1
|
Mudasir Ahmad S, Saleem A, Nazir J, Khalid Yousuf S, Mir Y, Manzoor T, Farhat B, Ahmad SF, Zaffar A, Haq Z. Synthesis and pharmacological evaluation of Andrographolide and Ajwain as promising alternatives to antibiotics for treating Salmonella gallinarum infection in chicken. Int Immunopharmacol 2024; 142:113163. [PMID: 39303542 DOI: 10.1016/j.intimp.2024.113163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
The emergence of antibiotic resistance in pathogenic bacteria, including Salmonella gallinarum, poses a significant challenge to poultry health and food safety. In response, alternative strategies are urgently needed to mitigate bacterial infections without exacerbating antibiotic resistance. Phytoremediation, a sustainable and environmentally friendly approach, harnesses the natural detoxification capabilities of plants to remediate contaminants. This study explores the potential of combined phytoremediation using Andrographolide, derived from Andrographis paniculata, and Ajwain derived from Trachyspermum ammi as promising alternatives to antibiotics for treating Salmonella gallinarum infection in poultry. Andrographolide, known for its potent antimicrobial properties, exhibits inhibitory effects while Ajwain, rich in bioactive compounds, possesses antimicrobial and immunomodulatory properties. By leveraging their combined phytoremediation potential, Andrographolide and Ajwain offer a multifaceted approach to combat Salmonella gallinarum within the poultry environment. The study employed a rigorous experimental design, including in vitro assessments of antimicrobial susceptibility, cytotoxicity, and optimal concentration determination. Following this, in vivo experiments were conducted using a chicken model infected with Salmonella gallinarum. Results demonstrated that the selected combinations effectively reduced mortality rates, alleviated clinical symptoms, and mitigated gross pathological signs associated with Salmonella infection. Gene expression studies indicated a downregulation of proinflammatory cytokines, underscoring potential implications of a combined phytoremediation strategy as an innovative and sustainable solution to address Salmonella gallinarum infections in poultry production systems.
Collapse
Affiliation(s)
- Syed Mudasir Ahmad
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India.
| | - Afnan Saleem
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | - Junaid Nazir
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | | | - Yaawar Mir
- Sher-e-Kashmir Institute of Medical Sciences, Kashmir, India
| | - Tasaduq Manzoor
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| | | | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Zulfqarul Haq
- Division of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology, Kashmir, India
| |
Collapse
|
2
|
Judan Cruz KG, Takumi O, Bongulto KA, Gandalera EE, Kagia N, Watanabe K. Natural compound-induced downregulation of antimicrobial resistance and biofilm-linked genes in wastewater Aeromonas species. Front Cell Infect Microbiol 2024; 14:1456700. [PMID: 39469451 PMCID: PMC11513397 DOI: 10.3389/fcimb.2024.1456700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
Addressing the global antimicrobial resistance (AMR) crisis requires a multifaceted innovative approach to mitigate impacts on public health, healthcare and economic systems. In the complex evolution of AMR, biofilms and the acquisition of antimicrobial resistance genes (ARGs) play a pivotal role. Aeromonas is a major AMR player that often forms biofilm, harbors ARGs and is frequently detected in wastewater. Existing wastewater treatment plants (WWTPs) do not have the capacity to totally eliminate antimicrobial-resistant bacteria favoring the evolution of ARGs in wastewater. Besides facilitating the emergence of AMR, biofilms contribute significantly to biofouling process within the activated sludge of WWTP bioreactors. This paper presents the inhibition of biofilm formation, the expression of biofilm-linked genes and ARGs by phytochemicals andrographolide, docosanol, lanosterol, quercetin, rutin and thymohydroquinone. Aeromonas species were isolated and purified from activated sludge samples. The ARGs were detected in the isolated Aeromonas species through PCR. Aeromonas biofilms were quantified following the application of biocompounds through the microtiter plate assay. qPCR analyses of related genes were done for confirmation. Findings showed that the natural compounds inhibited the formation of biofilms and reduced the expression of genes linked to biofilm production as well as ARGs in wastewater Aeromonas. This indicates the efficacy of these compounds in targeting and controlling both ARGs and biofilm formation, highlighting their potential as innovative solutions for combating antimicrobial resistance and biofouling.
Collapse
Affiliation(s)
- Khristina G. Judan Cruz
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Okamoto Takumi
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kenneth A. Bongulto
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Emmanuel E. Gandalera
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
| | - Ngure Kagia
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
3
|
Li Y, Huang L, Li J, Li S, Lv J, Zhong G, Gao M, Yang S, Han S, Hao W. Targeting TLR4 and regulating the Keap1/Nrf2 pathway with andrographolide to suppress inflammation and ferroptosis in LPS-induced acute lung injury. Chin J Nat Med 2024; 22:914-928. [PMID: 39428183 DOI: 10.1016/s1875-5364(24)60727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 10/22/2024]
Abstract
Acute lung injury (ALI) is a severe inflammatory condition with a high mortality rate, often precipitated by sepsis. The pathophysiology of ALI involves complex mechanisms, including inflammation, oxidative stress, and ferroptosis, a novel form of regulated cell death. This study explores the therapeutic potential of andrographolide (AG), a bioactive compound derived from Andrographis, in mitigating Lipopolysaccharide (LPS)-induced inflammation and ferroptosis. Our research employed in vitro experiments with RAW264.7 macrophage cells and in vivo studies using a murine model of LPS-induced ALI. The results indicate that AG significantly suppresses the production of pro-inflammatory cytokines and inhibits ferroptosis in LPS-stimulated RAW264.7 cells. In vivo, AG treatment markedly reduces lung edema, decreases inflammatory cell infiltration, and mitigates ferroptosis in lung tissues of LPS-induced ALI mice. These protective effects are mediated via the modulation of the Toll-like receptor 4 (TLR4)/Kelch-like ECH-associated protein 1(Keap1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. Molecular docking simulations identified the binding sites of AG on the TLR4 protein (Kd value: -33.5 kcal·mol-1), and these interactions were further corroborated by Cellular Thermal Shift Assay (CETSA) and SPR assays. Collectively, our findings demonstrate that AG exerts potent anti-inflammatory and anti-ferroptosis effects in LPS-induced ALI by targeting TLR4 and modulating the Keap1/Nrf2 pathway. This study underscores AG's potential as a therapeutic agent for ALI and provides new insights into its underlying mechanisms of action.
Collapse
Affiliation(s)
- Yichen Li
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Liting Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jilang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Siyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Jianzhen Lv
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Guoyue Zhong
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal. Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China
| | - Ming Gao
- Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China; National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal. Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Wenhui Hao
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
4
|
Santibáñez N, Vega M, Pérez T, Enriquez R, Escalona CE, Oliver C, Romero A. In vitro effects of phytogenic feed additive on Piscirickettsia salmonis growth and biofilm formation. JOURNAL OF FISH DISEASES 2024; 47:e13913. [PMID: 38421380 DOI: 10.1111/jfd.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024]
Abstract
Piscirickettsiosis is the main cause of mortality in salmonids of commercial importance in Chile, which is caused by Piscirickettsia salmonis, a Gram-negative, γ-proteobacteria that can produce biofilm as one of its virulence factors. The Chilean salmon industry uses large amounts of antibiotics to control piscirickettsiosis outbreaks, which has raised concern about its environmental impact and the potential to induce antibiotic resistance. Thus, the use of phytogenic feed additives (PFA) with antibacterial activity emerges as an interesting alternative to antimicrobials. Our study describes the antimicrobial action of an Andrographis paniculate-extracted PFA on P. salmonis planktonic growth and biofilm formation. We observed complete inhibition of planktonic and biofilm growth with 500 and 400 μg/mL of PFA for P. salmonis LF-89 and EM-90-like strains, respectively. Furthermore, 500 μg/mL of PFA was bactericidal for both evaluated bacterial strains. Sub-inhibitory doses of PFA increase the transcript levels of stress (groEL), biofilm (pslD), and efflux pump (acrB) genes for both P. salmonis strains in planktonic and sessile conditions. In conclusion, our results demonstrate the antibacterial effect of PFA against P. salmonis in vitro, highlighting the potential of PFA as an alternative to control Piscirickettsiosis.
Collapse
Affiliation(s)
- Natacha Santibáñez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
| | - Matías Vega
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
| | - Tatiana Pérez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
| | - Ricardo Enriquez
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carla Estefanía Escalona
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
| | - Cristian Oliver
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Concepción, Chile
| |
Collapse
|
5
|
Liu Q, Li L, Zhao J, Ren G, Lu T, Shao Y, Xu L. Andrographolide Alleviates Oxidative Damage and Inhibits Apoptosis Induced by IHNV Infection via CTSK/BCL2/Cytc Axis. Int J Mol Sci 2023; 25:308. [PMID: 38203479 PMCID: PMC10778657 DOI: 10.3390/ijms25010308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) is an important pathogen that causes significant economic losses to salmon trout farming. Although vaccines have been invented for the treatment of IHNV, findings from our previous survey show that breeding enterprises and farmers require effective oral drugs or immune enhancers. However, studies on the development of oral drugs are limited. In the present study, we used bioinformatics methods to predict the protein targets of andrographolide (Andro) in IHNV. Cells were infected with IHNV, and the effect of andrographolide was explored by evaluating the expression levels of genes implicated in oxidative stress, activities of antioxidant enzymes, and the expression of genes implicated in apoptosis and necrosis. In the present study, cells were divided into NC, IHNV, IHNV+10 μM andrographolide, and IHNV+20 μM andrographolide groups. qRT-PCR was performed to determine the expression level of genes, and an antioxidant enzyme detection kit was used to evaluate the activities of antioxidant enzymes. Fluorescent staining was performed using a reactive oxygen species detection kit (ROS) and Hoechst 33342/PI double staining kit, and the mechanism of alleviation of apoptosis and oxidative stress andrographolide after IHNV infection was determined. The results indicated that andrographolide inhibits viral growth by binding to the NV protein of IHNV and increasing the antioxidant capacity of the body through the CTSK/BCL2/Cytc axis, thereby inhibiting the occurrence of IHNV-induced apoptosis. This is the first study to explore the antagonistic mechanism of action of andrographolide in alleviating IHNV infection. The results provide valuable information on alternative strategies for the treatment of IHNV infection during salmon family and provide a reference for the use of andrographolide as an antioxidant agent in agricultural settings.
Collapse
Affiliation(s)
- Qi Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China (J.Z.); (G.R.); (T.L.)
| | - Linfang Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China (J.Z.); (G.R.); (T.L.)
| | - Jingzhuang Zhao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China (J.Z.); (G.R.); (T.L.)
| | - Guangming Ren
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China (J.Z.); (G.R.); (T.L.)
| | - Tongyan Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China (J.Z.); (G.R.); (T.L.)
| | - Yizhi Shao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China (J.Z.); (G.R.); (T.L.)
| | - Liming Xu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China (J.Z.); (G.R.); (T.L.)
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin 150070, China
| |
Collapse
|
6
|
Wiart C, Kathirvalu G, Raju CS, Nissapatorn V, Rahmatullah M, Paul AK, Rajagopal M, Sathiya Seelan JS, Rusdi NA, Lanting S, Sulaiman M. Antibacterial and Antifungal Terpenes from the Medicinal Angiosperms of Asia and the Pacific: Haystacks and Gold Needles. Molecules 2023; 28:molecules28093873. [PMID: 37175283 PMCID: PMC10180233 DOI: 10.3390/molecules28093873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/15/2023] Open
Abstract
This review identifies terpenes isolated from the medicinal Angiosperms of Asia and the Pacific with antibacterial and/or antifungal activities and analyses their distribution, molecular mass, solubility, and modes of action. All data in this review were compiled from Google Scholar, PubMed, Science Direct, Web of Science, ChemSpider, PubChem, and library searches from 1968 to 2022. About 300 antibacterial and/or antifungal terpenes were identified during this period. Terpenes with a MIC ≤ 2 µg/mL are mostly amphiphilic and active against Gram-positive bacteria, with a molecular mass ranging from about 150 to 550 g/mol, and a polar surface area around 20 Ų. Carvacrol, celastrol, cuminol, dysoxyhainic acid I, ent-1β,14β-diacetoxy-7α-hydroxykaur-16-en-15-one, ergosterol-5,8-endoperoxide, geranylgeraniol, gossypol, 16α-hydroxy-cleroda-3,13 (14)Z-diene-15,16-olide, 7-hydroxycadalene, 17-hydroxyjolkinolide B, (20R)-3β-hydroxy-24,25,26,27-tetranor-5α cycloartan-23,21-olide, mansonone F, (+)-6,6'-methoxygossypol, polygodial, pristimerin, terpinen-4-ol, and α-terpineol are chemical frameworks that could be candidates for the further development of lead antibacterial or antifungal drugs.
Collapse
Affiliation(s)
- Christophe Wiart
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Geethanjali Kathirvalu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Veeranoot Nissapatorn
- Research Excellence Centre for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh
| | - Alok K Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | | | - Nor Azizun Rusdi
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology & Conservation, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
7
|
Adiguna SP, Panggabean JA, Swasono RT, Rahmawati SI, Izzati F, Bayu A, Putra MY, Formisano C, Giuseppina C. Evaluations of Andrographolide-Rich Fractions of Andrographis paniculata with Enhanced Potential Antioxidant, Anticancer, Antihypertensive, and Anti-Inflammatory Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061220. [PMID: 36986909 PMCID: PMC10052505 DOI: 10.3390/plants12061220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 06/01/2023]
Abstract
Andrographis paniculata is widely used as a traditional medicine in Asian countries. It has been classified as a safe and non-toxic medicine by traditional Chinese medicine. The investigation of the biological activities of A. paniculata is still focused on the crude extract and isolation of its main active compound, andrographolide, and its derivatives. However, the use of andrographolide alone has been shown to exacerbate unwanted effects. This highlights the importance of developing a fraction of A. paniculata with enhanced efficacy as an herbal-based medicine. In this study, the extraction and fractionation of A. paniculata, followed by quantitative analysis using high-performance liquid chromatography coupled with a DAD detector, were established to quantify the andrographolide and its derivative in each fraction. Biological activities, such as antioxidant, anticancer, antihypertensive, and anti-inflammatory activities, were evaluated to study their correlations with the quantification of active substances of A. paniculata extract and its fractions. The 50% methanolic fraction of A. paniculata exhibited the best cytotoxic activities against CACO-2 cells, as well as the best anti-inflammatory and antihypertensive activities compared to other extracts. The 50% methanolic fraction also displayed the highest quantification of its main active compound, andrographolide, and its derivatives, 14-deoxy-11,12-didehydroandrographolide, neoandrographolide, and andrograpanin, among others.
Collapse
Affiliation(s)
- Sya’ban Putra Adiguna
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia; (S.P.A.); (J.A.P.); (R.T.S.)
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Jonathan Ardhianto Panggabean
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia; (S.P.A.); (J.A.P.); (R.T.S.)
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Respati Tri Swasono
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia; (S.P.A.); (J.A.P.); (R.T.S.)
| | - Siti Irma Rahmawati
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Fauzia Izzati
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Asep Bayu
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia; (F.I.); (A.B.)
| | - Carmen Formisano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Chianese Giuseppina
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| |
Collapse
|
8
|
Kumar G, Thapa S, Tali JA, Singh D, Sharma BK, Panda KN, Singh SK, Shankar R. Site-Selective Synthesis of C-17 Ester Derivatives of Natural Andrographolide for Evaluation as a Potential Anticancer Agent. ACS OMEGA 2023; 8:6099-6123. [PMID: 36816646 PMCID: PMC9933479 DOI: 10.1021/acsomega.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
A library of 57 compounds of natural andrographolide was designed, synthesized, and screened for in vitro studies against four human cancer cell lines: A594, PC-3, MCF-7, and HCT-116. Most of the synthesized compounds displayed better cytotoxic profile against all tested cells compared to the parent andrographolide (1). The tested semisynthetic derivatives of andrographolide were found to be more sensitive toward lung carcinoma (A594) and prostate carcinoma (PC-3) cell lines. Among the synthesized compounds, the C-17 p-methoxy phenyl ester analog 8s inhibited cell proliferation effectively in A549 (IC50: 6.6 μM) and PC-3 (IC50: 5.9 μM) cell variants, and compound 9s exhibited the most potent activity against the A594 cell line, with an IC50 value of 3.5 μM. Further anticancer mechanistic investigation demonstrated that compound 9s displayed nuclear morphological changes and increased reactive oxygen species (ROS) with disturbed mitochondrial membrane potential (MMP) that can lead to apoptosis. To know the exact structure confirmation of intermediate compounds 4 and 5, single X-ray crystallography was performed, which supported the complete reaction design of this work.
Collapse
Affiliation(s)
- Gulshan Kumar
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Sonia Thapa
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Javeed Ahmad Tali
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Davinder Singh
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bhupesh Kumar Sharma
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Kamakshya Nath Panda
- Department
of Chemistry, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand247667, India
| | - Shashank K. Singh
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Ravi Shankar
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
9
|
Luthfianti H, Waresindo WX, Edikresnha D, Chahyadi A, Suciati T, Noor FA, Khairurrijal K. Physicochemical Characteristics and Antibacterial Activities of Freeze-Thawed Polyvinyl Alcohol/Andrographolide Hydrogels. ACS OMEGA 2023; 8:2915-2930. [PMID: 36713706 PMCID: PMC9878633 DOI: 10.1021/acsomega.2c05110] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/23/2022] [Indexed: 06/18/2023]
Abstract
Andrographolide (AG) is one of the compounds in Andrographis paniculata, which has a high antibacterial activity. This paper reports the freeze-thaw method's use to synthesize polyvinyl alcohol (PVA) hydrogels loaded with AG and its characterization. From the morphological examination, the porosity of the PVA/AG hydrogel was found to increase with the increasing AG concentration. The swelling degree test revealed that the hydrogels' maximum swelling degrees were generally greater than 100%. The composite hydrogel with the highest fraction of andrographolide (PAG-4) showed greater weight loss than the hydrogel without AG (PAG-0). The molecular interaction between PVA and AG resulted in the narrowing of the band attributed to the O-H and C=O stretching bonds and the emergence of an amorphous domain in the composite hydrogels. The loading of AG disrupted the formation of hydroxyl groups in PVA and interrupted the cross-linking between PVA chains, which lead to the decrease of the compression strength and the crystallinity increased with increasing AG. The antibacterial activity of the composite hydrogel increased with increasing AG. The PAG-4 hydrogel had the highest antibacterial activity of 37.9 ± 4.6b %. Therefore, the PVA/AG hydrogel has the potential to be used as an antibacterial device.
Collapse
Affiliation(s)
- Halida
Rahmi Luthfianti
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
| | - William Xaveriano Waresindo
- Doctoral
Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
| | - Dhewa Edikresnha
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
- Bioscience
and Biotechnology Research Center, University
Center of Excellence for Nutraceuticals, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, Jawa Barat 40132, Indonesia
| | - Agus Chahyadi
- Bioscience
and Biotechnology Research Center, University
Center of Excellence for Nutraceuticals, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, Jawa Barat 40132, Indonesia
| | - Tri Suciati
- Department
of Pharmaceutics, School of Pharmacy, Institut
Teknologi Bandung, Jalan Ganesha 10, Bandung, Jawa Barat 40132, Indonesia
| | - Fatimah Arofiati Noor
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
| | - Khairurrijal Khairurrijal
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha, 10, Bandung 40132, Jawa Barat, Indonesia
- Bioscience
and Biotechnology Research Center, University
Center of Excellence for Nutraceuticals, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung, Jawa Barat 40132, Indonesia
- Department
of Physics, Faculty of Science, Institut
Teknologi Sumatera, Jalan
Terusan Ryacudu, Lampung Selatan 35365, Indonesia
| |
Collapse
|
10
|
Discovery of dehydroandrographolide derivatives with C19 hindered ether as potent anti-ZIKV agents with inhibitory activities to MTase of ZIKV NS5. Eur J Med Chem 2022; 243:114710. [DOI: 10.1016/j.ejmech.2022.114710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022]
|
11
|
Jahja EJ, Yuliana R, Simanjuntak WT, Fitriya N, Rahmawati A, Yulinah E. Potency of Origanum vulgare and Andrographis paniculata extracts on growth performance in poultry. Vet Anim Sci 2022; 19:100274. [PMID: 36505504 PMCID: PMC9731840 DOI: 10.1016/j.vas.2022.100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The objective of this study was to investigate the effect of phytobiotics combination of Origanum vulgare and Andrographis paniculata water extracts (FOA) mixed into the feed of broiler and specific-pathogen-free chickens as an alternative to Antibiotics Growth Promoter (AGP). Performance, intestinal bacteria characteristic, and oocysts of Eimeria spp. in feces were measured and compared with the AGP-added group. The first experiment in broiler chickens compared FOA, Zinc Bacitracin (ZB, as an AGP group), and negative control. On day 28, FOA group and ZB group showed significantly higher body weight than the control group (P < 0.05). The FCR of ZB group was better than FOA group. However, FOA group displayed better microbiota profile than ZB group and negative control, with more Lactobacillus spp. and Bacillus spp., and less Escherichia coli and Salmonella spp. isolated from intestines. The second experiment in specific-pathogen-free chickens showed the anticoccidial effect of FOA addition to reduce the number of oocysts per gram (OPG) from live coccidia vaccine. FOA group and Amprolium group showed OPG reduction (82.53% and 92.02%, respectively) after 7 days of treatment. In conclusion, the combination of Origanum vulgare and Andrographis paniculata extract can function as an AGP replacement in feed.
Collapse
Affiliation(s)
- Elvina J. Jahja
- Animal Health Research & Development, Medion Farma Jaya, Jalan Raya Batujajar 29, Bandung, West Java 40552, Indonesia,Corresponding author.
| | - Riana Yuliana
- Animal Health Research & Development, Medion Farma Jaya, Jalan Raya Batujajar 29, Bandung, West Java 40552, Indonesia
| | - Welinda Turianna Simanjuntak
- Animal Health Research & Development, Medion Farma Jaya, Jalan Raya Batujajar 29, Bandung, West Java 40552, Indonesia
| | - Noer Fitriya
- Animal Health Research & Development, Medion Farma Jaya, Jalan Raya Batujajar 29, Bandung, West Java 40552, Indonesia
| | - Anita Rahmawati
- Animal Health Research & Development, Medion Farma Jaya, Jalan Raya Batujajar 29, Bandung, West Java 40552, Indonesia
| | - Elin Yulinah
- Department of Pharmacology and Clinical Pharmacy, Bandung Institute of Technology (ITB), Indonesia
| |
Collapse
|
12
|
Luo R, Fan C, Jiang G, Hu F, Wang L, Guo Q, Zou M, Wang Y, Wang T, Sun Y, Peng X. Andrographolide restored production performances and serum biochemical indexes and attenuated organs damage in Mycoplasma gallisepticum-infected broilers. Br Poult Sci 2022; 64:164-175. [PMID: 36222587 DOI: 10.1080/00071668.2022.2128987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. This study aimed to study the preventive and therapeutic effects of andrographolide (Andro) during Mycoplasma gallisepticum HS strain (MG) infection in ArborAcres (AA) broilers.2. The minimum inhibitory concentration (MIC) of Andro against MG was measured. Broiler body weight, feed efficiency, morbidity, cure rate and mortality were recorded during the experiment. Air sac lesion scores and immune organ index were calculated. Expression of pMGA1.2 in lung tissue and serum biochemical indices were examined. Histopathological examinations of immune organs, liver, trachea and lung tissue were conducted by Haematoxylin and Eosin stain.3. MIC was 3.75 μg/mL and Andro significantly inhibited the expression of pMGA1.2 (P ≤ 0.05). Compared with control MG-infected group, Andro low-dose and high-dose prevention reduced the morbidity of chronic respiratory disease in 40.00% and 50.00%, respectively. Mortality of C, D and E group was 16.67%, 10.00% and 6.67%, respectively. Cure rate of E, F, G and H group was 92.00%, 92.86%, 93.33% and 100.0%, respectively. Compared with control MG-infected group, Andro treatment significantly increased average weight gain (AWG), relative weight gain rate (RWG) and feed conversion rate (FCR) at 18 to 24 days (P ≤ 0.05). Compared with control group, Andro alone treatment significantly increased AWG in broilers (P ≤ 0.05).4. Compared with control MG-infected group, Andro significantly attenuated MG-induced air sac lesion, immune organs, liver, trachea and lung damage in broilers. Andro alone treatment did not induce abnormal morphological changes in these organs in healthy broilers. Serum biochemical analysis results showed, comparing with control MG-infected group, Andro significantly decreased the content of total protein, albumin, globulin, alanine aminotransferase, aspartate aminotransferase, total bilirubin, urea, creatinine, uric acid, total cholesterol, and increased the albumin/globulin ratio and content of alkaline phosphatase, apolipoprotein B and apolipoprotein A-I in a dose-dependent manner (P ≤ 0.05).5. Andro could act as a potential agent against MG infection in broilers.
Collapse
Affiliation(s)
- R Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - C Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - G Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - F Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - L Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Q Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - M Zou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Y Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - T Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Y Sun
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - X Peng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Luo R, Wang Y, Guo Q, Fan C, Jiang G, Wang L, Zou M, Wang T, Sun Y, Peng X. Andrographolide attenuates Mycoplasma gallisepticum-induced inflammation and apoptosis by the JAK/PI3K/AKT signal pathway in the chicken lungs and primary alveolar type II epithelial cells. Int Immunopharmacol 2022; 109:108819. [DOI: 10.1016/j.intimp.2022.108819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/19/2022]
|
14
|
Shanmugarajan D, David C. Estrogen receptor potentially stable conformations from molecular dynamics as a structure-based pharmacophore model for mapping, screening, and identifying ligands-a new paradigm shift in pharmacophore screening. J Biomol Struct Dyn 2022:1-10. [PMID: 35543232 DOI: 10.1080/07391102.2022.2074543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Despite rigorous research on breast cancer has increased in recent decades, only few drugs are in practice to combat against the disease. Due to excessive usage, these drugs attain resistance is an avertable phenomenon resulting from inadequate treatment. A novel, and real-time approaches are expected to overcome to find the solution for the drug resistance. The molecular dynamics based multi-conformational sampling technique via computer-aided drug-designing approach, may be a promising route to identify the lead candidates from real-time generated frames. The estrogenic receptor, being one of the most widely targeted receptors for various breast cancer drugs namely, tamoxifen, raloxifene and GW5 (tamoxifen-resistance inhibitor) was used for simulating the molecular dynamics to obtain various real time frames. The energetically stable frames were funnelled based on Gibbs free binding energy, interaction energy and active site interaction to generate pharmacophores model for virtual screening of compounds. Generated pharmacophores are validated by receiver operating characteristic area under curve greater than 0.8. Further, screening of compounds with validated structure-based pharmacophore model of different estrogen bound drug complex conformations and binding orientations are complement for tamoxifen and tamoxifen-resistance inhibitor frames. Moreover, the best mapped compounds were docked and probed for ADMET, TopKat® and Lipinski's rule of five is more favourable for compound Andrographidine F sourced from medicinal herbal plant Andrographis paniculata. Hence, this compound had to be further analysed in in-vitro and in-vivo to prove the same.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhivya Shanmugarajan
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, India
| | - Charles David
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, India
| |
Collapse
|
15
|
Heliawati L, Lestari S, Hasanah U, Ajiati D, Kurnia D. Phytochemical Profile of Antibacterial Agents from Red Betel Leaf (Piper crocatum Ruiz and Pav) against Bacteria in Dental Caries. Molecules 2022; 27:molecules27092861. [PMID: 35566225 PMCID: PMC9101570 DOI: 10.3390/molecules27092861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 12/23/2022] Open
Abstract
Based on data from The Global Burden of Disease Study in 2016, dental and oral health problems, especially dental caries, are a disease experienced by almost half of the world’s population (3.58 billion people). One of the main causes of dental caries is the pathogenesis of Streptococcus mutans. Prevention can be achieved by controlling S. mutans using an antibacterial agent. The most commonly used antibacterial for the treatment of dental caries is chlorhexidine. However, long-term use of chlorhexidine has been reported to cause resistance and some side effects. Therefore, the discovery of a natural antibacterial agent is an urgent need. A natural antibacterial agent that can be used are herbal medicines derived from medicinal plants. Piper crocatum Ruiz and Pav has the potential to be used as a natural antibacterial agent for treating dental and oral health problems. Several studies reported that the leaves of P. crocatum Ruiz and Pav contain secondary metabolites such as essential oils, flavonoids, alkaloids, terpenoids, tannins, and phenolic compounds that are active against S. mutans. This review summarizes some information about P. crocatum Ruiz and Pav, various isolation methods, bioactivity, S. mutans bacteria that cause dental caries, biofilm formation mechanism, antibacterial properties, and the antibacterial mechanism of secondary metabolites in P. crocatum Ruiz and Pav.
Collapse
Affiliation(s)
- Leny Heliawati
- Study Program of Chemistry, Faculty of Mathematics and Natural Science, Universitas Pakuan, Bogor 16143, Indonesia; (S.L.); (U.H.)
- Correspondence: ; Tel.: +62-8521-615-0330
| | - Seftiana Lestari
- Study Program of Chemistry, Faculty of Mathematics and Natural Science, Universitas Pakuan, Bogor 16143, Indonesia; (S.L.); (U.H.)
| | - Uswatun Hasanah
- Study Program of Chemistry, Faculty of Mathematics and Natural Science, Universitas Pakuan, Bogor 16143, Indonesia; (S.L.); (U.H.)
| | - Dwipa Ajiati
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.K.)
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.K.)
| |
Collapse
|
16
|
Wang X, Ma Q, Niu X, Liu Z, Kang X, Mao Y, Li N, Wang G. Inhibitory Effect of Andrographis paniculata Lactone on Staphylococcus aureus α-Hemolysin. Front Pharmacol 2022; 13:891943. [PMID: 35571108 PMCID: PMC9091351 DOI: 10.3389/fphar.2022.891943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
We investigated the effect of andrographolide (AP) on the hemolytic capacity of Staphylococcus aureus (S. aureus) isolated from our region. AP is a labdane diterpenoid isolated from the stem and leaves of Andrographis paniculata. The hla gene from 234 S. aureus strains and the quality control standard strain ATCC29213 in dairy cows in some areas of Ningxia was analyzed. Evolutionary analysis, homology modeling, and functional enrichment annotation of α-hemolysin Hla detected from our region were performed through bioinformatics. The hemolytic ability of S. aureus isolates from the region was examined using the hemolysis test, and the effect of AP on S. aureus was quantified. Moreover, the effect of AP on the transcript levels of hla and genes highly related to hla (i.e., clfA and fnbA) was examined through fluorescence quantitative PCR. The mode of action of AP on the detected Hla was analyzed through molecular docking and dynamic simulation. The results showed that S. aureus in our region has a high rate of hla carriage. The hemolytic activity of strains NM98 and XF10 was significant, and ATCC29213 also exhibited some hemolytic activity. AP could inhibit the expression of Hla and its related proteins by downregulating hla, clfA, and fnbA transcript levels, which in turn attenuated the S. aureus hemolytic activity. Meanwhile, the AP molecule can form three hydrogen bonds with residues ASN105, SER106, and THR155 of Hla protein; bind with PRO103 through alkyl intermolecular forces; and form carbon hydrogen bonds with LYS154, reflecting that the AP molecule has a comparatively ideal theoretical binding activity with Hla protein. Among them, PRO103 and LYS154 are highly conserved in Hla protein molecules and play pivotal roles in the biological functions of Hla, and their binding may affect these functions. Their binding may also prevent the conformational transition of Hla from a monomer to an oligomer, thus inhibiting Hla hemolytic activity. This study offers a molecular basis for use of AP as an antivirulence drug and new ideas for developing novel drugs against S. aureus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guiqin Wang
- Veterinary Pharmacology Lab, School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
17
|
Chaichana W, Insee K, Chanachai S, Benjakul S, Aupaphong V, Naruphontjirakul P, Panpisut P. Physical/mechanical and antibacterial properties of orthodontic adhesives containing Sr-bioactive glass nanoparticles, calcium phosphate, and andrographolide. Sci Rep 2022; 12:6635. [PMID: 35459791 PMCID: PMC9033772 DOI: 10.1038/s41598-022-10654-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2022] Open
Abstract
White spot lesions around orthodontic brackets are the major complication during fixed orthodontic treatment. This study prepared orthodontic adhesives for promoting mineral precipitation and reducing bacterial growth. Adhesives with added calcium phosphate monohydrate/Sr-bioactive glass nanoparticles (Sr/CaP) and andrographolide were prepared. The physical/mechanical and antibacterial properties of the adhesives were tested. The additives reduced the monomer conversion of the materials (62 to 47%). The addition of Sr/CaP and andrographolide increased the water sorption (from 23 to 46 μg/mm3) and water solubility (from 0.2 to 5.9 μg/mm3) but reduced the biaxial flexural strength (from 193 to 119 MPa) of the adhesives. The enamel bond strengths of the experimental adhesives (19–34 MPa) were comparable to that of the commercial material (p > 0.05). The Sr/CaP fillers promoted Ca, Sr, and P ion release and the precipitation of calcium phosphate at the debonded interface. An increase in the Sr/CaP concentration enhanced the inhibition of S. mutans by 18%, while the effect of andrographolide was not detected. The abilities of the adhesives to promote ion release, calcium phosphate precipitation, and the growth inhibition of cariogenic bacteria were expected to reduce the occurrence of white spot lesions. The additives reduced the physical/mechanical properties of the materials, but the corresponding values were within the acceptable range.
Collapse
Affiliation(s)
- Wirinrat Chaichana
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani, 12120, Thailand
| | - Kanlaya Insee
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani, 12120, Thailand
| | - Supachai Chanachai
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani, 12120, Thailand
| | - Sutiwa Benjakul
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani, 12120, Thailand
| | - Visakha Aupaphong
- Division of Oral Biology, Faculty of Dentistry, Thammasat University, Pathum Thani, 12120, Thailand
| | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut 's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Piyaphong Panpisut
- Division of Restorative Dentistry, Thammasat University, Pathum Thani, 12120, Thailand. .,Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
18
|
Saha P, Rahman FI, Hussain F, Rahman SMA, Rahman MM. Antimicrobial Diterpenes: Recent Development From Natural Sources. Front Pharmacol 2022; 12:820312. [PMID: 35295739 PMCID: PMC8918777 DOI: 10.3389/fphar.2021.820312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial resistance has been posing an alarming threat to the treatment of infectious diseases over the years. Ineffectiveness of the currently available synthetic and semisynthetic antibiotics has led the researchers to discover new molecules with potent antimicrobial activities. To overcome the emerging antimicrobial resistance, new antimicrobial compounds from natural sources might be appropriate. Secondary metabolites from natural sources could be prospective candidates in the development of new antimicrobial agents with high efficacy and less side effects. Among the natural secondary metabolites, diterpenoids are of crucial importance because of their broad spectrum of antimicrobial activity, which has put it in the center of research interest in recent years. The present work is aimed at reviewing recent literature regarding different classes of natural diterpenes and diterpenoids with significant antibacterial, antifungal, antiviral, and antiprotozoal activities along with their reported structure-activity relationships. This review has been carried out with a focus on relevant literature published in the last 5 years following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 229 diterpenoids from various sources like plants, marine species, and fungi are summarized in this systematic review, including their chemical structures, classification, and significant antimicrobial activities together with their reported mechanism of action and structure-activity relationships. The outcomes herein would provide researchers with new insights to find new credible leads and to work on their synthetic and semisynthetic derivatives to develop new antimicrobial agents.
Collapse
Affiliation(s)
- Poushali Saha
- Faculty of Pharmacy, Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| | - Fahad Imtiaz Rahman
- Faculty of Pharmacy, Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| | - Fahad Hussain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - S. M. Abdur Rahman
- Faculty of Pharmacy, Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka, Bangladesh
| | - M. Mukhlesur Rahman
- Medicines Research Group, School of Health, Sports and Bioscience, University of East London, London, United Kingdom
| |
Collapse
|
19
|
Bouyahya A, Chamkhi I, Balahbib A, Rebezov M, Shariati MA, Wilairatana P, Mubarak MS, Benali T, El Omari N. Mechanisms, Anti-Quorum-Sensing Actions, and Clinical Trials of Medicinal Plant Bioactive Compounds against Bacteria: A Comprehensive Review. Molecules 2022; 27:1484. [PMID: 35268585 PMCID: PMC8911727 DOI: 10.3390/molecules27051484] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Bacterial strains have developed an ability to resist antibiotics via numerous mechanisms. Recently, researchers conducted several studies to identify natural bioactive compounds, particularly secondary metabolites of medicinal plants, such as terpenoids, flavonoids, and phenolic acids, as antibacterial agents. These molecules exert several mechanisms of action at different structural, cellular, and molecular levels, which could make them candidates or lead compounds for developing natural antibiotics. Research findings revealed that these bioactive compounds can inhibit the synthesis of DNA and proteins, block oxidative respiration, increase membrane permeability, and decrease membrane integrity. Furthermore, recent investigations showed that some bacterial strains resist these different mechanisms of antibacterial agents. Researchers demonstrated that this resistance to antibiotics is linked to a microbial cell-to-cell communication system called quorum sensing (QS). Consequently, inhibition of QS or quorum quenching is a promising strategy to not only overcome the resistance problems but also to treat infections. In this respect, various bioactive molecules, including terpenoids, flavonoids, and phenolic acids, exhibit numerous anti-QS mechanisms via the inhibition of auto-inducer releases, sequestration of QS-mediated molecules, and deregulation of QS gene expression. However, clinical applications of these molecules have not been fully covered, which limits their use against infectious diseases. Accordingly, the aim of the present work was to discuss the role of the QS system in bacteria and its involvement in virulence and resistance to antibiotics. In addition, the present review summarizes the most recent and relevant literature pertaining to the anti-quorum sensing of secondary metabolites and its relationship to antibacterial activity.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de Rabat, Institut Scientifique de Rabat, Rabat 10106, Morocco;
- Agrobiosciences Program, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco;
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., 109316 Moscow, Russia;
- Biophotonics Center, Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia;
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi 46030, Morocco;
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V. University in Rabat, B.P. 6203, Rabat 10000, Morocco;
| |
Collapse
|
20
|
Agrawal P, Nair MS. An insight into the pharmacological and analytical potential of Andrographolide. Fundam Clin Pharmacol 2022; 36:586-600. [PMID: 35001431 DOI: 10.1111/fcp.12757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022]
Abstract
Andrographis paniculata is an annual medicinal herb from the family Acanthaceae. Andrographolide is generally considered an essential bioactive component of plant A. paniculata. Since ancient times, it has been widely recognized for its therapeutic qualities and has attracted the scientific and medical communities' attention. This review summarizes the molecular, clinical, and in vitro research of compound andrographolide and its mechanism of action. Andrographolide, when combined with other enhancing agents, offers a wide variety of health benefits. The therapeutic potential of andrographolide has been exemplified and exhibited by directly regulating genes and indirectly interacting with small molecules and different enzymes. This review compiles and consolidates the pharmacological action of andrographolide and its analogs and deciphers the gaps that have hindered its use in medicinal research.
Collapse
Affiliation(s)
- Pallavi Agrawal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| |
Collapse
|
21
|
Zou L, Ding W, Huang Q, Yang X, Li J, Huang T, Li Z, Lin S, Feng J. Andrographolide/ Phospholipid/ Cyclodextrin complex-loaded Nanoemulsion: Preparation, Optimization, <i>in vitro</i> and <i>in vivo </i>Evaluation. Biol Pharm Bull 2022; 45:1106-1115. [DOI: 10.1248/bpb.b22-00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Linghui Zou
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Wenya Ding
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Qiuyan Huang
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Xu Yang
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Jilang Li
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Tianyan Huang
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Zeyu Li
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Si Lin
- College of Pharmacy, Guangxi University of Chinese Medicine
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine
| |
Collapse
|
22
|
Lu J, Gu L, Li Q, Wu N, Li H, Zhang X. Andrographolide emeliorates maltol aluminium-induced neurotoxicity via regulating p62-mediated Keap1-Nrf2 pathways in PC12 cells. PHARMACEUTICAL BIOLOGY 2021; 59:232-241. [PMID: 33632062 PMCID: PMC7919883 DOI: 10.1080/13880209.2021.1883678] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 06/08/2023]
Abstract
CONTEXT Andrographolide (Andro) has a neuroprotective effect and a potential for treating Alzheimer's disease (AD), but the mechanism has not been elucidated. OBJECTIVE The efficacy of Andro on p62-mediated Kelch-like ECH-associated protein 1(Keap1)-Nuclear factor E2 related factor 2 (Nrf2) pathways in the aluminium maltolate (Al(mal)3)-induced neurotoxicity in PC12 cell was explored. MATERIALS AND METHODS PC12 cells were induced by Al(mal)3 (700 μM) to establish a neurotoxicity model. Following Andro (1.25, 2.5, 5, 10, 20, 40 μM) co-treatment with Al(Mal)3, cell viability was detected with MTT, protein expression levels of β-amyloid precursor protein (APP), β-site APP cleaving enzyme 1 (BACE1), Tau, Nrf2, Keap1, p62 and LC3 were measured via western blotting or immunofluorescence analyses. Nrf2, Keap1, p62 and LC3 mRNA, were detected by reverse transcription-quantitative PCR. RESULTS Compared with the 700 μM Al(mal)3 group, Andro (5, 10 μM) significantly increased Al(mal)3-induced cell viability from 67.4% to 91.9% and 91.2%, respectively, and decreased the expression of APP, BACE1 and Keap1 proteins and the ratio of P-Tau to Tau (from 2.75- fold to 1.94- and 1.70-fold, 2.12-fold to 1.77- and 1.56-fold, 0.68-fold to 0.51- and 0.55-fold, 1.45-fold to 0.82- and 0.91-fold, respectively), increased the protein expression of Nrf2, p62 and the ratio of LC3-II/LC3-I (from 0.67-fold to 0.93- and 0.94-fold, 0.64-fold to 0.88- and 0.87-fold, 0.51-fold to 0.63- and 0.79-fold, respectively), as well as the mRNA expression of Nrf2, p62 and LC3 (from 0.48-fold to 0.92-fold, 0.49-fold to 0.92-fold, 0.25-fold to 0.38-fold). Furthermore, Nrf2 and p62 nuclear translocation were increased and keap1 in the cytoplasm was decreased in the presence of Andro. Silencing p62 or Nrf2 can significantly reduce the protein and mRNA expression of Nrf2 and p62 under co-treatment with Andro and Al(mal)3. DISCUSSION AND CONCLUSIONS Our results suggested that Andro could be a promising therapeutic lead against Al-induced neurotoxicity by regulating p62-mediated keap1-Nrf2 pathways.
Collapse
Affiliation(s)
- Jiaqi Lu
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Lili Gu
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Qin Li
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Ningzi Wu
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Hongxing Li
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| | - Xinyue Zhang
- Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou medical college, Hangzhou, P.R. China
| |
Collapse
|
23
|
Shah MA, Rasul A, Yousaf R, Haris M, Faheem HI, Hamid A, Khan H, Khan AH, Aschner M, Batiha GE. Combination of natural antivirals and potent immune invigorators: A natural remedy to combat COVID-19. Phytother Res 2021; 35:6530-6551. [PMID: 34396612 PMCID: PMC8441799 DOI: 10.1002/ptr.7228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/14/2021] [Accepted: 04/10/2021] [Indexed: 12/23/2022]
Abstract
The flare-up in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged in December 2019 in Wuhan, China, and spread expeditiously worldwide has become a health challenge globally. The rapid transmission, absence of anti-SARS-CoV-2 drugs, and inexistence of vaccine are further exacerbating the situation. Several drugs, including chloroquine, remdesivir, and favipiravir, are presently undergoing clinical investigation to further scrutinize their effectiveness and validity in the management of COVID-19. Natural products (NPs) in general, and plants constituents specifically, are unique sources for various effective and novel drugs. Immunostimulants, including vitamins, iron, zinc, chrysin, caffeic acid, and gallic acid, act as potent weapons against COVID-19 by reinvigorating the defensive mechanisms of the immune system. Immunity boosters prevent COVID-19 by stimulating the proliferation of T-cells, B-cells, and neutrophils, neutralizing the free radicals, inhibiting the immunosuppressive agents, and promoting cytokine production. Presently, antiviral therapy includes several lead compounds, such as baicalin, glycyrrhizin, theaflavin, and herbacetin, all of which seem to act against SARS-CoV-2 via particular targets, such as blocking virus entry, attachment to host cell receptor, inhibiting viral replication, and assembly and release.
Collapse
Affiliation(s)
- Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Rimsha Yousaf
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Haris
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Hafiza Ishmal Faheem
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Ayesha Hamid
- Department of Pharmacognosy, Faculty of Pharmaceutical SciencesGovernment College UniversityFaisalabadPakistan
| | - Haroon Khan
- Department of PharmacyAbdul Wali Khan UniversityMardanPakistan
| | - Abdul Haleem Khan
- Department of PharmacyForman Christian College (A Chartered University)LahorePakistan
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourAl‐BeheiraEgypt
| |
Collapse
|
24
|
Zeng B, Wei A, Zhou Q, Yuan M, Lei K, Liu Y, Song J, Guo L, Ye Q. Andrographolide: A review of its pharmacology, pharmacokinetics, toxicity and clinical trials and pharmaceutical researches. Phytother Res 2021; 36:336-364. [PMID: 34818697 DOI: 10.1002/ptr.7324] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
Andrographis paniculata (Burm. f.) Wall. ex Nees, a renowned herb medicine in China, is broadly utilized in traditional Chinese medicine (TCM) for the treatment of cold and fever, sore throat, sore tongue, snake bite with its excellent functions of clearing heat and toxin, cooling blood and detumescence from times immemorial. Modern pharmacological research corroborates that andrographolide, the major ingredient in this traditional herb, is the fundamental material basis for its efficacy. As the main component of Andrographis paniculata (Burm. f.) Wall. ex Nees, andrographolide reveals numerous therapeutic actions, such as antiinflammatory, antioxidant, anticancer, antimicrobial, antihyperglycemic and so on. However, there are scarcely systematic summaries on the specific mechanism of disease treatment and pharmacokinetics. Moreover, it is also found that it possesses easily ignored security issues in clinical application, such as nephrotoxicity and reproductive toxicity. Thereby it should be kept a lookout over in clinical. Besides, the relationship between the efficacy and security issues of andrographolide should be investigated and evaluated scientifically. In this review, special emphasis is given to andrographolide, a multifunctional natural terpenoids, including its pharmacology, pharmacokinetics, toxicity and pharmaceutical researches. A brief overview of its clinical trials is also presented. This review intends to systematically and comprehensively summarize the current researches of andrographolide, which is of great significance for the development of andrographolide clinical products. Noteworthy, those un-cracked issues such as specific pharmacological mechanisms, security issues, as well as the bottleneck in clinical transformation, which detailed exploration and excavation are still not to be ignored before achieving integration into clinical practice. In addition, given that current extensive clinical data do not have sufficient rigor and documented details, more high-quality investigations in this field are needed to validate the efficacy and/or safety of many herbal products.
Collapse
Affiliation(s)
- Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Ailing Wei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minghao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kelu Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yushi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiawen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
25
|
Wong SK, Chin KY, Ima-Nirwana S. A review on the molecular basis underlying the protective effects of Andrographis paniculata and andrographolide against myocardial injury. Drug Des Devel Ther 2021; 15:4615-4632. [PMID: 34785890 PMCID: PMC8591231 DOI: 10.2147/dddt.s331027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
Andrographolide is the major compound found in the medicinal plant, Andrographis paniculata (Burm.f.) Nees, which accounts for its medicinal properties. Both the plant extract and compound have been reported to exhibit potential cardiovascular activities. This review summarises related studies describing the biological activities and target mechanisms of A. paniculata and andrographolide in vivo and in vitro. The current evidence unambiguously indicated the protective effects provided by A. paniculata and andrographolide administration against myocardial injury. The intervention ameliorates the symptoms of myocardial injury by interfering with the inductive phase of a) inflammatory response mediated by nuclear factor-kappa B (NF-κB), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) signalling molecules; b) oxidative stress via activation of nuclear factor erythroid 2-related factor (Nrf-2) and reduction of enzymes responsible for generating reactive oxygen and nitrogen species; c) intrinsic and extrinsic mechanisms in apoptosis regulated by upstream insulin-like growth factor-1 receptor (IGF-1R) and peroxisome proliferator-activated receptor-alpha (PPAR-α); d) profibrotic growth factors thus reducing cardiac fibrosis, improving endothelial function and fibrinolytic function. In conclusion, A. paniculata and andrographolide possess therapeutic potential in the management of myocardial injury, which requires further validation in human clinical trials.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, 56000, Malaysia
| |
Collapse
|
26
|
Antiviral Activities of Andrographolide and Its Derivatives: Mechanism of Action and Delivery System. Pharmaceuticals (Basel) 2021; 14:ph14111102. [PMID: 34832884 PMCID: PMC8619093 DOI: 10.3390/ph14111102] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Andrographispaniculata (Burm.f.) Nees has been used as a traditional medicine in Asian countries, especially China, India, Vietnam, Malaysia, and Indonesia. This herbaceous plant extract contains active compounds with multiple biological activities against various diseases, including the flu, colds, fever, diabetes, hypertension, and cancer. Several isolated compounds from A. paniculata, such as andrographolide and its analogs, have attracted much interest for their potential treatment against several virus infections, including SARS-CoV-2. The mechanisms of action in inhibiting viral infections can be categorized into several types, including regulating the viral entry stage, gene replication, and the formation of mature functional proteins. The efficacy of andrographolide as an antiviral candidate was further investigated since the phytoconstituents of A. paniculata exhibit various physicochemical characteristics, including low solubility and low bioavailability. A discussion on the delivery systems of these active compounds could accelerate their development for commercial applications as antiviral drugs. This study critically reviewed the current antiviral development based on andrographolide and its derivative compounds, especially on their mechanism of action as antiviral drugs and drug delivery systems.
Collapse
|
27
|
Agrawal S, Nandeibam J, Sarangthem I. Ultrastructural changes in methicillin-resistant Staphylococcus aureus (MRSA) induced by metabolites of thermophilous fungi Acrophialophora levis. PLoS One 2021; 16:e0258607. [PMID: 34648570 PMCID: PMC8516270 DOI: 10.1371/journal.pone.0258607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/30/2021] [Indexed: 12/02/2022] Open
Abstract
Staphylococcus aureus and Methicillin-resistant S. aureus (MRSA) remains one of the major concerns of healthcare associated and community-onset infections worldwide. The number of cases of treatment failure for infections associated with resistant bacteria is on the rise, due to the decreasing efficacy of current antibiotics. Notably, Acrophialophora levis, a thermophilous fungus species, showed antibacterial activity, namely against S. aureus and clinical MRSA strains. The ethyl acetate extract of culture filtrate was found to display significant activity against S. aureus and MRSA with a minimum inhibitory concentration (MIC) of 1 μg/mL and 4 μg/mL, respectively. Scanning electron micrographs demonstrated drastic changes in the cellular architecture of metabolite treated cells of S. aureus and an MRSA clinical isolate. Cell wall disruption, membrane lysis and probable leakage of cytoplasmic are hallmarks of the antibacterial effect of fungal metabolites against MRSA. The ethyl acetate extract also showed strong antioxidant activity using two different complementary free radicals scavenging methods, DPPH and ABTS with efficiency of 55% and 47% at 1 mg/mL, respectively. The total phenolic and flavonoid content was found to be 50 mg/GAE and 20 mg/CAE, respectively. More than ten metabolites from different classes were identified: phenolic acids, phenylpropanoids, sesquiterpenes, tannins, lignans and flavonoids. In conclusion, the significant antibacterial activity renders this fungal strain as a bioresource for natural compounds an interesting alternative against resistant bacteria.
Collapse
Affiliation(s)
- Shivankar Agrawal
- Indian Council of Medical Research (ICMR), Delhi, India
- Department of Microbiology, Institute of Bioresources and Sustainable Development, A National Institute of Department of Biotechnology, Government of India, Imphal, Manipur, India
- * E-mail: (SA); (IS)
| | - Jusna Nandeibam
- Department of Microbiology, Institute of Bioresources and Sustainable Development, A National Institute of Department of Biotechnology, Government of India, Imphal, Manipur, India
| | - Indira Sarangthem
- Department of Microbiology, Institute of Bioresources and Sustainable Development, A National Institute of Department of Biotechnology, Government of India, Imphal, Manipur, India
- * E-mail: (SA); (IS)
| |
Collapse
|
28
|
Zhang L, Wen B, Bao M, Cheng Y, Mahmood T, Yang W, Chen Q, Lv L, Li L, Yi J, Xie N, Lu C, Tan Y. Andrographolide Sulfonate Is a Promising Treatment to Combat Methicillin-resistant Staphylococcus aureus and Its Biofilms. Front Pharmacol 2021; 12:720685. [PMID: 34603031 PMCID: PMC8481920 DOI: 10.3389/fphar.2021.720685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/29/2021] [Indexed: 01/04/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a drug-resistant pathogen threatening human health and safety. Biofilms are an important cause of its drug resistance and pathogenicity. Inhibition and elimination of biofilms is an important strategy for the treatment of MRSA infection. Andrographolide sulfonate (AS) is an active component of the traditional herbal medicine Andrographis paniculata. This study aims to explore the inhibitory effect and corresponding mechanisms of AS on MRSA and its biofilms. Three doses of AS (6.25, 12.5, and 25 mg/ml) were introduced to MRSA with biofilms. In vitro antibacterial testing and morphological observation were used to confirm the inhibitory effect of AS on MRSA with biofilms. Real-time PCR and metabonomics were used to explore the underlying mechanisms of the effect by studying the expression of biofilm-related genes and endogenous metabolites. AS displayed significant anti-MRSA activity, and its minimum inhibitory concentration was 50 μg/ml. Also, AS inhibited biofilms and improved biofilm permeability. The mechanisms are mediated by the inhibition of the expression of genes, such as quorum sensing system regulatory genes (agrD and sarA), microbial surface components–recognizing adhesion matrix genes (clfA and fnbB), intercellular adhesion genes (icaA, icaD, and PIA), and a gene related to cellular eDNA release (cidA), and the downregulation of five biofilm-related metabolites, including anthranilic acid, D-lactic acid, kynurenine, L-homocitrulline, and sebacic acid. This study provided valuable evidence for the activity of AS against MRSA and its biofilms and extended the methods to combat MRSA infection.
Collapse
Affiliation(s)
- Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Bo Wen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mei Bao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Yungchi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Tariq Mahmood
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Weifeng Yang
- Medical Experimental Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Lang Lv
- Qingfeng Pharmaceutical Co. Ltd., Ganzhou, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianfeng Yi
- Key Laboratory for Research on Active Ingredients in Natural Medicine of Jiangxi Province, Yichun University, Yichun, China
| | - Ning Xie
- Qingfeng Pharmaceutical Co. Ltd., Ganzhou, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Álvarez-Martínez FJ, Barrajón-Catalán E, Herranz-López M, Micol V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 90:153626. [PMID: 34301463 DOI: 10.1016/j.phymed.2021.153626] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Antibiotic-resistant bacteria pose a global health threat. Traditional antibiotics can lose their effectiveness, and the development of novel effective antimicrobials has become a priority in recent years. In this area, plants represent an invaluable source of antimicrobial compounds with vast therapeutic potential. PURPOSE To review the full possible spectrum of plant antimicrobial agents (plant compounds, extracts and essential oils) discovered from 2016 to 2021 and their potential to decrease bacterial resistance. Their activities against bacteria, with special emphasis on multidrug resistant bacteria, mechanisms of action, possible combinations with traditional antibiotics, roles in current medicine and future perspectives are discussed. METHODS Studies focusing on the antimicrobial activity of compounds of plant origin and their mechanism of action against bacteria were identified and summarized, including contributions from January 2016 until January 2021. Articles were extracted from the Medline database using PubMed search engine with relevant keywords and operators. RESULTS The search yielded 11,689 articles from 149 countries, of which 101 articles were included in this review. Reports from 41 phytochemicals belonging to 20 families were included. Reports from plant extracts and essential oils from 39 plant species belonging to 17 families were also included. Polyphenols and terpenes were the most active phytochemicals studied, either alone or as a part of plant extracts or essential oils. Plasma membrane disruption was the most common mechanism of antimicrobial action. Number and position of phenolic hydroxyl groups, double bonds, delocalized electrons and conjugation with sugars in the case of flavonoids seemed to be crucial for antimicrobial capacity. Combinations of phytochemicals with beta-lactam antibiotics were the most studied, and the inhibition of efflux pumps was the most common synergistic mechanism. CONCLUSION In recent years, terpenes, flavones, flavonols and some alkaloids and phenylpropanoids, either isolated or as a part of extracts, have shown promising antimicrobial activity, being membrane disruption their most common mechanism. However, their utilization as appropriate antimicrobials need to be boosted by means of new omics technologies and network pharmacology to find the most effective combinations among them or in combination with antibiotics.
Collapse
Affiliation(s)
- F J Álvarez-Martínez
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - E Barrajón-Catalán
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain.
| | - M Herranz-López
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain
| | - V Micol
- Instituto de Biología Molecular y Celular (IBMC) and Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH), 03202 Elche, Spain; CIBER: CB12/03/30038, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
30
|
Zhang H, Li S, Si Y, Xu H. Andrographolide and its derivatives: Current achievements and future perspectives. Eur J Med Chem 2021; 224:113710. [PMID: 34315039 DOI: 10.1016/j.ejmech.2021.113710] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Natural product andrographolide isolated from the plant Andrographis paniculata shows a plethora of biological activities, including anti-tumor, anti-bacterial, anti-inflammation, anti-virus, anti-fibrosis, anti-obesity, immunomodulatory and hypoglycemic activities. Based on extensive chemical structural modifications, a series of andrographolide derivatives with improved bioavailability and druggability has been developed. Moreover, greater understanding of their mechanisms of action at the molecular and cellular level has been thoroughly investigated. In this review, we give an outlook for the therapeutical potential of andrographolide and its derivatives in diverse diseases and highlighted the drug design, pharmacokinetic and mechanistic studies for the past ten years, together with a brief overview of the pharmacological effects. Notably, we focused to provide a critical enlightenment of the area of andrographolide and its derivatives with the intent of indicating the future perspectives, challenges and limitations. We believe that this review paper will benefit drug discovery where andrographolide was used as a template, shed light on the identification of drug targets for andrographolide and its analogs, as well as increase our knowledge for using them for therapeutic application, including the treatment for various forms of cancers.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Shufeng Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yongsheng Si
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Haiwei Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
31
|
Kumar S, Singh B, Bajpai V. Andrographis paniculata (Burm.f.) Nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114054. [PMID: 33831465 DOI: 10.1016/j.jep.2021.114054] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Andrographis paniculata (Burm.f.) Nees is a medicinal herb of the Asian countries used in many traditional medicinal systems for the treatment of diarrhea, flu, leprosy, leptospirosis, malaria, rabies, upper respiratory infections, sinusitis, syphilis, tuberculosis and HIV/AIDS etc. AIM OF THE STUDY: This review aims to provide the comprehensive, accurate and authentic information on traditional uses, phytochemistry and pharmacological properties of various extracts/fractions as well as phytocostituents of A. paniculata. In addition, this review also aims to provide advance and sensitive analytical methods along with chemical markers used in the standardization of herbal products for quality control (QC)/quality assurance (QA). MATERIALS AND METHODS All relevant publications were considered within the years 1983-2020. The publications were searched from Google Scholar, PubChem, Chemspider, PubMed, Elsevier, Wiley, Web of Science, China Knowledge Resource Integrated databases and ResearchGate using a combination of various relevant keywords. Besides, relevant published books and chapters were also considered those providing an overview of extant secondary literature related to traditional knowledge, phytochemistry, pharmacology and toxicity of the plant. RESULTS AND DISCUSSION In this review, 344 compounds, including, terpenoid lactones, flavonoids, phenolic acids, triterpenes and volatile compounds were summarized out of which more than half of the compounds have no reported pharmacological activities yet. Terpenoid lactones and flavonoids are the major bioactive classes of compounds of A. paniculata which are responsible for pharmacological activities such as anticancer and antioxidant activities, respectively. Biosynthetic pathways and active sites for target proteins of both terpenoid lactones and flavonoids were considered. Analgesic, anticancer, antidiabetic, antifertility, antiinflammatory, antimalarial, antimicrobial, antioxidant, antipyretic, antiviral, antiretroviral, antivenom, cardioprotective, hepatoprotective, immunomodulatory and neuroprotective activities have been also reported. Andrographolide is a major characteristic active principle and responsible for most of the pharmacological activities. Therefore, andrographolide has been selected as a marker for the standardization of raw and marketed herbal products by TLC, HPTLC, HPLC, GC-MS, HPLC-MS and HPLC-MS/MS methods for QC/QA. CONCLUSIONS Conclusive evidence showed that the pharmacological activities reported in crude extracts and chemical markers are supporting and provides confidence in the traditional use of A. paniculata as a herbal medicine. The andrographolide could be used as a chemical marker for the QC/QA of raw and A. paniculata derived herbal products. Lactone ring in terpenoid lactone is an active site for targeted proteins. More efforts should be focused on the identification of the chemical markers from A. paniculata to provide a practical basis for QC/QA. Several aspects such as the mechanism of therapeutic potential, molecular docking technology and multi-target network pharmacology are very important for drug discovery and needed more investigation and should be considered. This compilation may be helpful in further study and QC/QA.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry, Ma. Kanshiram Government Degree College, Ninowa, Farrukhabad, 209602, India(1).
| | - Bikarma Singh
- Botanic Garden Division, CSIR- National Botanical Research Institute (NBRI), Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Vikas Bajpai
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.
| |
Collapse
|
32
|
Swolana D, Kępa M, Kabała-Dzik A, Dzik R, Wojtyczka RD. Sensitivity of Staphylococcal Biofilm to Selected Compounds of Plant Origin. Antibiotics (Basel) 2021; 10:607. [PMID: 34065384 PMCID: PMC8161300 DOI: 10.3390/antibiotics10050607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus epidermidis is a bacterium that belongs to the human microbiota. It is most plentiful on the skin, in the respiratory system, and in the human digestive tract. Moreover, it is the most frequently isolated microorganism belonging to the group of Coagulase Negative Staphylococci (CoNS). In recent years, it has been recognized as an important etiological factor of mainly nosocomial infections and infections related to the cardiovascular system. On the other hand, Staphylococcus aureus, responsible for in-hospital and out-of-hospital infections, is posing an increasing problem for clinicians due to its growing resistance to antibiotics. Biofilm produced by both of these staphylococcal species in the course of infection significantly impedes therapy. The ability to produce biofilm hinders the activity of chemotherapeutic agents-the only currently available antimicrobial therapy. This also causes the observed significant increase in bacterial resistance. For this reason, we are constantly looking for new substances that can neutralize microbial cells. In the present review, 58 substances of plant origin with antimicrobial activity against staphylococcal biofilm were replaced. Variable antimicrobial efficacy of the substances was demonstrated, depending on the age of the biofilm. An increase in the activity of the compounds occurred in proportion to increasing their concentration. Appropriate use of the potential of plant-derived compounds as an alternative to antibiotics may represent an important direction of change in the support of antimicrobial therapy.
Collapse
Affiliation(s)
- Denis Swolana
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.S.); (M.K.)
| | - Małgorzata Kępa
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.S.); (M.K.)
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Ostrogórska 30, 41-200 Sosnowiec, Poland;
| | - Radosław Dzik
- Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, ul. Roosevelta 40, 41-800 Zabrze, Poland;
| | - Robert D. Wojtyczka
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.S.); (M.K.)
| |
Collapse
|
33
|
Hossain S, Urbi Z, Karuniawati H, Mohiuddin RB, Moh Qrimida A, Allzrag AMM, Ming LC, Pagano E, Capasso R. Andrographis paniculata (Burm. f.) Wall. ex Nees: An Updated Review of Phytochemistry, Antimicrobial Pharmacology, and Clinical Safety and Efficacy. Life (Basel) 2021; 11:348. [PMID: 33923529 PMCID: PMC8072717 DOI: 10.3390/life11040348] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious disease (ID) is one of the top-most serious threats to human health globally, further aggravated by antimicrobial resistance and lack of novel immunization options. Andrographis paniculata (Burm. f.) Wall. ex Nees and its metabolites have been long used to treat IDs. Andrographolide, derived from A. paniculata, can inhibit invasive microbes virulence factors and regulate the host immunity. Controlled clinical trials revealed that A. paniculata treatment is safe and efficacious for acute respiratory tract infections like common cold and sinusitis. Hence, A. paniculata, mainly andrographolide, could be considered as an excellent candidate for antimicrobial drug development. Considering the importance, medicinal values, and significant role as antimicrobial agents, this study critically evaluated the antimicrobial therapeutic potency of A. paniculata and its metabolites, focusing on the mechanism of action in inhibiting invasive microbes and biofilm formation. A critical evaluation of the secondary metabolites with the aim of identifying pure compounds that possess antimicrobial functions has further added significant values to this study. Notwithstanding that A. paniculata is a promising source of antimicrobial agents and safe treatment for IDs, further empirical research is warranted.
Collapse
Affiliation(s)
- Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia
| | - Zannat Urbi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia;
| | - Hidayah Karuniawati
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Surakarta 57102, Indonesia;
| | - Ramisa Binti Mohiuddin
- Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh 1902, Tangail, Bangladesh;
| | - Ahmed Moh Qrimida
- Department of Agriculture, Higher Institute of Overall Occupations-Sooq Al Khamees Imsahil, Tripoli 1300, Libya; (A.M.Q.); (A.M.M.A.)
| | - Akrm Mohamed Masaud Allzrag
- Department of Agriculture, Higher Institute of Overall Occupations-Sooq Al Khamees Imsahil, Tripoli 1300, Libya; (A.M.Q.); (A.M.M.A.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei;
| | - Ester Pagano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
34
|
Hao M, Lv M, Xu H. Andrographolide: Synthetic Methods and Biological Activities. Mini Rev Med Chem 2020; 20:1633-1652. [DOI: 10.2174/1389557520666200429100326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/14/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Andrographolide, a labdane diterpenoid, is extracted and isolated from the plants of
Andrographis paniculata. Andrographolide and its derivatives exhibited a wide range of biological
properties, including anticancer activity, antibacterial activity, hepatoprotective activity, antiinflammatory
activity, antiviral activity, antimalarial activity, antidiabetic activity, insecticidal activity,
etc. As a continuation, this review aims at giving an overview of the recent advances (from 2015 to
2018) of andrographolide and its derivatives with regard to bioactivities, mechanisms of action, structural
modifications, and structure-activity relationships.
Collapse
Affiliation(s)
- Meng Hao
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Min Lv
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- College of Plant Protection/Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
35
|
Efficacy and mechanism of actions of natural antimicrobial drugs. Pharmacol Ther 2020; 216:107671. [PMID: 32916205 DOI: 10.1016/j.pharmthera.2020.107671] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Microbial infections have significantly increased over the last decades, and the mortality rates remain unacceptably high. The emergence of new resistance patterns and the spread of new viruses challenge the eradication of infectious diseases. The declining efficacy of antimicrobial drugs has become a global public health problem. Natural products derived from natural sources, such as plants, animals, and microorganisms, have significant efficacy for the treatment of infectious diseases accompanied by less adverse effects, synergy, and ability to overcome drug resistance. As the Chinese female scientist Youyou Tu received the Nobel Prize for the antimalarial drug artemisinin, antimicrobial drugs developed from Traditional Chinese Medicine are expected to receive increasing attention again. This review summarizes the antimicrobial agents derived from natural products approved for nearly 20 years and describes their efficacy and mode of action. The aim of this unit is to review the current status of antimicrobial drugs from natural products in order to increase the value of natural products as a source of novel drug candidates for infectious diseases.
Collapse
|
36
|
Is combined medication with natural medicine a promising therapy for bacterial biofilm infection? Biomed Pharmacother 2020; 128:110184. [DOI: 10.1016/j.biopha.2020.110184] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/11/2022] Open
|
37
|
Zhang M, Yang M, Wang N, Liu Q, Wang B, Huang T, Tong Y, Ming Y, Wong CW, Liu J, Yao D, Guan M. Andrographolide modulates HNF4α activity imparting on hepatic metabolism. Mol Cell Endocrinol 2020; 513:110867. [PMID: 32422400 DOI: 10.1016/j.mce.2020.110867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
Abstract
Hepatic nuclear factor 4 alpha (HNF4α) drives the expression of apolipoprotein B (ApoB), microsomal triglyceride transfer protein (MTP) and phospholipase A2 G12B (PLA2G12B), governing hepatic very-low-density lipoprotein (VLDL) production and secretion. Andrographolide (AP) is a major constituent isolated from Andrographis paniculata. We found that AP can disrupt the interaction between HNF4α and its coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). Virtual docking and mutational analysis indicated that arginine 235 of HNF4α is essential for binding to AP. As a consequence of antagonizing the activity of HNF4α, AP suppresses the expression of ApoB, MTP and PLA2G12B and reduces the rate of hepatic VLDL secretion in vivo. AP additionally reduced gluconeogenesis via down-regulating the expression of HNF4α target genes phosphoenolpyruvate carboxykinase (Pepck) and glucose-6-phosphatase (G6pc). Collectively, our results suggest that AP affects liver function via modulating the transcriptional activity of HNF4α.
Collapse
Affiliation(s)
- Minyi Zhang
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, 510632, Guangdong, China; Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Meng Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Na Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qingli Liu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Binxu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Tongling Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yan Tong
- Institute of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Yanlin Ming
- Institute of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Chi-Wai Wong
- NeuMed Pharmaceuticals Limited, Yuen Long, Hong Kong, China
| | - Jinsong Liu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dongsheng Yao
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Min Guan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
38
|
Qian W, Yang M, Wang T, Sun Z, Liu M, Zhang J, Zeng Q, Cai C, Li Y. Antibacterial Mechanism of Vanillic Acid on Physiological, Morphological, and Biofilm Properties of Carbapenem-Resistant Enterobacter hormaechei. J Food Prot 2020; 83:576-583. [PMID: 31855457 DOI: 10.4315/jfp-19-469] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022]
Abstract
ABSTRACT Many studies have evaluated the antimicrobial activity of natural products against various microorganisms, but to our knowledge there have been no studies of the possible use of natural products for their antimicrobial activity against Enterobacter hormaechei. In this study, we investigated vanillic acid (VA) for its antimicrobial activities and its modes of action against carbapenem-resistant E. hormaechei (CREH). The MIC of VA against CREH was determined by the agar diffusion method. The antibacterial action of VA against CREH was elucidated by measuring variations in intracellular ATP concentration, intracellular pH, membrane potential, and cell morphology. Moreover, the efficacy of VA against biofilm formation and VA damage to CREH cells embedded in biofilms were further explored. Our results show that VA was effective against CREH with a MIC of 0.8 mg/mL. VA could rupture the cell membrane integrity of CREH, as measured by a decrease of intracellular ATP, pH, and membrane potential, along with distinctive alternations in cell morphology. In addition, VA exerted a remarkable inhibitory effect on the biofilm formation of CREH and also killed CREH cells within biofilms. These findings show that VA has a potent antibacterial and antibiofilm activity against CREH and, hence, has the potential to be used clinically as a novel candidate agent to treat CREH infections and in the food industry as a food preservative and surface disinfectant. HIGHLIGHTS
Collapse
Affiliation(s)
- Weidong Qian
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China.,(ORCID: https://orcid.org/0000-0003-4612-4351 [W.Q.])
| | - Min Yang
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Ting Wang
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Zhaohuan Sun
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Miao Liu
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Jianing Zhang
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Qiao Zeng
- Food Science and Bioengineering School, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Changlong Cai
- Research Center of Ion Beam Biotechnology and Biodiversity, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Yongdong Li
- Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010, People's Republic of China
| |
Collapse
|
39
|
Yang W, Chen X, Li Y, Guo S, Wang Z, Yu X. Advances in Pharmacological Activities of Terpenoids. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20903555] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Terpenoids, the most abundant compounds in natural products, are a set of important secondary metabolites in plants with diverse structures. Terpenoids play key roles in plant growth and development, response to the environment, and physiological processes. As raw materials, terpenoids were also widely used in pharmaceuticals, food, and cosmetics industries. Terpenoids possess antitumor, anti-inflammatory, antibacterial, antiviral, antimalarial effects, promote transdermal absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. In addition, previous studies have also found that terpenoids have many potential applications, such as insect resistance, immunoregulation, antioxidation, antiaging, and neuroprotection. Terpenoids have a complex structure with diverse effects and different mechanisms of action. Activities and mechanisms of terpenoids were reviewed in this paper. The development and application prospect of terpenoid compounds were also prospected, which provides a useful reference for new drug discovery and drug design based on terpenoids.
Collapse
Affiliation(s)
| | - Xu Chen
- School of Pharmacy, Linyi University, P. R. China
| | - Yanli Li
- School of Pharmacy, Linyi University, P. R. China
| | - Shaofen Guo
- School of Pharmacy, Linyi University, P. R. China
| | - Zhen Wang
- School of Pharmacy, Linyi University, P. R. China
| | - Xiuling Yu
- School of Pharmacy, Linyi University, P. R. China
| |
Collapse
|
40
|
Li F, Lee EM, Sun X, Wang D, Tang H, Zhou GC. Design, synthesis and discovery of andrographolide derivatives against Zika virus infection. Eur J Med Chem 2020; 187:111925. [PMID: 31838328 PMCID: PMC6980694 DOI: 10.1016/j.ejmech.2019.111925] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022]
Abstract
The Zika endemic established by imported and local transmission is of significant concern and effective anti-ZIKV drugs remain an urgent unmet need. As andrographolide was identified to be an inhibitor of DENV and CHIKV and the importance of quinoline structure against infectious diseases was considered, we are interested in studying its andrographolide derivatives with quinoline moiety against Zika virus infection. In addition to screening eight in-house derivatives of andrographolide, sixteen new derivatives were designed, synthesized and tested against Zika virus infection. Among these compounds, two most potent anti-Zika compounds of 19-acetylated 14α-(5',7'-dichloro-8'-quinolyloxy) derivative 17b and 14β-(8'-quinolyloxy)-3,19- diol derivative 3 with the highest selectivity were discovered. The SAR analysis indicates that rational and optimal combined modification/s at 3-, 14-, or 19-positions can make derivatives less toxic and more potent against Zika infection, and both of 3 and 17b are suitable as leads for designing new generation of andrographolide derivatives with quinoline or its structure- and property-related moieties against Zika virus and other arboviruses.
Collapse
Affiliation(s)
- Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, 211800, China
| | - Emily M Lee
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Xia Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, 211800, China
| | - Decai Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, 211800, China
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu, 211800, China.
| |
Collapse
|
41
|
Xie YM, Zhang C, Lyu J, Sun MH. Clinical evaluation on xiyanping injection in the treatment of bronchopneumonia in children based on meta-analysis. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_29_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
42
|
Li Q, Li ZY, Zhang J, Guo WN, Xu XM, Sun FX, Xu H. Xiyanping Plus Azithromycin Chemotherapy in Pediatric Patients with Mycoplasma pneumoniae Pneumonia: A Systematic Review and Meta-Analysis of Efficacy and Safety. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:2346583. [PMID: 31558910 PMCID: PMC6735175 DOI: 10.1155/2019/2346583] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Xiyanping injection (XYP) is a well-known Chinese medicinal preparation reputed as a most effective alternative to antibiotics. XYP has been widely used in combination therapies to treat various infectious diseases, among which XYP plus azithromycin (AZM) chemotherapy is often used for the treatment of Mycoplasma pneumoniae pneumonia in pediatric patients (p-MPP) in China. OBJECTIVE The present study just aimed to confirm whether XYP can improve the clinical efficacy and safety of AZM chemotherapy for p-MPP by performing meta-analysis and systematic review. METHODS A meta-analysis was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The randomized controlled trials (RCTs) concerning XYP plus AZM chemotherapy for p-MPP were selected, for which the main outcomes included overall response rate (ORR), antipyretic time, cough disappearance time, lung wet Rales disappearance time, hospitalization duration, and adverse drug reactions (ADRs). Based on the data extracted, the meta-analysis was conducted by using a standard data extraction form. RESULTS Nine RCTs involving 963 patients were included for meta-analysis. More concretely, the combination therapy showed the risk ratio (RR) and 95% confidence intervals (CI) of ORR and ADRs as (RR, 1.21 [95% CI, 1.15, 1.28]) and (RR, 0.37 [95% CI, 0.27, 0.51]), respectively. And other major outcomes were as follows: hospitalization durations (standard mean difference (SMD), -1.32 [95% CI, -1.48, -1.16]), antipyretic time (SMD, -1.26 [95% CI, -1.70, -0.83]), cough disappearance time (SMD, -1.07 [95% CI, -1.38, -0.75]), and the disappearance time of lung wet Rales (SMD, -0.83 [95% CI, -1.07, -0.60]). With statistically significant differences in various aspects, the combination therapy plus XYP displayed obvious advantages in contrast to AZM alone. CONCLUSION Overall, XYP might reduce the incidence of ADRs and significantly improve the clinical efficacy for p-MPP receiving AZM chemotherapy.
Collapse
Affiliation(s)
- Qiao Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Zhi-Yong Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Jie Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Wen-Na Guo
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Xiao-Meng Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Fa-Xin Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai, China
| |
Collapse
|
43
|
Zhang G, Jiang C, Xie N, Xu Y, Liu L, Liu N. Treatment with andrographolide sulfonate provides additional benefits to imipenem in a mouse model of Klebsiella pneumoniae pneumonia. Biomed Pharmacother 2019; 117:109065. [PMID: 31220744 DOI: 10.1016/j.biopha.2019.109065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/18/2023] Open
Abstract
Klebsiella pneumoniae is a primary cause of community-acquired and nosocomial respiratory infections, and K. pneumoniae resistance to the current treatment approach with carbapenem is worsening. Andrographolide is a natural diterpenoid from Andrographis paniculata that was shown to exert anti-inflammatory activity. We herein show that pretreatment with a water-soluble andrographolide sulfonate significantly attenuate lung injury and infiltration of inflammatory cells. Interestingly, mice receiving combined treatment with andrographolide sulfonate displayed perfect survival rate than the mice treatment with imipenem alone, and monocyte chemotactic protein 5 (MCP-5) level was decreased further. These findings suggest that andrographolide sulfonate could as a potential synergist for antibiotic treatment of bacteria-induced inflammation.
Collapse
Affiliation(s)
- Guorong Zhang
- China State Institute of Pharmaceutical Industry, Shanghai, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Chunhong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, China
| | - Yang Xu
- China State Institute of Pharmaceutical Industry, Shanghai, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Li Liu
- China State Institute of Pharmaceutical Industry, Shanghai, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China; Shanghai Professional and Technical Service Center for Biological Material Druggability Evaluation, Shanghai, China.
| | - Nan Liu
- China State Institute of Pharmaceutical Industry, Shanghai, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China.
| |
Collapse
|
44
|
St-Pierre A, Blondeau D, Bourdeau N, Bley J, Desgagné-Penix I. Chemical Composition of Black Spruce ( Picea mariana) Bark Extracts and Their Potential as Natural Disinfectant. Ind Biotechnol (New Rochelle N Y) 2019. [DOI: 10.1089/ind.2019.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Annabelle St-Pierre
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Dorian Blondeau
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Nathalie Bourdeau
- Innofibre, Trois-Rivières, Canada
- Groupe de recherché en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | | | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
- Groupe de recherché en Biologie Végétale, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| |
Collapse
|
45
|
Normative Application of Xiyanping Injection: A Systematic Review of Adverse Case Reports. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4013912. [PMID: 30581483 PMCID: PMC6276469 DOI: 10.1155/2018/4013912] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/23/2018] [Accepted: 11/04/2018] [Indexed: 01/28/2023]
Abstract
Purpose To summarize the characteristics and the relevant factors and to give references for preventing adverse drug reactions (ADRs) associated with xiyanping (XYP), we provide a systematic review of adverse case reports about XYP. Methods Seven medical databases were searched from inception to January 2018. Case reports detailing ADRs associated with XYP were included. Data were extracted independently by two reviewers. After the assessment of causality and severity, we carried out a descriptive analysis for the relevant ADRs. Results Forty-three articles involving a total number of 55 cases were included. Eight cases were off-label drug use. In the remaining 47 cases, 26 (55.3%) had probable causality and 23 (48.9%) were serious cases. XYP used in children (≤14 years old) accounted for 66.0%. Respiratory diseases (83.0%) were major primary diseases. No allergic history mentioned (55.3%) and unspecific drug combination (59.6%) were common in these reports. As for ADR types, anaphylaxis and anaphylactic shock were up to 97.9%. ADRs happened mostly when applying XYP within 30 minutes (70.2%) and the majority (95.7%) were cured when treated in time. Conclusions Clinicians and patients are supposed to obey the package insert of XYP in clinical application. Through the results of XYP, normalization of ADR reports is also worthy of attention. High-quality researches are required to improve the drug instruction and evaluate the safety of XYP in effective diseases and different age groups. Mechanism of ADRs aiming at the hypersensitivity and the drug combination should still be further identified.
Collapse
|
46
|
Gao F, Liu X, Shen Z, Jia X, He H, Gao J, Wu J, Jiang C, Zhou H, Wang Y. Andrographolide Sulfonate Attenuates Acute Lung Injury by Reducing Expression of Myeloperoxidase and Neutrophil-Derived Proteases in Mice. Front Physiol 2018; 9:939. [PMID: 30174607 PMCID: PMC6107831 DOI: 10.3389/fphys.2018.00939] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Andrographolide sulfonate (Andro-S), a sulfonation derivative of andrographolide, is known to be effective in treating inflammation-related diseases, while the underlying mechanisms and global protein alterations in response to Andro-S remain unknown. This study aimed to investigate the pharmacological effects and potential targets of Andro-S in a murine model of acute lung injury (ALI). ALI was induced by aerosolized lipopolysaccharide (LPS) exposure before treatment with Andro-S. Inflammatory state of each treatment group was determined by histological analysis and quantification of inflammatory markers. Differentially expressed proteins in lung tissues were identified by an iTRAQ-based quantitative proteomic approach and further confirmed by immunohistochemistry analysis. Administration of Andro-S alleviated LPS-induced histological changes in the lung and reduced the expression of inflammatory markers in serum, bronchoalveolar fluid and lung tissues. Proteomic analysis identified 31 differentially expressed proteins from a total of 2,234 quantified proteins in the lung. According to bioinformatics analysis, neutrophil elastase (ELANE), cathepsin G (CTSG) and myeloperoxidase (MPO), three neutrophil-derived proteases related to immune system process and defense responses to fungi were chosen as potential targets of Andro-S. Further immunohistochemistry analysis confirmed the inhibitory effects of Andro-S on LPS-induced ELANE, CTSG and MPO up-regulation. These results indicate that Andro-S suppressed the severity of LPS-induced ALI, possibly by attenuating the expression of and neutrophil-derived proteases.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Ziying Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaohui Jia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Han He
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianhong Wu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Chunhong Jiang
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Ganzhou, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| | - Yiping Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
47
|
Yi Z, Ouyang S, Zhou C, Xie L, Fang Z, Yuan H, Yang J, Zou L, Jia T, Zhao S, Li L, Shi L, Gao Y, Li G, Liu S, Xu H, Xu C, Zhang C, Liang S. Andrographolide Inhibits Mechanical and Thermal Hyperalgesia in a Rat Model of HIV-Induced Neuropathic Pain. Front Pharmacol 2018; 9:593. [PMID: 29950989 PMCID: PMC6008568 DOI: 10.3389/fphar.2018.00593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/17/2018] [Indexed: 12/17/2022] Open
Abstract
Aim: In this study, we investigated whether andrographolide (Andro) can alleviate neuropathic pain induced by HIV gp120 plus ddC treatment and the mechanism of its action. Methods: The paw withdrawal threshold and the paw withdrawal latency were observed to assess pain behaviors in all groups of the rats, including control group, control combined with Andro treatment group, sham group, gp120 combined with ddC treatment group, gp120 plus ddC combined with A438079 treatment group, and gp120 plus ddC combined with Andro treatment by intrathecally injecting at a dose of 25 μg/20 μl group. The protein expression levels of the P2X7 receptor, tumor necrosis factor-α-receptor (TNFα-R), interleukin-1β (IL-1β), IL-10, phospho-extracellular regulated protein kinases (ERK) (p-ERK) in the L4-L6 dorsal root ganglia (DRG) were measured by western blotting. Real-time quantitative polymerase chain reaction was used to test the mRNA expression level of the P2X7 receptor. Double-labeling immunofluorescence was used to identify the co-localization of the P2X7 receptor with glial fibrillary acidic protein (GFAP) in DRG. Molecular docking was performed to identify whether the Andro interacted perfectly with the rat P2X7 (rP2X7) receptor. Results: Andro attenuated the mechanical and thermal hyperalgesia in gp120+ddC-treated rats and down-regulated the P2X7 receptor mRNA and protein expression in the L4-L6 DRGs of gp120+ddC-treated rats. Additionally, Andro simultaneously decreased the expression of TNFα-R and IL-1β protein, increased the expression of IL-10 protein in L4-L6 DRGs, and inhibited the activation of ERK signaling pathways. Moreover, Andro decreased the co-expression of GFAP and the P2X7 receptor in the SGCs of L4-L6 DRG on 14th day after surgery. Conclusion: Andro decreased the hyperalgesia induced by gp120 plus ddC.
Collapse
Affiliation(s)
- Zhihua Yi
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
- Nursing College, Medical College of Nanchang University, Nanchang, China
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Shuai Ouyang
- Undergraduate Student of the Clinical Department, Medical College of Nanchang University, Nanchang, China
| | - Congfa Zhou
- Department of Anatomy, Medical College of Nanchang University, Nanchang, China
| | - Lihui Xie
- Undergraduate Student of the Clinical Department, Medical College of Nanchang University, Nanchang, China
| | - Zhi Fang
- Undergraduate Student of the Clinical Department, Medical College of Nanchang University, Nanchang, China
| | - Huilong Yuan
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Jinpu Yang
- Undergraduate Student of the Queen Mary School, Medical College of Nanchang University, Nanchang, China
| | - Lifang Zou
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Tianyu Jia
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shanhong Zhao
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Lin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Liran Shi
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Yun Gao
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Guilin Li
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Shuangmei Liu
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Hong Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Changshui Xu
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
| | - Chunping Zhang
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
- Department of Cell Biology, Medical College of Nanchang University, Nanchang, China
| | - Shangdong Liang
- Department of Physiology, Medical College of Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, China
- School of Life Sciences, Nanchang University, Nanchang, China
- *Correspondence: Shangdong Liang,
| |
Collapse
|
48
|
Banerjee M, Moulick S, Bhattacharya KK, Parai D, Chattopadhyay S, Mukherjee SK. Attenuation of Pseudomonas aeruginosa quorum sensing, virulence and biofilm formation by extracts of Andrographis paniculata. Microb Pathog 2017; 113:85-93. [PMID: 29042302 DOI: 10.1016/j.micpath.2017.10.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/19/2017] [Accepted: 10/13/2017] [Indexed: 02/08/2023]
Abstract
Quorum-sensing (QS) is known to play an essential role in regulation of virulence factors and toxins during Pseudomonas aeruginosa infection which may frequently cause antibiotic resistance and hostile outcomes of inflammatory injury. Therefore, it is an urgent need to search for a novel agent with low risk of resistance development that can target QS and inflammatory damage prevention as well. Andrographis paniculata, a herbaceous plant under the family Acanthaceae, native to Asian countries and also cultivated in Scandinavia and some parts of Europe, has a strong traditional usage with its known antibacterial, anti-inflammatory, antipyretic, antiviral and antioxidant properties. In this study, three different solvent extracts (viz., chloroform, methanol and aqueous) of A. paniculata were examined for their anti-QS and anti-inflammatory activities. Study was carried out to assess the effect on some selected QS-regulatory genes at transcriptional level using Real Time-PCR. In addition, ability to attenuate MAPK pathways upon P. aeruginosa infection was performed to check its potential anti-inflammatory activity. Chloroform and methanol extracts showed significant reduction (p < 0.05) of the QS-controlled extracellular virulence factors in P. aeruginosa including the expression of pyocyanin, elastase, total protease, rhamnolipid and hemolysin without affecting bacterial viability. They also significantly (p < 0.05) reduced swarming motility and biofilm formation of P. aeruginosa. The chloroform extract, which was found to be more effective, decreased expression of lasI, lasR, rhlI and rhlR by 61%, 75%, 41%, and 44%, respectively. Moreover, chloroform extract decreased activation of p-p38 and p-ERK1/2 expression levels in MAPK signal pathways in P. aeruginosa infected macrophage cells. As the present study demonstrates that A. paniculata extracts inhibit QS in P. aeruginosa and exhibit anti-inflammatory activities, therefore it represents itself as a prospective therapeutic agent against P. aeruginosa infection.
Collapse
Affiliation(s)
- Malabika Banerjee
- Department of Microbiology, University of Kalyani, Kalyani 741235, WB, India; TCG Life Sciences Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-5, Salt Lake, Kolkata 700091, India
| | - Soumitra Moulick
- TCG Life Sciences Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-5, Salt Lake, Kolkata 700091, India
| | - Kunal Kumar Bhattacharya
- TCG Life Sciences Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-5, Salt Lake, Kolkata 700091, India
| | - Debaprasad Parai
- Department of Microbiology, University of Kalyani, Kalyani 741235, WB, India
| | - Subrata Chattopadhyay
- TCG Life Sciences Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-5, Salt Lake, Kolkata 700091, India
| | | |
Collapse
|