold temperatures on the proliferation and differentiation of SCs from pectoralis major (P. major) muscle of fast-growing 1-week-old Nicholas commercial (NC) turkeys compared to Randombred Control Line 2 (RBC2) turkeys representing commercial turkeys from 1966. Three temperature regimens were used: SCs proliferation at 38 °C (control) with differentiation at 43° or 33 °C; proliferation at 43° or 33 °C with differentiation at 38 °C; or both proliferation and differentiation at 43°, 38°, or 33°C. Satellite cell proliferation and differentiation increased at 43 °C and decreased at 33 °C in both lines. When a thermal challenge was administered during proliferation, greater stimulatory or suppressive effects on differentiation were observed compared to if the thermal challenge was applied only during differentiation in both lines. Expression of myoblast determination protein 1 during proliferation showed a higher increase in the NC line compared to the RBC2 line at 43 °C. Increased myogenin expression was observed in all hot treatment groups in the NC line but was only observed in the RBC2 line if the hot treatment was administered throughout proliferation and differentiation. Cold treatment suppressed myogenin expression independent of line. These results suggest turkey P. major muscle SCs are more sensitive to environmental temperatures during proliferation, and SCs from growth-selected NC turkeys are more sensitive to thermal stress compared to the RBC2 turkeys.
Collapse
|
14
|
Muscle temperature kinetics and thermoregulatory responses to 42 °C hot-water immersion in healthy males and females. Eur J Appl Physiol 2020; 120:2611-2624. [DOI: 10.1007/s00421-020-04482-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
|
15
|
Effects of passive heating intervention on muscle hypertrophy and neuromuscular function: A preliminary systematic review with meta-analysis. J Therm Biol 2020; 93:102684. [PMID: 33077110 DOI: 10.1016/j.jtherbio.2020.102684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Passive heating has been therapeutically used to treat a range of health conditions. Further, this intervention presents as a potential exercise mimetic strategy showing acute and chronic effects on skeletal muscle adaptation and neuromuscular systems. This systematic review and meta-analysis aimed to synthesise the existing evidence on the effects of passive heating on muscle hypertrophy and neuromuscular function. Seven databases were searched (i.e., PubMed, Web of Science, Scopus, CINAHL, EMBASE, Cochrane, and SPORTDiscus) from 1937 to October 2019. Eligible studies included original papers using healthy animals or human samples (≥18 years; both sexes) that have used a control group or condition. Ten original articles were included in this review and four in the meta-analysis. The meta-analysis detected an increase in muscle mass in animal samples seven days after passive heating (I2 = 65%, P < 0.01). The systematic review showed preliminary evidence that repeated passive heating exposures may promote muscle hypertrophy in animals and humans. Moreover, augmented muscle strength (involuntary and voluntary) may be observed after long-term passive heating (animals and humans) and increases in corticospinal excitability in humans after a single passive heating session. Passive heating has shown some potential benefits for skeletal muscle mass gain and muscle force improvement. Therefore, it is plausible to suggest that passive heating might be a worthwhile alternative to be recommended as an exercise mimetic for those people who lack or are unable to complete sufficient exercise.
Collapse
|
16
|
Kim K, Monroe JC, Gavin TP, Roseguini BT. Local Heat Therapy to Accelerate Recovery After Exercise-Induced Muscle Damage. Exerc Sport Sci Rev 2020; 48:163-169. [PMID: 32658042 DOI: 10.1249/jes.0000000000000230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The prolonged impairment in muscle strength, power, and fatigue resistance after eccentric exercise has been ascribed to a plethora of mechanisms, including delayed muscle refueling and microvascular and mitochondrial dysfunction. This review explores the hypothesis that local heat therapy hastens functional recovery after strenuous eccentric exercise by facilitating glycogen resynthesis, reversing vascular derangements, augmenting mitochondrial function, and stimulating muscle protein synthesis.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| | | | | | | |
Collapse
|
17
|
Hyldahl RD, Peake JM. Combining cooling or heating applications with exercise training to enhance performance and muscle adaptations. J Appl Physiol (1985) 2020; 129:353-365. [PMID: 32644914 DOI: 10.1152/japplphysiol.00322.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Athletes use cold water immersion, cryotherapy chambers, or icing in the belief that these strategies improve postexercise recovery and promote greater adaptations to training. A number of studies have systematically investigated how regular cold water immersion influences long-term performance and muscle adaptations. The effects of regular cold water immersion after endurance or high-intensity interval training on aerobic capacity, lactate threshold, power output, and time trial performance are equivocal. Evidence for changes in angiogenesis and mitochondrial biogenesis in muscle in response to regular cold water immersion is also mixed. More consistent evidence is available that regular cold water immersion after strength training attenuates gains in muscle mass and strength. These effects are attributable to reduced activation of satellite cells, ribosomal biogenesis, anabolic signaling, and muscle protein synthesis. Athletes use passive heating to warm up before competition or improve postexercise recovery. Emerging evidence indicates that regular exposure to ambient heat, wearing garments perfused with hot water, or microwave diathermy can mimic the effects of endurance training by stimulating angiogenesis and mitochondrial biogenesis in muscle. Some passive heating applications may also mitigate muscle atrophy through their effects on mitochondrial biogenesis and muscle fiber hypertrophy. More research is needed to consolidate these findings, however. Future research in this field should focus on 1) the optimal modality, temperature, duration, and frequency of cooling and heating to enhance long-term performance and muscle adaptations and 2) whether molecular and morphological changes in muscle in response to cooling and heating applications translate to improvements in exercise performance.
Collapse
Affiliation(s)
- Robert D Hyldahl
- Department of Exercise Sciences, Brigham Young University, Provo, Utah
| | - Jonathan M Peake
- Queensland University of Technology, School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Brisbane, Queensland, Australia.,Sport Performance Innovation and Knowledge Excellence, Queensland Academy of Sport, Brisbane, Queensland, Australia
| |
Collapse
|
18
|
Locke M, Salerno SA. Ovariectomy alters lengthening contraction induced heat shock protein expression. Appl Physiol Nutr Metab 2020; 45:530-538. [PMID: 32339026 DOI: 10.1139/apnm-2019-0212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen appears to play a role in minimizing skeletal muscle damage as well as regulating the expression of the protective heat shock proteins (HSPs). To clarify the relationship between estrogen, muscle HSP content, and muscle damage, tibialis anterior (TA) muscles from ovary-intact (OVI; n = 12) and ovariectomized (OVX; 3 weeks, n = 12) female Sprague-Dawley rats were subjected to either 20 or 40 lengthening contractions (LCs). Twenty-four hours after stimulation, TA muscles were removed, processed, and assessed for HSP25 and HSP72 content as well as muscle (damage) morphology. No differences in muscle contractile properties were observed in TA muscles between OVI and OVX animals for peak torque during the LCs. In unstressed TA muscles, the basal expression of HSP72 expression was decreased in OVX animals (P < 0.05) while HSP25 content remained unchanged. Following 20 LCs, HSP25 content was elevated (P < 0.05) in TA muscles from OVX animals but unchanged in muscles from OVI animals. Following 40 LCs, HSP25 content was elevated (P < 0.01) in TA muscles from both OVI and OVX animals while HSP72 content was elevated only in TA muscles from OVI animals (P < 0.05). Taken together, these data suggest the loss of ovarian hormones, such as estrogen, may impair the skeletal muscle cellular stress response thereby rendering muscles more susceptible to certain types of contraction induced damage. Novelty Ovariectomy alters muscle HSP72 content. Muscle contractile measures are maintained following ovariectomy.
Collapse
Affiliation(s)
- Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Stephanie A Salerno
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada.,Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| |
Collapse
|
19
|
Hunt AP, Minett GM, Gibson OR, Kerr GK, Stewart IB. Could Heat Therapy Be an Effective Treatment for Alzheimer's and Parkinson's Diseases? A Narrative Review. Front Physiol 2020; 10:1556. [PMID: 31998141 PMCID: PMC6965159 DOI: 10.3389/fphys.2019.01556] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases involve the progressive deterioration of structures within the central nervous system responsible for motor control, cognition, and autonomic function. Alzheimer's disease and Parkinson's disease are among the most common neurodegenerative disease and have an increasing prevalence over the age of 50. Central in the pathophysiology of these neurodegenerative diseases is the loss of protein homeostasis, resulting in misfolding and aggregation of damaged proteins. An element of the protein homeostasis network that prevents the dysregulation associated with neurodegeneration is the role of molecular chaperones. Heat shock proteins (HSPs) are chaperones that regulate the aggregation and disaggregation of proteins in intracellular and extracellular spaces, and evidence supports their protective effect against protein aggregation common to neurodegenerative diseases. Consequently, upregulation of HSPs, such as HSP70, may be a target for therapeutic intervention for protection against neurodegeneration. A novel therapeutic intervention to increase the expression of HSP may be found in heat therapy and/or heat acclimation. In healthy populations, these interventions have been shown to increase HSP expression. Elevated HSP may have central therapeutic effects, preventing or reducing the toxicity of protein aggregation, and/or peripherally by enhancing neuromuscular function. Broader physiological responses to heat therapy have also been identified and include improvements in muscle function, cerebral blood flow, and markers of metabolic health. These outcomes may also have a significant benefit for people with neurodegenerative disease. While there is limited research into body warming in patient populations, regular passive heating (sauna bathing) has been associated with a reduced risk of developing neurodegenerative disease. Therefore, the emerging evidence is compelling and warrants further investigation of the potential benefits of heat acclimation and passive heat therapy for sufferers of neurodegenerative diseases.
Collapse
Affiliation(s)
- Andrew P. Hunt
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Geoffrey M. Minett
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Division of Sport, Health and Exercise Sciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Graham K. Kerr
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ian B. Stewart
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Ihsan M, Périard JD, Racinais S. Integrating Heat Training in the Rehabilitation Toolbox for the Injured Athlete. Front Physiol 2019; 10:1488. [PMID: 31920696 PMCID: PMC6917657 DOI: 10.3389/fphys.2019.01488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/21/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mohammed Ihsan
- Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Julien D Périard
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | | |
Collapse
|
21
|
Minari ALA, Avila F, Oyama LM, Thomatieli-Santos RV. Skeletal muscles induce recruitment of Ly6C + macrophage subtypes and release inflammatory cytokines 3 days after downhill exercise. Am J Physiol Regul Integr Comp Physiol 2019; 317:R597-R605. [PMID: 31411900 DOI: 10.1152/ajpregu.00163.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Macrophages are one of the most versatile cells of the immune system that can express distinct subtypes and functions depending on the physiological challenge. After skeletal muscle damage, inflammatory macrophage subtypes aid muscles to regenerate and are implicated in physical training adaption. Based on this information, this study aimed to evaluate two classic mice macrophage subtypes and determine whether some inflammatory cytokines might be involved in the muscle adaption process after exercise. For this purpose, mice were exposed to an intermittent experimental protocol of downhill exercise (18 bouts of running, each bout 5 min with a 2-min rest interval, slope -16°) and were euthanized before [control (CTRL)] and 1, 2 (D2), and 3 (D3) days after exercise. After euthanasia, the triceps brachii was harvested and submitted to protein extraction, immunostaining, and mononuclear digestion procedures. The muscle size, macrophage accumulation, and cytokines were determined. We observed an increase in the Ly6C+ macrophage subtype (P ≤ 0.05) in D2 and D3 compared with CTRL, as well as a significant inverse correlation coefficient (-0.52; P ≤ 0.05) between Ly6C+ and Ly6C- macrophage subtypes. Moreover, we also observed elevation in several cytokines (IL-1β, IFN-γ, TNF-α, IL-6, and IL-13) at D3, although not IL-4, which tended to decrease at this time point (P = 0.06). Downhill exercises preferentially recruited Ly6C+ macrophages with important proinflammatory cytokine elevation at D3. Moreover, despite the elevation of several cytokines involved with myogenesis, an increase in IL-6 and IL-13, which potentially involve muscle adaption training after acute exercise, was also observed.
Collapse
Affiliation(s)
| | - Felipe Avila
- Department of Physiology, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Lila Missae Oyama
- Department of Physiology, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | | |
Collapse
|
22
|
Bonello JP, Locke M. HSP72 expression is specific to skeletal muscle contraction type. Cell Stress Chaperones 2019; 24:709-718. [PMID: 31077033 PMCID: PMC6629730 DOI: 10.1007/s12192-019-00997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 10/26/2022] Open
Abstract
Exercise is capable of inducing the cellular stress response and increasing skeletal muscle heat shock protein (HSP) content. HSPs function as molecular chaperones and play roles in facilitating protein folding thereby contributing to muscle proteostasis. To determine the relationship between muscle contraction types, muscle damage, and HSP content, one tibialis anterior (TA) muscle from male Sprague-Dawley rats (n = 5/group) was electrically stimulated while actively lengthening (LC), shortening (SC), or remaining to stagnate (IC) for 15 repetitions (3 sets of five). Two additional LC groups underwent 5 and 10 repetitions. Maximal tetanic tension (MTT) was recorded prior to (pre) and at 5 min after (post) the last contraction. Twenty-four hours after stimulation, TA muscles were removed, processed, and assessed for damage and for HSP25 and HSP72 content. Post-MTT was significantly decreased following 15 LCs, (24%; p < 0.05) but not following 15 SCs or 15 ICs. Post-MTT was also decreased by 8% (p < 0.05), and 18% (p < 0.05) for muscles subjected to 5 and 10 LCs, respectively. HSP72 content increased after all LCs conditions but not following ICs or SCs. HSP25 content remained unchanged following all contractions. Similarly, muscle damage was observed only after LCs and not after other contraction types. In conclusion, muscle HSP72 content can be increased with as few as 5 maximal lengthening contractions and appears to be related to muscle damage. This may have important implications for muscle rehabilitation and exercise training programs.
Collapse
Affiliation(s)
- John-Peter Bonello
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, Ontario, M5S 2W6, Canada
| | - Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, Ontario, M5S 2W6, Canada.
| |
Collapse
|
23
|
Gokce E, Akat F, Dursun AD, Gunes E, Bayram P, Billur D, Koc E. Effects of eccentric exercise on different slopes. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2019; 19:412-421. [PMID: 31789292 PMCID: PMC6944809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Eccentric contraction occurs when the muscle lengthens under tension. Damage-induced responses seen in the muscle after eccentric exercise usually experienced by sedentary individuals. This study aims to investigate muscle damage on different slopes. METHODS 32 male Wistar albino rats randomly divided into four groups: sedentary, horizontal running, and eccentric exercise (-8°, -16°) groups. Animals ran for 90 min with the speed of 25 m/s for five days. After 48h from the last exercise, rats were sacrificed, and plasma creatine kinase (CK), heat shock protein 70 (HSP70) levels were examined. Plasma and soleus total oxidant/antioxidant status (TOS-TAS) and histological changes of soleus muscle assessed. RESULTS CK and HSP70 significantly increased in 16° EE group. TOS increased at 16° EE and 8° EE, but oxidative stress index (OSI) was only high at 8° EE group. Mononuclear cell infiltration and the angiogenesis increased in soleus after eccentric exercise, and there was a correlation with slope. Sarcomere breaks were detected in 16° EE group also in a correlation with slope. CONCLUSIONS Consequently, sedentary individuals are vulnerable to injuries induced by eccentric contraction. Therefore, our study provides information for reconsidering rehabilitation and training programs.
Collapse
Affiliation(s)
- Evrim Gokce
- Ankara University Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Firat Akat
- Ankara University Faculty of Medicine, Department of Physiology, Ankara, Turkey,Corresponding author: Firat AKAT, Ph.D, Ankara Üniversitesi Tıp Fakültesi Morfoloji Kampüsü Fizyoloji Anabilim Dalı Sıhhiye, Ankara, Turkey E-mail: •
| | - Ali Dogan Dursun
- Atilim University Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Emel Gunes
- Ankara University Faculty of Medicine, Department of Physiology, Ankara, Turkey
| | - Pinar Bayram
- Ankara University Faculty of Medicine, Department of Histology and Embryology. Ankara, Turkey,Kafkas University Faculty of Medicine, Department of Histology and Embryology, Kars, Turkey
| | - Deniz Billur
- Ankara University Faculty of Medicine, Department of Histology and Embryology. Ankara, Turkey
| | - Emine Koc
- Ankara University Faculty of Medicine, Department of Physiology, Ankara, Turkey,Near East University Faculty of Medicine, Department of Physiology, Lefkosia, Cyprus
| |
Collapse
|
24
|
Obi S, Nakajima T, Hasegawa T, Nakamura F, Sakuma M, Toyoda S, Tei C, Inoue T. Heat induces myogenic transcription factors of myoblast cells via transient receptor potential vanilloid 1 (Trpv1). FEBS Open Bio 2018; 9:101-113. [PMID: 30652078 PMCID: PMC6325605 DOI: 10.1002/2211-5463.12550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/25/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022] Open
Abstract
Exercise generates heat, blood flow, and metabolic changes, thereby inducing hypertrophy of skeletal muscle cells. However, the mechanism by which heat incudes hypertrophy in response to heat is not well known. Here, we hypothesized that heat would induce differentiation of myoblast cells. We investigated the underlying mechanism by which myoblast cells respond to heat. When mouse myoblast cells were exposed to 42 °C for over 30 min, the phosphorylation level of protein kinase C (PKC) and heat shock factor 1 (Hsf1) increased, and the mRNA and protein expression level of heat shock protein 70 (Hsp70) increased. Inhibitors of transient receptor potential vanilloid 1 (Trpv1), calmodulin, PKC, and Hsf1, and the small interfering RNA‐mediated knockdown of Trpv1 diminished those heat responses. Heat exposure increased the phosphorylation levels of thymoma viral proto‐oncogene 1 (Akt), mammalian target of rapamycin (mTOR), eukaryotic translation initiation factor 4E binding protein 1 (Eif4ebp1), and ribosomal protein S6 kinase, polypeptide 1 (S6K1). The knockdown of Trpv1 decreased these heat‐induced responses. Antagonists of Hsp70 inhibited the phosphorylation level of Akt. Finally, heat increased the protein expression level of skeletal muscle markers such as myocyte enhancer factor 2D, myogenic factor 5, myogenic factor 6, and myogenic differentiation 1. Heat also increased myotube formation. Knockdown of Trpv1 diminished heat‐induced increases of those proteins and myotube formation. These results indicate that heat induces myogenic transcription factors of myoblast cells through the Trpv1, calmodulin, PKC, Hsf1, Hsp70, Akt, mTOR, Eif4ebp1, and S6K1 pathway. Moreover, heat increases myotube formation through Trpv1.
Collapse
Affiliation(s)
- Syotaro Obi
- Research Support Center Dokkyo Medical University Tochigi Japan.,Department of Cardiovascular Medicine Dokkyo Medical University Tochigi Japan
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine Dokkyo Medical University Tochigi Japan.,Heart Center Dokkyo Medical University Hospital Tochigi Japan
| | - Takaaki Hasegawa
- Department of Cardiovascular Medicine Dokkyo Medical University Tochigi Japan
| | - Fumitaka Nakamura
- Third Department of Internal Medicine Teikyo University Chiba Medical Center Japan
| | - Masashi Sakuma
- Department of Cardiovascular Medicine Dokkyo Medical University Tochigi Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine Dokkyo Medical University Tochigi Japan.,Heart Center Dokkyo Medical University Hospital Tochigi Japan
| | - Chuwa Tei
- Department of Cardiovascular Medicine Dokkyo Medical University Tochigi Japan
| | - Teruo Inoue
- Research Support Center Dokkyo Medical University Tochigi Japan.,Department of Cardiovascular Medicine Dokkyo Medical University Tochigi Japan.,Heart Center Dokkyo Medical University Hospital Tochigi Japan
| |
Collapse
|
25
|
McGorm H, Roberts LA, Coombes JS, Peake JM. Turning Up the Heat: An Evaluation of the Evidence for Heating to Promote Exercise Recovery, Muscle Rehabilitation and Adaptation. Sports Med 2018; 48:1311-1328. [PMID: 29470824 DOI: 10.1007/s40279-018-0876-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Historically, heat has been used in various clinical and sports rehabilitation settings to treat soft tissue injuries. More recently, interest has emerged in using heat to pre-condition muscle against injury. The aim of this narrative review was to collate information on different types of heat therapy, explain the physiological rationale for heat therapy, and to summarise and evaluate the effects of heat therapy before, during and after muscle injury, immobilisation and strength training. Studies on skeletal muscle cells demonstrate that heat attenuates cellular damage and protein degradation (following in vitro challenges/insults to the cells). Heat also increases the expression of heat shock proteins (HSPs) and upregulates the expression of genes involved in muscle growth and differentiation. In rats, applying heat before and after muscle injury or immobilisation typically reduces cellular damage and muscle atrophy, and promotes more rapid muscle growth/regeneration. In humans, some research has demonstrated benefits of microwave diathermy (and, to a lesser extent, hot water immersion) before exercise for restricting muscle soreness and restoring muscle function after exercise. By contrast, the benefits of applying heat to muscle after exercise are more variable. Animal studies reveal that applying heat during limb immobilisation attenuates muscle atrophy and oxidative stress. Heating muscle may also enhance the benefits of strength training for improving muscle mass in humans. Further research is needed to identify the most effective forms of heat therapy and to investigate the benefits of heat therapy for restricting muscle wasting in the elderly and those individuals recovering from serious injury or illness.
Collapse
Affiliation(s)
- Hamish McGorm
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4067, Australia.
- Sport Performance Innovation and Knowledge Excellence, The Queensland Academy of Sport, Brisbane, QLD, Australia.
| | - Llion A Roberts
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4067, Australia
- Sport Performance Innovation and Knowledge Excellence, The Queensland Academy of Sport, Brisbane, QLD, Australia
- School of Allied Health Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Jeff S Coombes
- School of Human Movement and Nutrition Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4067, Australia
| | - Jonathan M Peake
- Sport Performance Innovation and Knowledge Excellence, The Queensland Academy of Sport, Brisbane, QLD, Australia
- Tissue Repair and Translational Physiology Program, School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Watanabe D, Aibara C, Okada N, Wada M. Thermal pretreatment facilitates recovery from prolonged low-frequency force depression in rat fast-twitch muscle. Physiol Rep 2018; 6:e13853. [PMID: 30175495 PMCID: PMC6119698 DOI: 10.14814/phy2.13853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to examine whether thermal pretreatment can accelerate recovery from prolonged low-frequency force depression. The hindlimbs of thermal treated (T-treated) rats were immersed in water heated to 42.0°C for 20 min (thermal pretreatment). The thermal pretreatment was performed once a day for 5 days before fatiguing stimulation. Intact gastrocnemius muscles were electrically stimulated via the sciatic nerve until force was reduced to ~50% of the initial and dissected immediately [recovery 0 (REC0)] or 60 min [recovery 60 (REC60)] following the cessation of stimulation. Using skinned fiber prepared from the superficial region, the ratio of force at 1 Hz to that at 50 Hz (low-to-high force ratio), the ratio of depolarization (depol)-induced force to maximum Ca2+ -activated force (depol/max Ca2+ force ratio), the steepness of force-Ca2+ concentration curves, and myofibrillar Ca2+ sensitivity were measured. At REC0, the low-to-high force ratio and depol/max Ca2+ force ratio decreased in stimulated muscles from both non- and thermal-treated rats. At REC60, these two parameters remained depressed in non-treated rats, whereas they reverted to resting levels in T-treated rats. Thermal pretreatment exerted no effect on myofibrillar Ca2+ sensitivity. The present results reveal that thermal pretreatment can facilitate recovery of submaximum force after vigorous contraction, which is mediated via a quick return of Ca2+ release from the sarcoplasmic reticulum to resting levels.
Collapse
Affiliation(s)
- Daiki Watanabe
- Graduate School of Integrated Arts and SciencesHiroshima UniversityHiroshimaJapan
- Research Fellow of Japan Society for the Promotion of ScienceTokyoJapan
| | - Chihiro Aibara
- Graduate School of Integrated Arts and SciencesHiroshima UniversityHiroshimaJapan
| | - Naoki Okada
- Graduate School of Integrated Arts and SciencesHiroshima UniversityHiroshimaJapan
| | - Masanobu Wada
- Graduate School of Integrated Arts and SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
27
|
Tuttle JA, Chrismas BCR, Gibson OR, Barrington JH, Hughes DC, Castle PC, Metcalfe AJ, Midgley AW, Pearce O, Kabir C, Rayanmarakar F, Al-Ali S, Lewis MP, Taylor L. The Hsp72 and Hsp90α mRNA Responses to Hot Downhill Running Are Reduced Following a Prior Bout of Hot Downhill Running, and Occur Concurrently within Leukocytes and the Vastus Lateralis. Front Physiol 2017; 8:473. [PMID: 28747888 PMCID: PMC5506191 DOI: 10.3389/fphys.2017.00473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
The leukocyte heat shock response (HSR) is used to determine individual's thermotolerance. The HSR and thermotolerance are enhanced following interventions such as preconditioning and/or acclimation/acclimatization. However, it is unclear whether the leukocyte HSR is an appropriate surrogate for the HSR in other tissues implicated within the pathophysiology of exertional heat illnesses (e.g., skeletal muscle), and whether an acute preconditioning strategy (e.g., downhill running) can improve subsequent thermotolerance. Physically active, non-heat acclimated participants were split into two groups to investigate the benefits of hot downhill running as preconditioning strategy. A hot preconditioning group (HPC; n = 6) completed two trials (HPC1HOTDOWN and HPC2HOTDOWN) of 30 min running at lactate threshold (LT) on -10% gradient in 30°C and 50% relative humidity (RH) separated by 7 d. A temperate preconditioning group (TPC; n = 5) completed 30 min running at LT on a -1% gradient in 20°C and 50% (TPC1TEMPFLAT) and 7 d later completed 30 min running at LT on -10% gradient in 30°C and 50% RH (TPC2HOTDOWN). Venous blood samples and muscle biopsies (vastus lateralis; VL) were obtained before, immediately after, 3, 24, and 48 h after each trial. Leukocyte and VL Hsp72, Hsp90α, and Grp78 mRNA relative expression was determined via RT-QPCR. Attenuated leukocyte and VL Hsp72 (2.8 to 1.8 fold and 5.9 to 2.4 fold; p < 0.05) and Hsp90α mRNA (2.9 to 2.4 fold and 5.2 to 2.4 fold; p < 0.05) responses accompanied reductions (p < 0.05) in physiological strain [exercising rectal temperature (-0.3°C) and perceived muscle soreness (~ -14%)] during HPC2HOTDOWN compared to HPC1HOTDOWN (i.e., a preconditioning effect). Both VL and leukocyte Hsp72 and Hsp90α mRNA increased (p < 0.05) simultaneously following downhill runs and demonstrated a strong relationship (p < 0.01) of similar magnitudes with one another. Hot downhill running is an effective preconditioning strategy which ameliorates physiological strain, soreness and Hsp72 and Hsp90α mRNA responses to a subsequent bout. Leukocyte and VL analyses are appropriate tissues to infer the extent to which the HSR has been augmented.
Collapse
Affiliation(s)
- James A Tuttle
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - Bryna C R Chrismas
- Sport Science Program, College of Arts and Sciences, Qatar UniversityDoha, Qatar
| | - Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation, Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University LondonLondon, United Kingdom
| | - James H Barrington
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - David C Hughes
- Department of Neurobiology, Physiology and Behavior, University of California, DavisDavis, CA, United States
| | - Paul C Castle
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom
| | - Alan J Metcalfe
- Muscle Cellular and Molecular Physiology Research Group, Department of Sport Science and Physical Activity, Institute of Sport and Physical Activity Research, University of BedfordshireBedford, United Kingdom.,School of Exercise and Health Sciences, Edith Cowan UniversityPerth, WA, Australia
| | - Adrian W Midgley
- Department of Sport and Physical Activity, Edgehill UniversityOrmskirk, United Kingdom
| | - Oliver Pearce
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Chindu Kabir
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | | | - Sami Al-Ali
- Milton Keynes University HospitalMilton Keynes, United Kingdom
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom.,School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, United Kingdom.,ASPETAR, Qatar Orthopedic and Sports Medicine HospitalDoha, Qatar
| |
Collapse
|
28
|
Pollock-Tahiri E, Locke M. The cellular stress response of rat skeletal muscle following lengthening contractions. Appl Physiol Nutr Metab 2017; 42:708-715. [DOI: 10.1139/apnm-2016-0556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cellular stress response of the rat tibialis anterior (TA) muscle was investigated following 20, 40, or 60 lengthening contractions (LCs) using an in vivo model of electrical stimulation. Muscles were removed at 0, 1, 3, or 24 h after LCs and assessed for heat shock transcription factor (HSF) activation, heat shock protein (HSP) content, and/or morphological evidence of muscle fibre damage. When compared with the first muscle contraction, peak muscle torque was reduced by 26% (p < 0.05) after 20 LCs and further reduced to 56% and 60% (p < 0.001) after 40 and 60 LCs, respectively. Following 60 LCs, HSF activation was detected at 0, 1, and 3 h but was undetectable at 24 h. Hsp72 content was elevated at 24 h after 20 LCs (2.34 ± 0.37 fold, p < 0.05), 40 LCs (3.02 ± 0.31 fold, p < 0.01), and 60 LCs (3.37 ± 0.21 fold, p < 0.001). Hsp25 content increased after 40 (2.36 ± 0.24 fold, p < 0.01) and 60 LCs (2.80 ± 0.37 fold, p < 0.01). Morphological assessment of TA morphology revealed that very few fibres were damaged following 20 LCs while multiple sets of LCs (40 and 60) caused greater amounts of fibre damage. Electron microscopy showed disrupted Z-lines and sarcomeres were detectable in some muscles fibres following 20 LCs but were more prevalent and severe in muscles subjected to 40 or 60 LCs. These results suggest LCs elevate HSP content by an HSF-mediated mechanism (60 LC) and a single set of 20 LCs is capable of increasing muscle HSP content without causing significant muscle fibre damage.
Collapse
Affiliation(s)
- Evan Pollock-Tahiri
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| |
Collapse
|
29
|
Baumann CW, Rogers RG, Otis JS. Utility of 17-(allylamino)-17-demethoxygeldanamycin treatment for skeletal muscle injury. Cell Stress Chaperones 2016; 21:1111-1117. [PMID: 27401091 PMCID: PMC5083665 DOI: 10.1007/s12192-016-0717-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023] Open
Abstract
Repeated eccentric contractions can injure skeletal muscle and result in functional deficits that take several weeks to fully recover. The 70-kDa heat shock protein (Hsp70) is a stress-inducible molecular chaperone that maintains protein quality and plays an integral role in the muscle's repair processes following injury. Here, we attempted to hasten this recovery by pharmacologically inducing Hsp70 expression in mouse skeletal muscle with 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) (40 mg/kg) both prior to and throughout the first 7 days after an injurious bout of 150 maximal eccentric contractions. Hsp70 content in the injured skeletal muscle was strongly induced following the eccentric contractions and remained elevated over the next 7 days as the muscle underwent repair. Treatment with 17-AAG increased Hsp70 content ∼fivefold; however, this was significantly less than that induced by the injury. Moreover, 17-AAG treatment did not recover the decrements to in vivo isometric torque production following the bout of eccentric contractions. Together, these findings demonstrate that although Hsp70 content was induced in the uninjured skeletal muscle, treatment of 17-AAG (40 mg/kg) was not a preventive measure to either reduce the severity of skeletal muscle damage or enhance functional recovery following a bout of maximal eccentric contractions.
Collapse
Affiliation(s)
- Cory W Baumann
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Russell G Rogers
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA, USA
| | - Jeffrey S Otis
- Department of Kinesiology and Health, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
30
|
Ji LL, Kang C, Zhang Y. Exercise-induced hormesis and skeletal muscle health. Free Radic Biol Med 2016; 98:113-122. [PMID: 26916558 DOI: 10.1016/j.freeradbiomed.2016.02.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 12/23/2022]
Abstract
Hormesis refers to the phenomenon that an exposure or repeated exposures of a toxin can elicit adaptive changes within the organism to resist to higher doses of toxin with reduced harm. Skeletal muscle shows considerable plasticity and adaptions in response to a single bout of acute exercise or chronic training, especially in antioxidant defense capacity and metabolic functions mainly due to remodeling of mitochondria. It has thus been hypothesized that contraction-induced production of reactive oxygen species (ROS) may stimulate the hormesis-like adaptations. Furthermore, there has been considerable evidence that select ROS such as hydrogen peroxide and nitric oxide, or even oxidatively degraded macromolecules, may serve as signaling molecules to stimulate such hermetic adaptations due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of nuclear factor (NF) κB, mitogen-activated protein kinase (MAPK), and peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), along with other newly discovered signaling pathways, in some of the most vital biological functions such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. The inability of the cell to maintain proper redox signaling underlies mechanisms of biological aging, during which inflammatory and catabolic pathways prevail. Research evidence and mechanisms connecting exercise-induced hormesis and redox signaling are reviewed.
Collapse
Affiliation(s)
- Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, 1900 University Avenue, Minneapolis, MN 55455, USA.
| | - Chounghun Kang
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota, 1900 University Avenue, Minneapolis, MN 55455, USA
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sport Science, Tianjin University of Sport, China
| |
Collapse
|
31
|
Abstract
Protein quality control (proteostasis) depends on constant protein degradation and resynthesis, and is essential for proper homeostasis in systems from single cells to whole organisms. Cells possess several mechanisms and processes to maintain proteostasis. At one end of the spectrum, the heat shock proteins modulate protein folding and repair. At the other end, the proteasome and autophagy as well as other lysosome-dependent systems, function in the degradation of dysfunctional proteins. In this review, we examine how these systems interact to maintain proteostasis. Both the direct cellular data on heat shock control over autophagy and the time course of exercise-associated changes in humans support the model that heat shock response and autophagy are tightly linked. Studying the links between exercise stress and molecular control of proteostasis provides evidence that the heat shock response and autophagy coordinate and undergo sequential activation and downregulation, and that this is essential for proper proteostasis in eukaryotic systems.
Collapse
Key Words
- AKT, v-akt murine thymoma viral oncogene homolog 1
- AMPK, adenosine monophosphate-activated protein kinase
- ATG, autophagy-related
- BECN1, Beclin 1, autophagy related
- EIF4EBP1, eukaryotic translation initiation factor 4E binding protein 1
- ER, endoplasmic reticulum
- FOXO, forkhead box O
- HSF1, heat shock transcription factor 1
- HSP, heat shock protein
- HSP70
- HSPA8/HSC70, heat shock 70kDa protein 8
- IL, interleukin
- LC3, MAP1LC3, microtubule-associated protein 1 light chain 3
- MTMR14/hJumpy, myotubularin related protein 14
- MTOR, mechanistic target of rapamycin
- NR1D1/Rev-Erb-α, nuclear receptor subfamily 1, group D, member 1
- PBMC, peripheral blood mononuclear cell
- PPARGC1A/PGC-1α, peroxisome proliferator-activated receptor, gamma, coactivator 1 α
- RHEB, Ras homolog enriched in brain
- SOD, superoxide dismutase
- SQSTM1/p62, sequestosome 1
- TPR, translocated promoter region, nuclear basket protein
- TSC, tuberous sclerosis complex
- ULK1, unc-51 like autophagy activating kinase 1
- autophagy
- exercise
- heat shock response
- humans
- protein breakdown
- protein synthesis
Collapse
Affiliation(s)
- Karol Dokladny
- a Department of Internal Medicine; Health Sciences Center; Health, Exercise & Sports Science of University of New Mexico ; Albuquerque , NM USA
| | | | | |
Collapse
|
32
|
Minari ALA, Oyama LM, Dos Santos RVT. Downhill exercise-induced changes in gene expression related with macrophage polarization and myogenic cells in the triceps long head of rats. Inflammation 2015; 38:209-17. [PMID: 25249340 DOI: 10.1007/s10753-014-0024-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Macrophages are one of the most heterogenic immune cells involved in skeletal muscle regeneration. After skeletal muscle damage, M1 phenotypes exhibit pro-inflammatory reaction. In a later stage, they are converted to M2 phenotypes with anti-inflammatory properties. To study when gene expressions of macrophage polarization are changed after damage induced by downhill exercise to exhaustion is the objective of this paper. Before (CTRL) and 0 h (G0), 24 h (G24), 48 h (G48) and 72 h (G72) after 18 bouts of downhill exercise, the animals were euthanised, and the triceps were dissected. We measured gene expression of macrophages (CD68 and CD163), myogenic cells (MyoD and myogenin) and quantified cytokine secretion (interleukin (IL)-6, IL-10 and tumour necrosis factor alpha (TNF-α)). The CD68 expression was lower in G72 compared with G24 (P = 0.005) while CD163 was higher in G48 compared with G24 (P = 0.04). The MyoD expression was higher in G72 compared with G0 (P = 0.04). The myogenin expression was lower in G24 compared with CTRL (P = 0.01) and restored in G72 compared with G24 (P = 0.007). The TNF-α was significantly higher at all times after 24 h (all compared with CTRL, with P = 0.03). The CD68 and CD163 expressions behaved distinctly after exercise, which indicates macrophage polarization between 24 and 48 h. The distinct expression of myogenin, concomitantly with MyoD elevation in G72, indicates that myogenic cell differentiation and the significant change of TNF-α level show an important role of this cytokine in these processes.
Collapse
Affiliation(s)
- André Luis Araujo Minari
- Departamento de Biociências, Campus da Baixada Santista, Universidade Federal de São Paulo, UNIFESP, Rua Silva Jardim, 136,Vila Mathias, Santos/SP-CEP, 11015-020, Brazil
| | | | | |
Collapse
|
33
|
Peake JM, Markworth JF, Nosaka K, Raastad T, Wadley GD, Coffey VG. Modulating exercise-induced hormesis: Does less equal more? J Appl Physiol (1985) 2015; 119:172-89. [PMID: 25977451 DOI: 10.1152/japplphysiol.01055.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/07/2015] [Indexed: 12/21/2022] Open
Abstract
Hormesis encompasses the notion that low levels of stress stimulate or upregulate existing cellular and molecular pathways that improve the capacity of cells and organisms to withstand greater stress. This notion underlies much of what we know about how exercise conditions the body and induces long-term adaptations. During exercise, the body is exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and mechanical stress. These stressors activate biochemical messengers, which in turn activate various signaling pathways that regulate gene expression and adaptive responses. Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress and inflammation. However, reactive oxygen species and inflammatory mediators are key signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. Conversely, withholding dietary carbohydrate and restricting muscle blood flow during exercise may augment adaptations to exercise. In this review article, we combine, integrate, and apply knowledge about the fundamental mechanisms of exercise adaptation. We also critically evaluate the rationale for using interventions that target these mechanisms under the overarching concept of hormesis. There is currently insufficient evidence to establish whether these treatments exert dose-dependent effects on muscle adaptation. However, there appears to be some dissociation between the biochemical/molecular effects and functional/performance outcomes of some of these treatments. Although several of these treatments influence common kinases, transcription factors, and proteins, it remains to be determined if these interventions complement or negate each other, and whether such effects are strong enough to influence adaptations to exercise.
Collapse
Affiliation(s)
- Jonathan M Peake
- School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Centre of Excellence for Applied Sports Science Research, Queensland Academy of Sport, Brisbane, Australia;
| | | | - Kazunori Nosaka
- School of Exercise and Health Sciences, Centre for Exercise and Sports Science Research, Edith Cowan University, Joondalup, Australia
| | | | - Glenn D Wadley
- School of Exercise and Nutrition Sciences, Center for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia
| | - Vernon G Coffey
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; and Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Australia
| |
Collapse
|
34
|
Vardiman JP, Moodie N, Siedlik JA, Kudrna RA, Graham Z, Gallagher P. Short-Wave Diathermy Pretreatment and Inflammatory Myokine Response After High-Intensity Eccentric Exercise. J Athl Train 2015; 50:612-20. [PMID: 25844857 DOI: 10.4085/1062-6050-50.1.12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT Various modalities have been used to pretreat skeletal muscle to attenuate inflammation. OBJECTIVE To determine the effects of short-wave diathermy (SWD) preheating treatment on inflammation and stress markers after eccentric exercise. DESIGN Controlled laboratory study. SETTING University laboratory setting. PATIENTS OR OTHER PARTICIPANTS Fifteen male (age = 22 ± 4.9 years, height = 179.75 ± 9.56 cm, mass = 82.22 ± 12.67 kg) college-aged students. INTERVENTION(S) Seven participants were selected randomly to receive 40 minutes of SWD heat treatment (HT), and 8 participants served as the control (CON) group and rested without SWD. Both groups completed 7 sets of 10 repetitions of a high-intensity eccentric exercise protocol (EEP) at 120% of the 1-repetition maximum (1-RM) leg extension. MAIN OUTCOME MEASURE(S) We biopsied muscles on days 1, 3 (24 hours post-EEP), and 4 (48 hours post-EEP) and collected blood samples on days 1, 2 (4 hours post-EEP), 3, and 4. We determined 1-RM on day 2 (24 hours post-SWD) and measured 1-RM on days 3 and 4. We analyzed the muscle samples for interleukin 6 (IL-6), tumor necrosis factor α, and heat shock protein 70 and the blood for serum creatine kinase. RESULTS We found a group × time interaction for intramuscular IL-6 levels after SWD (F2,26 = 7.13, P = .003). The IL-6 decreased in HT (F1,6 = 17.8, P = .006), whereas CON showed no change (P > .05). We found a group × time interaction for tumor necrosis factor α levels (F2,26 = 3.71, P = .04), which increased in CON (F2,14 = 7.16, P = .007), but saw no changes for HT (P > .05). No group × time interactions were noted for 1-RM, heat shock protein 70, or creatine kinase (P > .05). CONCLUSIONS The SWD preheating treatment provided a treatment effect for intramuscular inflammatory myokines induced through high-intensity eccentric exercise but did not affect other factors associated with intense exercise and inflammation.
Collapse
Affiliation(s)
- John P Vardiman
- Applied Physiology Laboratory, University of Kansas, Lawrence
| | - Nicole Moodie
- Exercise and Sport Science Department, Rockhurst University, Kansas City, MO
| | - Jacob A Siedlik
- Applied Physiology Laboratory, University of Kansas, Lawrence
| | | | - Zachary Graham
- Applied Physiology Laboratory, University of Kansas, Lawrence
| | | |
Collapse
|
35
|
Graham ZA, Touchberry CD, Gupte AA, Bomhoff GL, Geiger PC, Gallagher PM. Changes in α7β1 integrin signaling after eccentric exercise in heat-shocked rat soleus. Muscle Nerve 2015; 51:562-8. [PMID: 24956997 DOI: 10.1002/mus.24324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 12/16/2022]
Abstract
INTRODUCTION α7β1 integrin links the extracellular matrix to the focal adhesion (FA) in skeletal muscle and serves as a stabilizing and signal relayer. Heat shock (HS) induces expression of proteins that interact with the FA. METHODS Male Wistar rats were assigned to 1 of 3 groups: control (CON); eccentric exercise (EE); or EE+HS (HS). Soleus muscle was analyzed at 2 h and 48 h post-exercise. RESULTS The 120-kDa α7 integrin decreased in the EE and HS groups, and the 70-kDa peptide decreased in the EE group at 2 h post-exercise. Total expression of focal adhesion kinase (FAK) and RhoA were decreased in EE and HS at 2 h post-exercise. Expression of phosphorylated FAK(397) decreased in the EE group but not the HS group at 2 h post-exercise. CONCLUSIONS Long-duration EE may cause alterations in the FA in rat soleus muscle through the α7 integrin subunit and FAK.
Collapse
Affiliation(s)
- Zachary A Graham
- Applied Physiology Laboratory, Department of Health, Sport, and Exercise Sciences, University of Kansas, 101DJ Robinson Center, 1301 Sunnyside Avenue, Lawrence, Kansas, 66045, USA
| | | | | | | | | | | |
Collapse
|
36
|
Holwerda AM, Locke M. Hsp25 and Hsp72 content in rat skeletal muscle following controlled shortening and lengthening contractions. Appl Physiol Nutr Metab 2014; 39:1380-7. [DOI: 10.1139/apnm-2014-0118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytoprotective proteins, Hsp25 and Hsp72, are increased in skeletal muscle after nondamaging, shortening contractions, but the temporal pattern of expression and stimulatory mechanisms remain unclear. Thus, we sought to define the in vivo temporal patterns of expression for Hsp25 and Hsp72 after 2 opposing contractions types. To do this, male Sprague–Dawley rats had 1 tibialis anterior (TA) muscle electrically stimulated (5 sets of 20 repetitions) while being either forcibly lengthened (LC) or shortened (SC). At 2, 8, 24, 48, 72, or 168 h after the contractions both the stimulated and the nonstimulated (contra-lateral control) TA muscles were removed and processed to examine muscle damage (hemotoxylin and eosin staining) and Hsp content (Western blot analyses). Cross-sections from TA muscles subjected to LCs showed muscle fibre damage at 8 h and thereafter. In contrast, no muscle fibre damage was observed at any time point following SCs. When normalized to contra-lateral controls, Hsp25 and Hsp72 content were significantly (P < 0.01) increased at 24 h (3.1- and 3.8-fold, respectively) and thereafter. There were no significant increases in Hsp25 or Hsp72 content at any time point following SC. These data suggest that LCs, but not SCs, result in Hsp accumulation and that the fibre/cellular damage sustained from LCs may be the stimulus for elevating Hsp content.
Collapse
Affiliation(s)
- Andrew M. Holwerda
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| |
Collapse
|
37
|
Cumming KT, Paulsen G, Wernbom M, Ugelstad I, Raastad T. Acute response and subcellular movement of HSP27, αB-crystallin and HSP70 in human skeletal muscle after blood-flow-restricted low-load resistance exercise. Acta Physiol (Oxf) 2014; 211:634-46. [PMID: 24762334 DOI: 10.1111/apha.12305] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/12/2014] [Accepted: 04/17/2014] [Indexed: 12/14/2022]
Abstract
AIM Heat-shock proteins (HSP) are important chaperones for stressed and damaged proteins. Low-load blood-flow-restricted resistance exercise (BFRE) is generally believed not to induce significant muscle damage, but is hitherto unverified with intracellular markers. Consequently, the aim of this study was to investigate the HSP response after BFRE in human skeletal muscle. METHODS Nine healthy volunteers performed five sets to failure of unilateral knee extension at 30% of 1RM with partial blood-flow restriction. The contralateral leg performed the same work with free blood flow. Muscle biopsies were collected before exercise, 1, 24 and 48 h after exercise and analysed for HSP27, αB-crystallin, HSP70, desmin, glycogen content and myosin heavy chain by immunohistochemistry, ELISA and western blotting. RESULTS One hour after exercise, HSP27 and αB-crystallin levels were reduced in the cytosolic and increased in the cytoskeletal fraction in the BFRE leg. HSP70 showed a delayed response and was increased over 48 h in the BFRE leg. Immunohistochemical analyses showed higher staining intensity of HSP70 in type 1 fibres in the BFRE leg at 24 and 48 h post-exercise. PAS staining showed decreased glycogen levels after BFRE, and interestingly, glycogen was still depleted 48 h after exercise in the same fibres displaying high HSP70 staining (type 1 fibres). CONCLUSION Translocation of HSP27 and αB-crystallin from cytosol to cytoskeletal structures indicates that cytoskeletal proteins are stressed during BFRE. However, overt signs of myofibrillar disruptions were not observed. Interestingly, the stress response was more pronounced in type 1 than in type 2 fibres and coincided with low glycogen levels.
Collapse
Affiliation(s)
- K. T. Cumming
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| | - G. Paulsen
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| | - M. Wernbom
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
- Lundberg Laboratory for Human Muscle Function and Movement Analysis; Department of Orthopedics; The Sahlgrenska Academy at University of Gothenburg; Gothenburg Sweden
| | - I. Ugelstad
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| | - T. Raastad
- Department of Physical Performance; Norwegian School of Sport Sciences; Oslo Norway
| |
Collapse
|
38
|
Locke M, Celotti C. The effect of heat stress on skeletal muscle contractile properties. Cell Stress Chaperones 2014; 19:519-27. [PMID: 24264930 PMCID: PMC4041944 DOI: 10.1007/s12192-013-0478-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/21/2022] Open
Abstract
An elevated heat-shock protein (HSP) content protects cells and tissues, including skeletal muscles, from certain stressors. We determined if heat stress and the elevated HSP content that results is correlated with protection of contractile characteristics of isolated fast and slow skeletal muscles when contracting at elevated temperatures. To elevate muscle HSP content, one hindlimb of Sprague-Dawley rats (21-28 days old, 70-90 g) was subjected to a 15 min 42 °C heat-stress. Twenty-four hours later, both extensor digitorum longus (EDL) and soleus muscles were removed, mounted in either 20 °C or 42 °C Krebs-Ringer solution, and electrically stimulated. Controls consisted of the same muscles from the contra-lateral (non-stressed) hindlimbs as well as muscles from other (unstressed) animals. Isolated muscles were twitched and brought to tetanus every 5 min for 30 min. As expected, HSP content was elevated in muscles from the heat-stressed limbs when compared with controls. Regardless of prior treatment, both EDL and soleus twitch tensions were lower at 42 °C when compared with 20 °C. In addition, when incubated at 42 °C, both muscles showed a drop in twitch tension between 5 and 30 min. For tetanic tension, both muscles also showed an increase in tension between 5 and 30 min when stimulated at 20 °C regardless of treatment but when stimulated at 42 °C no change was observed. No protective effect of an elevated HSP content was observed for either muscle. In conclusion, although heat stress caused an elevation in HSP content, no protective effects were conferred to isolated contracting muscles.
Collapse
Affiliation(s)
- Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord Street, Toronto, ON, M5S 2W6, Canada,
| | | |
Collapse
|
39
|
Hooper PL, Balogh G, Rivas E, Kavanagh K, Vigh L. The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes. Cell Stress Chaperones 2014; 19:447-64. [PMID: 24523032 PMCID: PMC4041942 DOI: 10.1007/s12192-014-0493-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 01/06/2023] Open
Abstract
Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease.
Collapse
Affiliation(s)
- Philip L. Hooper
- />Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Gabor Balogh
- />Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Eric Rivas
- />Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital of Dallas and University of Texas Southwestern Medical Center, Dallas, TX USA
- />Department of Kinesiology, Texas Woman’s University, Denton, TX USA
| | - Kylie Kavanagh
- />Department of Pathology, Wake Forest School of Medicine, Winston–Salem, NC USA
| | - Laszlo Vigh
- />Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
40
|
Lewis EJH, Ramsook AH, Locke M, Amara CE. Mild eccentric exercise increases Hsp72 content in skeletal muscles from adult and late middle-aged rats. Cell Stress Chaperones 2013; 18:667-73. [PMID: 23443989 PMCID: PMC3745253 DOI: 10.1007/s12192-013-0412-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022] Open
Abstract
The loss of muscle mass with age or sarcopenia contributes to increased morbidity and mortality. Thus, preventing muscle loss with age is important for maintaining health. Hsp72, the inducible member of the Hsp70 family, is known to provide protection to skeletal muscle and can be increased by exercise. However, ability to increase Hsp72 by exercise is intensity-dependent and appears to diminish with advanced age. Thus, other exercise modalities capable of increasing HSP content and potentially preventing the age related loss of muscle need to be explored. The purpose of this study was to determine if the stress from one bout of mild eccentric exercise was sufficient to elicit an increase in Hsp72 content in the vastus intermedius (VI) and white gastrocnemius (WG) muscles, and if the Hsp72 response differed between adult and late middle-aged rats. To do this, 30 adult (6 months) and late middle-aged (24 months) F344BN rats were randomly divided into three groups (n = 6/group): control (C), level exercise (16 m x min(-1)) and eccentric exercise (16 m x min(-1), 16 degree decline). Exercised animals were sacrificed immediately post-exercise or after 48 hours. Hematoxylin and Eosin staining was used to assess muscle damage, while Western Blotting was used to measure muscle Hsp72 content. A nested ANOVA with Tukey post hoc analysis was performed to determine significant difference (p < 0.05) between groups. Hsp72 content was increased in the VI for both adult and late middle-aged rats 48 hours after eccentric exercise when compared to level and control groups but no differences between age groups was observed. Hsp72 was not detected in the WG following any type of exercise. In conclusion, mild eccentric exercise can increase Hsp72 content in the rat VI muscle and this response is maintained into late middle-age.
Collapse
Affiliation(s)
- Evan J. H. Lewis
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord St, Toronto, Ontario M5S 2W6 Canada
| | - Andrew H. Ramsook
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord St, Toronto, Ontario M5S 2W6 Canada
| | - Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord St, Toronto, Ontario M5S 2W6 Canada
| | - Catherine E. Amara
- Faculty of Kinesiology and Physical Education, University of Toronto, 55 Harbord St, Toronto, Ontario M5S 2W6 Canada
| |
Collapse
|