1
|
Kim S, Rahim MA, Tajdozian H, Barman I, Park HA, Yoon Y, Jo S, Lee S, Shuvo MSH, Bae SH, Lee H, Ju S, Park CE, Kim HK, Han JH, Kim JW, Yoon SG, Kim JH, Choi YG, Lee S, Seo H, Song HY. Clinical Potential of Novel Microbial Therapeutic LP51 Based on Xerosis-Microbiome Index. Cells 2024; 13:2029. [PMID: 39682776 DOI: 10.3390/cells13232029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Xerosis, characterized by dry, rough skin, causes discomfort and aesthetic concerns, necessitating effective treatment. Traditional treatments often show limited efficacy, prompting the need for innovative therapies. This study highlights the efficacy of microbiome therapeutic LP51, derived from a healthy vaginal microbiome, in improving xerosis. A double-blind clinical trial involving 43 subjects with dry inner arm skin compared the effects of a 2.9% LP51 extract formulation to a placebo over 4 weeks. The LP51 group exhibited a significant increase in stratum corneum hydration (10.0 A.U.) compared to the placebo group (4.8 A.U.) and a 21.4% decrease in transepidermal water loss (TEWL), whereas the placebo group showed no significant change. LP51 also demonstrated benefits in enhancing skin hydration, improving the skin barrier, and exhibited anti-atopic, anti-inflammatory, and antioxidant properties. Safety was confirmed through in vitro cytotoxicity tests. These effects are attributed to the microbiome-safe component in LP51 and its role in improving xerosis, reflected by an increase in the xerosis-microbiome index, defined by the Firmicutes/Actinobacteria ratio. These findings position microbiome therapeutic LP51 as a promising novel treatment for xerosis.
Collapse
Affiliation(s)
- Sukyung Kim
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Md Abdur Rahim
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Hanieh Tajdozian
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| | - Indrajeet Barman
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| | - Hyun-A Park
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Youjin Yoon
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| | - Sujin Jo
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| | - Soyeon Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| | - Md Sarower Hossen Shuvo
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| | - Sung Hae Bae
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Hyunji Lee
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Sehee Ju
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Chae-Eun Park
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| | - Ho-Kyoung Kim
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Jeung Hi Han
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea
| | - Ji-Woong Kim
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea
| | - Sung Geon Yoon
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea
| | - Jae Hong Kim
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea
| | - Yang Gyu Choi
- Materials Science Research Institute, LABIO, Inc., 184 Gasan Digital 2-ro, Geumcheon-gu, Seoul 08501, Republic of Korea
| | - Saebim Lee
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Hoonhee Seo
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
| | - Ho-Yeon Song
- Human Microbiome Medical Center (HM·MRC), Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si 31538, Chungnam, Republic of Korea
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, 31, Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Chungnam, Republic of Korea
| |
Collapse
|
2
|
Dabous A, Stellavato A, Cimini D, Vassallo V, D'Agostino M, Schiraldi C. A probiotic multi-strain mixture combined with hydroxyectoine improves intestinal barrier function by alleviating inflammation in lipopolysaccharide stimulated differentiated Caco-2 cells. Food Funct 2024; 15:11578-11589. [PMID: 39508078 DOI: 10.1039/d4fo03130j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Many studies have highlighted the role of probiotics in re-establishing the gut microbiota balance and preventing intestinal barrier dysfunction. In fact, they can also contribute to the upregulation of anti-inflammatory genes and the downregulation of pro-inflammatory genes, which are known to contribute to the development of the inflammatory bowel disease (IBD) syndrome. The present study aims to investigate the effect of the compatible solute hydroxyectoine (HOE), to be used as a cryopreservant but also for its intrinsic biological properties, to obtain a new formula containing three probiotic strains (Limosilactobacillus fermentum (L. fermentum), Levilactobacillus brevis SP-48 (L. brevis), and Bifidobacterium lactis HN019 (B. lactis)), and evaluate the latter for its ability to prevent lipopolysaccharide (LPS)-induced inflammation in an in vitro bi-dimensional model of the intestinal barrier using a Caco-2 cell monolayer. The mRNA expression levels of the inflammatory cytokines (IL-6, IL-1β, and TNF-α) were analyzed by real-time PCR. Changes in the modulation of (TLR-4 and NF-κB) proteins were assessed by western blotting, and the effect of the HOE/PRO formula on the intestinal epithelial barrier function was also assessed using an immunofluorescence microscope for the tight junction protein zonula occludens-1 (ZO-1). This study found that this novel probiotic formulation containing HOE is capable of decreasing LPS-induced cytokines, as confirmed by the results of RT-PCR and ELISA and preserving the integrity of tight junctions as demonstrated by the relevant expression of ZO-1. HOE/PRO was shown to be effective in reducing the expression of TLR-4 and NF-κB. The latter plays a key role as an inflammation modulator as shown through experiments run with the THP-1/NF-κB reporter gene. Collectively, our data indicate that the HOE/PRO formula is a good candidate for potential preventive and/or therapeutic implementation in IBD.
Collapse
Affiliation(s)
- Azza Dabous
- Department of Experimental Medicine, Section of Biotechnology, Molecular Biology and Medical Histology, University of Campania "Luigi Vanvitelli", Naples, Italy.
- Department of Nutrition and Food Technology, An-Najah National University, P.O. Box 7, Nablus, Palestine
| | - Antonietta Stellavato
- Department of Experimental Medicine, Section of Biotechnology, Molecular Biology and Medical Histology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Donatella Cimini
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology, Molecular Biology and Medical Histology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Maria D'Agostino
- Department of Experimental Medicine, Section of Biotechnology, Molecular Biology and Medical Histology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Molecular Biology and Medical Histology, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
3
|
Alan Y, Keskin AO, Sönmez M. Probiotic and functional characterization of newly isolated Lactiplantibacillus plantarum strains from human breast milk and proliferative inhibition potential of metabolites. Enzyme Microb Technol 2024; 182:110545. [PMID: 39546820 DOI: 10.1016/j.enzmictec.2024.110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
Four Lactiplantibacillus plantarum strains newly isolated and identified from human breast milk in Türkiye, have probiotic, functional and proliferative inhibition potential of metabolites against colon cancer cell lines were evaluated. In simulated gastric and intestinal media, all strains exhibited strong probiotic character by showing resistance, although decreasing with time and concentration. The strains were sensitive to penicillin G, rifampin and chloramphenicol and showed antibacterial effect on all pathogenic bacteria. Citric acid, malic acid, tartaric acid, pyruvic acid and fumaric acid were not detected in the strains, while the highest amount of acetic acid was detected. The quantitative-qualitative analysis and structural characterization of exopolysaccharide (EPS) was confirmed and it was determined that the strains synthesized similar amounts. Compared to standard antioxidants, the strains showed less DPPH activity and similar ABTS activity. High amounts of metabolites of the strains showed good antiproliferative effect on Caco-2, while lower amounts showed good antiproliferative effect on the HT-29 cell line. When all the data were considered, it was determined that the strains were close to each other, but the YAAS 23 strain showed slightly better properties. In conclusion, breast milk is a unique environment harboring beneficial bacteria such as L. plantarum for human health.
Collapse
Affiliation(s)
- Yusuf Alan
- Department of Medical Services and Techniques, Bitlis Eren University, Bitlis, Türkiye.
| | - Ali-Osman Keskin
- Department of Biology, Institute of Science, Muş Alparslan University, Muş, Türkiye
| | - Mehmet Sönmez
- Department of Biology, Institute of Science, Muş Alparslan University, Muş, Türkiye
| |
Collapse
|
4
|
Allahverdi M, Dadmehr M, Sharifmoghadam MR, Bahreini M. Encapsulation of Lactiplantibacillus plantarum probiotics through cross-linked chitosan and casein for improving their viability, antioxidant and detoxification. Int J Biol Macromol 2024; 280:135820. [PMID: 39306184 DOI: 10.1016/j.ijbiomac.2024.135820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
In the present study, encapsulation of Lactiplantibacillus plantarum (L.p) was performed using chitosan and casein through calcium phosphate intercrossing. Chitosan and casein both considered as non-toxic and biocompatible food derived components with intrinsic antioxidant properties. Layer by layer strategy was performed for deposition of modified cross-linked chitosan along with casein as the novel protective layers on the surface of probiotics. After confirmation of successful encapsulation, the viability and antioxidant activity of encapsulated L.p was evaluated. The results showed enhanced survival and antioxidant activity of encapsulated L.p compared to free bacteria in simulated digestive conditions. The survival of free and encapsulated L.p was respectively 1.38 ± 0.29 log cfu/ml and 6.99 ± 0.12 log cfu/ml in SGF and 8.54 ± 0.05 log cfu/ml and 7.25 ± 0.23 log cfu/ml in SIJ after 2 h of incubation. HPLC analysis was also used to investigate the detoxification activity of probiotics toward Aflatoxin M1 and obtained results showed encapsulated bacteria could significantly reduce aflatoxin M1 (68.44 ± 0.5 %) compared to free bacteria (43.76 ± 0.54 %). The results of this research suggest that the chitosan/casein mediated encapsulation of L.p with layer-by-layer technology is an effective method to improve the survival and antioxidant properties of probiotics with enhanced detoxification of AFM1.
Collapse
Affiliation(s)
- Mehrana Allahverdi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran.
| | | | - Masoumeh Bahreini
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Khalifa AK, Abdelrahim DS, Mekawy DM, Hamed RMR, Mohamed WR, Ramadan NM, Wael M, Ellackany R, Albadawi EA, Osman WA. New horizon of the combined BCG vaccine with probiotic and liraglutide in augmenting beta cell survival via suppression of TXNIP/NLRP3 pyroptosis signaling in Streptozocin-Induced diabetes mellitestype-1 in rats. Heliyon 2024; 10:e38932. [PMID: 39640632 PMCID: PMC11620097 DOI: 10.1016/j.heliyon.2024.e38932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 12/07/2024] Open
Abstract
Background An ideal anti-diabetic type-1 pharmacotherapy should combine abrogation of beta cell pyroptosis with enhancement of beta cell mass. Objectives The study investigated the potential synergism from combining the Bacillus Calmette-Guerin (BCG) vaccine with liraglutide (LIR) and probiotics in mitigating Streptozocin (STZ)-induced Type1diabetes mellitus in albino rats via suppression of TXNIP/NLRP3 signaling. Methods: Induction of diabetes was performed by two I.V. injections of 50 mg/kg of STZ in male Wistar rats. Forty-eight rats were randomly allocated into six groups: Normal control group; STZ -diabetic group; BCG group; BCG + LIR group; BCG + probiotic group; BCG + LIR + probiotic group. The rats were sacrificed after 8 weeks of treatment. Results The STZ-diabetic group exhibited significant elevation of fasting blood sugar and HbA1c with remarkably decreased serum insulin along with a considerable increase in pancreatic proinflammatory cytokines (TNF-α, NLRP3, IL-1β, and NFκB) and apoptotic markers (ASK-1, IAPP, TXNIP, and Caspase-3) with prominently compromised oxidative scavenging capacity in addition to structural alteration in the pancreatic histoarchitecture with decreased insulin immunostaining. Conversely, diabetic-treated groups, especially the BCG + LIR + probiotic group, were superior in amelioration of STZ-induced pyroptosis of pancreatic islets evidenced by a significant decline in inflammatory cytokines and apoptotic markers with a remarkable upgrade in redox balance, Furthermore, the mitigation in the altered histopathological picture of the pancreas with enhanced insulin immunostaining has been was mirrored on the significant improvement of glucose homeostasis parameters. Conclusions Noteworthy, BCG combination with liraglutide and probiotic might be a promising repurposed therapeutic modality in the management of type-1 diabetes mellites via targeting pancreatic TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Amira Karam Khalifa
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, El- Manial, Cairo 11562, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Nahda University, 62521, Beni Suef, Egypt
| | - Dina Sayed Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Dina Mohamed Mekawy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Wafaa Rabee Mohamed
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Egypt
- Department of Histology and Cell Biology, Faculty of Medicine, Modern University for Technology and Information, Egypt
| | - Nagwa Mahmoud Ramadan
- Department of Physiology, Faculty of Medicine, Cairo University, El Manial, Cairo 11562, Egypt
| | - Mostafa Wael
- Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Rawan Ellackany
- Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Emad Ali Albadawi
- Department of Basic Medical Science, College of Medicine, Taibah University, KSA, Saudi Arabia
| | - Walla'a A. Osman
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, El- Manial, Cairo 11562, Egypt
| |
Collapse
|
6
|
Cheruvari A, Kammara R. Genomic Characterization and Probiotic Properties of Lactiplantibacillus pentosus Isolated from Fermented Rice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10378-1. [PMID: 39433653 DOI: 10.1007/s12602-024-10378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 10/23/2024]
Abstract
The aim of the study was the preliminary genetic and phenotypic characterization of a potential probiotic strain of Lactiplantibacillus pentosus (strain krglsrbmofpi2) obtained from traditionally fermented rice. Genome sequencing revealed that the strain has a 3.7-Mb genome with a GC content of 46 and a total of 3192 protein-coding sequences. Using bioinformatic methods, we have successfully identified phage genes, plasmids, pathogenicity, antibiotic resistance and a variety of bacteriocins. Through comprehensive biochemical and biophysical analyses, we have gained valuable insights into its auto-aggregation, co-aggregation, antibiotic resistance, hydrophobicity, antioxidant activity and tolerance to simulated gastrointestinal conditions. The safety evaluation of the isolated L. pentosus was performed on the basis of its haemolytic activity. Our studies have shown that this strain has a strong antagonistic activity against the priority pathogens identified by the World Health Organization such as Vibrio cholerae, Clostridium perfringens, Salmonella enterica subsp. enterica ser. Typhi, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. It is essential to fully understand the genetic and functional properties of the L. pentosus strain before considering its use as a useful probiotic in the food industry.
Collapse
Affiliation(s)
- Athira Cheruvari
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajagopal Kammara
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Di Carlo E, Sorrentino C. Oxidative Stress and Age-Related Tumors. Antioxidants (Basel) 2024; 13:1109. [PMID: 39334768 PMCID: PMC11428699 DOI: 10.3390/antiox13091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress is the result of the imbalance between reactive oxygen and nitrogen species (RONS), which are produced by several endogenous and exogenous processes, and antioxidant defenses consisting of exogenous and endogenous molecules that protect biological systems from free radical toxicity. Oxidative stress is a major factor in the aging process, contributing to the accumulation of cellular damage over time. Oxidative damage to cellular biomolecules, leads to DNA alterations, lipid peroxidation, protein oxidation, and mitochondrial dysfunction resulting in cellular senescence, immune system and tissue dysfunctions, and increased susceptibility to age-related pathologies, such as inflammatory disorders, cardiovascular and neurodegenerative diseases, diabetes, and cancer. Oxidative stress-driven DNA damage and mutations, or methylation and histone modification, which alter gene expression, are key determinants of tumor initiation, angiogenesis, metastasis, and therapy resistance. Accumulation of genetic and epigenetic damage, to which oxidative stress contributes, eventually leads to unrestrained cell proliferation, the inhibition of cell differentiation, and the evasion of cell death, providing favorable conditions for tumorigenesis. Colorectal, breast, lung, prostate, and skin cancers are the most frequent aging-associated malignancies, and oxidative stress is implicated in their pathogenesis and biological behavior. Our aim is to shed light on the molecular and cellular mechanisms that link oxidative stress, aging, and cancers, highlighting the impact of both RONS and antioxidants, provided by diet and exercise, on cellular senescence, immunity, and development of an antitumor response. The dual role of ROS as physiological regulators of cell signaling responsible for cell damage and diseases, as well as its use for anti-tumor therapeutic purposes, will also be discussed. Managing oxidative stress is crucial for promoting healthy aging and reducing the risk of age-related tumors.
Collapse
Affiliation(s)
- Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlo Sorrentino
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
8
|
Li Q, Liu D, Liang M, Zhu Y, Yousaf M, Wu Y. Mechanism of probiotics in the intervention of colorectal cancer: a review. World J Microbiol Biotechnol 2024; 40:306. [PMID: 39160377 DOI: 10.1007/s11274-024-04112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The human microbiome interacts with the host mainly in the intestinal lumen, where putrefactive bacteria are suggested to promote colorectal cancer (CRC). In contrast, probiotics and their isolated components and secreted substances, display anti-tumor properties due to their ability to modulate gut microbiota composition, promote apoptosis, enhance immunity, resist oxidation and alter metabolism. Probiotics help to form a solid intestinal barrier against damaging agents via altering the gut microbiota and preventing harmful microbes from colonization. Probiotic strains that specifically target essential proteins involved in the process of apoptosis can overcome CRC resistance to apoptosis. They can increase the production of anti-inflammatory cytokines, essential in preventing carcinogenesis, and eliminate cancer cells by activating T cell-mediated immune responses. There is a clear indication that probiotics optimize the antioxidant system, decrease radical generation, and detect and degrade potential carcinogens. In this review, the pathogenic mechanisms of pathogens in CRC and the recent insights into the mechanism of probiotics in CRC prevention and therapy are discussed to provide a reference for the actual application of probiotics in CRC.
Collapse
Affiliation(s)
- Qinqin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dongmei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Minghua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yichao Zhu
- Laboratory of Cell Engineering, Research Unit of Cell Death Mechanism, Beijing Institute of Biotechnology, Chinese Academy of Medical Sciences (2021RU008), Beijing, 100071, China
| | - Muhammad Yousaf
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yaping Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
9
|
Dong H, Wang W, Chen Q, Chang X, Wang L, Chen S, Chen L, Wang R, Ge S, Xiong W. Effects of Lactoferrin and Lactobacillus Supplementation on Immune Function, Oxidative Stress, and Gut Microbiota in Kittens. Animals (Basel) 2024; 14:1949. [PMID: 38998061 PMCID: PMC11240779 DOI: 10.3390/ani14131949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Immune deficiency is a prevalent issue among kittens, severely threatening their health and development by increasing susceptibility to infections and diseases. This study investigates the effects of dietary supplements containing lactoferrin and Lactobacillus plantarum (L. plantarum) on the immune function, intestinal health, and microbiota composition of kittens. The results demonstrate that these supplements significantly enhance immune responses, with immunoglobulin A (IgA) levels increasing by 14.9% and IgG levels by 14.2%. Additionally, there was a notable 28.7% increase in catalase activity, indicating a reduction in oxidative stress. Gastrointestinal (GI) health improved markedly, evidenced by increased populations of beneficial bacteria such as Lactobacillus, which rose from 4.13% to 79.03% over the study period. The DNC group also showed significant reductions in pro-inflammatory cytokines, including decreases of 13.94% in IL-2, 26.46% in TNF-α, and 19.45% in IFN-γ levels. Furthermore, improvements in physical conditions were observed, including enhanced coat condition and mental status. These findings underline the potential of lactoferrin and L. plantarum as effective dietary interventions to improve kitten health, thereby reducing dependency on antibiotics and mitigating associated risks. This research provides a scientific foundation for optimizing nutritional management practices to enhance the overall vitality of kittens during their critical growth phases.
Collapse
Affiliation(s)
- Hao Dong
- Food Laboratory of Zhongyuan, Luohe 462300, China; (H.D.); (W.W.); (Q.C.); (X.C.); (S.C.); (L.C.)
| | - Weiwei Wang
- Food Laboratory of Zhongyuan, Luohe 462300, China; (H.D.); (W.W.); (Q.C.); (X.C.); (S.C.); (L.C.)
- Henan Zhiyuan Henuo Technology Co., Ltd., Luohe 462300, China;
| | - Qianqian Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China; (H.D.); (W.W.); (Q.C.); (X.C.); (S.C.); (L.C.)
| | - Xiaohan Chang
- Food Laboratory of Zhongyuan, Luohe 462300, China; (H.D.); (W.W.); (Q.C.); (X.C.); (S.C.); (L.C.)
| | - Longjiao Wang
- Henan Zhiyuan Henuo Technology Co., Ltd., Luohe 462300, China;
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (S.G.)
| | - Shuxing Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China; (H.D.); (W.W.); (Q.C.); (X.C.); (S.C.); (L.C.)
| | - Lishui Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China; (H.D.); (W.W.); (Q.C.); (X.C.); (S.C.); (L.C.)
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (S.G.)
| | - Shaoyang Ge
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (R.W.); (S.G.)
| | - Wei Xiong
- Food Laboratory of Zhongyuan, Luohe 462300, China; (H.D.); (W.W.); (Q.C.); (X.C.); (S.C.); (L.C.)
- Henan Zhiyuan Henuo Technology Co., Ltd., Luohe 462300, China;
| |
Collapse
|
10
|
Lee Y, Yoon Y, Choi KH. Development and Evaluation of Bioconverted Milk with Anti-Microbial Effect against Periodontal Pathogens and α-Glucosidase Inhibitory Activity. Microorganisms 2024; 12:1290. [PMID: 39065059 PMCID: PMC11279106 DOI: 10.3390/microorganisms12071290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
To decrease periodontal pathogens and increase the number of beneficial bacteria, probiotics and bioactive compounds made via microbial bioconversion are recently used. In addition, the interest regarding probiotics-mediated bioconversion with popular medicinal plants is increasing. Artemisia herba-alba, a type of wormwood, has recently been attention as a medicinal plant due to its various bioactive compounds. Therefore, we developed bioconverted milk containing A. herba-alba that effectively inhibited periodontal pathogens and α-glucosidase. To select the appropriate lactic acid bacteria for the probiotic candidate strain, 74 strains of lactic acid bacteria were screened. Among them, Lactiplantibacillus plantarum SMFM2016-RK was chosen as the probiotic due to its beneficial characteristics such as high acid and bile tolerance, antioxidant activity, and α-glucosidase inhibition. Based on the minimal bactericidal concentration against three periodontal pathogens, the following appropriate concentrations of Artemisia herba-alba extract were added to milk: 5 mg/mL of A. herba-alba ethanol extract and 25 mg/mL of A. herba-alba hot-water extract. Four bioconverted milks (BM), BM1, BM2, BM3, and BM4, were produced by combining L. plantarum SMFM2016-RK alone, L. plantarum SMFM2016-RK and ethanol extract, L. plantarum SMFM2016-RK and hot-water extract, and L. plantarum SMFM2016-RK with both extracts. As a result of antimicrobial activity, BM3 inhibited the growth of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis the most, and BM4 suppressed the growth of Fusobacterium nucleatum the most. In addition, bioconverted milk containing A. herba-alba (BM2, BM3, and BM4) inhibited α-glucosidase more effectively than BM1. The whole genome of L. plantarum SMFM2016-RK was obtained, and 3135 CDS, 67 tRNA, and 16 RNA were predicted. The genome annotation of L. plantarum SMFM2016-RK revealed 11 CDS related to proteolysis and amino acid metabolism and 2 CDS of phenolic acid-metabolizing enzymes. In conclusion, A. herba-alba-added milk bioconverted by L. plantarum SMFM2016-RK displayed both the growth inhibitory effect on periodontal pathogens and the α-glucosidase inhibitory activity; thus, it necessitates to evaluate the effects on the alleviation of periodontal diseases and glycemic control through future animal experiments.
Collapse
Affiliation(s)
- Yewon Lee
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
| | - Yohan Yoon
- Risk Analysis Research Center, Sookmyung Women’s University, Seoul 04310, Republic of Korea;
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Kyoung-Hee Choi
- Department of Oral Microbiology, College of Dentistry, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
11
|
Güler MA, Çetin B, Albayrak B, Meral-Aktaş H, Tekgündüz KŞ, Kara M, Işlek A. Isolation, identification, and in vitro probiotic characterization of forty novel Bifidobacterium strains from neonatal feces in Erzurum province, Türkiye. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4165-4175. [PMID: 38299445 DOI: 10.1002/jsfa.13298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Neonatal feces are one of the most important sources for probiotic isolation. The purpose of this study was the isolation and identification of Bifidobacterium spp. from neonatal feces and the evaluation of in vitro probiotic properties of strains including safety tests. RESULTS A total of 40 isolates were obtained from 14 healthy newborns' feces in Erzurum province, Türkiye. By their rep-PCR patterns and 16S rRNA gene sequences, isolates were identified as 26 Bifidobacterium breve and 14 Bifidobacterium longum. Fifteen of the isolates tolerated bile salts and showed high resistance to simulated gastric juice. Isolates exhibited varying rates of auto-aggregation and hydrophobicity. In addition, most of the isolates displayed antibacterial activity against Escherichia coli O157:H7, Staphylococcus aureus ATCC 29213, Salmonella Typhimurium RSHMB 95091, and Pseudomonas aeruginosa ATCC 9027. However, only one strain showed bile salt hydrolase activity and two strains showed the ability to produce H2O2. Bifidobacterium strains were generally sensitive to the tested antibiotics and lacked kanamycin, gentamicin, and streptomycin resistance genes, and hemolytic and DNAse activities. On the other hand, it was determined that five strains had various virulence genes including gelE, esp, efaAfs, hyl, and ace. CONCLUSION Results of the present study suggested that B. longum BH28, B. breve BH4 and B. breve BH5 strains have the potential as probiotic candidates for further studies. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammet Akif Güler
- Division of Pediatric Nephrology, Department of Pediatrics, Atatürk University, Faculty of Medicine, Erzurum, Türkiye
| | - Bülent Çetin
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
| | - Bülent Albayrak
- Department of Gastroenterology, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Hacer Meral-Aktaş
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
| | - Kadir Şerafettin Tekgündüz
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Mustafa Kara
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Ali Işlek
- Department of Pediatric Gastroenterology, Faculty of Medicine, Çukurova University, Adana, Türkiye
| |
Collapse
|
12
|
Huang HW, Chen MJ. Exploring the Preventive and Therapeutic Mechanisms of Probiotics in Chronic Kidney Disease through the Gut-Kidney Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8347-8364. [PMID: 38571475 PMCID: PMC11036402 DOI: 10.1021/acs.jafc.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Gut dysbiosis contributes to deterioration of chronic kidney disease (CKD). Probiotics are a potential approach to modulate gut microbiota and gut-derived metabolites to alleviate CKD progression. We aim to provide a comprehensive view of CKD-related gut dysbiosis and a critical perspective on probiotic function in CKD. First, this review addresses gut microbial alterations during CKD progression and the adverse effects associated with the changes in gut-derived metabolites. Second, we conduct a thorough examination of the latest clinical trials involving probiotic intervention to unravel critical pathways via the gut-kidney axis. Finally, we propose our viewpoints on limitations, further considerations, and future research prospects of probiotic adjuvant therapy in alleviating CKD progression. Enhancing our understanding of host-microbe interactions is crucial for gaining precise insights into the mechanisms through which probiotics exert their effects and identifying factors that influence the effectiveness of probiotics in developing strategies to optimize their use and enhance clinical outcomes.
Collapse
Affiliation(s)
- Hsiao-Wen Huang
- Department
of Animal Science and Technology, National
Taiwan University, No. 50, Ln. 155, Section 3, Keelung Road, Taipei 10673, Taiwan
| | - Ming-Ju Chen
- Department
of Animal Science and Technology, National
Taiwan University, No. 50, Ln. 155, Section 3, Keelung Road, Taipei 10673, Taiwan
- Center
for Biotechnology, National Taiwan University, No. 81, Changxing Street, Taipei 10672, Taiwan
| |
Collapse
|
13
|
Qiu Y, Zhang L, Zhang F, Cheng X, Ji L, Jiang J. Efficient production of xylooligosaccharides from Camellia oleifera shells pretreated by pyruvic acid at lower temperature. Int J Biol Macromol 2024; 259:129262. [PMID: 38199559 DOI: 10.1016/j.ijbiomac.2024.129262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
XOS production from lignocellulose using organic carboxylic acids and alkyd acids has been widely reported. However, it still faces harsh challenges such as high energy consumption, high cost, and low purity. Pyruvic acid (PYA), a carbonyl acid with carbonyl and carboxyl groups, was used to produce XOS due to its stronger catalytic activity. In this work, XOS was efficiently prepared from COS in an autoclave under the condition of 0.21 M PYA-121 °C-35 min. The total yield of XOS reached 68.72 % without producing any toxic by-products, including furfural (FF) and 5-hydroxymethylfurfural (5-HMF). The yield of xylobiose (X2), xylotriose (X3), xylotetraose (X4), and xylopentaose (X5) were 20.58 %, 12.47 %, 15.74 %, and 10.05 %, respectively. Meanwhile, 89.05 % of lignin was retained in the solid residue, which provides a crucial functional group for synthesizing layered carbon materials (SRG-a). It achieves excellent electromagnetic shielding (EMS) performance through graphitization, reaching -30 dB at a thickness of 2.0 mm. The use of a PYA catalyst in the production of XOS has proven to be an efficient method due to lower temperature, lower acid consumption, and straightforward operation.
Collapse
Affiliation(s)
- Yuejie Qiu
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Leping Zhang
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Xichuang Cheng
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, State Key Laboratory of Efficient Production of Forest Resources, National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
14
|
Akinyemi MO, Ogunremi OR, Adeleke RA, Ezekiel CN. Probiotic Potentials of Lactic Acid Bacteria and Yeasts from Raw Goat Milk in Nigeria. Probiotics Antimicrob Proteins 2024; 16:163-180. [PMID: 36520357 DOI: 10.1007/s12602-022-10022-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Probiotic microorganisms are incorporated in foods due to their numerous health benefits. We investigated lactic acid bacteria (LAB) and yeasts isolated from goat milk in Nigeria for novel probiotic strains. In this study, a total of 27 LAB and 23 yeast strains were assessed for their probiotic potentials. Only six LAB strains (Weissella cibaria GM 93m3, Weissella confusa GM 92m1, Pediococcus acidilactici GM 18a, Pediococcus pentosaceus GM 23d, Lactiplantibacillus pentosus GM 102s4, Limosilactobacillus fermentum GM 30m1) and four yeast strains (Candida tropicalis 12a, C. tropicalis 33d, Diutina rugosa 53b, and D. rugosa 77a) identified using partial 16S and 26S rDNA sequencing, respectively, showed survival at pH 2.5, 0.3% bile salt, and simulated gastrointestinal conditions and possessed auto-aggregative and hydrophobic properties, thus satisfying key in vitro criteria as probiotics. All LAB strains showed coaggregation properties and antimicrobial activities against pathogens. Pediococcus pentosaceus GM 23d recorded the strongest coaggregation percentage (34-94%) against 14 pathogens, while W. cibaria GM 93m3 showed the least (6-57%) against eight of the 14 pathogens. The whole cell and extracellular extracts of LAB and yeast strains, with the exception of D. rugosa 77a, had either 2,2-diphenyl-1-picryl-hydrazyl and/or hydroxyl radical scavenging activity. In conclusion, all six LAB and four yeast strains are important probiotic candidates that can be further investigated for use as functional starter cultures.
Collapse
Affiliation(s)
- Muiz O Akinyemi
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Omotade R Ogunremi
- Department of Biological Sciences, First Technical University, Ibadan, Oyo State, Nigeria
| | - Rasheed A Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria.
| |
Collapse
|
15
|
Liu Y, Li L, Feng J, Wan B, Tu Q, Cai W, Jin F, Tang G, Rodrigues LR, Zhang X, Yin J, Zhang Y. Modulation of chronic obstructive pulmonary disease progression by antioxidant metabolites from Pediococcus pentosaceus: enhancing gut probiotics abundance and the tryptophan-melatonin pathway. Gut Microbes 2024; 16:2320283. [PMID: 38444395 PMCID: PMC10936690 DOI: 10.1080/19490976.2024.2320283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a condition primarily linked to oxidative stress, poses significant health burdens worldwide. Recent evidence has shed light on the association between the dysbiosis of gut microbiota and COPD, and their metabolites have emerged as potential modulators of disease progression through the intricate gut-lung axis. Here, we demonstrate the efficacy of oral administration of the probiotic Pediococcus pentosaceus SMM914 (SMM914) in delaying the progression of COPD by attenuating pulmonary oxidative stress. Specially, SMM914 induces a notable shift in the gut microbiota toward a community structure characterized by an augmented abundance of probiotics producing short-chain fatty acids and antioxidant metabolisms. Concurrently, SMM914 synthesizes L-tryptophanamide, 5-hydroxy-L-tryptophan, and 3-sulfino-L-alanine, thereby enhancing the tryptophan-melatonin pathway and elevating 6-hydroxymelatonin and hypotaurine in the lung environment. This modulation amplifies the secretion of endogenous anti-inflammatory factors, diminishes macrophage polarization toward the M1 phenotype, and ultimately mitigates the oxidative stress in mice with COPD. The demonstrated efficacy of the probiotic intervention, specifically with SMM914, not only highlights the modulation of intestine microbiota but also emphasizes the consequential impact on the intricate interplay between the gastrointestinal system and respiratory health.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
| | - Longjie Li
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Cai
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Fa Jin
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Guiying Tang
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Lígia R. Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, Central Laboratory, Translational Medicine Research Center, Department of Pathology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, P. R. China
- The Key Laboratory of Clinical and Medical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, P. R. China
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
16
|
Liu B, Zhong X, Liu Z, Guan X, Wang Q, Qi R, Zhou X, Huang J. Probiotic Potential and Safety Assessment of Lactiplantibacillus plantarum cqf-43 and Whole-Genome Sequence Analysis. Int J Mol Sci 2023; 24:17570. [PMID: 38139398 PMCID: PMC10744225 DOI: 10.3390/ijms242417570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
This study reports the whole-genome sequence of Lactiplantibacillus plantarum cqf-43 isolated from healthy sow feces. Based on genomic analysis, we performed a comprehensive safety assessment of strain cqf-43, using both in vitro and in vivo experiments, and explored its probiotic potential. The total genome length measures 3,169,201 bp, boasting a GC content of 44.59%. Through phylogenetic analyses, leveraging both 16S rRNA gene and whole-genome sequences, we confidently categorize strain cqf-43 as a member of Lactiplantibacillus. Genome annotation using Prokka unveiled a total of 3141 genes, encompassing 2990 protein-coding sequences, 71 tRNAs, 16 rRNAs, and 1 tmRNA. Functional annotations derived from COG and KEGG databases highlighted a significant abundance of genes related to metabolism, with a notable emphasis on carbohydrate utilization. The genome also revealed the presence of prophage regions and CRISPR-Cas regions while lacking virulence and toxin genes. Screening for antibiotic resistance genes via the CARD database yielded no detectable transferable resistance genes, effectively eliminating the potential for harmful gene transfer. It is worth highlighting that the virulence factors identified via the VFDB database primarily contribute to bolstering pathogen resilience in hostile environments. This characteristic is particularly advantageous for probiotics. Furthermore, the genome is devoid of menacing genes such as hemolysin, gelatinase, and biogenic amine-producing genes. Our investigation also unveiled the presence of three unannotated secondary metabolite biosynthetic gene clusters, as detected by the online tool antiSMASH, suggesting a great deal of unknown potential for this strain. Rigorous in vitro experiments confirmed tolerance of strain cqf-43 in the intestinal environment, its antimicrobial efficacy, sensitivity to antibiotics, absence of hemolysis and gelatinase activity, and its inability to produce biogenic amines. In addition, a 28-day oral toxicity test showed that the strain cqf-43 did not pose a health hazard in mice, further establishing it as a safe strain.
Collapse
Affiliation(s)
- Baiheng Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xiaoxia Zhong
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Zhiyun Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Xiaofeng Guan
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Renli Qi
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Xiaorong Zhou
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| |
Collapse
|
17
|
López-García E, Benítez-Cabello A, Tronchoni J, Arroyo-López FN. Understanding the transcriptomic response of Lactiplantibacillus pentosus LPG1 during Spanish-style green table olive fermentations. Front Microbiol 2023; 14:1264341. [PMID: 37808291 PMCID: PMC10556671 DOI: 10.3389/fmicb.2023.1264341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Lactiplantibacillus pentosus (Lbp. pentosus) is a species of lactic acid bacteria with a great relevance during the table olive fermentation process, with ability to form non-pathogenic biofilms on olive epidermis. The objective of this work is to deepen into the genetic mechanisms of adaptation of Lpb. pentosus LPG1 during Spanish-style green table olive fermentations, as well as to obtain a better understanding of the mechanisms of adherence of this species to the fruit surface. For this purpose, we have carried out a transcriptomic analysis of the differential gene expression of this bacterium during 60 days of fermentation in both brine and biofilms ecosystems. In brines, it was noticed that a total of 235 genes from Lpb. pentosus LPG1 were differentially expressed during course of fermentation and grouped into 9 clusters according to time-course analysis. Transport and metabolism of carbohydrates and amino acids, energy production, lactic acid and exopolysaccharide synthesis genes increased their expression in the planktonic cells during course of fermentation. On the other hand, expression of genes associated to stress response, bacteriocin synthesis and membrane protein decreased. A total of 127 genes showed significant differential expression between Lpb. pentosus LPG1 planktonic (brine) and sessile (biofilms) cells at the end of fermentation process (60 days). Among the 64 upregulated genes in biofilms, we found genes involved in adhesion (strA), exopolysaccharide production (ywqD, ywqE, and wbnH), cell shape and elongation (MreB), and well as prophage excision. Deeping into the genetic bases of beneficial biofilm formation by Lpb. pentosus strains with probiotic potential will help to turn this fermented vegetable into a carrier of beneficial microorganisms to the final consumers.
Collapse
Affiliation(s)
- Elio López-García
- Department of Food Biotechnology, Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| | - Antonio Benítez-Cabello
- Department of Food Biotechnology, Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| | - Jordi Tronchoni
- Universidad Internacional de Valencia, Comunidad Valencia, Spain
| | - Francisco Noé Arroyo-López
- Department of Food Biotechnology, Instituto de la Grasa (CSIC), Campus Universitario Pablo de Olavide, Seville, Spain
| |
Collapse
|
18
|
Kumar H, Dhalaria R, Guleria S, Cimler R, Sharma R, Siddiqui SA, Valko M, Nepovimova E, Dhanjal DS, Singh R, Kumar V, Pathera AK, Verma N, Kaur T, Manickam S, Alomar SY, Kuča K. Anti-oxidant potential of plants and probiotic spp. in alleviating oxidative stress induced by H 2O 2. Biomed Pharmacother 2023; 165:115022. [PMID: 37336149 DOI: 10.1016/j.biopha.2023.115022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
Cells produce reactive oxygen species (ROS) as a metabolic by-product. ROS molecules trigger oxidative stress as a feedback response that significantly initiates biological processes such as autophagy, apoptosis, and necrosis. Furthermore, extensive research has revealed that hydrogen peroxide (H2O2) is an important ROS entity and plays a crucial role in several physiological processes, including cell differentiation, cell signalling, and apoptosis. However, excessive production of H2O2 has been shown to disrupt biomolecules and cell organelles, leading to an inflammatory response and contributing to the development of health complications such as collagen deposition, aging, liver fibrosis, sepsis, ulcerative colitis, etc. Extracts of different plant species, phytochemicals, and Lactobacillus sp (probiotic) have been reported for their anti-oxidant potential. In this view, the researchers have gained significant interest in exploring the potential plants spp., their phytochemicals, and the potential of Lactobacillus sp. strains that exhibit anti-oxidant properties and health benefits. Thus, the current review focuses on comprehending the information related to the formation of H2O2, the factors influencing it, and their pathophysiology imposed on human health. Moreover, this review also discussed the anti-oxidant potential and role of different extract of plants, Lactobacillus sp. and their fermented products in curbing H2O2‑induced oxidative stress in both in-vitro and in-vivo models via boosting the anti-oxidative activity, inhibiting of important enzyme release and downregulation of cytochrome c, cleaved caspases-3, - 8, and - 9 expression. In particular, this knowledge will assist R&D sections in biopharmaceutical and food industries in developing herbal medicine and probiotics-based or derived food products that can effectively alleviate oxidative stress issues induced by H2O2 generation.
Collapse
Affiliation(s)
- Harsh Kumar
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Rajni Dhalaria
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Shivani Guleria
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Richard Cimler
- Centre of Advanced Technologies, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic
| | - Ruchi Sharma
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Shahida Anusha Siddiqui
- Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Essigberg 3, 94315 Straubing, Germany.
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 81237, Bratislava, Slovakia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Daljeet Singh Dhanjal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi 284003, Uttar Pradesh, India
| | | | - Narinder Verma
- School of Management and Liberal Arts, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Talwinder Kaur
- Department of Microbiology, DAV University, Sarmastpur, Jalandhar, Punjab, 144001, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei
| | - Suliman Y Alomar
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, 18071 Granada, Spain; Biomedical Research Center, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic.
| |
Collapse
|
19
|
Castro-López C, García-Galaz A, García HS, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A. Potential probiotic lactobacilli strains isolated from artisanal Mexican Cocido cheese: evidence-based biosafety and probiotic action-related traits on in vitro tests. Braz J Microbiol 2023; 54:2137-2152. [PMID: 37450104 PMCID: PMC10485211 DOI: 10.1007/s42770-023-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
The biosafety of four potentially probiotic lactobacilli strains, isolated from artisanal Mexican Cocido cheese, was assessed through in vitro tests aimed to determine (1) the antibiotic susceptibility profile by broth microdilution, (2) the transferability of antibiotic resistance determinants by filter-mating, and (3) the phenotypic and genotypic stability during serial batch sub-culture (100-day period) by evaluating physiological and probiotic features and RAPD-PCR fingerprinting. Lactobacilli strains exhibited multidrug-resistance; however, resistance determinants were not transferred in the filter-mating assay. Significant (p < 0.05) differences were observed in bacterial morphology and some functional and technological properties when strains were serially sub-cultured over 50 generations (G50), compared to the initial cultures (G0). Conversely, the strains did not show mucinolytic and hemolytic activities either at G0 or after 100 generations (G100). Genetic polymorphism and genomic template instability on selected strains were detected, which suggest possible evolutionary arrangements that may occur when these bacteria are largely cultured. Our findings suggest that the assessed strains did not raise in vitro biosafety concerns; however, complementary studies are still needed to establish the safe potential applications in humans and animals.
Collapse
Affiliation(s)
- Cecilia Castro-López
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Alfonso García-Galaz
- Laboratorio de Microbiología Polifásica y Bioactividades, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, México
| | - Hugo S García
- Unidad de Investigación y Desarrollo de Alimentos‒UNIDA, Tecnológico Nacional de México, Instituto Tecnológico de Veracruz, Miguel Ángel de Quevedo 2779, Veracruz, Veracruz, México, 91897
| | - Aarón F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Belinda Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México
| | - Adrián Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas 46. Hermosillo, Sonora, Sonora, 83304, México.
| |
Collapse
|
20
|
Kazemi S, Hajimohammadi A, Mirzaei A, Nazifi S. Effects of probiotic and yeast extract supplementation on oxidative stress, inflammatory response, and growth in weaning Saanen kids. Trop Anim Health Prod 2023; 55:282. [PMID: 37530870 DOI: 10.1007/s11250-023-03695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
This study aimed to investigate the effects of probiotic and yeast extract supplementation on the metabolic, immune, and oxidative status of Sannen goat kids during the weaning challenge. Forty goat kids were randomly assigned to four groups: a probiotic group (Pr) (basal diet + mixture of Bacillus subtilis, Bacillus lechiniformis, Streptococcus Thermophilis, and Enterococcus faecium), a yeast cell wall extract group (YC) (basal diet + Saccharomyces cerevisiae), a probiotic and yeast cell wall extract group (Pr + YC) (basal diet + mixture of probiotic and yeast cell wall extract), and a control group (basal diet). Treatments were administered 21 days prior to weaning (80 ± 2 days of life) until 21 days post-weaning except for the control group. Blood samples were collected at four different time points, including 21 days before weaning, 2 days post-weaning (weaning time), 7 days post-weaning, and 21 days post-weaning. Average levels of triiodothyronine, thyroxine, total protein (TP), albumin, globulin, blood urea nitrogen (BUN), total antioxidant capacity (TAC), serum adenosine deaminase (ADA), nitric oxide (NO), ferritin, glucose, cortisol, triglyceride, non-esterified fatty acid (NEFA), Β-hydroxybutyric acid (BHBA), and body weight were measured. The average levels of cortisol tended to be higher in the Pr group in comparison to the control group (P = 0.07) and the Pr + YC group (P = 0.10). NEFA was found to be higher and tended to be higher in the control group compared to the Pr + YC group (P > 0.001) and Pr group (P = 0.10), respectively. Additionally, the BHBA concentration was higher in the control group compared to the Pr group (P > 0.001). No differences were observed in the concentration of other measured parameters among the treatments. The concentration of cortisol tended to be higher (P = 0.10) at the weaning time as compared to the third sampling time. Furthermore, the concentration of TAC was observed to be higher (P > 0.01) at the weaning time in comparison to the third and fourth sampling times. The concentration of NO was higher (P > 0.01) at the third sampling time when compared to the first sampling time. A reduction in NEFA and BHBA levels may suggest an improvement in the metabolic status of the supplemented animals during the weaning challenge. However, supplementation with probiotics and yeast cell wall extract did not appear to have an effect on the oxidative status of the animals. The increase in TAC and NO levels observed during the weaning time may indicate an increase in oxidative stress during this period.
Collapse
Affiliation(s)
- Sajjad Kazemi
- Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, Shiraz, 7144169155, Iran
| | - Ali Hajimohammadi
- Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, Shiraz, 7144169155, Iran.
| | - Ahmadreza Mirzaei
- College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Saeed Nazifi
- Department of Clinical Studies, School of Veterinary Medicine, Shiraz University, Shiraz, 7144169155, Iran
| |
Collapse
|
21
|
Jiang J, Li K, Wang Y, Wu Z, Ma H, Zheng S, Li Z. Screening, Identification and Physiological Characteristics of Lactobacillus rhamnosus M3 (1) against Intestinal Inflammation. Foods 2023; 12:foods12081628. [PMID: 37107423 PMCID: PMC10138118 DOI: 10.3390/foods12081628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The probiotic role of lactic acid bacteria (LAB) in regulating intestinal microbiota to promote human health has been widely reported. However, the types and quantities of probiotics used in practice are still limited. Therefore, isolating and screening LAB with potential probiotic functions from various habitats has become a hot topic. In this study, 104 strains of LAB were isolated from and identified in traditionally fermented vegetables, fresh milk, healthy infant feces, and other environments. The antibacterial properties-resistance to acid, bile salts, and digestive enzymes-and adhesion ability of the strains were determined, and the biological safety of LAB with better performance was studied. Three LAB with good comprehensive performance were obtained. These bacteria had broad-spectrum antibacterial properties and good acid resistance and adhesion ability. They exhibited some tolerance to pig bile salt, pepsin, and trypsin and showed no hemolysis. They were sensitive to the selected antibiotics, which met the required characteristics and safety evaluation criteria for probiotics. An in vitro fermentation experiment and milk fermentation performance test of Lactobacillus rhamnosus (L. rhamnosus) M3 (1) were carried out to study its effect on the intestinal flora and fermentation performance in patients with inflammatory bowel disease (IBD). Studies have shown that this strain can effectively inhibit the growth of harmful microorganisms and produce a classic, pleasant flavor. It has probiotic potential and is expected to be used as a microecological agent to regulate intestinal flora and promote intestinal health. It can also be used as an auxiliary starter to enhance the probiotic value of fermented milk.
Collapse
Affiliation(s)
- Jiayan Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zhongqin Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Huiqin Ma
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shilin Zheng
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
22
|
Probiotic properties and safety aspect of three antifungal lactic acid bacteria strains isolated from wheat and camel milk. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Synbiotics and Their Antioxidant Properties, Mechanisms, and Benefits on Human and Animal Health: A Narrative Review. Biomolecules 2022; 12:biom12101443. [PMID: 36291652 PMCID: PMC9599591 DOI: 10.3390/biom12101443] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Antioxidants are often associated with a variety of anti-aging compounds that can ensure human and animal health longevity. Foods and diet supplements from animals and plants are the common exogenous sources of antioxidants. However, microbial-based products, including probiotics and their derivatives, have been recognized for their antioxidant properties through numerous studies and clinical trials. While the number of publications on probiotic antioxidant capacities and action mechanisms is expanding, that of synbiotics combining probiotics with prebiotics is still emerging. Here, the antioxidant metabolites and properties of synbiotics, their modes of action, and their different effects on human and animal health are reviewed and discussed. Synbiotics can generate almost unlimited possibilities of antioxidant compounds, which may have superior performance compared to those of their components through additive or complementary effects, and especially by synergistic actions. Either combined with antioxidant prebiotics or not, probiotics can convert these substrates to generate antioxidant compounds with superior activities. Such synbiotic-based new routes for supplying natural antioxidants appear relevant and promising in human and animal health prevention and treatment. A better understanding of various component interactions within synbiotics is key to generating a higher quality, quantity, and bioavailability of antioxidants from these biotic sources.
Collapse
|
24
|
Allergic Inflammation: Effect of Propolis and Its Flavonoids. Molecules 2022; 27:molecules27196694. [PMID: 36235230 PMCID: PMC9570745 DOI: 10.3390/molecules27196694] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The incidence of allergic diseases and their complications are increasing worldwide. Today, people increasingly use natural products, which has been termed a "return to nature". Natural products with healing properties, especially those obtained from plants and bees, have been used in the prevention and treatment of numerous chronic diseases, including allergy and/or inflammation. Propolis is a multi-component resin rich in flavonoids, collected and transformed by honeybees from buds and plant wounds for the construction and adaptation of their nests. This article describes the current views regarding the possible mechanisms and multiple benefits of flavonoids in combating allergy and allergy-related complications. These benefits arise from flavonoid anti-allergic, anti-inflammatory, antioxidative, and wound healing activities and their effects on microbe-immune system interactions in developing host responses to different allergens. Finally, this article presents various aspects of allergy pathobiology and possible molecular approaches in their treatment. Possible mechanisms regarding the antiallergic action of propolis on the microbiota of the digestive and respiratory tracts and skin diseases as a method to selectively remove allergenic molecules by the process of bacterial biotransformation are also reported.
Collapse
|
25
|
Chae SA, Ramakrishnan SR, Kim T, Kim SR, Bang WY, Jeong CR, Yang J, Kim SJ. Anti-inflammatory and anti-pathogenic potential of Lacticaseibacillus rhamnosus IDCC 3201 isolated from feces of breast-fed infants. Microb Pathog 2022; 173:105857. [PMID: 36397614 DOI: 10.1016/j.micpath.2022.105857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
|
26
|
Wang Q, Su Y, Gu Y, Lai C, Ling Z, Yong Q. Valorization of bamboo shoot shell waste for the coproduction of fermentable sugars and xylooligosaccharides. Front Bioeng Biotechnol 2022; 10:1006925. [PMID: 36185456 PMCID: PMC9523113 DOI: 10.3389/fbioe.2022.1006925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
In this work, hydrothermal pretreatment (autohydrolysis) was coupled with endo-xylanase enzymatic hydrolysis for bamboo shoot shell (BSS) to produce glucose and valuable xylooligosaccharides (XOS) rich in xylobiose (X2) and xylotriose (X3). Results showed that the enzymatic hydrolysis efficiency of pretreated BSS residue reached 88.4% with addition of PEG during the hydrolysis process. To enrich the portions of X2–X3 in XOS, endo-xylanase was used to hydrolyze the XOS in the prehydrolysate, which was obtained at the optimum condition (170°C, 50 min). After enzymatic hydrolysis, the yield of XOS reached 25.6%, which contained 76.7% of X2–X3. Moreover, the prehydrolysate contained a low concentration of fermentation inhibitors (formic acid 0.7 g/L, acetic acid 2.6 g/L, furfural 0.7 g/L). Based on mass balance, 32.1 g of glucose and 6.6 g of XOS (containing 5.1 g of X2-X3) could be produced from 100.0 g of BSS by the coupled technology. These results indicate that BSS could be an economical feedstock for the production of glucose and XOS.
Collapse
Affiliation(s)
- Qiyao Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yan Su
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yang Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forestry Genetics and Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, China
- *Correspondence: Qiang Yong,
| |
Collapse
|
27
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
28
|
Anik MI, Mahmud N, Masud AA, Khan MI, Islam MN, Uddin S, Hossain MK. Role of Reactive Oxygen Species in Aging and Age-Related Diseases: A Review. ACS APPLIED BIO MATERIALS 2022; 5:4028-4054. [PMID: 36043942 DOI: 10.1021/acsabm.2c00411] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Research on the role of reactive oxygen species (ROS) in the aging process has advanced significantly over the last two decades. In light of recent findings, ROS takes part in the aging process of cells along with contributing to various physiological signaling pathways. Antioxidants being cells' natural defense mechanism against ROS-mediated alteration, play an imperative role to maintain intracellular ROS homeostasis. Although the complete understanding of the ROS regulated aging process is yet to be fully comprehended, current insights into various sources of cellular ROS and their correlation with the aging process and age-related diseases are portrayed in this review. In addition, results on the effect of antioxidants on ROS homeostasis and the aging process as well as their advances in clinical trials are also discussed in detail. The future perspective in ROS-antioxidant dynamics on antiaging research is also marshaled to provide future directions for ROS-mediated antiaging research fields.
Collapse
Affiliation(s)
- Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Niaz Mahmud
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Md Nurul Islam
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Shihab Uddin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - M Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan
| |
Collapse
|
29
|
Role of a mixed probiotic product, VSL#3, in the prevention and treatment of colorectal cancer. Eur J Pharmacol 2022; 930:175152. [PMID: 35835181 DOI: 10.1016/j.ejphar.2022.175152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/09/2022]
Abstract
Colorectal cancer (CRC) is a multifactorial disease. The incidence of this type of cancer in younger patients has increased in recent years, and more strategies are needed to prevent and delay the progression of CRC. Probiotics play an adjunctive role in the prevention and treatment of CRC and can not only prevent the onset and delay the progression of disease but also reduce the side effects after the application of anti-cancer drugs. The anti-cancer effect of individual probiotics has been extensively studied, and the exact curative effect of various probiotics has been found, but the anti-cancer effect of mixed probiotics is still not well summarized. In this review, we discuss the positive effects of mixed probiotics on CRC and the related mechanisms of action, especially VSL#3 (VSL Pharmaceuticals, Inc., Gaithersburg, MD, USA), thus providing new ideas for the treatment of CRC. Moreover, we suggest the need to search for more therapeutic possibilities, especially via the research and application of synbiotics and postbiotics.
Collapse
|
30
|
Kumar S, Praneet NS, Suchiang K. Lactobacillus brevis MTCC 1750 enhances oxidative stress resistance and lifespan extension with improved physiological and functional capacity in Caenorhabditis elegans via the DAF-16 pathway. Free Radic Res 2022; 56:555-571. [PMID: 36480684 DOI: 10.1080/10715762.2022.2155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Redox imbalance plays a crucial role in the development of age-related diseases, and resistance to oxidative stress is crucial for optimum longevity and healthy aging. Using the wild-type, mutant and transgenic strains, this study explored the antioxidative potential and lifespan extension benefits of different Lactobacillus strains in Caenorhabditis elegans (C. elegans). We observed that Lactobacillus brevis MTCC 1750 could enhance the resistance of C. elegans against juglone induced oxidative stress by reducing its intracellular reactive oxygen species (ROS) accumulation. Also, live L. brevis MTCC 1750 could prolong the worm's lifespan. These effects are dependent on transcription factor DAF-16 evident with significant upregulation of its target gene sod-3. This also explained the significant improvements in different age-associated changes in physiological and mechanical parameters of the worm by L. brevis MTCC 1750. Further investigations revealed that DAF-16 activation and, its enhanced translocation in the nucleus is independent of DAF-2 or JNK pathway. These findings highlighted L. brevis MTCC 1750 as a potent anti-oxidant source for complementing current antioxidant therapeutic strategies. Nonetheless, the findings showed how different signaling events are regulated based on an organism's diet component, and their consequences on the aging process in multiple species.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Nalla Sai Praneet
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | - Kitlangki Suchiang
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| |
Collapse
|
31
|
Anti-Inflammatory Effects of Limosilactobacillus fermentum KGC1601 Isolated from Panax ginseng and Its Probiotic Characteristics. Foods 2022; 11:foods11121707. [PMID: 35741904 PMCID: PMC9223077 DOI: 10.3390/foods11121707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/18/2023] Open
Abstract
We investigated the potential probiotic properties of Limosilactobacillus fermentum KGC1601 isolated from Panax ginseng. Ginseng cultivated in an experimental field of the Korea Ginseng Research Institute was fermented, followed by single colony selection from MRS agar. We performed 16s-rRNA sequencing and whole-genome analysis to identify L. fermentum and evaluate the biosafety parameters of this strain, respectively. We confirmed this strain was susceptible to six antibiotics, as proposed by the European Food Safety Authority, did not produce biogenic amines, and did not exhibit any hemolytic activity. Acid resistance and bile salt tolerance, which are essential properties of a probiotic agent, were investigated. Notably, distinguishing properties of this strain were that it exhibited excellent bile salt tolerance and anti-inflammatory effects. The excellent bile salt tolerance was confirmed by scanning electron microscopy. Through qRT-PCR and ELISA studies, it was revealed that L. fermentum KGC1601 pre-treatment up-regulates anti-inflammatory cytokines and down-regulates pro-inflammatory cytokines in RAW 264.7 cells. Consequently, we suggested that L. fermentum KGC1601 can be safely used as a potential anti-inflammatory functional probiotic agent.
Collapse
|
32
|
Targeting Nrf2 with Probiotics and Postbiotics in the Treatment of Periodontitis. Biomolecules 2022; 12:biom12050729. [PMID: 35625655 PMCID: PMC9139160 DOI: 10.3390/biom12050729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is a destructive disease of the tooth-surrounding tissues. Infection is the etiological cause of the disease, but its extent and severity depend on the immune–inflammatory response of the host. Immune cells use reactive oxygen species to suppress infections, and there is homeostasis between oxidative and antioxidant mechanisms during periodontal health. During periodontitis, however, increased oxidative stress triggers tissue damage, either directly by activating apoptosis and DNA damage or indirectly by activating proteolytic cascades. Periodontal treatment aims to maintain an infection and inflammation-free zone and, in some cases, regenerate lost tissues. Although mechanical disruption of the oral biofilm is an indispensable part of periodontal treatment, adjunctive measures, such as antibiotics or anti-inflammatory medications, are also frequently used, especially in patients with suppressed immune responses. Recent studies have shown that probiotics activate antioxidant mechanisms and can suppress extensive oxidative stress via their ability to activate nuclear factor erythroid 2-related factor 2 (Nrf2). The aim of this narrative review is to describe the essential role of Nrf2 in the maintenance of periodontal health and to propose possible mechanisms to restore the impaired Nrf2 response in periodontitis, with the aid of probiotic and postbiotics.
Collapse
|
33
|
Bifidobacterium animalis ssp. lactis MG741 Reduces Body Weight and Ameliorates Nonalcoholic Fatty Liver Disease via Improving the Gut Permeability and Amelioration of Inflammatory Cytokines. Nutrients 2022; 14:nu14091965. [PMID: 35565930 PMCID: PMC9104482 DOI: 10.3390/nu14091965] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Diet-induced obesity is one of the major causes of the development of metabolic disorders such as insulin resistance and nonalcoholic fatty liver disease (NAFLD). Recently, specific probiotic strains have been found to improve the symptoms of NAFLD. We examined the effects of Bifidobacterium animalis ssp. lactis MG741 (MG741) on NAFLD and weight gain, using a mouse model of high-fat-diet (HFD)-induced obesity. HFD-fed mice were supplemented daily with MG741. After 12 weeks, MG741-administered mice exhibited reduced fat deposition, and serum metabolic alterations, including fasting hyperinsulinemia, were modulated. In addition, MG741 regulated Acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), sterol regulatory element-binding protein 1 (SREBP-1), and carbohydrate-responsive element-binding protein (ChREBP) expression and lipid accumulation in the liver, thereby reducing the hepatic steatosis score. To determine whether the effects of MG741 were related to improvements in gut health, MG741 improved the HFD-induced deterioration in gut permeability by reducing toxic substances and inflammatory cytokine expression, and upregulating tight junctions. These results collectively demonstrate that the oral administration of MG741 could prevent NAFLD and obesity, thereby improving metabolic health.
Collapse
|
34
|
Soheili M, Alinaghipour A, Salami M. Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations. Life Sci 2022; 301:120605. [DOI: 10.1016/j.lfs.2022.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
|
35
|
Javed G, Arshad N, Munir A, Khan S, Rasheed S, Hussain I. Signature probiotic and pharmacological attributes of lactic acid bacteria isolated from human breast milk. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Sabahi S, Homayouni Rad A, Aghebati-Maleki L, Sangtarash N, Ozma MA, Karimi A, Hosseini H, Abbasi A. Postbiotics as the new frontier in food and pharmaceutical research. Crit Rev Food Sci Nutr 2022; 63:8375-8402. [PMID: 35348016 DOI: 10.1080/10408398.2022.2056727] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Food is the essential need of human life and has nutrients that support growth and health. Gastrointestinal tract microbiota involves valuable microorganisms that develop therapeutic effects and are characterized as probiotics. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. The probiotics must maintain their survival against inappropriate lethal conditions of the processing, storage, distribution, preparation, and digestion system so that they can exhibit their most health effects. Conversely, probiotic metabolites (postbiotics) have successfully overcome these unfavorable conditions and may be an appropriate alternative to probiotics. Due to their specific chemical structure, safe profile, long shelf-life, and the fact that they contain various signaling molecules, postbiotics may have anti-inflammatory, immunomodulatory, antihypertensive properties, inhibiting abnormal cell proliferation and antioxidative activities. Consequently, present scientific literature approves that postbiotics can mimic the fundamental and clinical role of probiotics, and due to their unique characteristics, they can be applied in an oral delivery system (pharmaceutical/functional foods), as a preharvest food safety hurdle, to promote the shelf-life of food products and develop novel functional foods or/and for developing health benefits, and therapeutic aims. This review addresses the latest postbiotic applications with regard to pharmaceutical formulations and commercial food-based products. Potential postbiotic applications in the promotion of host health status, prevention of disease, and complementary treatment are also reviewed.
Collapse
Affiliation(s)
- Sahar Sabahi
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Narges Sangtarash
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahdi Asghari Ozma
- Department of Medical Bacteriology and Virology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Karimi
- Department of Food Safety and Hygiene, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
The Combination of In Vitro Assessment of Stress Tolerance Ability, Autoaggregation, and Vitamin B-Producing Ability for New Probiotic Strain Introduction. Microorganisms 2022; 10:microorganisms10020470. [PMID: 35208924 PMCID: PMC8879812 DOI: 10.3390/microorganisms10020470] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
The health benefits of probiotics are beyond doubt. The positive effects of lactobacilli and bifidobacteria on the function of many body systems have been repeatedly proven by various studies. To completely realize the potential of probiotic microorganisms, the strains should be tested by the greatest combination of characteristics that contribute to the wellness of the host. In this work, for the first time, a combined assessment of the probiotic properties and vitamin B-producing potential of various species and strains of bifidobacteria and lactobacilli was carried out. The presence of an additional advantage, such as vitamin-producing ability, can prevent vitamin deficiency both at the level of the consumption of fermented foods, when the enrichment will occur naturally on the spot, and during colonization by these intestinal strains, when synthesis will occur in vivo. To select potential probiotics, the stress tolerance ability of 16 lactic acid bacteria and bifidobacteria strains to low pH values, bile, and proteolytic enzymes, as well as their ability to autoaggregate, were studied under conditions of modeling the gastrointestinal tract in vitro. The ability of the strains to extracellularly accumulate water-soluble B vitamins was evaluated by capillary electrophoresis. Among the tested strains of bifidobacteria, B. adolescentis VKPM AC-1662 is of interest; it was characterized by the greatest stress tolerance ability and the ability to autoaggregate, in addition to the extracellular synthesis of riboflavin and pyridoxine. Among lactic acid bacteria, L. sakei VKPM B-8936 demonstrated the greatest tolerance to low pH, L. plantarum VKPM B–11007 to duodenal conditions, L. acidophilus VKPM B-2213 to pepsin, and L. salivarius VKPM B–2214 to pancreatin. The highest percentage of autoaggregation was observed in L. salivarius VKPM B-2214, which also accumulated the largest amount of pantothenic acid, but it was sensitive to stress conditions. The obtained results could be used to create new products enriched with probiotics and B vitamins.
Collapse
|
38
|
Lin WY, Lin JH, Kuo YW, Chiang PFR, Ho HH. Probiotics and their Metabolites Reduce Oxidative Stress in Middle-Aged Mice. Curr Microbiol 2022; 79:104. [PMID: 35157139 PMCID: PMC8843923 DOI: 10.1007/s00284-022-02783-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/23/2022] [Indexed: 12/11/2022]
Abstract
Aging is an irreversible physiological degradation of living organisms. Accumulated oxidative stress and dysbiosis accelerate aging. Probiotics such as Lactobacillus and Bifidobacterium and their fermented metabolites (postbiotics) have been discovered to exhibit antioxidative activities that regulate oxidative stress and protect cells from oxidative damage. We screened selected Lactobacillus and Bifidobacterium strains and their postbiotics for potential antioxidative activity by using DPPH (2,2-Diphenyl-1-picrylhydrazyl) assay. Strains with their metabolites were selected for mixed formula in experiments involving aging mice. The aged groups presented higher oxidative stress in the brain, liver, heart, and kidney than did young mice. However, treatment with probiotic strains and their postbiotics elevated antioxidative levels, especially in the high-dose probiotics plus postbiotics group. Next-generation sequencing data revealed positive microbiota alterations of Lactobacillus and Bifidobacterium and Akkermansia in the gut. Lactobacillus johnsonii and Akkermansia muciniphila exhibited effective enlargement of relative abundance. Besides, high-dose probiotics and high-dose probiotics plus postbiotics showed significant elevation in serum SCFAs, especially in butyrate. In conclusion, the formula containing Bifidobacterium animalis subsp. infantis BLI-02, Bifidobacterium breve Bv889, Bifidobacterium bifidum VDD088, B. animalis subsp. lactis CP-9, and Lactobacillus plantarum PL-02 and their metabolites may benefit aged people's health.
Collapse
Affiliation(s)
- Wen-Yang Lin
- Department of Research and Design, Bioflag Biotech Co., Ltd., 4F.C2, No.17, Guoji Rd, Xinshi Dist, Tainan City, 744, Taiwan
| | - Jia-Hung Lin
- Department of Research and Design, Bioflag Biotech Co., Ltd., 4F.C2, No.17, Guoji Rd, Xinshi Dist, Tainan City, 744, Taiwan
| | - Yi-Wei Kuo
- Department of Research and Design, Bioflag Biotech Co., Ltd., 4F.C2, No.17, Guoji Rd, Xinshi Dist, Tainan City, 744, Taiwan
| | - Pei-Fang Rose Chiang
- Department of Psychology, Jacobs University Bremen, Campus Ring 1, Vegesack, 28759, Bremen, Germany
| | - Hsieh-Hsun Ho
- Department of Research and Design, Bioflag Biotech Co., Ltd., 4F.C2, No.17, Guoji Rd, Xinshi Dist, Tainan City, 744, Taiwan.
| |
Collapse
|
39
|
Probiotics Alleviate Oxidative Stress in H 2O 2-Exposed Hepatocytes and t-BHP-Induced C57BL/6 Mice. Microorganisms 2022; 10:microorganisms10020234. [PMID: 35208690 PMCID: PMC8877580 DOI: 10.3390/microorganisms10020234] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/29/2023] Open
Abstract
Antioxidants protect against oxidative stress that can damage proteins, the cellular immune system, and DNA. In recent studies, probiotics have been shown to impart a microbial balance to the gastrointestinal tract, demonstrating significant antioxidant capacity. In this study, the probiotic properties and antioxidant mechanism of probiotics were evaluated in HepG2 cells and in an animal model. The characteristics of Lactococcus lactis MG5125, Bifidobacterium bifidum MG731, and Bifidobacterium animalis subsp. lactis MG741, which were used as lactic acid bacteria in this study, were analyzed. The results revealed the safety and stability of these probiotics in the gastrointestinal tract because they did not cause hemolysis and had excellent intestinal adhesion (75–84%). In HepG2 cells, the three probiotics alleviated H2O2-induced oxidative stress by mediating lipid peroxidation and glutathione levels and upregulating antioxidant enzymes, including catalase, superoxide dismutase, and glutathione peroxidase. In the tBHP-induced mouse model, administration of the three probiotics reduced hepatic aspartate transaminase, alanine transaminase, and lipid peroxidation levels. In conclusion, Lc. lactis MG5125, B. bifidum MG731, and B. lactis MG741 showed considerable antioxidant activity both in vitro and in vivo.
Collapse
|
40
|
Berendika M, Domjanić Drozdek S, Odeh D, Oršolić N, Dragičević P, Sokolović M, Garofulić IE, Đikić D, Jurčević IL. Beneficial Effects of Laurel ( Laurus nobilis L.) and Myrtle ( Myrtus communis L.) Extract on Rat Health. Molecules 2022; 27:581. [PMID: 35056895 PMCID: PMC8778765 DOI: 10.3390/molecules27020581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Polyphenols of Laurel and Myrtle exhibit structural diversity, which affects bioavailability, metabolism, and bioactivity. The gut microbiota plays a key role in modulating the production, bioavailability and, thus the biological activities of phenolic metabolites, particularly after the intake of food containing high-molecular-weight polyphenols. The aim of this study was to investigate whether the polyphenolic components of Laurel and Myrtle aqueous extract have beneficial effects on rat health. The growth of lactic acid bacteria (LAB), β-glucuronidase, β-glucosidase, β-galactosidase activity, pH value, body weight change and food efficacy ratio after intragastric treatment of rats with Laurel and Myrtle extract at doses of 50 and 100 mg/kg for two weeks were investigated. The endogenous populations of colonic probiotic bacteria (Lactobacilli and Bifidobacteria) were counted on selective media. According to the obtained data, Laurel extract in the applied dose of 50 and 100 and Myrtle extract (100 mg/kg) positively affects the rats health by increasing the number of colonies of Lactobacilli and Bifidobacteria compared to the control group, causes changes in glycolytic enzymatic activity and minor change in antioxidative tissue activity. In addition, high doses of Laurel increase food efficiency ratio, while Myrtle has the same effect at a lower dose.
Collapse
Affiliation(s)
- Marija Berendika
- Department of Food Quality Control, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (S.D.D.); (I.E.G.); (I.L.J.)
| | - Sandra Domjanić Drozdek
- Department of Food Quality Control, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (S.D.D.); (I.E.G.); (I.L.J.)
| | - Dyana Odeh
- Department of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; (D.O.); (D.Đ.)
| | - Nada Oršolić
- Department of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; (D.O.); (D.Đ.)
| | - Petar Dragičević
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
| | - Marijana Sokolović
- Croatian Veterinary Institute Zagreb, Savska Cesta 143, 10000 Zagreb, Croatia;
| | - Ivona Elez Garofulić
- Department of Food Quality Control, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (S.D.D.); (I.E.G.); (I.L.J.)
| | - Domagoj Đikić
- Department of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia; (D.O.); (D.Đ.)
| | - Irena Landeka Jurčević
- Department of Food Quality Control, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (M.B.); (S.D.D.); (I.E.G.); (I.L.J.)
| |
Collapse
|
41
|
Abstract
Oxidative stress, which can cause imbalance in the body by damaging cells and tissues, arises from the immoderate production of reactive oxygen species (ROS)/reactive nitrogen species (RNS). Therefore, external supplements having antioxidant activity are required for reducing oxidative stress. In our study, we investigated DPPH and ABTS radical scavenging ability, and the inhibition effect on the nitric oxide (NO) production of 15 food-derived bacterial strains in LPS-activated RAW264.7 cells. Among these LAB strains, eight strains with an excellent inhibition effect on NO production were selected through comparisons within the same genera. Moreover, the selected strains, including Leuconostoc mesenteroides MG860, Leu. citreum MG210, Pediococcus acidilactici MG5001, P. pentosaceus MG5078, Weissella cibaria MG5090, Levilactobacillus brevis MG5306, Latilactobacillus curvatus MG5020, and Latilactobacillus sakei MG5048 diminished the inducible nitric oxide synthase (iNOS)/cyclooxygenase-2 (COX-2) expression. In addition, the stability and adhesion ability of the eight LAB strains in the gastrointestinal tract were determined. In conclusion, the selected strains have potential as new probiotics with antioxidant effects.
Collapse
|
42
|
Srikham K, Daengprok W, Niamsup P, Thirabunyanon M. Characterization of Streptococcus salivarius as New Probiotics Derived From Human Breast Milk and Their Potential on Proliferative Inhibition of Liver and Breast Cancer Cells and Antioxidant Activity. Front Microbiol 2022; 12:797445. [PMID: 34975821 PMCID: PMC8714912 DOI: 10.3389/fmicb.2021.797445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Breast milk is well known as the abundant source of beneficial bacteria. A new alternative source of human probiotic origin from breast milk is in demand and currently of interest for both the functional food industry and biopharmaceuticals. The aim in this study was to investigate the anticancer and antioxidant efficacies of the new potential probiotics isolated from human breast milk. Three strains of lactic acid bacteria (LAB) have shown their potential probiotic criteria including antimicrobial activity, non-hemolytic property, and survival in acid and bile salt conditions. These strains showed high abilities on cell surface hydrophobicity, auto-aggregation, and co-aggregation. The genera identification by 16S rRNA sequencing and comparison revealed that they were Streptococcus salivarius BP8, S. salivarius BP156, and S. salivarius BP160. The inhibition of liver cancer cells (HepG2) and breast cancer cells (MCF-7) proliferation by these probiotic strains using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 44.83–59.65 and 29.85–37.16%, respectively. The probiotic action mode was inducted via apoptotic mechanisms since they stimulate the liver and breast cancer cell death through DNA fragmentation and positive morphological changes by acridine orange (AO) and propidium iodide (PI) staining. The antioxidant activity of these probiotics in the form of intact cells, cell free supernatant (CFS), and heat-killed cells was evaluated by a 2,2–diphenyl–1–picrylhydrazyl (DPPH) assay, resulting in the scavenging activity rates of 16.93–25.43, 15.47–28.03, and 13.67–23.0%, respectively. These S. salivarius probiotic strains protected the L929 mouse fibroblasts against oxidative stress with very high survival rates at 94.04–97.77%, which was significantly higher (P < 0.05) than L-ascorbic acid at 75.89–78.67% in the control groups. The results indicated that S. salivarius BP8 and S. salivarius BP160 probiotic strains could be applied as functional foods or new alternative bioprophylactics for treating liver and breast cancers.
Collapse
Affiliation(s)
- Kantapich Srikham
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand
| | - Wichittra Daengprok
- Program in Food Science and Technology, Faculty of Engineering and Agro Industry, Maejo University, Chiang Mai, Thailand
| | - Piyanuch Niamsup
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand
| | - Mongkol Thirabunyanon
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand
| |
Collapse
|
43
|
Jung JI, Kim YG, Kang CH, Imm JY. Effects of Lactobacillus curvatus MG5246 on inflammatory markers in Porphyromonas gingivalis lipopolysaccharide-sensitized human gingival fibroblasts and periodontitis rat model. Food Sci Biotechnol 2022; 31:111-120. [PMID: 35059235 PMCID: PMC8733125 DOI: 10.1007/s10068-021-01009-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022] Open
Abstract
This study investigated the effects of Lactobacillus curvatus MG5246 on periodontitis inflammation. Cell-free supernatants (CFS) prepared from L. curvatus MG5246 decreased prostaglandin E2 production and cyclooxygenase-2 gene expression by 60% and 78% in Porphyromonas gingivalis-lipopolysaccharide stimulated human gingival fibroblasts at 400 μg/mL. Gene expressions of tumor necrosis factor-α, interleukin-6, matrix metalloproteinases, and chemokines were significantly downregulated by CFS treatment (p < 0.05). L. curvatus MG5246 (2 × 108 CFU/day, 8 weeks) administration significantly improved alveolar bone loss in the ligature-induced periodontitis rat model. Elevated mRNA expression of the receptor activator of nuclear factor-κB ligand/osteoprotegerin ratio in the gingival tissue was significantly decreased by L. curvatus MG5246 administration (p < 0.05). Moreover, L. curvatus MG5246 showed sufficient tolerance in simulated gastrointestinal conditions (gastric tolerance: 89.48%, intestinal tolerance: 98.62%) and did not show antibiotic resistance and hemolytic activity. Therefore, L. curvatus MG5246 has the potential as novel oral probiotics.
Collapse
Affiliation(s)
- Jae-In Jung
- Kookmin University, Seoul, Republic of Korea
| | - Yong Gyeong Kim
- Kookmin University, Seoul, Republic of Korea
- Mediogen, Co., Ltd., Jecheon, 27159 Korea
| | - Chang-Ho Kang
- Kookmin University, Seoul, Republic of Korea
- Mediogen, Co., Ltd., Jecheon, 27159 Korea
| | | |
Collapse
|
44
|
Su Y, Fang L, Wang P, Lai C, Huang C, Ling Z, Sun S, Yong Q. Efficient production of xylooligosaccharides rich in xylobiose and xylotriose from poplar by hydrothermal pretreatment coupled with post-enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2021; 342:125955. [PMID: 34547709 DOI: 10.1016/j.biortech.2021.125955] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
A promising approach for production of value-added xylooligosaccharides (XOS) from poplar was developed by combining hydrothermal pretreatment and endo-xylanase post-hydrolysis. Results showed that the 35.4% XOS (DP 2-6) and 17.6% low DP xylans (DP > 6) were obtained at the identified optimal condition (170 °C, 50 min) for hydrothermal pretreatment. Structural features of low DP xylans generated during the hydrothermal pretreatment were examined, revealing that low DP xylans are mainly comprised of 4-O-methylglucuronic xylan and are involved in lignin carbohydrate complexes. Moreover, higher pretreatment intensity promoted the cleavage of side-chain substituents including arabinose and glucuronic acid groups. The subsequent endo-xylanase hydrolysis of the pretreatment liquor hydrolyzed low DP xylans, contributing to a significant improvement in xylobiose and xylotriose proportions. This combined strategy resulted in a XOS with conversion yield of 44.6% containing 78.7% xylobiose and xylotriose starting from the initial xylan in raw poplar.
Collapse
Affiliation(s)
- Yan Su
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Lingyan Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Peng Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shaolong Sun
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China.
| |
Collapse
|
45
|
Anti-Oxidative and Anti-Inflammatory Activities of Astragalus membranaceus Fermented by Lactiplantibacillus plantarum on LPS-Induced RAW 264.7 Cells. FERMENTATION 2021. [DOI: 10.3390/fermentation7040252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Astragalus membranaceus (AM) has been used for anti-oxidative, anti-inflammatory, anti-cancer, and immunomodulatory activities. In this study, we confirmed that the anti-oxidative and anti-inflammatory effects of AM were enhanced after it was fermented by Lactiplantibacillus plantarum. The anti-oxidative effect was measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical levels, total phenolic contents (TPC), reducing power, and H2O2 levels. AM-LP MG5145 and MG5276 showed higher free radical scavenging activity than AM-NF (51.22%). In addition, AM-LP MG5145 and MG5276 showed higher TPC (49.11 mg GAE/mL), reducing power (OD700 = 0.37), and H2O2 (1.71 µM) than AM-NF. The calycosin contents determined to AM-NF (17.24 ng/mL), AM-LP MG5145 (139.94 ng/mL), and MG5276 (351.01 ng/mL) using UPLC-ESI-MS/MS. Anti-inflammatory effects were analyzed by investigating the inhibitory effects of fermented AM on cytotoxicity, NO production, and mRNA expression of COX-2, iNOS, NF-κB, and TNF-α in LPS-induced RAW 264.7 cells. AM-LP MG5145 and MG5276 showed no cytotoxicity. AM-LP MG5145 (50.86%) and MG5276 (51.66%) inhibited NO production in LPS-induced RAW 264.7 cells. Moreover, AM-LP MG5145 and MG5276 downregulated macrophage iNOS, COX2, TNF-α, and NF-κB expression. In conclusion, A. membranaceus fermented by L. plantarum MG5145 and MG5276 can be used in cosmetics and health foods as natural antioxidant compounds.
Collapse
|
46
|
Arun KB, Madhavan A, Sindhu R, Emmanual S, Binod P, Pugazhendhi A, Sirohi R, Reshmy R, Awasthi MK, Gnansounou E, Pandey A. Probiotics and gut microbiome - Prospects and challenges in remediating heavy metal toxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126676. [PMID: 34329091 DOI: 10.1016/j.jhazmat.2021.126676] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 05/26/2023]
Abstract
The gut microbiome, often referred to as "super organ", comprises up to a hundred trillion microorganisms, and the species diversity may vary from person to person. They perform a decisive role in diverse biological functions related to metabolism, immunity and neurological responses. However, the microbiome is sensitive to environmental pollutants, especially heavy metals. There is continuous interaction between heavy metals and the microbiome. Heavy metal exposure retards the growth and changes the structure of the phyla involved in the gut microbiome. Meanwhile, the gut microbiome tries to detoxify the heavy metals by altering the physiological conditions, intestinal permeability, enhancing enzymes for metabolizing heavy metals. This review summarizes the effect of heavy metals in altering the gut microbiome, the mechanism by which gut microbiota detoxifies heavy metals, diseases developed due to heavy metal-induced dysbiosis of the gut microbiome, and the usage of probiotics along with advancements in developing improved recombinant probiotic strains for the remediation of heavy metal toxicity.
Collapse
Affiliation(s)
- K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, Kerala, India
| | - Shibitha Emmanual
- Department of Zoology, St. Joseph's College, Thrissur 680121, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan ROC
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi 712100, China
| | - Edgard Gnansounou
- Ecole Polytechnique Federale de Lausanne, ENAC GR-GN, CH-1015 Lausanne, Switzerland
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR, Indian Institute for Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India.
| |
Collapse
|
47
|
Akpinar A, Yerlikaya O. Some potential beneficial properties of
Lacticaseibacillus paracasei
subsp.
paracasei
and
Leuconostoc mesenteroides
strains originating from raw milk and kefir grains. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Asli Akpinar
- Faculty of Engineering Department of Food Engineering Manisa Celal Bayar University Manisa Turkey
| | - Oktay Yerlikaya
- Faculty of Agriculture Department of Dairy Technology Ege University Izmir Turkey
| |
Collapse
|
48
|
Vitheejongjaroen P, Kanthawang P, Loison F, Jaisin Y, Pachekrepapol U, Taweechotipatr M. Antioxidant activity of Bifidobacterium animalis MSMC83 and its application in set-style probiotic yoghurt. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
49
|
Lee H, Kim K, Oh C, Park CH, Aliya S, Kim HS, Bajpai VK, Huh YS. Antioxidant and anti-aging potential of a peptide formulation (Gal 2-Pep) conjugated with gallic acid. RSC Adv 2021; 11:29407-29415. [PMID: 35479554 PMCID: PMC9040627 DOI: 10.1039/d1ra03421a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022] Open
Abstract
Skin is highly vulnerable to premature aging due to external stress, therefore, in this study, a peptide formulation, (galloyl)2-KTPPTTP (Gal2-Pep) was synthesized by combining TPPTTP peptide, and gallic acid (GA). All peptides were synthesized on 2-chlorotrityl chloride resin using solid-phase peptide synthesis (SPPS), and analyzed on an electrospray ionization (ESI)/quadrupole-time-of-flight (Q-TOF) tandem mass spectroscopy (MS) system. Initially, Gal2-Pep showed no toxicity below the concentration 100 μM with cell survival rate of 88% for keratinocytes and fibroblasts. The reactive oxygen species (ROS) scavenging activity of Gal2-Pep was more stable compared to GA alone; and after four weeks at room temperature, its ROS scavenging activity remained higher than 50%. Moreover, the peptide formulation, Gal2-Pep also exhibited elastase inhibitory effect in CCD-1064Sk fibroblast cells. Based on the results of RT-qPCR, it was proved in this study that Gal2-Pep increased the expression of PGC-1α to prevent oxidative stress, and validated its potential as an anti-aging agent through increasing the expression of type I collagen and by decreasing the expression of matrix metalloproteinase-1 (MMP1). The findings obtained reinforce the suggestion that the peptide formulation synthesized in this study could be used as a natural antioxidant and anti-aging agent for its cosmetic applications.
Collapse
Affiliation(s)
- Hoomin Lee
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University Incheon 22212 Republic of Korea
- Department of Biosystems and Bioengineering, Inha University Incheon 22212 Republic of Korea
| | - Kwanwoo Kim
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University Incheon 22212 Republic of Korea
- Department of Biosystems and Bioengineering, Inha University Incheon 22212 Republic of Korea
| | - Cheolwoo Oh
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University Incheon 22212 Republic of Korea
- Department of Biosystems and Bioengineering, Inha University Incheon 22212 Republic of Korea
| | - Chi-Hu Park
- Natural Bioactive & Anticancer Research Institute, YEPBio Co., Ltd. 282 Hagui-ro Anyang-city Gyeonggi-do Republic of Korea
| | - Sheik Aliya
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University Incheon 22212 Republic of Korea
- Department of Biosystems and Bioengineering, Inha University Incheon 22212 Republic of Korea
| | - Hyoung-Shik Kim
- Natural Bioactive & Anticancer Research Institute, YEPBio Co., Ltd. 282 Hagui-ro Anyang-city Gyeonggi-do Republic of Korea
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University 30 Pildong-ro 1-gil Seoul 04620 Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University Incheon 22212 Republic of Korea
- Department of Biosystems and Bioengineering, Inha University Incheon 22212 Republic of Korea
| |
Collapse
|
50
|
The Antioxidant, Anti-Diabetic, and Anti-Adipogenesis Potential and Probiotic Properties of Lactic Acid Bacteria Isolated from Human and Fermented Foods. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, lactic acid bacteria (LAB) strains derived from human and fermented food sources were examined to identify their properties related to obesity, as well as establish their safety and stability as probiotics. LAB (Lacticaseibacillus rhamnosus MG4502, Lactobacillus gasseri MG4524, Limosilactobacillus reuteri MG5149, and Weissella cibaria MG5285) exhibited antioxidant activity through DPPH (>26.1%) and ABTS (>40.1%) radical scavenging assays and α-glucosidase inhibitory activities (>60.3%), respectively. The LAB strains promoted anti-adipogenesis by reducing lipid accumulation in 3T3-L1 cells by Oil Red O staining (>70.3%). In addition, we found that these LAB strains were resistant to simulated gastric and intestinal fluids (pH 3, 4, 7, and 8) and showed potential for health promotion, based on hemolysis, cell adhesion, antibiotic susceptibility, and enzyme production. Thus, LAB may be used as probiotic ingredients with beneficial effects.
Collapse
|