1
|
Stover JD, Trone MAR, Weston J, Lewis C, Levis H, Farhang N, Philippi M, Zeidan M, Lawrence B, Bowles RD. Therapeutic CRISPR epigenome editing of inflammatory receptors in the intervertebral disc. Mol Ther 2024:S1525-0016(24)00610-5. [PMID: 39295148 DOI: 10.1016/j.ymthe.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
Low back pain (LBP) ranks among the leading causes of disability worldwide and generates a tremendous socioeconomic cost. Disc degeneration, a leading contributor to LBP, can be characterized by the breakdown of the extracellular matrix of the intervertebral disc (IVD), disc height loss, and inflammation. The inflammatory cytokine tumor necrosis factor α (TNF-α) has multiple signaling pathways, including proinflammatory signaling through tumor necrosis factor receptor 1 superfamily, member 1a (TNFR1 or TNFRSF1A), and has been implicated as a primary mediator of disc degeneration. We tested our ability to regulate the TNFR1 signaling pathway in vivo, utilizing CRISPR epigenome editing to slow the progression of disc degeneration in rats. Sprague-Dawley rats were treated with TNF-α and CRISPR interference (CRISPRi)-based epigenome-editing therapeutics targeting TNFR1, showing decreased behavioral pain in a disc degeneration model. Surprisingly, while treatment with the vectors alone was therapeutic, the TNF-α injection became therapeutic after TNFR1 modulation. These results suggest direct inflammatory receptor modulation as a potent strategy for treating disc degeneration.
Collapse
Affiliation(s)
- Joshua D Stover
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A R Trone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Jacob Weston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Christian Lewis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Hunter Levis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Niloofar Farhang
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew Philippi
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Michelle Zeidan
- Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Brandon Lawrence
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Robby D Bowles
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Sao K, Risbud MV. Sdc4 deletion perturbs intervertebral disc matrix homeostasis and promotes early osteopenia in the aging mouse spine. Matrix Biol 2024; 131:46-61. [PMID: 38806135 DOI: 10.1016/j.matbio.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Syndecan 4 (SDC4), a cell surface heparan sulfate proteoglycan, is known to regulate matrix catabolism by nucleus pulposus cells in an inflammatory milieu. However, the role of SDC4 in the aging spine has never been explored. Here we analyzed the spinal phenotype of Sdc4 global knockout (KO) mice as a function of age. Micro-computed tomography showed that Sdc4 deletion severely reduced vertebral trabecular and cortical bone mass, and biomechanical properties of vertebrae were significantly altered in Sdc4 KO mice. These changes in vertebral bone were likely due to elevated osteoclastic activity. The histological assessment showed subtle phenotypic changes in the intervertebral disc. Imaging-Fourier transform-infrared analyses showed a reduced relative ratio of mature collagen crosslinks in young adult nucleus pulposus (NP) and annulus fibrosus (AF) of KO compared to wildtype discs. Additionally, relative chondroitin sulfate levels increased in the NP compartment of the KO mice. Transcriptomic analysis of NP tissue using CompBio, an AI-based tool showed biological themes associated with prominent dysregulation of heparan sulfate GAG degradation, mitochondria metabolism, autophagy, endoplasmic reticulum (ER)-associated misfolded protein processes and ER to Golgi protein processing. Overall, this study highlights the important role of SDC4 in fine-tuning vertebral bone homeostasis and extracellular matrix homeostasis in the mouse intervertebral disc.
Collapse
Affiliation(s)
- Kimheak Sao
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, United States; Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Suite 501 College Bldg., Philadelphia, PA 19107, United States
| | - Makarand V Risbud
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, United States; Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Suite 501 College Bldg., Philadelphia, PA 19107, United States.
| |
Collapse
|
3
|
Mark Kim MK, Lawrence M, Quinonez D, Brooks C, Ramachandran R, Séguin CA. Transient receptor potential vanilloid 4 regulates extracellular matrix composition and mediates load-induced intervertebral disc degeneration in a mouse model. Osteoarthritis Cartilage 2024; 32:881-894. [PMID: 38604493 DOI: 10.1016/j.joca.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024]
Abstract
OBJECTIVE Transient receptor potential vanilloid 4 (TRPV4) is a multi-modally activated cation channel that mediates mechanotransduction pathways by which musculoskeletal tissues respond to mechanical load and regulate tissue health. Using conditional Trpv4 knockout mice, we investigated the role of Trpv4 in regulating intervertebral disc (IVD) health and injury-induced IVD degeneration. METHODS Col2-Cre;Trpv4fl/f (Trpv4 KO) mice were used to knockout Trpv4 in all type 2 collagen-expressing cells. Effects of gene targeting alone was assessed in lumbar spines, using vertebral bone length measurement, histological, immunohistochemistry and gene expression analyses, and mechanical testing. Disc puncture was performed on caudal IVDs of wild-type (WT) and Trpv4 KO mice at 2.5- and 6.5-months-of-age. Six weeks after puncture (4- and 8-months-of-age at sacrifice), caudal spines were assessed using histological analyses. RESULTS While loss of Trpv4 did not significantly alter vertebral bone length and tissue histomorphology compared to age-matched WT mice, Trpv4 KO mice showed decreased proteoglycan and PRG4 staining in the annulus fibrosus compared to WT. At the gene level, Trpv4 KO mice showed significantly increased expression of Acan, Bgn, and Prg4 compared to WT. Functionally, loss of Trpv4 was associated with significantly increased neutral zone length in lumbar IVDs. Following puncture, both Trpv4 KO and WT mice showed similar signs of degeneration at the site of injury. Interestingly, loss of Trpv4 prevented mechanically-induced degeneration in IVDs adjacent to sites of injury. CONCLUSION These studies suggest a role for Trpv4 in regulating extracellular matrix synthesis and mediating the response of IVD tissues to mechanical stress.
Collapse
Affiliation(s)
- Min Kyu Mark Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Matthew Lawrence
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Diana Quinonez
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Courtney Brooks
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Cheryle A Séguin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
4
|
Xiao F, van Dieën JH, Han J, Maas H. Stab lesion of the L4/L5 intervertebral disc in the rat causes acute changes in disc bending mechanics. J Biomech 2023; 161:111830. [PMID: 37821333 DOI: 10.1016/j.jbiomech.2023.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Low-back pain often coincides with altered neuromuscular control, possibly due to changes in spine stability resulting from injury or degeneration, or due to effects of nociception. The relative importance of these mechanisms, and their possible interaction, are unknown. In spine bending, the bulk of the load is borne by the IVD, yet the acute effects of intervertebral disc (IVD) injury on bending mechanics have not been investigated. In the present study, we aimed to quantify the acute effects of a stab lesion of the disc on its mechanical properties, because such changes can be expected to elicit compensatory changes in neuromuscular control. L4/L5 spinal segments were collected from 27 Wistar rats within two hours after sacrifice and stored at -20℃. Following thawing, bending tests were performed to assess the intersegmental angle-moment characteristics. Specimens were loaded in right bending, left bending and flexion, before and after a stab lesion of the IVD fully penetrating the nucleus pulposus. In the angle-moment curves, we found reduced moments at equal bending angles after IVD lesion in left bending, right bending and flexion. Peak stiffness, peak moment, and hysteresis were significantly decreased (by 7.8-27.7 %) after IVD lesion in all directions. In conclusion, L4/L5 IVD lesion in the rat caused small to moderate acute changes in IVD mechanical properties. Our next steps will be to evaluate the longer term effects of IVD lesion on spine mechanics and the neural control of trunk muscles.
Collapse
Affiliation(s)
- Fangxin Xiao
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands; School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Jia Han
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China; Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Vernengo A, Bumann H, Kluser N, Soubrier A, Šećerović A, Gewiess J, Jansen JU, Neidlinger-Wilke C, Wilke HJ, Grad S. Chemonucleolysis combined with dynamic loading for inducing degeneration in bovine caudal intervertebral discs. Front Bioeng Biotechnol 2023; 11:1178938. [PMID: 37711456 PMCID: PMC10499327 DOI: 10.3389/fbioe.2023.1178938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/01/2023] [Indexed: 09/16/2023] Open
Abstract
Chemonucleolysis has become an established method of producing whole organ culture models of intervertebral disc (IVD) degeneration. However, the field needs more side-by-side comparisons of the degenerative effects of the major enzymes used in chemonucleolysis towards gaining a greater understanding of how these organ culture models mimic the wide spectrum of characteristics observed in human degeneration. In the current work we induced chemonucleolysis in bovine coccygeal IVDs with 100 µL of papain (65 U/mL), chondroitinase ABC (chABC, 5 U/mL), or collagenase II (col'ase, 0.5 U/mL). Each enzyme was applied in a concentration projected to produce moderate levels of degeneration. After 7 days of culture with daily dynamic physiological loading (0.02-0.2 MPa, 0.2 Hz, 2 h), the cellular, biochemical and histological properties of the IVDs were evaluated in comparison to a PBS-injected control. Papain and collagenase, but not chABC, produced macroscopic voids in the tissues. Compared to day 0 intact IVDs, papain induced the greatest magnitude glycosaminoglycan (GAG) loss compared to chABC and col'ase. Papain also induced the greatest height loss (3%), compared to 0.7%, 1.2% and 0.4% for chABC, col'ase, and PBS, respectively. Cell viability in the region adjacent to papain and PBS-injection remained at nearly 100% over the 7-day culture period, whereas it was reduced to 60%-70% by chABC and col'ase. Generally, enzyme treatment tended to downregulate gene expression for major ECM markers, type I collagen (COL1), type II collagen (COL2), and aggrecan (ACAN) in the tissue adjacent to injection. However, chABC treatment induced an increase in COL2 gene expression, which was significant compared to the papain treated group. In general, papain and col'ase treatment tended to recapitulate aspects of advanced IVD degeneration, whereas chABC treatment captured aspects of early-stage degeneration. Chemonucleolysis of whole bovine IVDs is a useful tool providing researchers with a robust spectrum of degenerative changes and can be utilized for examination of therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | - Jan Gewiess
- AO Research Institute Davos, Davos, Switzerland
| | - Jan Ulrich Jansen
- Institute of Orthopaedic Research and Biomechanics, Ulm University, Ulm, Germany
| | | | - Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Ulm University, Ulm, Germany
| | - Sibylle Grad
- AO Research Institute Davos, Davos, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
6
|
Stover JD, Trone MAR, Weston J, Lewis C, Levis H, Philippi M, Zeidan M, Lawrence B, Bowles RD. Therapeutic TNF-alpha Delivery After CRISPR Receptor Modulation in the Intervertebral Disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.542947. [PMID: 37398456 PMCID: PMC10312567 DOI: 10.1101/2023.05.31.542947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Low back pain (LBP) ranks among the leading causes of disability worldwide and generates a tremendous socioeconomic cost. Disc degeneration, a leading contributor to LBP, can be characterized by the breakdown of the extracellular matrix of the intervertebral disc (IVD), disc height loss, and inflammation. The inflammatory cytokine TNF-α has multiple pathways and has been implicated as a primary mediator of disc degeneration. We tested our ability to regulate the multiple TNF-α inflammatory signaling pathways in vivo utilizing CRISPR receptor modulation to slow the progression of disc degeneration in rats. Sprague-Dawley rats were treated with CRISPRi-based epigenome-editing therapeutics targeting TNFR1 and showed a decrease in behavioral pain in a disc degeneration model. Surprisingly, while treatment with the vectors alone was therapeutic, TNF-α injection itself became therapeutic after TNFR1 modulation. These results suggest direct inflammatory receptor modulation, to harness beneficial inflammatory signaling pathways, as a potent strategy for treating disc degeneration.
Collapse
|
7
|
Lorio MP, Beall DP, Calodney AK, Lewandrowski KU, Block JE, Mekhail N. Defining the Patient with Lumbar Discogenic Pain: Real-World Implications for Diagnosis and Effective Clinical Management. J Pers Med 2023; 13:jpm13050821. [PMID: 37240991 DOI: 10.3390/jpm13050821] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
There is an enormous body of literature that has identified the intervertebral disc as a potent pain generator. However, with regard to lumbar degenerative disc disease, the specific diagnostic criteria lack clarity and fail to capture the primary components which include axial midline low back pain with or without non-radicular/non-sciatic referred leg pain in a sclerotomal distribution. In fact, there is no specific ICD-10-CM diagnostic code to classify and define discogenic pain as a unique source of pain distinct from other recognized sources of chronic low back pain including facetogenic, neurocompressive including herniation and/or stenosis, sacroiliac, vertebrogenic, and psychogenic. All of these other sources have well-defined ICD-10-CM codes. Corresponding codes for discogenic pain remain absent from the diagnostic coding vernacular. The International Society for the Advancement of Spine Surgery (ISASS) has proposed a modernization of ICD-10-CM codes to specifically define pain associated with lumbar and lumbosacral degenerative disc disease. The proposed codes would also allow the pain to be characterized by location: lumbar region only, leg only, or both. Successful implementation of these codes would benefit both physicians and payers in distinguishing, tracking, and improving algorithms and treatments for discogenic pain associated with intervertebral disc degeneration.
Collapse
Affiliation(s)
- Morgan P Lorio
- Advanced Orthopedics, 499 E. Central Pkwy., Ste. 130, Altamonte Springs, FL 32701, USA
| | - Douglas P Beall
- Clinical Radiology of Oklahoma, 1800 S. Renaissance Blvd., Ste. 110, Edmond, OK 73013, USA
| | | | - Kai-Uwe Lewandrowski
- Center for Advanced Spine Care of Southern Arizona, 4787 E. Camp Lowell Drive, Tucson, AZ 85712, USA
| | - Jon E Block
- Independent Consultant, 2210 Jackson Street, Ste. 401, San Francisco, CA 94115, USA
| | - Nagy Mekhail
- Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Chen JX, Li YH, Wen J, Li Z, Yu BS, Huang YC. Annular Defects Impair the Mechanical Stability of the Intervertebral Disc. Global Spine J 2023; 13:724-729. [PMID: 33783245 DOI: 10.1177/21925682211006061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
STUDY DESIGN A biomechanical study. OBJECTIVES The purpose of this study was to investigate the effects of cruciform and square incisions of annulus fibrosus (AF) on the mechanical stability of bovine intervertebral disc (IVD) in multiple degrees of freedom. METHODS Eight bovine caudal IVD motion segments (bone-disc-bone) were obtained from the local abattoir. Cruciform and square incisions were made at the right side of the specimen's annulus using a surgical scalpel. Biomechanical testing of three-dimensional 6 degrees of freedom was then performed on the bovine caudal motion segments using the mechanical testing and simulation (MTS) machine. Force, displacement, torque and angle were recorded synchronously by the MTS system. P value <.05 was considered statistically significant. RESULTS Cruciform and square incisions of the AF reduced both axial compressive and torsional stiffness of the IVD and were significantly lower than those of the intact specimens (P < .01). Left-side axial torsional stiffness of the cruciform incision was significantly higher than a square incision (P < .01). Neither incision methods impacted flexional-extensional stiffness or lateral-bending stiffness. CONCLUSIONS The cruciform and square incisions of the AF obviously reduced axial compression and axial rotation, but they did not change the flexion-extension and lateral-bending stiffness of the bovine caudal IVD. This mechanical study will be meaningful for the development of new approaches to AF repair and the rehabilitation of the patients after receiving discectomy.
Collapse
Affiliation(s)
- Jun-Xin Chen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, 74573Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 74573Peking University Shenzhen Hospital, Shenzhen, China
| | - Yun-He Li
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, 74573Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 74573Peking University Shenzhen Hospital, Shenzhen, China
| | - Jian Wen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, 74573Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 74573Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhen Li
- 161930AO Research Institute Davos, Davos, Switzerland
| | - Bin-Sheng Yu
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, 74573Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Orthopaedics, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yong-Can Huang
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, 74573Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, 74573Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Orthopaedics, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
9
|
Zhang L, Du G, Teng B, Shi X, He X, Li N, Chen Y, Xu R. Vascular anatomy-based localization of intervertebral discs assisting needle puncture for constructing a mouse model of mechanical injury-induced lumbar intervertebral disc degeneration. Biochem Biophys Res Commun 2022; 634:196-202. [DOI: 10.1016/j.bbrc.2022.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/19/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
|
10
|
Du J, Guo W, Häckel S, Hoppe S, Garcia JP, Alini M, Tryfonidou MA, Creemers LB, Grad S, Li Z. The function of CD146 in human annulus fibrosus cells and mechanism of the regulation by TGF-β. J Orthop Res 2022; 40:1661-1671. [PMID: 34662464 DOI: 10.1002/jor.25190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/30/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023]
Abstract
The mouse outer annulus fibrosus (AF) was previously shown to contain CD146+ AF cells, while in vitro culture and exposure to transforming growth factor-beta (TGF-β) further increased the expression of CD146. However, neither the specific function of CD146 nor the underlying mechanism of TGF-β upregulation of CD146+ AF cells have been elucidated yet. In the current study, CD146 expression and its role in cultured human AF cells was investigated studying the cells' capacity for matrix contraction and gene expression of functional AF markers. In addition, TGF-β pathways were blocked by several pathway inhibitors and short hairpin RNAs (shRNAs) targeting SMAD and non-SMAD pathways to investigate their involvement in TGF-β-induced CD146 upregulation. Results showed that knockdown of CD146 led to reduction in AF cell-mediated collagen gel contraction, downregulation of versican and smooth muscle protein 22α (SM22α), and upregulation of scleraxis. TGF-β-induced CD146 upregulation was significantly blocked by inhibition of TGF-β receptor ALK5, and partially inhibited by shRNA against SMAD2 and SMAD4 and by an Protein Kinase B (AKT) inhibitor. Interestingly, the inhibition of extracellular signal-regulated kinases (ERK) pathway induced CD146 upregulation. In conclusion, CD146 was shown to be crucial to maintain the cell contractility of human AF cells in vitro. Furthermore, TGF-β upregulated CD146 via ALK5 signaling cascade, partially through SMAD2, SMAD4, and AKT pathway, whereas, ERK was shown to be a potential negative modulator. Our findings suggest that CD146 can potentially be used as a functional marker in AF repair strategies.
Collapse
Affiliation(s)
- Jie Du
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wei Guo
- AO Research Institute Davos, Davos, Switzerland.,Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Sonja Häckel
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sven Hoppe
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - João P Garcia
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Laura B Creemers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
11
|
How annulus defects can act as initiation sites for herniation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:1487-1500. [PMID: 35174401 DOI: 10.1007/s00586-022-07132-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/13/2022] [Accepted: 01/25/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE Both posture and loading rate are key factors in the herniation process and can determine the mechanism of disc failure. The aim of this study was to test the hypothesis that disruption visible with HR-MRI post-testing corresponds with microstructural features and further elucidate the mechanism by which this disruption weakens the disc. This will enable us to gain new insights into the herniation process. METHODS Thirty ovine lumbar spinal segments were subjected to combinations of four loading conditions (0-12° flexion, 0-9° lateral bending, 0-4° axial rotation, 0-1500 N axial compression) for 1000 loading cycles at 2 Hz in a dynamic disc loading simulator. The discs were scanned in an ultra-high field MRI (11.7 T) then examined using brightfield microscopy to examine their microstructure. RESULTS Four discs herniated and seven discs suffered nucleus displacement. These discs contained pre-existing defects in the central posterior annulus. Generally, following testing discs contained more posterior annulus disruption, Microstructural investigation revealed there was clear correspondence between HR-MRI and microstructural observations, and that the mid-outer annular-endplate junction had failed in all discs examined in this study. CONCLUSIONS While all discs suffered outer annulus damage, only the discs containing pre-existing defects herniated. These pre-existing defects weakened the inner and mid annulus, allowing herniation to occur once the mid and outer annular wall was compromised. We propose this can occur during the degenerative cascade.
Collapse
|
12
|
Raines BT, Stannard JT, Stricklin OE, Stoker AM, Choma TJ, Cook JL. Effects of Caffeine on Intervertebral Disc Cell Viability in a Whole Organ Culture Model. Global Spine J 2022; 12:61-69. [PMID: 32935580 PMCID: PMC8965308 DOI: 10.1177/2192568220948031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
STUDY DESIGN Controlled laboratory study. OBJECTIVE To investigate the impact of exposure to physiologically relevant caffeine concentrations on intervertebral disc (IVD) cell viability and extracellular matrix composition (ECM) in a whole organ culture model as potential contributing mechanisms in development and progression of IVD disorders in humans. Primary outcome measures were IVD viable cell density (VCD) and ECM composition. METHODS A total of 190 IVD whole organ explants from tails of 16 skeletally mature rats-consisting of cranial body half, endplate, IVD, endplate, and caudal body half-were harvested. IVD explants were randomly assigned to 1 of 2 groups: uninjured (n = 90) or injured (20G needle disc puncture/aspiration method, n = 100). Explants from each group were randomly assigned to 1 of 3 treatment groups: low caffeine (LCAF: 5 mg/L), moderate caffeine (MCAF: 10 mg/L), and high caffeine (HCAF: 15 mg/L) concentrations. RESULTS Cell viability was significantly higher in the low-caffeine group compared with the high-caffeine group at day 7 (P = .037) and in the low-caffeine group compared with the medium- and high-caffeine groups at day 21 (P ≤ .004). Analysis of ECM showed that all uninjured and control groups had significantly higher (P < .05) glycosaminoglycan concentrations compared with all injured groups. Furthermore, we observed a temporal, downward trend in proteoglycan to collagen ratio for the caffeine groups. CONCLUSIONS Caffeine intake may be a risk factor for IVD degeneration, especially in conjunction with disc injury. Mechanisms for caffeine associated disc degeneration may involve cell and ECM, and further studies should elucidate mechanistic pathways and potential benefits for caffeine restriction.
Collapse
Affiliation(s)
- Benjamin T. Raines
- University of Missouri, Columbia, MO, USA,University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | - James L. Cook
- University of Missouri, Columbia, MO, USA,James L Cook, Department of Orthopaedic Surgery, University of Missouri, 1100 Virginia Avenue, Columbia, MO 65212, USA.
| |
Collapse
|
13
|
Tavakoli J, Geargeflia S, Tipper JL, Diwan AD. Magnetic resonance elastography: A non-invasive biomarker for low back pain studies. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Novais EJ, Tran VA, Johnston SN, Darris KR, Roupas AJ, Sessions GA, Shapiro IM, Diekman BO, Risbud MV. Long-term treatment with senolytic drugs Dasatinib and Quercetin ameliorates age-dependent intervertebral disc degeneration in mice. Nat Commun 2021; 12:5213. [PMID: 34480023 PMCID: PMC8417260 DOI: 10.1038/s41467-021-25453-2] [Citation(s) in RCA: 165] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Intervertebral disc degeneration is highly prevalent within the elderly population and is a leading cause of chronic back pain and disability. Due to the link between disc degeneration and senescence, we explored the ability of the Dasatinib and Quercetin drug combination (D + Q) to prevent an age-dependent progression of disc degeneration in mice. We treated C57BL/6 mice beginning at 6, 14, and 18 months of age, and analyzed them at 23 months of age. Interestingly, 6- and 14-month D + Q cohorts show lower incidences of degeneration, and the treatment results in a significant decrease in senescence markers p16INK4a, p19ARF, and SASP molecules IL-6 and MMP13. Treatment also preserves cell viability, phenotype, and matrix content. Although transcriptomic analysis shows disc compartment-specific effects of the treatment, cell death and cytokine response pathways are commonly modulated across tissue types. Results suggest that senolytics may provide an attractive strategy to mitigating age-dependent disc degeneration.
Collapse
Affiliation(s)
- Emanuel J. Novais
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA ,grid.10328.380000 0001 2159 175XLife and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal ,grid.10328.380000 0001 2159 175XICVS/3B’s—PT Government Associate Laboratory, Braga, Portugal
| | - Victoria A. Tran
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Shira N. Johnston
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| | - Kayla R. Darris
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Alex J. Roupas
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Garrett A. Sessions
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Irving M. Shapiro
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| | - Brian O. Diekman
- grid.10698.360000000122483208Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.40803.3f0000 0001 2173 6074Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC USA
| | - Makarand V. Risbud
- grid.265008.90000 0001 2166 5843Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA ,grid.265008.90000 0001 2166 5843Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
15
|
Bonnaire FC, Danalache M, Sigwart VA, Breuer W, Rolauffs B, Hofmann UK. The intervertebral disc from embryonic development to disc degeneration: insights into spatial cellular organization. Spine J 2021; 21:1387-1398. [PMID: 33872805 DOI: 10.1016/j.spinee.2021.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Low back pain is commonly attributed to intervertebral disc (IVD) degeneration. IVD resembles articular cartilage in its biochemical and cellular composition in many ways. For articular cartilage, degeneration stage-specific characteristic spatial chondrocyte patterns have recently been described. PURPOSE This study addresses how spatial chondrocyte organization in the IVD changes from early embryonic development to end stage degeneration. STUDY DESIGN Ex vivo immunohistochemical analysis. METHODS We immunohistochemically investigated bovine IVD-tissue (n=72) from early embryonic development to early disc degeneration and human adult IVD-tissue (n=25) operated for trauma or degeneration for cellular density and chondrocyte spatial organization. IVD samples were sectioned along the main collagen fiber orientation. Nuclei were stained with DAPI and their number and spatial patterns were analyzed in an area of 250,000 µm² for each tissue category. RESULTS The initially very high cellular density in the early embryonic bovine disc (11,431 cells/mm²) steadily decreases during gestation, growth and maturation to about 71 cell/mm² in the fully grown cattle. Interestingly, in human degenerative discs, a new increase in this figure could be noted (184 cells/mm). The IVD chondrocytes appear to be predominantly present as single cells. Especially in the time after birth, string-formations represent up to 32% of all cells in the anulus fibrosus, although single cells are the predominant spatial pattern (>50%) over the entire time. With increasing degeneration, the relative proportion of single cells in human IVDs continuously decreases (12%). At the same time, the share of cells organized in clusters increases (70%). CONCLUSION Similar to articular cartilage, spatial chondrocyte organization appears to be a strong indicator for local tissue degeneration in the IVD. CLINICAL SIGNIFICANCE In the future these findings may be important for the detection and therapy of IVD degeneration in early stages.
Collapse
Affiliation(s)
- Florian Christof Bonnaire
- Laboratory of Cell Biology, Department of Orthopedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, 72072 Tübingen, Germany; Department of Orthopedic Surgery University Hospital of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany.
| | - Marina Danalache
- Laboratory of Cell Biology, Department of Orthopedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, 72072 Tübingen, Germany
| | - Viktor Amadeus Sigwart
- Laboratory of Cell Biology, Department of Orthopedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, 72072 Tübingen, Germany; Medical Faculty of the University of Tübingen, Geissweg 5/1, 72076 Tübingen, Germany
| | - Wolfram Breuer
- Bavarian Health and Food Authority, Veterinärstraße 2, 85764 Oberschleißheim, Germany
| | - Bernd Rolauffs
- Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center - Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg im Breisgau, Germany
| | - Ulf Krister Hofmann
- Laboratory of Cell Biology, Department of Orthopedic Surgery University Hospital of Tübingen, Waldhörnlestraße 22, 72072 Tübingen, Germany; Department of Orthopedic Surgery University Hospital of Tübingen, Hoppe-Seyler-Straße 3, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Zwambag DP, Laird BN, DeWitte-Orr SJ, Gregory DE. Unloaded Organ Culturing Has a Detrimental Effect on the Axial Mechanical Properties of the Intervertebral Disc. J Biomech Eng 2021; 143:084501. [PMID: 33764444 DOI: 10.1115/1.4050635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Indexed: 11/08/2022]
Abstract
Healthy function of intervertebral discs (IVDs) depends on their tissue mechanical properties. Native cells embedded within IVD tissues are responsible for building, maintaining, and repairing IVD structures in response to genetic, biochemical, and mechanical signals. Organ culturing provides a method for investigating how cells respond to these stimuli in their natural architectural environment. The purpose of this study was to determine how organ culturing affects the mechanical characteristics of functional spine units (FSUs) across the entire range of axial loading, including the neutral zone (NZ), using a rat tail model. Rat tail FSUs were organ cultured at 37 °C in an unloaded state in standard culture media for either 1-day (n = 8) or 6-days (n = 12). Noncultured FSUs (n = 12) were included as fresh control specimens. Axial mechanical properties were tested by applying cyclical compression and tension. A novel mathematical approach was developed to fully characterize the relationship between load, stiffness, and deformation through the entire range of loading. Culturing FSUs for 1-day did not affect any of the axial mechanical outcome measures compared to noncultured IVDs; however, culturing for 6 days increased the size of NZ by 112% and decreased the stiffness in NZ, compressive, and tensile regions by 53%, 19%, and 15%, respectively, compared to noncultured FSUs. These results highlight the importance of considering how the mechanical integrity of IVD tissues may affect the transmission of mechanical signals to cells in unloaded organ culturing experiments.
Collapse
Affiliation(s)
- Derek P Zwambag
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L3C5, Canada
| | - Brigitte N Laird
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L3C5, Canada
| | - Stephanie J DeWitte-Orr
- Department of Health Sciences, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L3C5, Canada; Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L3C5, Canada
| | - Diane E Gregory
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L3C5, Canada; Department of Health Sciences, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L3C5, Canada
| |
Collapse
|
17
|
Wang JY, Mansfield JC, Brasselet S, Vergari C, Meakin JR, Winlove CP. Micro-mechanical damage of needle puncture on bovine annulus fibrosus fibrils studied using polarization-resolved Second Harmonic Generation(P-SHG) microscopy. J Mech Behav Biomed Mater 2021; 118:104458. [PMID: 33761373 DOI: 10.1016/j.jmbbm.2021.104458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022]
Abstract
Needle injection has been widely used in spinal therapeutic or diagnostic processes, such as discography. The use of needles has been suspected in causing mild disc degeneration which can lead to long-term back pain. However, the localised microscopic damage caused by needles has not been well studied. The local progressive damage on a microscopic level caused by needle punctures on the surface of bovine annulus fibrosus was investigated. Four different sizes of needle were used for the puncture and twenty-nine bovine intervertebral discs were studied. Polarization-resolved second harmonic generation and fluorescent microscopy were used to study the local microscopic structural changes in collagen and cell nuclei due to needle damage. Repeated 70 cyclic loadings at ±5% of axial strain were applied after the needle puncture in order to assess progressive damage caused by the needle. Puncture damage on annulus fibrosus were observed either collagen fibre bundles being pushed aside, being cut through or combination of both with part being lift or pushed in. The progressive damage was found less relevant to the needle size and more progressive damage was only observed using the larger needle. Two distinct populations of collagen, in which one was relatively more organised than the other population, were observed especially after the puncture from skewed distribution of polarization-SHG analysis. Cell shape was found rounder near the puncture site where collagen fibres were damaged.
Collapse
Affiliation(s)
- J-Y Wang
- College of Engineering, Mathematics & Physical Sciences, Physics Building, Stocker Road, Exeter, EX4 4QL, UK.
| | - J C Mansfield
- College of Engineering, Mathematics & Physical Sciences, Physics Building, Stocker Road, Exeter, EX4 4QL, UK
| | - S Brasselet
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013, Marseille, France
| | - C Vergari
- Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC - Institut de Biomécanique Humaine Georges Charpak, HESAM Université, F-75013, Paris
| | - J R Meakin
- College of Engineering, Mathematics & Physical Sciences, Physics Building, Stocker Road, Exeter, EX4 4QL, UK
| | - C P Winlove
- College of Engineering, Mathematics & Physical Sciences, Physics Building, Stocker Road, Exeter, EX4 4QL, UK
| |
Collapse
|
18
|
Newton MD, Marek AA, Planalp M, Park DK, Baker KC, Maerz T. Longitudinal characterization of intervertebral disc remodeling following acute annular injury in a rat model of degenerative disc disease. Connect Tissue Res 2020; 61:568-576. [PMID: 31232119 DOI: 10.1080/03008207.2019.1635589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Objective: Characterize 3D remodeling of the rat intervertebral disc (IVD) following acute annular injury via in vivo micro-computed tomography (µCT), ex vivo contrast-enhanced (CE)-µCT, and histology. Design: Female Lewis rats (N = 4/group) underwent either sham surgery or anterior annular puncture to L3-L4 and L5-L6 (n = 8 IVDs/group) to induce IVD degeneration. Rats were allowed ad libidum cage activity before and after surgery and underwent in vivo µCT scanning at baseline and every 2 weeks post-op for 12 weeks to characterize longitudinal changes in IVD height. At 12 weeks, lumbar spines were dissected and underwent CE-µCT scanning to characterize endpoint glycosaminoglycan distribution and nucleus pulposus (NP) volume ratio. Spines were processed for safranin-O-stained sagittal histology, and IVD degeneration was graded via the Rutges scale. Results: Puncture IVDs exhibited loss of IVD height at all time points from 4 weeks onward compared to Sham-the most severe height loss occurred posteriorly, with significant changes also occurring in the NP and laterally. Puncture IVDs exhibited higher CE-µCT attenuation, indicative of lower glycosaminoglycan content, and reduced NP volume ratio compared to Sham. Histologically, Puncture IVDs had higher Rutges damage scores and exhibited reduced NP cellularity and hydration, disorganized annulus fibrosus (AF) lamellae with evidence of the stab tract, and indistinct AF-NP border compared to Sham. Conclusions: Characterization of the complex, 3D alterations involved in the onset and early progression of IVD degeneration can foster greater understanding of the pathoetiology of IVD degeneration and may inform future studies assessing more sensitive diagnostic techniques or novel therapies.
Collapse
Affiliation(s)
- Michael D Newton
- Orthopaedic Research Laboratories, Beaumont Health , Royal Oak, MI, USA
| | - Abigail A Marek
- Orthopaedic Research Laboratories, Beaumont Health , Royal Oak, MI, USA
| | - Michael Planalp
- Department of Orthopaedic Surgery, Beaumont Health , Royal Oak, MI, USA
| | - Daniel K Park
- Department of Orthopaedic Surgery, Beaumont Health , Royal Oak, MI, USA
| | - Kevin C Baker
- Orthopaedic Research Laboratories, Beaumont Health , Royal Oak, MI, USA
| | - Tristan Maerz
- Orthopaedic Research Laboratories, Beaumont Health , Royal Oak, MI, USA.,Department of Orthopaedic Surgery, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
19
|
Cauble MA, Mancini NS, Kalinowski J, Lykotrafitis G, Moss IL. Atomic force microscopy imaging for nanoscale and microscale assessments of extracellular matrix in intervertebral disc and degeneration. JOR Spine 2020; 3:e1125. [PMID: 33015582 PMCID: PMC7524250 DOI: 10.1002/jsp2.1125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/07/2020] [Accepted: 08/30/2020] [Indexed: 01/07/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a condition that is often associated with debilitating back pain. There are no disease-modifying treatments available to halt the progression of this ubiquitous disorder. This is partly due to a lack of understanding of extracellular matrix (ECM) changes that occur at the micro- and nanometer size scales as the disease progresses. Over the past decade, atomic force microscopy (AFM) has been utilized as a tool to investigate the impact of disease on nanoscale structure of ECM in bone, skin, tendon, and dentin. We have expanded this methodology to include the IVD and report the first quantitative analysis of ECM structure at submicron size scales in a murine model for progressive IVD degeneration. Collagen D-spacing, a metric of nanoscale structure at the fibril level, was observed as a distribution of values with an overall average value of 62.5 ± 2.5 nm. In degenerative discs, the fibril D-spacing distribution shifted towards higher values in both the annulus fibrosus and nucleus pulposus (NP) (P < .05). A novel microstructural feature, collagen toroids, defined by a topographical pit enclosed by fibril-forming matrix was observed in the NP. With degeneration, these microstructures became more numerous and the morphology was altered from circular (aspect ratio 1.0 ± 0.1) to oval (aspect ratio 1.5 ± 0.4), P < .005. These analyses provide ECM structural details of the IVD at size scales that have historically been missing in studies of disc degeneration. Knowledge gained from these insights may aid the development of novel disease-modifying therapeutics.
Collapse
Affiliation(s)
- Meagan A Cauble
- UConn Health Department of Orthopaedic Surgery Musculoskeletal Institute Farmington Connecticut USA
| | - Nickolas S Mancini
- UConn Health Department of Orthopaedic Surgery Musculoskeletal Institute Farmington Connecticut USA
| | - Judith Kalinowski
- UConn Health Department of Orthopaedic Surgery Musculoskeletal Institute Farmington Connecticut USA
| | - George Lykotrafitis
- Department of Mechanical Engineering University of Connecticut Storrs Connecticut USA
| | - Isaac L Moss
- UConn Health Department of Orthopaedic Surgery Musculoskeletal Institute Farmington Connecticut USA
| |
Collapse
|
20
|
Ohnishi T, Novais EJ, Risbud MV. Alterations in ECM signature underscore multiple sub-phenotypes of intervertebral disc degeneration. Matrix Biol Plus 2020; 6-7:100036. [PMID: 33543030 PMCID: PMC7852332 DOI: 10.1016/j.mbplus.2020.100036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
The intervertebral disc is a specialized connective tissue critical for absorption of mechanical loads and providing flexibility to the spinal column. The disc ECM is complex and plays a vital role in imparting tissue its biomechanical function. The central NP is primarily composed of large aggregating proteoglycans (PGs) while surrounding AF is composed of fibrillar collagens, I and II. Aggrecan and versican in particular, due to their high concentration of sulfated GAG chains form large aggregates with hyaluronic acid (HA) and provide water binding capacity to the disc. Degradation of aggrecan core protein due to aggrecanase and MMP activity, SNPs that affect number of chondroitin sulfate (CS) substitutions and alteration in enzymes critical in synthesis of CS chains can impair the aggrecan functionality. Similarly, levels of many matrix and matrix-related molecules e.g. Col2, Col9, HAS2, ccn2 are dysregulated during disc degeneration and genetic animal models have helped establish causative link between their expression and disc health. In the degenerating and herniated discs, increased levels of inflammatory cytokines such as TNF-α, IL-1β and IL-6 are shown to promote matrix degradation through regulating expression and activity of critical proteases and stimulate immune cell activation. Recent studies of different mouse strains have better elucidated the broader impact of spontaneous degeneration on disc matrix homeostasis. SM/J mice showed an increased cell apoptosis, loss of cell phenotype, and cleavage of aggrecan during early stages followed by tissue fibrosis evident by enrichment of several collagens, SLRPs and fibronectin. In summary, while disc degeneration encompasses wide spectrum of degenerative phenotypes extensive matrix degradation and remodeling underscores all of them. The intervertebral disc absorbs loads and provides flexibility to the spine. The ECM is complex and vital for imparting tissue its biomechanical function. Numerous types of proteoglycans and collagens designate the quality of the disc. Many matrix and matrix-related molecules are dysregulated during disc degeneration. Matrix degradation and remodeling underscores wide spectrum of phenotype.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Modulation of the In Vivo Inflammatory Response by Pro- Versus Anti-Inflammatory Intervertebral Disc Treatments. Int J Mol Sci 2020; 21:ijms21051730. [PMID: 32138314 PMCID: PMC7084831 DOI: 10.3390/ijms21051730] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is central in intervertebral disc (IVD) degeneration/regeneration mechanisms, and its balance is crucial to maintain tissue homeostasis. This work investigates the modulation of local and systemic inflammatory response associated with IVD degeneration/herniation by administration of PRO- versus ANTI-inflammatory treatments. Chitosan/poly-γ-glutamic acid nanocomplexes, known as pro-inflammatory (PRO), and soluble diclofenac, a non-steroidal anti-inflammatory drug (ANTI), were intradiscally administered in a rat IVD injury model, 24 h after lesion. Two weeks after administration, a reduction of disc height accompanied by hernia formation was observed. In the PRO-inflammatory treated group, IL-1β, IL-6 and COX-2 IVD gene expression were upregulated, and loss of nucleus pulposus (NP) structure and composition was observed. Systemically, lower T-cell frequency was observed in the lymph nodes (LN) and spleen (SP) of the PRO group, together with an increase in CD4+ T cells subset in the blood (BL) and LN. In contrast, the ANTI-group had higher proteoglycans/collagen ratio and collagen type 2 content in the NP, while an increase in the frequency of myeloid cells, M1 macrophages and activated macrophages (MHCII+) was observed at the systemic level. Overall, this study illustrates the dynamics of local and systemic inflammatory and immune cell responses associated with intradiscal therapies, which will contribute to designing more successful immunomodulatory treatments for IVD degeneration.
Collapse
|
22
|
Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat Rev Rheumatol 2020; 16:193-207. [PMID: 32080619 DOI: 10.1038/s41584-019-0364-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Mechanical loading is an important factor in musculoskeletal health and disease. Tendons and ligaments require physiological levels of mechanical loading to develop and maintain their tissue architecture, a process that is achieved at the cellular level through mechanotransduction-mediated fine tuning of the extracellular matrix by tendon and ligament stromal cells. Pathological levels of force represent a biological (mechanical) stress that elicits an immune system-mediated tissue repair pathway in tendons and ligaments. The biomechanics and mechanobiology of tendons and ligaments form the basis for understanding how such tissues sense and respond to mechanical force, and the anatomical extent of several mechanical stress-related disorders in tendons and ligaments overlaps with that of chronic inflammatory arthritis in joints. The role of mechanical stress in 'overuse' injuries, such as tendinopathy, has long been known, but mechanical stress is now also emerging as a possible trigger for some forms of chronic inflammatory arthritis, including spondyloarthritis and rheumatoid arthritis. Thus, seemingly diverse diseases of the musculoskeletal system might have similar mechanisms of immunopathogenesis owing to conserved responses to mechanical stress.
Collapse
|
23
|
Ge J, Cheng X, Yuan C, Qian J, Wu C, Cao C, Yang H, Zhou F, Zou J. Syndecan-4 is a Novel Therapeutic Target for Intervertebral Disc Degeneration via Suppressing JNK/p53 Pathway. Int J Biol Sci 2020; 16:766-776. [PMID: 32071547 PMCID: PMC7019137 DOI: 10.7150/ijbs.40189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/06/2019] [Indexed: 01/07/2023] Open
Abstract
Syndecan-4 is a member of the polysaccharide syndecan family and plays a vital role in intervertebral disc development. Several studies have demonstrated the positive relationship between syndecan-4 expression and intervertebral disc degeneration. However, the detailed molecular mechanism by which syndecan-4 affects the degeneration of nucleus pulposus cells (NPCs) remains unclear. In this study, cell viability was determined by CCK-8 assay, mRNA level was determined by qPCR, and protein expression was determined by western blot. Molecular interaction was determined by chromatin immunoprecipitation assay. A rabbit intervertebral disc degeneration model was established to test for syndecan in vivo. We found that the morphology and viability of NPCs were not affected by the expression of syndecan-4 in the long term. While the NPC function were affected, which results in the degeneration of intervertebral disc. Syndecan-4 overexpression promoted the degeneration of NPCs. Syndecan-4 also activated the JNK signaling pathway and downstream p53 pathways, and promoted degeneration. Inhibition of the JNK pathway, which down-regulated p53 expression, alleviated the degeneration. In an in vivo study, syndecan-4 siRNA injection stopped the development of rabbit disc degeneration, and even created a reverse effect, in which JNK/p53 played a role. Syndecan-4 may be a novel therapeutic target for intervertebral disc degeneration via suppressing the JNK/p53 pathway.
Collapse
Affiliation(s)
- Jun Ge
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaoqiang Cheng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Chenxi Yuan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiale Qian
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Chunshen Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Cheng Cao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Feng Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
24
|
Torre OM, Mroz V, Benitez ARM, Huang AH, Iatridis JC. Neonatal annulus fibrosus regeneration occurs via recruitment and proliferation of Scleraxis-lineage cells. NPJ Regen Med 2019; 4:23. [PMID: 31885875 PMCID: PMC6925137 DOI: 10.1038/s41536-019-0085-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
Intervertebral disc (IVD) injuries are a cause of degenerative changes in adults which can lead to back pain, a leading cause of disability. We developed a model of neonatal IVD regeneration with full functional restoration and investigate the cellular dynamics underlying this unique healing response. We employed genetic lineage tracing in mice using Scleraxis (Scx) and Sonic hedgehog (Shh) to fate-map annulus fibrosus (AF) and nucleus pulposus (NP) cells, respectively. Results indicate functional AF regeneration after severe herniation injury occurs in neonates and not adults. AF regeneration is mediated by Scx-lineage cells that lose ScxGFP expression and adopt a stem/progenitor phenotype (Sca-1, days 3–14), proliferate, and then redifferentiate towards type I collagen producing, ScxGFP+ annulocytes at day 56. Non Scx-lineage cells were also transiently observed during neonatal repair, including Shh-lineage cells, macrophages, and myofibroblasts; however, these populations were no longer detected by day 56 when annulocytes redifferentiate. Overall, repair did not occur in adults. These results identify an exciting cellular mechanism of neonatal AF regeneration that is predominantly driven by Scx-lineage annulocytes.
Collapse
Affiliation(s)
- Olivia M Torre
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1188, New York, NY 10029-6574 USA
| | - Victoria Mroz
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1188, New York, NY 10029-6574 USA
| | - Anthony R Martinez Benitez
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1188, New York, NY 10029-6574 USA
| | - Alice H Huang
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1188, New York, NY 10029-6574 USA
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1188, New York, NY 10029-6574 USA
| |
Collapse
|
25
|
Biomechanical test protocols to detect minor injury effects in intervertebral discs. J Mech Behav Biomed Mater 2019; 95:13-20. [PMID: 30947120 DOI: 10.1016/j.jmbbm.2019.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/26/2019] [Accepted: 03/22/2019] [Indexed: 01/21/2023]
Abstract
Intervertebral discs (IVDs) maintain flexibility of the spine and bear mechanical load. Annulus fibrosus (AF) defects are associated with IVD degeneration and herniation which disrupt biomechanical function and can cause pain. AF puncture injuries can induce IVD degeneration but are needed to inject therapies. Identifying small AF defects with biomechanical testing can be difficult because IVDs have a complex, composite structure and nonlinear biomechanical properties that are dependent on AF fiber tension. It remains unclear how choice of biomechanical testing protocols affect the sensitivity of biomechanical properties to AF injuries. This study determined whether axial preload or magnitude of cyclic axial or torsional testing affected the ability to detect minor AF defects in rat caudal motion segments using ex vivo biomechanical testing. Intact and injured motion segments were subjected to a repeated measures study design with multiple biomechanical testing protocols that varied axial tension-compression force amplitude (±1.6 N, ±8.0 N, ±16.0 N), axial preload (-1.6 N, -8.0 N, -16.0 N, corresponding to -0.1 MPa, -0.5 MPa, and -1.0 MPa, respectively), and torsional rotation angle (±10°, ±15°, and ±20°). Biomechanical properties obtained from the lowest force testing conditions for axial tension-compression (±1.6 N), axial preload (-1.6 N), and angular rotation (±10°) exhibited the largest differences in biomechanical properties between intact and injured conditions. Biomechanical properties determined under low axial force or torsion amplitudes involve less AF fiber tension and were most sensitive to injury. Low force testing protocols are recommended for detecting minor structural AF defects and may enable more precise assessments of IVD injuries, healing or repair.
Collapse
|
26
|
Fujii K, Yamazaki M, Kang JD, Risbud MV, Cho SK, Qureshi SA, Hecht AC, Iatridis JC. Discogenic Back Pain: Literature Review of Definition, Diagnosis, and Treatment. JBMR Plus 2019; 3:e10180. [PMID: 31131347 PMCID: PMC6524679 DOI: 10.1002/jbm4.10180] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/21/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Discogenic back pain is multifactorial; hence, physicians often struggle to identify the underlying source of the pain. As a result, discogenic back pain is often hard to treat—even more so when clinical treatment strategies are of questionable efficacy. Based on a broad literature review, our aim was to define discogenic back pain into a series of more specific and interacting pathologies, and to highlight the need to develop novel approaches and treatment strategies for this challenging and unmet clinical need. Discogenic pain involves degenerative changes of the intervertebral disc, including structural defects that result in biomechanical instability and inflammation. These degenerative changes in intervertebral discs closely intersect with the peripheral and central nervous systems to cause nerve sensitization and ingrowth; eventually central sensitization results in a chronic pain condition. Existing imaging modalities are nonspecific to pain symptoms, whereas discography methods that are more specific have known comorbidities based on intervertebral disc puncture and injection. As a result, alternative noninvasive and specific diagnostic methods are needed to better diagnose and identify specific conditions and sources of pain that can be more directly treated. Currently, there are many treatments/interventions for discogenic back pain. Nevertheless, many surgical approaches for discogenic pain have limited efficacy, thus accentuating the need for the development of novel treatments. Regenerative therapies, such as biologics, cell‐based therapy, intervertebral disc repair, and gene‐based therapy, offer the most promise and have many advantages over current therapies. © 2019 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research
Collapse
Affiliation(s)
- Kengo Fujii
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York NY USA.,Department of Orthopaedic Surgery University of Tsukuba Tsukuba Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery University of Tsukuba Tsukuba Japan
| | - James D Kang
- Department of Orthopaedic Surgery Brigham and Women's Hospital Harvard Medical School Boston MA USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery Sidney Kimmel Medical College Thomas Jefferson University Philadelphia PA USA
| | - Samuel K Cho
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York NY USA
| | - Sheeraz A Qureshi
- Department of Orthopaedic Surgery Hospital for Special Surgery New York NY USA
| | - Andrew C Hecht
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York NY USA
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York NY USA
| |
Collapse
|
27
|
Torre OM, Mroz V, Bartelstein MK, Huang AH, Iatridis JC. Annulus fibrosus cell phenotypes in homeostasis and injury: implications for regenerative strategies. Ann N Y Acad Sci 2018; 1442:61-78. [PMID: 30604562 DOI: 10.1111/nyas.13964] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/05/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022]
Abstract
Despite considerable efforts to develop cellular, molecular, and structural repair strategies and restore intervertebral disk function after injury, the basic biology underlying intervertebral disk healing remains poorly understood. Remarkably, little is known about the origins of cell populations residing within the annulus fibrosus, or their phenotypes, heterogeneity, and roles during healing. This review focuses on recent literature highlighting the intrinsic and extrinsic cell types of the annulus fibrosus in the context of the injury and healing environment. Spatial, morphological, functional, and transcriptional signatures of annulus fibrosus cells are reviewed, including inner and outer annulus fibrosus cells, which we propose to be referred to as annulocytes. The annulus also contains peripheral cells, interlamellar cells, and potential resident stem/progenitor cells, as well as macrophages, T lymphocytes, and mast cells following injury. Phases of annulus fibrosus healing include inflammation and recruitment of immune cells, cell proliferation, granulation tissue formation, and matrix remodeling. However, annulus fibrosus healing commonly involves limited remodeling, with granulation tissues remaining, and the development of chronic inflammatory states. Identifying annulus fibrosus cell phenotypes during health, injury, and degeneration will inform reparative regeneration strategies aimed at improving annulus fibrosus healing.
Collapse
Affiliation(s)
- Olivia M Torre
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Victoria Mroz
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Meredith K Bartelstein
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice H Huang
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
28
|
Vadalà G, Russo F, De Strobel F, Bernardini M, De Benedictis GM, Cattani C, Denaro L, D'Este M, Eglin D, Alini M, Denaro V. Novel stepwise model of intervertebral disc degeneration with intact annulus fibrosus to test regeneration strategies. J Orthop Res 2018; 36:2460-2468. [PMID: 29603340 DOI: 10.1002/jor.23905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/14/2018] [Indexed: 02/04/2023]
Abstract
Novel preclinical models that do not damage the annulus fibrosus (AF) of the intervertebral disc are required to study the efficacy of new regenerative strategies for the nucleus pulposus (NP). The aim of the study was to characterize a preclinical ovine model of intervertebral disc degeneration (IDD) induced by endplate (EP) damage and repair via the transpedicular approach, with or without partial nucleotomy, while keeping the AF intact. Twelve adult sheep were used. By the transpedicular approach, a 2 mm tunnel was drilled to the NP through the EP. A partial-nucleotomy was performed. The tunnel was sealed using a polyurethane scaffold. Lumbar discs were assigned to different groups: L1-2: nucleotomy; L2-3: EP tunnel; L3-4: nucleotomy + EP repair; L4-5: EP tunnel + repair; L5-6: control. X-Ray and MRI were performed at 0, 1, 3, and 6 months after surgery. Disc height and MRI indexes were calculated. Macro- and micro-morphology were analyzed. Pfirrmann and Thompson grades were assigned. The treated discs exhibited a progressive decrease in NP signal intensity and MRI index, displaying specific grades of degeneration based on the surgical treatment. According to Pfirrmann and Thompson grades different procedures were staged as: EP tunnel + repair: grade-II; EP tunnel: grade-III, nucleotomy + EP repair: grade-IV; nucleotomy: grade-V. A new stepwise model of IDD to study and test safety and efficacy of novel strategies for NP regeneration has been characterized. The different degrees of IDD have been observed similar to Pfirrmann and Thompson grading system. The intact AF allows for loading studies and eliminating the need for AF closure. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2460-2468, 2018.
Collapse
Affiliation(s)
- Gianluca Vadalà
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Fabrizio Russo
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Francesca De Strobel
- Department of Animal Medicine, Productions and Health, University of Padua, Legnaro, Italy
| | - Marco Bernardini
- Department of Animal Medicine, Productions and Health, University of Padua, Legnaro, Italy
| | | | - Caterina Cattani
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Luca Denaro
- Neurosurgery Division, Department of Neuroscience, University of Padua, Padua, Italy
| | - Matteo D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Vincenzo Denaro
- Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| |
Collapse
|
29
|
Yang JJ, Li F, Hung KC, Hsu SH, Wang JL. Intervertebral disc needle puncture injury can be repaired using a gelatin–poly (γ-glutamic acid) hydrogel: an in vitro bovine biomechanical validation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:2631-2638. [DOI: 10.1007/s00586-018-5727-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/08/2018] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
|
30
|
Long RG, Zderic I, Gueorguiev B, Ferguson SJ, Alini M, Grad S, Iatridis JC. Effects of Level, Loading Rate, Injury and Repair on Biomechanical Response of Ovine Cervical Intervertebral Discs. Ann Biomed Eng 2018; 46:1911-1920. [PMID: 29926304 DOI: 10.1007/s10439-018-2077-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
Abstract
A need exists for pre-clinical large animal models of the spine to translate biomaterials capable of repairing intervertebral disc (IVD) defects. This study characterized the effects of cervical spinal level, loading rate, injury and repair with genipin-crosslinked fibrin (FibGen) on axial and torsional mechanics in an ovine cervical spine model. Cervical IVDs C2-C7 from nine animals were tested with cyclic tension-compression (- 240 to 100 N) and cyclic torsion (± 2° and ± 4°) tests at three rates (0.1, 1 and 2 Hz) in intact, injured and repaired conditions. Intact IVDs from upper cervical levels (C2-C4) had significantly higher torque range and torsional stiffness and significantly lower axial range of motion (ROM) and tensile compliance than IVDs from lower cervical levels (C5-C7). A tenfold increase in loading rate significantly increased torque range and torsional stiffness 4-8% (depending on amplitude) (p < 0.001). When normalized to intact, FibGen significantly restored torque range (FibGen: 0.96 ± 0.14, Injury: 0.88 ± 0.14, p = 0.03) and axial ROM (FibGen: 1.00 ± 0.05, Injury: 1.04 ± 0.15, p = 0.02) compared to Injury, with a values of 1 indicating full repair. Cervical spinal level must be considered for controlling biomechanical evaluations, and FibGen restored some torsional and axial biomechanical properties to intact levels.
Collapse
Affiliation(s)
- Rose G Long
- AO Research Institute Davos, Clavadelstrasse 8, 7270, Davos, Switzerland.,Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, Box 1188, New York, NY, 10029-6574, USA
| | - Ivan Zderic
- AO Research Institute Davos, Clavadelstrasse 8, 7270, Davos, Switzerland
| | - Boyko Gueorguiev
- AO Research Institute Davos, Clavadelstrasse 8, 7270, Davos, Switzerland
| | | | - Mauro Alini
- AO Research Institute Davos, Clavadelstrasse 8, 7270, Davos, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Clavadelstrasse 8, 7270, Davos, Switzerland
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, Box 1188, New York, NY, 10029-6574, USA.
| |
Collapse
|
31
|
Frauchiger DA, Chan SCW, Benneker LM, Gantenbein B. Intervertebral disc damage models in organ culture: a comparison of annulus fibrosus cross-incision versus punch model under complex loading. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2018; 27:1785-1797. [PMID: 29789921 DOI: 10.1007/s00586-018-5638-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE Comparison of two annulus fibrosus injury models that mimic intervertebral disc (IVD) herniation, enabling the study of IVD behaviour under three loading regimes in a bovine organ culture model. METHODS An injury was induced by custom-designed cross-incision tool or a 2-mm biopsy punch in IVDs. Discs were cultured for 14 days under (1) complex (compression and torsion), (2) static, and (3) no load. Disc height, mitochondrial activity, DNA and glycosaminoglycan (GAG) contents, and disc stiffness under complex load were determined. Further, gene expression and histology analysis were performed. RESULTS While both injury models did not change the compressional stiffness of IVDs, cross-incision decreased disc height under complex load. Moreover, under complex load, the biopsy punch injury induced down-regulation of several anabolic, catabol ic, and inflammatory genes, whereas cross-incision did not significantly differ from control discs. However, DNA and GAG contents were in the range of the healthy control discs for both injury models but did show lower contents under no load and static load. Injury side and contralateral side of the IVD showed a similar behaviour on the biochemical assays tested. CONCLUSION Compressional stiffness, GAG and DNA contents, did not differ between injury models under complex load. This behaviour was partially attributed to the positive influence of complex loading on matrix regeneration and cell viability. However, disc height was reduced for the cross-incision. Relative gene expression changes of the inflammatory and anabolic genes for the biopsy punch approach might indicate that induced damage was too intense to trigger any inflammatory or repair response. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Daniela A Frauchiger
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014, Bern, Switzerland
| | - Samantha C W Chan
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014, Bern, Switzerland
| | - Lorin M Benneker
- Department of Orthopedic Surgery and Traumatology, Insel University Hospital, University of Bern, Freiburgstrasse 4, 3010, Bern, Switzerland
| | - Benjamin Gantenbein
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014, Bern, Switzerland.
| |
Collapse
|
32
|
Percutaneous Endoscopic Cervical Discectomy: Surgical Approaches and Postoperative Imaging Changes. Asian Spine J 2018; 12:294-299. [PMID: 29713411 PMCID: PMC5913021 DOI: 10.4184/asj.2018.12.2.294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/23/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Study Design Retrospective clinical study. Purpose This study investigated the relationship between surgical approaches and surgical outcomes in patients undergoing percutaneous endoscopic cervical discectomy (PECD), including the reduction in intervertebral disc height and the incidence of Modic changes. Overview of Literature The anterior approach involves partial invasion of the intervertebral disc, with a reported reduction in intervertebral disc height after PECD. Methods Forty-two patients with cervical disk hernia who underwent PECD and magnetic resonance imaging at least 3 months postoperatively were divided into four groups according to the hernia sites and the surgical approach used: unilateral hernia treated using the contralateral approach (group C, n=18), unilateral hernia treated using the ipsilateral approach (group I, n=15), midline hernia (group M, n=4), and broad and bilateral hernia (group B, n=5). Modic changes and intervertebral disc height were evaluated. Results The overall incidence of Modic changes was 52.4%: 72.2% in group C, 26.7% in group I, 25.0% in group M, and 80.0% in group B. The reduction in intervertebral disc height was 21.8% across all the patients: 24.5% in group C, 11.0% in group I, 22.8% in group M, and 23.9% in group B. Conclusions The incidence of Modic changes and the reduction in intervertebral disc height were lower in the patients treated using the ipsilateral approach than in those treated using the contralateral approach. Traditionally, a contralateral approach has been used for PECD; however, the ipsilateral approach is more appropriate and is therefore recommended.
Collapse
|
33
|
Liu X, Krishnamoorthy D, Lin L, Xue P, Zhang F, Chi L, Linhardt RJ, Iatridis JC. A method for characterising human intervertebral disc glycosaminoglycan disaccharides using liquid chromatography-mass spectrometry with multiple reaction monitoring. Eur Cell Mater 2018; 35:117-131. [PMID: 29469163 PMCID: PMC5865475 DOI: 10.22203/ecm.v035a09] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intervertebral disc (IVD) degeneration results in the depletion of proteoglycans and glycosaminoglycans (GAGs), which can lead to structural and mechanical loss of IVD function, ingrowth of nociceptive nerve fibres and eventually discogenic pain. Specific GAG types as well as their disaccharide patterns can be predictive of disease and degeneration in several tissues but have not been comprehensively studied within the IVD. A highly sensitive mass spectrometry based technique with multiple reaction monitoring (MRM) was used to provide characterisation of chondroitin sulphate (CS), hyaluronic acid (HA), heparan sulphate (HS) and their disaccharide sulphation patterns across different anatomical regions of human IVDs. Principal component analysis further distinguished important regional variations and proposed potential ageing variations in GAG profiles. CS was the GAG in greatest abundance in the IVD followed by HA and HS. Principal component analysis identified clear separation of GAG profiles between nucleus pulposus and annulus fibrosus in young and old specimens. Distinct patterns of predominantly expressed disaccharides of CS and HS between young and old IVD samples, provided preliminary evidence that important alterations in disaccharides occur within IVDs during ageing. This technique offered a novel approach to identify and quantify specific GAG disaccharides in human IVDs and the data presented were the first to offer insight into the spatial distribution as well as association with ageing of GAGs and GAG disaccharide sulphation patterns across the human IVD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - J C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, Box 1188, New York, NY 10029-6574, USA
| |
Collapse
|
34
|
Vergari C, Mansfield JC, Chan D, Clarke A, Meakin JR, Winlove PC. The effects of needle damage on annulus fibrosus micromechanics. Acta Biomater 2017; 63:274-282. [PMID: 28917706 DOI: 10.1016/j.actbio.2017.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/23/2017] [Accepted: 09/13/2017] [Indexed: 01/07/2023]
Abstract
Needle puncture of the intervertebral disc can initiate a mechanical and biochemical cascade leading to disc degeneration. Puncture's mechanical effects have been shown near the puncture site, mechanical effects should be observed far, relative to needle size, from the puncture site, given the disc-wide damage induced by the stab. The aim of this work was to quantify these far-field effects, and to observe the local structural damage provoked by the needle. Strips of cow tail annulus fibrosus underwent two consecutive mechanical loadings to 5% tensile strain; fifteen samples were punctured in a radial direction with a randomly assigned needle between the two loadings (needle gauges between 19 and 23). Ten samples (control group) were not punctured. During loading, the tissue strains were imaged using second harmonic generation microscopy in a <600×800µm region about 4.4mm from the puncture site. After mechanical testing, the puncture site was imaged in 3D. Puncture had no significant effect on annulus elastic modulus. Imaging showed a modest change in the shearing between fibre bundles however, the linear strain between bundles, intra-bundle shear and linear strain were not significantly affected. At the puncture site, detached lumps of tissue were present. These results suggest that the mechanical effects observed in intact discs are due to the depressurization of the disc, rather than the local damage to the annulus. Needle profiles could be designed, aiming at separating fibre bundles rather than cutting through them, to avoid leaving dying tissue behind. STATEMENT OF SIGNIFICANCE Needle puncture of the intervertebral disc can initiate a mechanical and biochemical cascade leading to disc degeneration, but the link between the local damage of the puncture and the disc-wide effects is not well understood. This work aimed at determining the micro-mechanical effects of the puncture far from its site, and to observe the damage induced by the puncture with high resolution imaging. Results show that the puncture had modest effect far from the puncture, but lumps of tissue were left by the needle, detached from the disc; these could cause further damage through friction and inflammation of the surrounding tissues. This suggests that the cascade leading to degeneration is probably driven by a biochemical response rather than disc-wide mechanical effects.
Collapse
|
35
|
Biomechanical Effects of Human Lumbar Discography: In Vitro Experiments and Their Finite Element Validation. Clin Spine Surg 2017; 30:E219-E225. [PMID: 28323703 DOI: 10.1097/bsd.0000000000000077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
STUDY DESIGN An experimental and computational finite element analysis of human lumbar spine discography and its resulting effects on disk biomechanics. OBJECTIVE To characterize the changes in stress and displacement of the human lumbar spine disks after puncture due to discography. SUMMARY OF BACKGROUND DATA Discography of the intervertebral disk (IVD) may be used to diagnose pathology of the disk and determine whether it may be a source for chronic back pain. It has recently been suggested that discography may lead to IVD degeneration, and has been a cause of controversy among spine care physicians. MATERIALS AND METHODS Both in vivo experiment using cadaveric specimens and a finite element model of the same L3-L5 lumbar spine was developed using computed tomography scans. Discography was simulated in the model as an area in the disk affected by needle puncture. The material properties in the nucleus pulposus were adjusted to match experimental data both before and after puncture. RESULTS Puncture of the IVD leads to increased deformation and increased stresses in the annulus fibrosis region of the disk. Pressure in the nucleus pulposus was found to decrease after puncture. Experimental and computational results correlated well. CONCLUSIONS Puncturing the IVD changes disk biomechanics and hence may lead to progressive spine degenerations in particular in the punctured disks.
Collapse
|
36
|
Russo F, Hartman RA, Bell KM, Vo N, Sowa GA, Kang JD, Vadalà G, Denaro V. Biomechanical Evaluation of Transpedicular Nucleotomy With Intact Annulus Fibrosus. Spine (Phila Pa 1976) 2017; 42:E193-E201. [PMID: 28207656 DOI: 10.1097/brs.0000000000001762] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Biomechanical testing of partially nucleotomized ovine cadaveric spines. OBJECTIVE To explore how the nucleus pulposus (NP) affects the biomechanical behavior of the intervertebral disc (IVD) by performing a partial nucleotomy via the transpedicular approach. SUMMARY OF BACKGROUND DATA Mechanical loading represents a crucial part of IVD homeostasis. However, traditional regenerative strategies require violation of the annulus fibrosus (AF) resulting in significant alteration of joint mechanics. The transpedicular nucleotomy represents a suitable method to create a cavity into the NP, as a model to study IVD regeneration with intact AF. METHODS A total of 30 ovine-lumbar- functional spinal units (FSUs) (L1-L6) randomly assigned to 5 groups: control; transpedicular tunnel (TT); TT + polymethylmethacrylate (PMMA) to repair the bone tunnel; nucleotomy; nucleotomy + PMMA. Flexion/extension, lateral-bending, and axial-rotation were evaluated under adaptive displacement control. Axial compression was applied for 15 cycles of preconditioning followed by 1 hour of constant compression. Viscoelastic behavior was modeled and parameterized. RESULTS TT has minimal effects on rotational biomechanics. The nucleotomy increases ROM and neutral zone (NZ) displacement width whereas decreasing NZ stiffness. TT + PMMA has small effects in terms of ROM. Nucleotomy + PMMA brings ROM back to the control, increases NZ stiffness, and decreases NZ displacement width. The nucleotomy tends to increase the rate of early creep. TT reduces early and late damping. The use of PMMA increased late elastic stiffness (S2) and reduced viscous damping (η2) culminating in faster resolution of creep. CONCLUSION Biomechanical properties of NP are crucial for IVD repair. This study demonstrated that TT does not affect rotational stability whereas partial nucleotomy with intact AF induce rotational instability, highlighting the central role of NP in early stages of IDD. Therefore, this model represents a successful platform to validate and optimize disc regeneration strategies. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Fabrizio Russo
- Department of Orthopedic and Traumatology, University Campus BioMedico of Rome, Rome, Italy
| | - Robert A Hartman
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, USA
| | - Kevin M Bell
- Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, Pittsburgh, PA
| | - Nam Vo
- Ferguson Laboratory for Orthopedic and Spine Research, University of Pittsburgh, Pittsburgh, PA
| | - Gwendolyn A Sowa
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, USA
| | - James D Kang
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Gianluca Vadalà
- Department of Orthopedic and Traumatology, University Campus BioMedico of Rome, Rome, Italy
| | - Vincenzo Denaro
- Department of Orthopedic and Traumatology, University Campus BioMedico of Rome, Rome, Italy
| |
Collapse
|
37
|
Vo NV, Hartman RA, Patil PR, Risbud MV, Kletsas D, Iatridis JC, Hoyland JA, Le Maitre CL, Sowa GA, Kang JD. Molecular mechanisms of biological aging in intervertebral discs. J Orthop Res 2016; 34:1289-306. [PMID: 26890203 PMCID: PMC4988945 DOI: 10.1002/jor.23195] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/03/2016] [Indexed: 02/04/2023]
Abstract
Advanced age is the greatest risk factor for the majority of human ailments, including spine-related chronic disability and back pain, which stem from age-associated intervertebral disc degeneration (IDD). Given the rapid global rise in the aging population, understanding the biology of intervertebral disc aging in order to develop effective therapeutic interventions to combat the adverse effects of aging on disc health is now imperative. Fortunately, recent advances in aging research have begun to shed light on the basic biological process of aging. Here we review some of these insights and organize the complex process of disc aging into three different phases to guide research efforts to understand the biology of disc aging. The objective of this review is to provide an overview of the current knowledge and the recent progress made to elucidate specific molecular mechanisms underlying disc aging. In particular, studies over the last few years have uncovered cellular senescence and genomic instability as important drivers of disc aging. Supporting evidence comes from DNA repair-deficient animal models that show increased disc cellular senescence and accelerated disc aging. Additionally, stress-induced senescent cells have now been well documented to secrete catabolic factors, which can negatively impact the physiology of neighboring cells and ECM. These along with other molecular drivers of aging are reviewed in depth to shed crucial insights into the underlying mechanisms of age-related disc degeneration. We also highlight molecular targets for novel therapies and emerging candidate therapeutics that may mitigate age-associated IDD. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1289-1306, 2016.
Collapse
Affiliation(s)
- Nam V. Vo
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Robert A. Hartman
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Prashanti R. Patil
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - James C. Iatridis
- Leni & Peter W May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Judith A. Hoyland
- Centre for Tissue Injury and Repair, Faculty of Medical and Human Sciences, University of Manchester M13 9PT and NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academic Health Science Centre, Manchester, UK
| | - Christine L. Le Maitre
- Musculoskeletal and Regenerative Medicine Research Group, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Gwendolyn A. Sowa
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James D. Kang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Moriguchi Y, Alimi M, Khair T, Manolarakis G, Berlin C, Bonassar LJ, Härtl R. Biological Treatment Approaches for Degenerative Disk Disease: A Literature Review of In Vivo Animal and Clinical Data. Global Spine J 2016; 6:497-518. [PMID: 27433434 PMCID: PMC4947401 DOI: 10.1055/s-0036-1571955] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022] Open
Abstract
STUDY DESIGN Literature review. OBJECTIVE Degenerative disk disease (DDD) has a negative impact on quality of life and is a major cause of morbidity worldwide. There has been a growing interest in the biological repair of DDD by both researchers and clinicians alike. To generate an overview of the recent progress in reparative strategies for the treatment of DDD highlighting their promises and limitations, a comprehensive review of the current literature was performed elucidating data from in vivo animal and clinical studies. METHODS Articles and abstracts available in electronic databases of PubMed, Web of Science, and Google Scholar as of December 2014 were reviewed. Additionally, data from unpublished, ongoing clinical trials was retrieved from clinicaltrials.gov and available abstracts from research forums. Data was extracted from the most recent in vivo animal or clinical studies involving any of the following: (1) treatment with biomolecules, cells, or tissue-engineered constructs and (2) annulus fibrosus repair. RESULTS Seventy-five articles met the inclusion criteria for review. Among these, 17 studies involved humans; 37, small quadrupeds; and 21, large quadrupeds. Findings from all treatments employed demonstrated improvement either in regenerative capacity or in pain attenuation, with the exception of one clinical study. CONCLUSION Published clinical studies on cell therapy have reported encouraging results in the treatment of DDD and resultant back pain. We expect new data to emerge in the near future as treatments for DDD continue to evolve in parallel to our greater understanding of disk health and pathology.
Collapse
Affiliation(s)
- Yu Moriguchi
- Weill Cornell Brain and Spine Center, Department of Neurological Surgery, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, United States
| | - Marjan Alimi
- Weill Cornell Brain and Spine Center, Department of Neurological Surgery, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, United States
| | - Thamina Khair
- Weill Cornell Brain and Spine Center, Department of Neurological Surgery, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, United States
| | - George Manolarakis
- Weill Cornell Brain and Spine Center, Department of Neurological Surgery, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, United States
| | - Connor Berlin
- Weill Cornell Brain and Spine Center, Department of Neurological Surgery, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, United States
| | - Lawrence J. Bonassar
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States
| | - Roger Härtl
- Weill Cornell Brain and Spine Center, Department of Neurological Surgery, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, New York, United States
| |
Collapse
|
39
|
Abraham AC, Liu JW, Tang SY. Longitudinal changes in the structure and inflammatory response of the intervertebral disc due to stab injury in a murine organ culture model. J Orthop Res 2016; 34:1431-8. [PMID: 27273204 PMCID: PMC5324835 DOI: 10.1002/jor.23325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/05/2016] [Indexed: 02/04/2023]
Abstract
Despite the significant public health impact of intervertebral disc (IVD) degeneration and low back pain, it remains challenging to investigate the multifactorial molecular mechanisms that drive the degenerative cascade. Organ culture model systems offer the advantage of allowing cells to live and interact with their native extracellular matrix, while simultaneously reducing the amount of biological variation and complexity present at the organismal level. Murine organ cultures in particular also allow the use of widely available genetically modified animals with molecular level reporters that would reveal insights on the degenerative cascade. Here, we utilize an organ culture system of murine lumbar functional spinal units where we are able to maintain the cellular, metabolic, and structural, and mechanical stability of the whole organ over a 21-day period. Furthermore, we describe a novel approach in organ culture by using tissues from animals with an NF-κB-luc reporter in combination with a mechanical injury model, and are able to show that proinflammatory factors and cytokines such as NF-κB and IL-6 produced by IVD cells can be monitored longitudinally during culture in a stab injury model. Taken together, we utilize a murine organ culture system that maintains the cellular and tissue level behavior of the intervertebral disc and apply it to transgenic animals that allow the monitoring of the inflammatory profile of IVDs. This approach could provide important insights on the molecular and metabolic mediators that regulate the homeostasis of the IVD. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1431-1438, 2016.
Collapse
Affiliation(s)
- Adam C. Abraham
- Department of Orthopedic Surgery, Washington University in St. Louis, 660 S. Euclid, Campus Box 8233, St. Louis 63103, Missouri
| | - Jennifer W. Liu
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Whitaker Hall, Campus Box 1097, St. Louis 63130, Missouri
| | - Simon Y. Tang
- Department of Orthopedic Surgery, Washington University in St. Louis, 660 S. Euclid, Campus Box 8233, St. Louis 63103, Missouri
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, Whitaker Hall, Campus Box 1097, St. Louis 63130, Missouri
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
40
|
Gantenbein B, Illien-Jünger S, Chan SCW, Walser J, Haglund L, Ferguson SJ, Iatridis JC, Grad S. Organ culture bioreactors--platforms to study human intervertebral disc degeneration and regenerative therapy. Curr Stem Cell Res Ther 2016; 10:339-52. [PMID: 25764196 DOI: 10.2174/1574888x10666150312102948] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 12/31/2022]
Abstract
In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.
Collapse
Affiliation(s)
- Benjamin Gantenbein
- Institute for Surgical Technology & Biomechanics, Medical Faculty, University, Stauffacherstrasse 78, CH-3014 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Needle puncture in rabbit functional spinal units alters rotational biomechanics. ACTA ACUST UNITED AC 2015; 28:E146-53. [PMID: 25370985 DOI: 10.1097/bsd.0000000000000196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
STUDY DESIGN An in vitro biomechanical study for rabbit lumbar functional spinal units (FSUs) using a robot-based spine testing system. OBJECTIVE To elucidate the effect of annular puncture with a 16 G needle on mechanical properties in flexion/extension, axial rotation, and lateral bending. SUMMARY OF BACKGROUND DATA Needle puncture of the intervertebral disk has been shown to alter mechanical properties of the disk in compression, torsion, and bending. The effect of needle puncture in FSUs, where intact spinal ligaments and facet joints may mitigate or amplify these changes in the disk, on spinal motion segment stability subject to physiological rotations remains unknown. METHODS Rabbit FSUs were tested using a robot testing system whose force/moment and position precision were assessed to demonstrate system capability. Flexibility testing methods were developed by load-to-failure testing in flexion/extension, axial rotation, and lateral bending. Subsequent testing methods were used to examine a 16 G needle disk puncture and No. 11 blade disk stab (positive control for mechanical disruption). Flexibility testing was used to assess segmental range-of-motion (degrees), neutral zone stiffness (N m/degrees) and width (degrees and N m), and elastic zone stiffness before and after annular injury. RESULTS The robot-based system was capable of performing flexibility testing on FSUs-mean precision of force/moment measurements and robot system movements were <3% and 1%, respectively, of moment-rotation target values. Flexibility moment targets were 0.3 N m for flexion and axial rotation and 0.15 N m for extension and lateral bending. Needle puncture caused significant (P<0.05) changes only in flexion/extension range-of-motion and neutral zone stiffness and width (N m) compared with preintervention. No. 11 blade-stab significantly increased range-of-motion in all motions, decreased neutral zone stiffness and width (N m) in flexion/extension, and increased elastic zone stiffness in flexion and lateral bending. CONCLUSIONS These findings suggest that disk puncture and stab can destabilize FSUs in primary rotations.
Collapse
|
42
|
Teixeira GQ, Boldt A, Nagl I, Pereira CL, Benz K, Wilke HJ, Ignatius A, Barbosa MA, Gonçalves RM, Neidlinger-Wilke C. A Degenerative/Proinflammatory Intervertebral Disc Organ Culture: An Ex Vivo Model for Anti-inflammatory Drug and Cell Therapy. Tissue Eng Part C Methods 2015; 22:8-19. [PMID: 26565141 DOI: 10.1089/ten.tec.2015.0195] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Resolution of intervertebral disc (IVD) degeneration-associated inflammation is a prerequisite for tissue regeneration and could possibly be achieved by strategies ranging from pharmacological to cell-based therapies. In this study, a proinflammatory disc organ culture model was established. Bovine caudal disc punches were needle punctured and additionally stimulated with lipopolysaccharide (10 μg/mL) or interleukin-1β (IL-1β, 10-100 ng/mL) for 48 h. Two intradiscal therapeutic approaches were tested: (i) a nonsteroidal anti-inflammatory drug, diclofenac (Df) and (ii) human mesenchymal stem/stromal cells (MSCs) embedded in an albumin/hyaluronan hydrogel. IL-1β-treated disc organ cultures showed a statistically significant upregulation of proinflammatory markers (IL-6, IL-8, prostaglandin E2 [PGE2]) and metalloproteases (MMP1, MMP3) expression, while extracellular matrix (ECM) proteins (collagen II, aggrecan) were significantly downregulated. The injection of the anti-inflammatory drug, Df, was able to reduce the levels of proinflammatory cytokines and MMPs and surprisingly increase ECM protein levels. These results point the intradiscal application of anti-inflammatory drugs as promising therapeutics for disc degeneration. In parallel, the immunomodulatory role of MSCs on this model was also evaluated. Although a slight downregulation of IL-6 and IL-8 expression could be found, the variability among the five donors tested was high, suggesting that the beneficial effect of these cells on disc degeneration needs to be further evaluated. The proinflammatory/degenerative IVD organ culture model established can be considered a suitable approach for testing novel therapeutic drugs, thus reducing the number of animals in in vivo experimentation. Moreover, this model can be used to address the cellular and molecular mechanisms that regulate inflammation in the IVD and their implications in tissue degeneration.
Collapse
Affiliation(s)
- Graciosa Q Teixeira
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany .,2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,3 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal .,4 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal
| | - Antje Boldt
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| | - Ines Nagl
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| | - Catarina Leite Pereira
- 2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,3 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal .,4 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal
| | - Karin Benz
- 5 Natural and Medical Sciences Institute (NMI), University of Tuebingen , Reutlingen, Germany
| | - Hans-Joachim Wilke
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| | - Anita Ignatius
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| | - Mário A Barbosa
- 2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,3 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal .,4 Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , Porto, Portugal
| | - Raquel M Gonçalves
- 2 Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal .,3 Instituto de Engenharia Biomédica (INEB), Universidade do Porto , Porto, Portugal
| | - Cornelia Neidlinger-Wilke
- 1 Institute of Orthopaedic Research and Biomechanics, Center for Musculoskeletal Research, University of Ulm , Ulm, Germany
| |
Collapse
|
43
|
Stannard JT, Edamura K, Stoker AM, O'Connell GD, Kuroki K, Hung CT, Choma TJ, Cook JL. Development of a whole organ culture model for intervertebral disc disease. J Orthop Translat 2015; 5:1-8. [PMID: 30035069 PMCID: PMC5987001 DOI: 10.1016/j.jot.2015.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/13/2015] [Accepted: 08/03/2015] [Indexed: 01/08/2023] Open
Abstract
Background/Objective Whole organ in vitro intervertebral disc models have been associated with poor maintenance of cell viability. No previous studies have used a rotating wall vessel bioreactor for intervertebral disc explants culture. The purpose of this study was to develop and validate an in vitro model for the assessment of biological and biomechanical measures of intervertebral disc health and disease. Methods To this end, endplate-intervertebral disc-endplate whole organ explants were harvested from the tails of rats. For the injured group, the annulus fibrosus was penetrated with a 20G needle to the nucleus pulposus and aspirated. Explants were cultured in a rotating wall vessel bioreactor for 14 days. Results Cell viability and histologic assessments were performed at Day 0, Day 1, Day 7, and Day 14. Compressive mechanical properties of the intervertebral disc were assessed at Day 0 and Day 14. In the annulus fibrosus and nucleus pulposus cells, the uninjured group maintained high viability through 14 days of culture, whereas cell viability in annulus fibrosus and nucleus pulposus of the injured intervertebral discs was markedly lower at Day 7 and Day 14. Histologically, the uninjured intervertebral discs maintained cell viability and tissue morphology and architecture through 14 days, whereas the injured intervertebral discs showed areas of cell death, loss of extracellular matrix integrity, and architecture by Day 14. Stiffness values for uninjured intervertebral discs were similar at Day 0 and Day 14, whereas the stiffness for the injured intervertebral discs was approximately 2.5 times greater at Day 14. Conclusion These results suggest that whole organ intervertebral discs explants can be successfully cultured in a rotating wall vessel bioreactor to maintain cell viability and tissue architecture in both annulus fibrosus and nucleus pulposus for at least 14 days. In addition, the injury used produced pathologic changes consistent with those seen in degenerative intervertebral disc disease in humans. This model will permit further study into potential future treatments and other mechanisms of addressing intervertebral disc disease.
Collapse
Affiliation(s)
- James T. Stannard
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
| | - Kazuya Edamura
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
- Laboratory of Veterinary Surgery, Nihon University, Fujisawa, Kanagawa, Japan
| | - Aaron M. Stoker
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
| | - Grace D. O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Keiichi Kuroki
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
| | - Clark T. Hung
- Laboratory of Veterinary Surgery, Nihon University, Fujisawa, Kanagawa, Japan
| | - Theodore J. Choma
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, USA
| | - James L. Cook
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO, USA
- Corresponding author. Comparative Orthopaedic Laboratory, University of Missouri, 900 East Campus Drive, Columbia, MO 65211, USA.
| |
Collapse
|
44
|
Sitte I, Kathrein A, Klosterhuber M, Lindtner RA, Neururer SB, Rauch S, Kuhn V, Schmoelz W. Morphological similarities after compression trauma of bovine and human intervertebral discs: Do disc cells have a chance of surviving? J Orthop Res 2014; 32:1198-207. [PMID: 24888549 DOI: 10.1002/jor.22655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/21/2014] [Indexed: 02/04/2023]
Abstract
To study the behavior of bovine disc cells and changes in disc matrix following in vitro compression tests; to compare the findings to investigations on human intervertebral discs (IVD) after burst fracture of the cervical spine. Healthy IVDs (n = 21) from three bovine tails were studied at 6 and 12 h post-mortem, with 16 IVDs subjected to impact loading and five as unloaded controls. IVDs (n = 8) from patients with burst fractures were compared to the bovine compression group. Specimens were studied macroscopically, histologically, and ultrastructurally for healthy cells, balloon cells, and disc cell death (DCD). Annulus ruptures were seen in both post-trauma groups, with radial ruptures being present histologically in all loaded bovine discs. Balloon cells were found in some human IVDs and were induced in vitro in bovine loaded discs within a distinct range of absorbed energy. There was a positive correlation between DCD and absorbed energy in all compartments of bovine discs. Both species showed similar patterns of DCD in the different compartments. This study was able to show similarities between both species in cell morphologies and matrix damage. The survival of the disc after substantial compression trauma thus seems to remain highly questionable.
Collapse
Affiliation(s)
- Ingrid Sitte
- Department of Traumatology, Medical University of Innsbruck, Anichstr. 35, A-6020, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Nisolle JF, Neveu F, Hontoir F, Clegg P, Kirschvink N, Vandeweerd JM. CT-guided injection technique into intervertebral discs in the ovine lumbar spine. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2013; 22:2760-5. [PMID: 23934381 DOI: 10.1007/s00586-013-2936-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 07/28/2013] [Accepted: 07/30/2013] [Indexed: 12/28/2022]
Abstract
PURPOSE Disc injection to create intervertebral (IVD) disc degeneration (IVDD) has been reported in ovine models, but the techniques have not been thoroughly described. The current ex vivo study aimed to evaluate a computed tomography (CT)-guided injection technique into IVDs in the ovine lumbar spine. METHODS Insertion of needles into the nucleus pulposus was assessed by gross anatomic dissection in two lumbar segments (group A), and injection of liquid within the disc was assessed by discography in six segments (group B). RESULTS The pathway of the needle was simulated on computer after an initial CT scan, followed by control of the insertion process via a laser beam and monitoring scans. In group A, 20 insertions were assessed and 17 needles (85 %) were successfully positioned in the nucleus pulposus. In group B of 30 injections, the rate of success was 90 %. CONCLUSIONS The current study provides useful clinical information that will help surgeons working with an ovine model for research on IVDD. This model could also be useful to train less experienced surgeons or radiologists to disc injection. This CT-guided injection seems to offer several advantages such as ease of use, good success rate and safety to important nervous and vascular structures.
Collapse
Affiliation(s)
- Jean Francois Nisolle
- Centre Hospitalier Universitaire Mont Godinne, Université Catholique de Louvain, Yvoir, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Martin JT, Gorth DJ, Beattie EE, Harfe BD, Smith LJ, Elliott DM. Needle puncture injury causes acute and long-term mechanical deficiency in a mouse model of intervertebral disc degeneration. J Orthop Res 2013; 31:1276-82. [PMID: 23553925 PMCID: PMC6684036 DOI: 10.1002/jor.22355] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 03/05/2013] [Indexed: 02/04/2023]
Abstract
Low back pain is a significant socioeconomic burden and intervertebral disc degeneration has been implicated as a cause. A reliable animal model of disc degeneration is necessary to evaluate therapeutics, and functional metrics are essential to quantify their benefit. To this end, needle puncture injuries were created in the caudal intervertebral discs of mice to induce disc degeneration. Compression, torsion, and creep mechanics were assessed both immediately and after eight weeks to distinguish between the effects of injury and the subsequent reparative or degenerative response. Two needle sizes (29 and 26 gauge) were used to determine injury size-dependence. Compressive stiffness (62%), torsional stiffness (60%), and early damping stiffness (84%) decreased immediately after injury with the large needle (26G). These mechanical properties did not change over time despite structural and compositional changes. At 8 weeks following large needle injury, disc height decreased (37%), nucleus pulposus (NP) glycosaminoglycan content decreased (41%), and NP collagen content increased (45%). The small needle size had no significant effect on mechanics and did not initiate degenerative changes in structure and composition. Thus, the injection of therapeutics into the NP with a minimal needle size may limit damage due to the needle insertion. These findings, along with the wide commercial availability of mouse-specific biological probes, indicate that the mouse caudal disc model can be a powerful tool for investigating disc degeneration and therapy.
Collapse
Affiliation(s)
- John T. Martin
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, 19104,Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Deborah J. Gorth
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Elizabeth E. Beattie
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, 19104,Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Brian D. Harfe
- Department of Molecular Genetics and Microbiology, The Genetics Institute, University of Florida, Gainesville, Florida, 32610
| | - Lachlan J. Smith
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Dawn M. Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716
| |
Collapse
|
47
|
Issy AC, Castania V, Castania M, Salmon CEG, Nogueira-Barbosa MH, Bel ED, Defino HLA. Experimental model of intervertebral disc degeneration by needle puncture in Wistar rats. Braz J Med Biol Res 2013; 46:235-44. [PMID: 23532265 PMCID: PMC3854370 DOI: 10.1590/1414-431x20122429] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/16/2012] [Indexed: 01/08/2023] Open
Abstract
Animal models of intervertebral disc degeneration play an important role in
clarifying the physiopathological mechanisms and testing novel therapeutic
strategies. The objective of the present study is to describe a simple animal
model of disc degeneration involving Wistar rats to be used for research
studies. Disc degeneration was confirmed and classified by radiography, magnetic
resonance and histological evaluation. Adult male Wistar rats were anesthetized
and submitted to percutaneous disc puncture with a 20-gauge needle on levels 6-7
and 8-9 of the coccygeal vertebrae. The needle was inserted into the discs
guided by fluoroscopy and its tip was positioned crossing the nucleus pulposus
up to the contralateral annulus fibrosus, rotated 360° twice, and held for 30 s.
To grade the severity of intervertebral disc degeneration, we measured the
intervertebral disc height from radiographic images 7 and 30 days after the
injury, and the signal intensity T2-weighted magnetic resonance imaging.
Histological analysis was performed with hematoxylin-eosin and collagen fiber
orientation using picrosirius red staining and polarized light microscopy.
Imaging and histological score analyses revealed significant disc degeneration
both 7 and 30 days after the lesion, without deaths or systemic complications.
Interobserver histological evaluation showed significant agreement. There was a
significant positive correlation between histological score and intervertebral
disc height 7 and 30 days after the lesion. We conclude that the tail disc
puncture method using Wistar rats is a simple, cost-effective and reproducible
model for inducing disc degeneration.
Collapse
Affiliation(s)
- A C Issy
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
STUDY DESIGN Descriptive anatomical study on ovine and human cadaveric lumbar spinal segments. OBJECTIVE To describe the alternative transpedicular approach to deliver therapeutic agents into intervertebral disc (IVD). SUMMARY OF BACKGROUND DATA The present delivery approach of therapeutic agents (growth factors/cells/hydrogels) within the IVD is through injection, via the annulus fibrosus (AF). However, it has recently been demonstrated that small needle puncture of the AF leads to further degeneration and disc herniation. In addition, the injected material has a high chance to be extruded through the AF injury. METHODS Lumbar ovine and human spinal segments were used. Under fluoroscopy, a 2-mm Kirschner wire was introduced in the caudal vertebra through the pedicle and the inferior endplate to the nucleus pulposus. Gross anatomy analysis and high-resolution peripheral quantitative computed tomography (HR-pQCT) were performed to assess the right position of the wire in pedicles. Discography and nucleotomy were performed using a 14G cannula insertion or a 2-mm arthroscopic shaver blade, respectively. Nucleoplasty was also performed with agarose gel/contrast agent and imaged with HR-pQCT. RESULTS Gross anatomy, fluoroscopy, and HR-pQCT images showed that the nucleus pulposus could be approached through the endplate via the pedicle without affecting the spinal canal and the neural foramina. The contrast agent was delivered into the IVD and nucleus pulposus was removed from the disc and filled with agarose gel. CONCLUSION This study describes how a transpedicular approach can be used as an alternative route to deliver therapeutic agents to the disc without disruption of the AF showing the potential use of this technique in preclinical research and highlighting its clinical relevance for IVD regeneration.
Collapse
|
49
|
Iatridis JC, Nicoll SB, Michalek AJ, Walter BA, Gupta MS. Role of biomechanics in intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair? Spine J 2013; 13:243-62. [PMID: 23369494 PMCID: PMC3612376 DOI: 10.1016/j.spinee.2012.12.002] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 07/26/2012] [Accepted: 12/09/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Degeneration and injuries of the intervertebral disc (IVD) result in large alterations in biomechanical behaviors. Repair strategies using biomaterials can be optimized based on the biomechanical and biological requirements of the IVD. PURPOSE To review the present literature on the effects of degeneration, simulated degeneration, and injury on biomechanics of the IVD, with special attention paid to needle puncture injuries, which are a pathway for diagnostics and regenerative therapies and the promising biomaterials for disc repair with a focus on how those biomaterials may promote biomechanical repair. STUDY DESIGN A narrative review to evaluate the role of biomechanics on disc degeneration and regenerative therapies with a focus on what biomechanical properties need to be repaired and how to evaluate and accomplish such repairs using biomaterials. Model systems for the screening of such repair strategies are also briefly described. METHODS Articles were selected from two main PubMed searches using keywords: intervertebral AND biomechanics (1,823 articles) and intervertebral AND biomaterials (361 articles). Additional keywords (injury, needle puncture, nucleus pressurization, biomaterials, hydrogel, sealant, tissue engineering) were used to narrow the articles down to the topics most relevant to this review. RESULTS Degeneration and acute disc injuries have the capacity to influence nucleus pulposus (NP) pressurization and annulus fibrosus (AF) integrity, which are necessary for an effective disc function and, therefore, require repair. Needle injection injuries are of particular clinical relevance with the potential to influence disc biomechanics, cellularity, and metabolism, yet these effects are localized or small and more research is required to evaluate and reduce the potential clinical morbidity using such techniques. NP replacement strategies, such as hydrogels, are required to restore the NP pressurization or the lost volume. AF repair strategies including cross-linked hydrogels, fibrous composites, and sealants offer promise for regenerative therapies to restore AF integrity. Tissue engineered IVD structures, as a single implantable construct, may promote greater tissue integration due to the improved repair capacity of the vertebral bone. CONCLUSIONS IVD height, neutral zone characteristics, and torsional biomechanics are sensitive to specific alterations in the NP pressurization and AF integrity and must be addressed for an effective functional repair. Synthetic and natural biomaterials offer promise for NP replacement, AF repair, as an AF sealant, or whole disc replacement. Meeting mechanical and biological compatibilities are necessary for the efficacy and longevity of the repair.
Collapse
Affiliation(s)
- James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY
| | - Steven B. Nicoll
- Department of Biomedical Engineering, The City College of New York, New York, NY
| | - Arthur J. Michalek
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT
| | - Benjamin A. Walter
- Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine, New York, NY,Department of Biomedical Engineering, The City College of New York, New York, NY
| | - Michelle S. Gupta
- Department of Biomedical Engineering, The City College of New York, New York, NY
| |
Collapse
|
50
|
Zhu Q, Jackson AR, Gu WY. Cell viability in intervertebral disc under various nutritional and dynamic loading conditions: 3d finite element analysis. J Biomech 2012; 45:2769-77. [PMID: 23040882 PMCID: PMC3593676 DOI: 10.1016/j.jbiomech.2012.08.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/30/2012] [Accepted: 08/31/2012] [Indexed: 12/23/2022]
Abstract
In this study, a new cell density model was developed and incorporated into the formulation of the mechano-electrochemical mixture theory to investigate the effects of deprivation of nutrition supply at boundary source, degeneration, and dynamic loading on the cell viability of intervertebral disc (IVD) using finite element methods. The deprivation of nutrition supply at boundary source was simulated by reduction in nutrition level at CEP and AF boundaries. Cases with 100%, 75%, 60%, 50% and 30% of normal nutrition level at both CEP and AF boundaries were modeled. Unconfined axial sinusoidal dynamic compressions with different combinations of amplitude (u=10%± 2.5%, ± 5%) and frequency (f=1, 10, 20 cycle/day) were applied. Degenerated IVD was modeled with altered material properties. Cell density decreased substantially with reduction of nutrition level at boundaries. Cell death was initiated primarily near the NP-AF interface on the mid-plane. Dynamic loading did not result in a change in the cell density in non-degenerated IVD, since glucose levels did not fall below the minimum value for cell survival; in degenerated IVDs, we found that increasing frequency and amplitude both resulted in higher cell density, because dynamic compression facilitates the diffusion of nutrients and thus increases the nutrition level around IVD cells. The novel computational model can be used to quantitatively predict both when and where cells start to die within the IVD under various kinds of nutritional and mechanical conditions.
Collapse
Affiliation(s)
- Qiaoqiao Zhu
- Tissue Biomechanics Laboratory, Department of Mechanical and Aerospace Engineering, College of Engineering, University of Miami, P.O. Box 248294, Coral Gables, FL 33124-0624, USA
| | - Alicia R. Jackson
- Orthopaedic Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Wei Yong Gu
- Tissue Biomechanics Laboratory, Department of Mechanical and Aerospace Engineering, College of Engineering, University of Miami, P.O. Box 248294, Coral Gables, FL 33124-0624, USA
| |
Collapse
|