1
|
Yao Y, Xu T, Li X, Shi X, Wu H, Zhang Z, Xu S. Selenoprotein S maintains intestinal homeostasis in ulcerative colitis by inhibiting necroptosis of colonic epithelial cells through modulation of macrophage polarization. Theranostics 2024; 14:5903-5925. [PMID: 39346531 PMCID: PMC11426251 DOI: 10.7150/thno.97005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
Rationale: Macrophage polarization plays an important role in the inflammatory regulation of ulcerative colitis (UC). In this context, necroptosis is a type of cell death that regulates intestinal inflammation, and selenoprotein S (SelS) is a selenoprotein expressed in intestinal epithelial cells and macrophages that prevents intestinal inflammation. However, the underlying mechanisms of SelS in both cell types in regulating UC inflammatory responses remain unclear. Therefore, the direct effect of SelS deficiency on necroptosis in colonic epithelial cells (CECs) was investigated. In addition, whether SelS knockdown exacerbated intestinal inflammation by modulating macrophage polarization to promote necroptosis in CECs was assessed. Methods: The UC model of SelS knockdown mice was established with 3.5% sodium dextran sulfate, and clinical indicators and colon injury were evaluated in the mice. Moreover, SelS knockdown macrophages and CECs cultured alone/cocultured were treated with IL-1β. The M1/M2 polarization, NF-κB/NLRP3 signaling pathway, oxidative stress, necroptosis, inflammatory cytokine, and tight junction indicators were analyzed. In addition, co-immunoprecipitation, liquid chromatography-mass spectrometry, laser confocal analysis, and molecular docking were performed to identify the interacting proteins of SelS. The GEO database was used to assess the correlation of SelS and its target proteins with macrophage polarization. The intervention effect of four selenium supplements on UC was also explored. Results: Ubiquitin A-52 residue ribosomal protein fusion product 1 (Uba52) was identified as a potential interacting protein of SelS and SelS, Uba52, and yes-associated protein (YAP) was associated with macrophage polarization in the colon tissue of patients with UC. SelS deficiency in CECs directly induced reactive oxygen species (ROS) production, necroptosis, cytokine release, and tight junction disruption. SelS deficiency in macrophages inhibited YAP ubiquitination degradation by targeting Uba52, promoted M1 polarization, and activated the NF-κB/NLRP3 signaling pathway, thereby exacerbating ROS-triggered cascade damage in CECs. Finally, exogenous selenium supplementation could effectively alleviate colon injury in UC. Conclusion: SelS is required for maintaining intestinal homeostasis and that its deletion enhances necroptosis in CECs, which is further exacerbated by promoting M1 macrophage polarization, and triggers more severe barrier dysfunction and inflammatory responses in UC.
Collapse
Affiliation(s)
- Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| |
Collapse
|
2
|
Ni X, Lu Y, Li M, Liu Y, Zhang M, Sun F, Dong S, Zhao L. Application of Se-Met to CdTe QDs significantly reduces toxicity by modulating redox balance and inhibiting apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115614. [PMID: 37890249 DOI: 10.1016/j.ecoenv.2023.115614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Cadmium tellurium quantum dots (CdTe QDs) as one of the most widely used QDs have been reported the toxicity and biosafety in recent years, little work has been done to reduce their toxicity however. Based on the mechanisms of toxicity of CdTe QDs on liver target organs such as oxidative stress and apoptosis previously reported by other researchers, we investigated the mechanism of action of trace element selenium (Se) to mitigate the hepatotoxicity of CdTe QDs. The experimental results showed that Se-Met at 40-140 μg L-1 could enhance the function of intracellular antioxidant defense system and the molecular structure of related antioxidant enzymes by reduce the production of ROS by 45%, protecting the activity of antioxidants and up-regulating the expression of selenoproteins with antioxidant functions, Gpx1 increase 225% and Gpx4 upregulated 47%. In addition, Se-Met could alleviate CdTe QDs-induced apoptosis by regulating two apoptosis-inducing factors, as intracellular caspase 3/9 expression levels were reduced by 70% and 87%, decreased Ca2+ concentration, and increased mitochondrial membrane potential measurements. Overall, this study indicates that Se-Met has a significant protective effect on the hepatotoxicity of CdTe QDs. Se-Met can be applied to the preparation of CdTe QDs to inhibit its toxicity and break the application limitation.
Collapse
Affiliation(s)
- Xinyu Ni
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Yudie Lu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Meiyu Li
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Yue Liu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China
| | - Miao Zhang
- College of Chemistry & Environmental Science, Hebei University, Baoding, Hebei 071002, PR China
| | - Fuqiang Sun
- Physical and Chemical Laboratory, Baoding Center for Disease Control and Prevention, Baoding, Hebei 071000, PR China
| | - Sijun Dong
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China.
| | - Lining Zhao
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, PR China.
| |
Collapse
|
3
|
Mejia Diaz LF, Karasinski J, Wrobel K, Corrales Escobosa AR, Yanez Barrientos E, Halicz L, Bulska E, Wrobel K. Fractionation of selenium isotopes during biofortification of Saccharomyces cerevisiae and the influence of metabolic labeling with 15N. J Biol Inorg Chem 2023; 28:655-667. [PMID: 37646892 DOI: 10.1007/s00775-023-02016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/08/2023] [Indexed: 09/01/2023]
Abstract
Isotope fractionation of metals/metalloids in biological systems is an emerging research area that demands the application of state-of-the-art analytical chemistry tools and provides data of relevance to life sciences. In this work, Se uptake and Se isotope fractionation were measured during the biofortification of baker's yeast (Saccharomyces cerevisiae)-a product widely used in dietary Se supplementation and in cancer prevention. On the other hand, metabolic labeling with 15N is a valuable tool in mass spectrometry-based comparative proteomics. For Se-yeast, such labeling would facilitate the assessment of Se impact on yeast proteome; however, the question arises whether the presence of 15N in the microorganisms affects Se uptake and its isotope fractionation. To address the above-mentioned aspects, extracellularly reduced and cell-incorporated Se fractions were analyzed by hydride generation-multi-collector inductively coupled plasma-mass spectrometry (HG MC ICP-MS). It was found that extracellularly reduced Se was enriched in light isotopes; for cell-incorporated Se, the change was even more pronounced, which provides new evidence of mass fractionation during biological selenite reduction. In the presence of 15N, a weaker preference for light isotopes was observed in both, extracellular and cell-incorporated Se. Furthermore, a significant increase in Se uptake for 15N compared to 14N biomass was found, with good agreement between hydride generation microwave plasma-atomic emission spectrometry (HG MP-AES) and quadrupole ICP-MS results. Biological effects observed for heavy nitrogen suggest 15N-driven alteration at the proteome level, which facilitated Se access to cells with decreased preference for light isotopes.
Collapse
Affiliation(s)
| | - Jakub Karasinski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093, Warsaw, Poland
| | - Kazimierz Wrobel
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000, Guanajuato, Mexico
| | | | | | - Ludwik Halicz
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093, Warsaw, Poland
- Geological Survey of Israel, Y. Leibovitz, 969200, Jerusalem, Israel
| | - Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093, Warsaw, Poland.
| | - Katarzyna Wrobel
- Chemistry Department, University of Guanajuato, L. de Retana 5, 36000, Guanajuato, Mexico.
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093, Warsaw, Poland.
| |
Collapse
|
4
|
|
5
|
Gao Y, Xu Y, Yin J. Selenomethionine Ameliorates Cognitive Impairment, Decreases Hippocampal Oxidative Stress and Attenuates Dysbiosis in D-Galactose-Treated Mice. Antioxidants (Basel) 2022; 11:antiox11010111. [PMID: 35052615 PMCID: PMC8772940 DOI: 10.3390/antiox11010111] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
The prevalence of age-related cognitive impairment is increasing as the proportion of older individuals in the population grows. It is therefore necessary and urgent to find agents to prevent or ameliorate age-related cognitive impairment. Selenomethionine (SeMet) is a natural amino acid occurring in yeast and Brazil nuts. It mitigates cognitive impairment in an Alzheimer’s disease mouse model, however, whether it works on age-related cognitive impairment remains unknown. In this study, SeMet significantly improved the performance of D-galactose-treated mice in the novel object recognition test, passive avoidance task and Morris water maze test. SeMet reversed D-galactose-induced reduction of hippocampal acetylcholine levels, suppression of choline acetyltransferase activity and activation of acetyl cholinesterase. It decreased D-galactose-induced oxidative stress and increased the selenoprotein P levels in the hippocampus. Besides, it attenuated D-galactose-induced dysbiosis by increasing the α-diversity and modulating the taxonomic structure. Correlations between certain taxa and physiological parameters were observed. Our results provide evidence of the effectiveness of SeMet on ameliorating D-galactose-induced cognitive impairment and suggest SeMet has potential to be used in the prevention or adjuvant treatment of age-related cognitive impairment.
Collapse
Affiliation(s)
| | - Yongquan Xu
- Correspondence: (Y.X.); (J.Y.); Tel.: +86-571-8665-0594 (Y.X.); +86-571-8665-0031 (J.Y.)
| | - Junfeng Yin
- Correspondence: (Y.X.); (J.Y.); Tel.: +86-571-8665-0594 (Y.X.); +86-571-8665-0031 (J.Y.)
| |
Collapse
|
6
|
Selenium stimulates the antitumour immunity: Insights to future research. Eur J Cancer 2021; 155:256-267. [PMID: 34392068 DOI: 10.1016/j.ejca.2021.07.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023]
Abstract
Selenium is an essential trace element for regulating immune functions through redox-regulating activity of selenoproteins (e.g. glutathione peroxidase), protecting immune cells from oxidative stress. However, in cancer, selenium has biological bimodal action depending on the concentration. At nutritional low doses, selenium, depending on its form, may act as an antioxidant, protecting against oxidative stress, supporting cell survival and growth, thus, plays a chemo-preventive role; while, at supra-nutritional higher pharmacological doses, selenium acts as pro-oxidant inducing redox signalling and cell death. To date, many studies have been conducted on the benefits of selenium intake in reducing the risk of cancer incidence at the nutritional level, indicating that likely selenium functions as an immunostimulator, i.e. reversing the immunosuppression in tumour microenvironment towards antitumour immunity by activating immune cells (e.g. M1 macrophages and CD8+ T-lymphocytes) and releasing pro-inflammatory cytokines such as interferon-gamma; whereas, fewer studies have explored the effects of supra-nutritional or pharmacological doses of selenium in cancer immunity. This review, thus, systematically analyses the current knowledge about how selenium stimulates the immune system against cancer and lay the groundwork for future research. Such knowledge can be promising to design combinatorial therapies with Selenium-based compounds and other modalities like immunotherapy to lower the adverse effects and increase the efficacy of treatments.
Collapse
|
7
|
Zhao Y, Hasse S, Bourgoin SG. Phosphatidylserine-specific phospholipase A1: A friend or the devil in disguise. Prog Lipid Res 2021; 83:101112. [PMID: 34166709 DOI: 10.1016/j.plipres.2021.101112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Various human tissues and cells express phospholipase A1 member A (PLA1A), including the liver, lung, prostate gland, and immune cells. The enzyme belongs to the pancreatic lipase family. PLA1A specifically hydrolyzes sn-1 fatty acid of phosphatidylserine (PS) or 1-acyl-lysophosphatidylserine (1-acyl-lysoPS). PS externalized by activated cells or apoptotic cells or extracellular vesicles is a potential source of substrate for the production of unsaturated lysoPS species by PLA1A. Maturation and functions of many immune cells, such as T cells, dendritic cells, macrophages, and mast cells, can be regulated by PLA1A and lysoPS. Several lysoPS receptors, including GPR34, GPR174 and P2Y10, have been identified. High serum levels and high PLA1A expression are associated with autoimmune disorders such as Graves' disease and systemic lupus erythematosus. Increased expression of PLA1A is associated with metastatic melanomas. PLA1A may contribute to cardiometabolic disorders through mediating cholesterol transportation and producing lysoPS. Furthermore, PLA1A is necessary for hepatitis C virus assembly and can play a role in the antivirus innate immune response. This review summarizes recent findings on PLA1A expression, lysoPS and lysoPS receptors in autoimmune disorders, cancers, cardiometabolic disorders, antivirus immune responses, as well as regulations of immune cells.
Collapse
Affiliation(s)
- Yang Zhao
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada
| | - Stephan Hasse
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada.
| |
Collapse
|
8
|
Rohn I, Raschke S, Aschner M, Tuck S, Kuehnelt D, Kipp A, Schwerdtle T, Bornhorst J. Treatment of Caenorhabditis elegans with Small Selenium Species Enhances Antioxidant Defense Systems. Mol Nutr Food Res 2019; 63:e1801304. [PMID: 30815971 PMCID: PMC6499701 DOI: 10.1002/mnfr.201801304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Indexed: 01/10/2023]
Abstract
SCOPE Small selenium (Se) species play a key role in Se metabolism and act as dietary sources of the essential trace element. However, they are redox-active and trigger pro- and antioxidant responses. As health outcomes are strongly species-dependent, species-specific characteristics of Se compounds are tested in vivo. METHODS AND RESULTS In the model organism Caenorhabditis elegans (C. elegans), immediate and sustained effects of selenite, selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys) are studied regarding their bioavailability, incorporation into proteins, as well as modulation of the cellular redox status. While all tested Se compounds are bioavailable, only SeMet persistently accumulates and is non-specifically incorporated into proteins. However, the protection toward chemically-induced formation of reactive species is independent of the applied Se compound. Increased thioredoxin reductase (TXNRD) activity and changes in mRNA expression levels of antioxidant proteins indicate the activation of cellular defense mechanisms. However, in txnrd-1 deletion mutants, no protective effects of the Se species are observed anymore, which is also reflected by differential gene expression data. CONCLUSION Se species protect against chemically-induced reactive species formation. The identified immediate and sustained systemic effects of Se species give rise to speculations on possible benefits facing subsequent periods of inadequate Se intake.
Collapse
Affiliation(s)
- Isabelle Rohn
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | - Stefanie Raschke
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
| | | | - Simon Tuck
- Umeå Centre for Molecular Medicine, Umeå University, 90187, Umeå, Sweden
| | - Doris Kuehnelt
- Institute of Chemistry, Analytical Chemistry, NAWI Graz, University of Graz, 8010, Graz, Austria
| | - Anna Kipp
- Institute of Nutrition, Friedrich Schiller University Jena, 07743, Jena, Germany
- TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
- TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Julia Bornhorst
- Institute of Nutritional Science, University of Potsdam, 14558, Nuthetal, Germany
- TraceAge - DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
- Faculty of Mathematics and Natural Sciences, University of Wuppertal, 42119, Wuppertal, Germany
| |
Collapse
|
9
|
The impact of organic vs. inorganic selenium on dairy goat productivity and expression of selected genes in milk somatic cells. J DAIRY RES 2019; 86:48-54. [PMID: 30758279 DOI: 10.1017/s0022029919000037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this study was to determine the effect of diet supplemented with selenized yeast (Se-yeast) on milk yield and milk composition of goats and expression of casein and mammary-gland-immune system genes in milk somatic cells (MSC). Twenty-four dairy goats in their second to fourth lactations were divided into control and experimental groups, balanced according to lactation number and breed (Polish White or Fawn Improved). Morning milk and blood samples were collected four times during lactation (on the 21st, 70th, 120th, 180th day after kidding). The control and experimental groups were fed diets with 0.7 mg inorganic Se/goat/day (sodium selenite) or 0.6 mg organic Se/goat/day (selenized yeast), respectively. Milk, fat and protein yields during lactation as well as average somatic cell count, fat, protein and lactose contents in milk were evaluated. Microelements in milk and blood serum and biochemical parameters in blood serum were determined at the beginning and the end of the experiment. The expression levels of the genes encoding αS1-casein (CSN1S1), αS2-casein (CSN1S2), κ-casein (CSN3), interleukin 8 (IL-8), serum amyloid A3 (SAA3), interleukin 1β (IL-1β), bactenecin 7.5 (BAC7.5), bactenecin 5 (BAC5), β2-defensin (GBD2), hepcidin (HAMP), chemokine 4 (CCL4), tumour necrosis factor α (TNFα), toll-like receptor 2 (TLR2), cathelicidin-7 (MAP34) and cathelicidin-6 (MAP28) were determined in MSC. Milk, fat, and protein yields were higher and somatic cell count (SCC expressed as natural logarithm) was lower in the milk of goats fed organic Se. The Se concentration in milk was twice as high in the organic vs. inorganic treatment groups at the end of the experiment, while there were no differences in studied biochemical parameters between groups. The transcript levels of CSN1S2 and BAC7.5 were higher and IL-8 was lower in MSC of Se-yeast treated groups. Such results may indicate better health status of mammary glands of goats treated with organic Se as well as positive impact of selenized yeast on the goat's milk composition. Differences in the IL-1β and IL-8 transcript levels were also noted between the stages of lactation, with the highest expression at the peak of lactation (day 70), highlighting the metabolic burden at this time. We concluded that the Se-yeast supplementation improved the productivity and health status of goats and could have significant economic impact on farmer's income.
Collapse
|
10
|
Hu T, Liang Y, Zhao G, Wu W, Li H, Guo Y. Selenium Biofortification and Antioxidant Activity in Cordyceps militaris Supplied with Selenate, Selenite, or Selenomethionine. Biol Trace Elem Res 2019; 187:553-561. [PMID: 29855849 DOI: 10.1007/s12011-018-1386-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/09/2018] [Indexed: 12/29/2022]
Abstract
Selenium (Se) is an essential trace element with multiple functions that may help mitigate adverse health conditions. Cordyceps militaris is an edible mushroom with medicinal properties. The experiment was conducted under artificial cultivation, with five Se concentrations (0, 5, 10, 20, and 40 μg g-1) and three forms of Se (selenate, selenite, and selenomethionine). C. militaris can absorb inorganic from the substrate and convert it to organic Se compounds (selenocystine, selenomethionine, and an unknown species) in fruiting bodies. Compared with the control treatment, Se applications (40 μg g-1 selenate and selenite) significantly increased the Se concentration in fruiting bodies by 130.9 and 128.1 μg g-1, respectively. The biofortification with selenate and selenite did not affect fruiting body production, in some case, but did enhance the biological efficiency. Moreover, the abundance of cordycepin and adenosine increased, while the amino acid contents remained relatively stable. Meanwhile, Se-biofortified C. militaris showed effective antioxidant activities. These results suggest that Se-biofortified C. militaris fruiting bodies may enhance human and animal health when it was included as part of a healthy diet or used as Se supplements.
Collapse
Affiliation(s)
- Ting Hu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Guishen Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Wenliang Wu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Huafen Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Zhai Q, Xiao Y, Li P, Tian F, Zhao J, Zhang H, Chen W. Varied doses and chemical forms of selenium supplementation differentially affect mouse intestinal physiology. Food Funct 2019; 10:5398-5412. [DOI: 10.1039/c9fo00278b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Varied doses and chemical forms of selenium supplementation differentially affect mouse intestinal physiology and perturbed the fecal metabolic profiles of and jejunal protein expression in mice.
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Peng Li
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- National Engineering Research Center for Functional Food
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| |
Collapse
|
12
|
Selenised yeast sources differ in their capacity to protect porcine jejunal epithelial cells from cadmium-induced toxicity and oxidised DNA damage. Biometals 2018; 31:845-858. [PMID: 30008026 DOI: 10.1007/s10534-018-0129-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/08/2018] [Indexed: 12/20/2022]
Abstract
In recent years there has been increasing interest in the use of selenised yeast (Se-Y) as an antioxidant feed supplement. Here, three selenised yeast products are differentiated in terms of bioefficiency and the ameliorative effect on Cadmium (Cd) toxicity in porcine epithelial cells. A porcine digestion in vitro model was chosen to more accurately simulate the bioavailability of different Se-Y preparations, allowing a comprehensive understanding of the bio efficiency of each Se-Y compound in the porcine model. To elucidate a possible mechanism of action of selenium a number of bioassays were applied. Levels of Se dependent antioxidant enzymes (glutathione peroxidase and thioredoxin reductase) were evaluated to analyze the ROS neutralizing capacity of each Se-Y compound. The effects of Se-Y sources on Cd-induced DNA damage and apoptosis-associated DNA fragmentation was assessed using comet and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays, respectively. Lesion-specific DNA damage analysis and in vitro DNA repair assay determined the DNA repair capacity of each Se-Y source. The results presented in this study confirm that the ability of different commercially available Se-Y preparations to enhance a range of cellular mechanisms that protect porcine gut epithelial cells from Cd-induced damage is concentration-dependent and illustrates the difference in bioefficiency of different Se-Y compounds.
Collapse
|
13
|
Hu T, Liu L, Chen S, Wu W, Xiang C, Guo Y. Determination of Selenium Species in Cordyceps militaris by High-performance Liquid Chromatography Coupled to Hydride Generation Atomic Fluorescence Spectrometry. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1414827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ting Hu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Liping Liu
- Beijing Key Laboratory of Diagnostic and Trace Ability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Shaozhan Chen
- Beijing Key Laboratory of Diagnostic and Trace Ability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Wenliang Wu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| | - Changguo Xiang
- Key Laboratory of Hunan Ecological Tourism, Jishou University, Zhangjiajie, Hunan, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Limaye A, Yu RC, Chou CC, Liu JR, Cheng KC. Protective and Detoxifying Effects Conferred by Dietary Selenium and Curcumin against AFB1-Mediated Toxicity in Livestock: A Review. Toxins (Basel) 2018; 10:E25. [PMID: 29301315 PMCID: PMC5793112 DOI: 10.3390/toxins10010025] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin B1 (AFB1), among other aflatoxins of the aflatoxin family, is the most carcinogenic and hazardous mycotoxin to animals and human beings with very high potency leading to aflatoxicosis. Selenium is an essential trace mineral possessing powerful antioxidant functions. Selenium is widely reported as an effective antioxidant against aflatoxicosis. By preventing oxidative liver damage, suppressing pro-apoptotic proteins and improving immune status in AFB1 affected animals; selenium confers specific protection against AFB1 toxicity. Meticulous supplementation of animal feed by elemental selenium in the organic and inorganic forms has proven to be effective to ameliorate AFB1 toxicity. Curcumin is another dietary agent of importance in tackling aflatoxicosis. Curcumin is one of the major active ingredients in the tubers of a spice Curcuma longa L., a widely reported antioxidant, anticarcinogenic agent with reported protective potential against aflatoxin-mediated liver damage. Curcumin restricts the aflatoxigenic potential of Aspergillusflavus. Curcumin inhibits cytochrome P450 isoenzymes, particularly CYP2A6 isoform; thereby reducing the formation of AFB1-8, 9-epoxide and other toxic metabolites causing aflatoxicosis. In this review, we have briefly reviewed important aflatoxicosis symptoms among animals. With the main focus on curcumin and selenium, we have reviewed their underlying protective mechanisms in different animals along with their extraction and production methods for feed applications.
Collapse
Affiliation(s)
- Aniket Limaye
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| | - Roch-Chui Yu
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Cheng-Chun Chou
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| | - Je-Ruei Liu
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei 10617, Taiwan.
- Graduate Institute of Food Science Technology, National Taiwan University, Taipei 10617, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
15
|
Rahn J, Lennicke C, Kipp AP, Müller AS, Wessjohann LA, Lichtenfels R, Seliger B. Altered protein expression pattern in colon tissue of mice upon supplementation with distinct selenium compounds. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/16/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jette Rahn
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Claudia Lennicke
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Anna P. Kipp
- German Institute of Human Nutrition; Potsdam-Rehbrücke; Nuthetal Germany
| | - Andreas S. Müller
- Institute of Agricultural and Nutritional Sciences; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
- Delacon Biotechnik GmbH; Steyregg Austria
| | | | - Rudolf Lichtenfels
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Barbara Seliger
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
16
|
Lynch SJ, Horgan KA, White B, Walls D. Selenium Source Impacts Protection of Porcine Jejunal Epithelial Cells from Cadmium-Induced DNA Damage, with Maximum Protection Exhibited with Yeast-Derived Selenium Compounds. Biol Trace Elem Res 2017; 176:311-320. [PMID: 27561293 DOI: 10.1007/s12011-016-0828-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/16/2016] [Indexed: 12/23/2022]
Abstract
Selenium (Se) is found in inorganic and organic forms, both of which are commonly used in animal feed supplements. The aim of this study was to determine the impact of the chemical form of Se on its associated ameliorative effects on cadmium (Cd)-induced DNA damage in a porcine model. At a cellular level, Cd mediates free oxygen radical production leading in particular to DNA damage, with consequential mutagenesis and inhibition of DNA replication. In this study, porcine jejunal epithelial cells (IPEC-J2) were pre-incubated for 48 h with one of Se-yeast (Sel-Plex), selenomethionine (Se-M), sodium selenite (Se-Ni) or sodium selenate (Se-Na). The effects of this supplementation on cell viability and DNA damage following cadmium chloride (CdCl2) exposure were subsequently evaluated. IPEC-J2 cells were cultivated throughout in medium supplemented with porcine serum to generate a superior model that recapitulated the porcine gut epithelium. The results illustrated that Se antioxidant effects were both composition- and dose-dependent as evident from cell viability (Alamar Blue and 5-carboxyfluorescein diacetate acetoxymethyl ester) and DNA damage assays (Comet and TUNEL). Both the Se-yeast and Se-M organic species, when used at the European Food Safety Authority guideline levels, had a protective effect against Cd-induced DNA damage in the IPEC-J2 model system whereas for inorganic Se-Ni and Se-Na sources no protective effects were observed and in fact these were shown to enhance the negative effects of Cd-induced DNA damage. It can be concluded that nutritional supplementation with organoselenium may protect porcine gut integrity from damage induced by Cd.
Collapse
Affiliation(s)
- Sarah J Lynch
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
- National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
| | | | - Blanaid White
- National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Dublin 9, Ireland.
- National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
17
|
Antimutagenic Effects of Selenium-Enriched Polysaccharides from Pyracantha fortuneana through Suppression of Cytochrome P450 1A Subfamily in the Mouse Liver. Molecules 2016; 21:molecules21121731. [PMID: 27999293 PMCID: PMC6272851 DOI: 10.3390/molecules21121731] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/24/2016] [Accepted: 12/02/2016] [Indexed: 11/17/2022] Open
Abstract
Both selenium (Se) and polysaccharides from Pyracantha fortuneana (Maxim.) Li (PFPs) (P. fortuneana) have been reported to possess antioxidative and immuno-protective activities. Whether or not Se-containing polysaccharides (Se-PFPs) have synergistic effect of Se and polysaccharides on enhancing the antioxidant and immune activities remains to be determined. We previously reported that polysaccharides isolated from Se-enriched P. fortuneana (Se-PFPs) possessed hepatoprotective effects. However, it is not clear whether or not they have anti-mutagenic effects. In the present study, we compared and evaluated anti-mutagenic effects of Se-PFPs at three concentrations (1.35, 2.7 and 5.4 g/kg body weight) with those of PFPs, Se alone or Se + PFPs in mice using micronucleus assay in bone marrow and peripheral blood as well as mitomycin C-induced chromosomal aberrations in mouse testicular cells. We also elucidated the underlying mechanism. Our results demonstrated that Se-PFPs inhibited cyclophosphamide (CP)-induced micronucleus formation in both bone marrow and peripheral blood, enhanced the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in mouse liver, and reduced the activity and expression of cytochrome P450 1A (CYP4501A) in mouse liver in a dose-dependent manner. In addition, we found that the anti-mutagenic potential of Se-PFPs was higher than those of PFPs, Se alone or Se + PFPs at the same level. These results suggest that the anti-mutagenic potential of Se-PFPs may be mediated through the inhibition of the activity and expression of CYP4501A. This study indicates that application of Se-PFPs may provide an alternative strategy for cancer therapy by targeting CYP1A family.
Collapse
|
18
|
Wrobel JK, Wolff G, Xiao R, Power RF, Toborek M. Dietary Selenium Supplementation Modulates Growth of Brain Metastatic Tumors and Changes the Expression of Adhesion Molecules in Brain Microvessels. Biol Trace Elem Res 2016; 172:395-407. [PMID: 26706037 PMCID: PMC4930949 DOI: 10.1007/s12011-015-0595-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/14/2015] [Indexed: 12/26/2022]
Abstract
Various dietary agents can modulate tumor invasiveness. The current study explored whether selenoglycoproteins (SeGPs) extracted from selenium-enriched yeast affect tumor cell homing and growth in the brain. Mice were fed diets enriched with specific SeGPs (SeGP40 or SeGP65, 1 mg/kg Se each), glycoproteins (GP40 or GP65, 0.2-0.3 mg/kg Se each) or a control diet (0.2-0.3 mg/kg Se) for 12 weeks. Then, murine Lewis lung carcinoma cells were infused into the brain circulation. Analyses were performed at early (48 h) and late stages (3 weeks) post tumor cell infusion. Imaging of tumor progression in the brain revealed that mice fed SeGP65-enriched diet displayed diminished metastatic tumor growth, fewer extravasating tumor cells and smaller metastatic lesions. While administration of tumor cells resulted in a significant upregulation of adhesion molecules in the early stage of tumor progression, overexpression of VCAM-1 (vascular call adhesion molecule-1) and ALCAM (activated leukocyte cell adhesion molecule) messenger RNA (mRNA) was diminished in SeGP65 supplemented mice. Additionally, mice fed SeGP65 showed decreased expression of acetylated NF-κB p65, 48 h post tumor cell infusion. The results indicate that tumor progression in the brain can be modulated by specific SeGPs. Selenium-containing compounds were more effective than their glycoprotein controls, implicating selenium as a potential negative regulator of metastatic process.
Collapse
Affiliation(s)
- Jagoda K Wrobel
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Gretchen Wolff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rijin Xiao
- Nutrigenomics Research Center, Alltech, Nicholasville, KY, 40356, USA
| | - Ronan F Power
- Nutrigenomics Research Center, Alltech, Nicholasville, KY, 40356, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Jerzy Kukuczka Academy of Physical Education, Katowice, 40-065, Poland.
| |
Collapse
|
19
|
Cerny KL, Garbacik S, Skees C, Burris WR, Matthews JC, Bridges PJ. Gestational form of Selenium in Free-Choice Mineral Mixes Affects Transcriptome Profiles of the Neonatal Calf Testis, Including those of Steroidogenic and Spermatogenic Pathways. Biol Trace Elem Res 2016; 169:56-68. [PMID: 26043916 DOI: 10.1007/s12011-015-0386-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 05/26/2015] [Indexed: 12/29/2022]
Abstract
In areas where soils are deficient in Selenium (Se), dietary supplementation of this trace mineral directly to cattle is recommended. Because Se status affects testosterone synthesis and frequency of sperm abnormalities, and the form of Se supplemented to cows affects tissue-specific gene expression, the objective of this study was to determine whether the form of Se consumed by cows during gestation would affect the expression of mRNAs that regulate steroidogenesis and/or spermatogenesis in the neonatal calf testis. Twenty-four predominantly Angus cows were assigned randomly to have individual, ad libitum, access of a mineral mix containing 35 ppm of Se in free-choice vitamin-mineral mixes as either inorganic (ISe), organic (OSe), or a 50/50 mix of ISe and OSe (MIX), starting 4 months prior to breeding and continuing throughout gestation. Thirteen male calves were born over a 3-month period (ISe, n = 5; OSe, n = 4; MIX, n = 4), castrated within 2 days of birth, and extracted testis RNA subjected to transcriptomal analysis by microarray (Affymetrix Bovine 1.0 ST arrays) and targeted gene expression analysis by real-time reverse-transcription PCR (RT-PCR) of mRNAs encoding proteins known to affect steroidogenesis and/or spermatogenesis. The form of dam Se affected (P < 0.05) the expression of 853 annotated genes, including 17 mRNAs putatively regulating steroidogenesis and/or spermatogenesis. Targeted RT-PCR analysis indicated that the expression of mRNA encoding proteins CYP2S1 (cytochrome P450, family 2, subfamily S, polypeptide 1), HSD17B7 (hydroxysteroid (17β) dehydrogenase 7), SULT1E1 (sulfotransferase family 1E, estrogen preferring, member 1), LDHA (lactate dehydrogenase A), CDK5R1 (cyclin-dependent kinase 5, regulatory subunit 1), and LEP (leptin) was affected (P < 0.05) by form of Se consumed by dams of developing bull calves, while AKR1C4 (aldo-keto reductase family 1, member C4) and CCND2 (cyclin D2) tended (P < 0.09) to be affected. Our results indicate that form of Se fed to dams during gestation affected the transcriptome of the neonatal calf testis. If these profiles are maintained throughout maturation, then the form of Se fed to dams may impact bull fertility and the development of Se form-dependent mineral mixes that target gestational development of the testis are warranted.
Collapse
Affiliation(s)
- K L Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - S Garbacik
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - C Skees
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - W R Burris
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - J C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - P J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
20
|
|
21
|
Fagan S, Owens R, Ward P, Connolly C, Doyle S, Murphy R. Biochemical Comparison of Commercial Selenium Yeast Preparations. Biol Trace Elem Res 2015; 166:245-59. [PMID: 25855372 DOI: 10.1007/s12011-015-0242-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/18/2015] [Indexed: 02/02/2023]
Abstract
The trace mineral selenium (Se) is an essential element for human and animal nutrition. The addition of Se to the diet through dietary supplements or fortified food/feed is increasingly common owing to the often sub-optimal content of standard diets of many countries. Se supplements commercially available include the inorganic mineral salts such as sodium selenite or selenate, and organic forms such as Se-enriched yeast. Today, Se yeast is produced by several manufacturers and has become the most widely used source of Se for human supplementation and is also widely employed in animal nutrition where approval in all species has been granted by regulatory bodies such as the European Food Safety Authority (EFSA). Characterisation and comparison of Se-enriched yeast products has traditionally been made by quantifying total selenomethionine (SeMet) content. A disadvantage of this approach, however, is that it does not consider the effects of Se deposition on subsequent digestive availability. In this study, an assessment was made of the water-soluble extracts of commercially available Se-enriched yeast samples for free, peptide-bound and total water-soluble SeMet. Using LC-MS/MS, a total of 62 Se-containing proteins were identified across four Se yeast products, displaying quantitative/qualitative changes in abundance relative to the certified reference material, SELM-1 (P value <0.05; fold change ≥2). Overall, the study indicates that significant differences exist between Se yeast products in terms of SeMet content, Se-containing protein abundance and associated metabolic pathways.
Collapse
Affiliation(s)
- Sheena Fagan
- Alltech Biotechnology Centre, Dunboyne, County Meath, Ireland,
| | | | | | | | | | | |
Collapse
|
22
|
Kieliszek M, Błażejak S, Bzducha-Wróbel A. Influence of Selenium Content in the Culture Medium on Protein Profile of Yeast Cells Candida utilis ATCC 9950. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:659750. [PMID: 26185592 PMCID: PMC4491405 DOI: 10.1155/2015/659750] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/25/2015] [Accepted: 05/31/2015] [Indexed: 11/17/2022]
Abstract
Selenium is an essential trace element for human health and it has been recognized as a component of several selenoproteins with crucial biological functions. It has been identified as a component of active centers of many enzymes, as well as integral part of biologically active complexes. The aim of the study was to evaluate the protein content and amino acid profile of the protein of fodder yeast Candida utilis ATCC 9950 cultured in media control and experimental enriched selenium. Protein analysis was performed using SDS-PAGE method consisting of polyacrylamide gel electrophoresis in the presence of SDS. The highest contents of soluble protein (49,5 mg/g) were found in yeast cells after 24-hour culture conducted in control (YPD) medium. In the presence of selenium there were determined small amounts of protein content. With increasing time of yeast culture (to 72 hours) the control and experimental media were reported to reduce soluble protein content. In electropherogram proteins from control cultures was observed the presence of 10 protein fractions, but in all the experimental cultures (containing 20, 30, and 40 mg/L selenium) of 14 protein fractions. On the basis of the molecular weights of proteins, it can be concluded that they were among others: selenoprotein 15 kDa and selenoprotein 18 kDa.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Stanisław Błażejak
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Anna Bzducha-Wróbel
- Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| |
Collapse
|
23
|
Surai PF, Fisinin VI. Selenium in pig nutrition and reproduction: boars and semen quality-a review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:730-46. [PMID: 25924964 PMCID: PMC4413004 DOI: 10.5713/ajas.14.0593] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/14/2014] [Accepted: 11/23/2014] [Indexed: 01/01/2023]
Abstract
Selenium plays an important role in boar nutrition via participating in selenoprotein synthesis. It seems likely that selenoproteins are central for antioxidant system regulation in the body. Se-dependent enzyme glutathione peroxidase (GSH-Px) is the most studied selenoprotein in swine production. However, roles of other selenoproteins in boar semen production and maintenance of semen quality also need to be studied. Boar semen is characterised by a high proportion of easily oxidized long chain polyunsaturated fatty acids and requires an effective antioxidant defense. The requirement of swine for selenium varies depending on many environmental and other conditions and, in general, is considered to be 0.15 to 0.30 mg/kg feed. It seems likely that reproducing sows and boars are especially sensitive to Se deficiency, and meeting their requirements is an important challenge for pig nutritionists. In fact, in many countries there are legal limits as to how much Se may be included into the diet and this restricts flexibility in terms of addressing the Se needs of the developing and reproducing swine. The analysis of data of various boar trials with different Se sources indicates that in some cases when background Se levels were low, there were advantages of Se dietary supplementation. It is necessary to take into account that only an optimal Se status of animals is associated with the best antioxidant protection and could have positive effects on boar semen production and its quality. However, in many cases, background Se levels were not determined and therefore, it is difficult to judge if the basic diets were deficient in Se. It can also be suggested that, because of higher efficacy of assimilation from the diet, and possibilities of building Se reserves in the body, organic selenium in the form of selenomethionine (SeMet) provided by a range of products, including Se-Yeast and SeMet preparations is an important source of Se to better meet the needs of modern pig genotypes in commercial conditions of intensive pig production.
Collapse
Affiliation(s)
- Peter F Surai
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, Gödöllo H-2103, Hungary ; Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, Stara Zagora 6000, Bulgaria . ; Department of Veterinary Expertise and Microbiology, Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy, 40021, Ukraine . ; Odessa National Academy of Food Technologies, Odessa 65039, Ukraine
| | - Vladimir I Fisinin
- All-Russian Institute of Poultry Husbandry, Sergiev Posad, 141311, Russia
| |
Collapse
|
24
|
Rusetskaya NY, Borodulin VB. Biological activity of organoselenium compounds in heavy metal intoxication. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2015. [DOI: 10.1134/s1990750815010072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Rusetskaya N, Borodulin V. Biological activity of selenorganic compounds at heavy metal salts intoxication. ACTA ACUST UNITED AC 2015; 61:449-61. [DOI: 10.18097/pbmc20156104449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication
Collapse
Affiliation(s)
- N.Y. Rusetskaya
- Razumovskiy Saratov State Medical University, Saratov, Russia
| | - V.B. Borodulin
- Razumovskiy Saratov State Medical University, Saratov, Russia
| |
Collapse
|
26
|
Bermingham EN, Hesketh JE, Sinclair BR, Koolaard JP, Roy NC. Selenium-enriched foods are more effective at increasing glutathione peroxidase (GPx) activity compared with selenomethionine: a meta-analysis. Nutrients 2014; 6:4002-31. [PMID: 25268836 PMCID: PMC4210904 DOI: 10.3390/nu6104002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/27/2022] Open
Abstract
Selenium may play a beneficial role in multi-factorial illnesses with genetic and environmental linkages via epigenetic regulation in part via glutathione peroxidase (GPx) activity. A meta-analysis was undertaken to quantify the effects of dietary selenium supplementation on the activity of overall GPx activity in different tissues and animal species and to compare the effectiveness of different forms of dietary selenium. GPx activity response was affected by both the dose and form of selenium (p < 0.001). There were differences between tissues on the effects of selenium supplementation on GPx activity (p < 0.001); however, there was no evidence in the data of differences between animal species (p = 0.95). The interactions between dose and tissue, animal species and form were significant (p < 0.001). Tissues particularly sensitive to changes in selenium supply include red blood cells, kidney and muscle. The meta-analysis identified that for animal species selenium-enriched foods were more effective than selenomethionine at increasing GPx activity.
Collapse
Affiliation(s)
- Emma N Bermingham
- Food Nutrition & Health, Food & Bio-based Products, AgResearch Grasslands, Private Bag 11008, Tennent Drive, Palmerston North 4442, New Zealand.
| | - John E Hesketh
- Institute for Cell & Molecular Biosciences, University of Newcastle upon Tyne, Newcastle NE2 4HH, UK.
| | - Bruce R Sinclair
- Food Nutrition & Health, Food & Bio-based Products, AgResearch Grasslands, Private Bag 11008, Tennent Drive, Palmerston North 4442, New Zealand.
| | - John P Koolaard
- Bioinformatics & Statistics AgResearch Grasslands, Private Bag 11008, Tennent Drive, Palmerston North 4442, New Zealand.
| | - Nicole C Roy
- Food Nutrition & Health, Food & Bio-based Products, AgResearch Grasslands, Private Bag 11008, Tennent Drive, Palmerston North 4442, New Zealand.
| |
Collapse
|
27
|
Geillinger KE, Rathmann D, Köhrle J, Fiamoncini J, Daniel H, Kipp AP. Hepatic metabolite profiles in mice with a suboptimal selenium status. J Nutr Biochem 2014; 25:914-22. [DOI: 10.1016/j.jnutbio.2014.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 12/15/2022]
|
28
|
Richie JP, Das A, Calcagnotto AM, Sinha R, Neidig W, Liao J, Lengerich EJ, Berg A, Hartman TJ, Ciccarella A, Baker A, Kaag MG, Goodin S, DiPaola RS, El-Bayoumy K. Comparative effects of two different forms of selenium on oxidative stress biomarkers in healthy men: a randomized clinical trial. Cancer Prev Res (Phila) 2014; 7:796-804. [PMID: 24938534 DOI: 10.1158/1940-6207.capr-14-0042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Epidemiologic and laboratory studies indicate that dietary selenium protects against prostate cancer. Results from clinical trials suggest that selenium-enriched yeast (SY) but not selenomethionine (SeMet) may be effective at reducing prostate cancer risk. Our objectives were to directly compare for the first time the effects of SeMet and SY on prostate cancer relevant biomarkers in men. We performed a randomized double blind, placebo-controlled trial of SY (200 or 285 μg/day) and SeMet (200 μg/day) administered for 9 months in 69 healthy men. Primary endpoints included blood levels of selenium-containing compounds and oxidative stress biomarkers [urine 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-iso-prostaglandin-F2α (8-iso-PGF2α) and blood glutathione (GSH)]. Secondary endpoints included plasma glucose and PSA levels. Compliance was high in all groups (>95%). Plasma selenium levels were increased 93%, 54%, and 86% after 9 months in SeMet and low- and high-dose SY groups, respectively, and returned to baseline levels after a 3-month washout (P < 0.05). Levels of 8-OHdG and 8-iso-PGF2α were decreased 34% and 28%, respectively, after 9 months in the high-dose SY group (P < 0.05). These decreases were greatest in individuals with low baseline plasma levels of selenium (<127 ng/mL). No changes in serum PSA or blood glucose and GSH were observed. Overall, we showed for the first time, reductions in biomarkers of oxidative stress following supplementation with SY but not SeMet in healthy men. These findings suggest that selenium-containing compounds other than SeMet may account for the decrease in oxidative stress.
Collapse
Affiliation(s)
- John P Richie
- Departments of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Arun Das
- Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Ana M Calcagnotto
- Departments of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Raghu Sinha
- Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Wanda Neidig
- Penn State Hershey Cancer Institute Clinical Trials Office, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jiangang Liao
- Departments of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Eugene J Lengerich
- Departments of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Arthur Berg
- Departments of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Terryl J Hartman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Amy Ciccarella
- Center for Clinical Research, Pennsylvania State University, State College, Pennsylvania
| | - Aaron Baker
- Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Matthew G Kaag
- Division of Urology, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Susan Goodin
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Robert S DiPaola
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Karam El-Bayoumy
- Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| |
Collapse
|
29
|
Abstract
Inadequate dietary intake of the essential trace element selenium (Se) is thought to be a risk factor for several chronic diseases associated with oxidative stress and inflammation. Biological actions of Se occur through low-molecular weight metabolites and through selenoproteins. Several key selenoproteins including glutathione peroxidases; selenoproteins M, P, and S; and selenium-binding protein 1 have been detected in the intestine. Interestingly, Se and antioxidant selenoproteins are known to modulate differentiation and function of immune cells and contribute to avoid excessive immune responses. This review discusses the role of Se and intestinal selenoproteins in inflammatory bowel diseases, based on data from human, animal, and in vitro studies. In humans, Se deficiency is commonly observed in patients with Crohn's disease. In animal models of experimental colitis, the Se status was negatively correlated with the severity of the disease. While the cause-effect relationship of these observations remains to be clarified, the beneficial outcome of dietary Se supplementation and an optimization of selenoprotein biosynthesis in murine inflammatory bowel disease models have led to investigations of targets and actions of Se in the gastrointestinal tract. The Se status affects gene expression, signaling pathways, and cellular functions in the small and large intestine as well as the gut microbiome composition. This data, particularly from animal experiments, hold promise that adequate dietary Se supply may counteract chronic intestinal inflammation in humans.
Collapse
|
30
|
|
31
|
Rigby MC, Lemly AD, Gerads R. Fish toxicity testing with selenomethionine spiked feed--what's the real question being asked? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:511-517. [PMID: 24473081 DOI: 10.1039/c3em00612c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The US Environmental Protection Agency and several U.S. states and Canadian provinces are currently developing national water quality criteria for selenium that are based in part on toxicity tests performed by feeding freshwater fish a selenomethionine-spiked diet. Using only selenomethionine to examine the toxicity of selenium is based in part on the limitations of the analytical chemistry methods commonly used in the 1990s and 2000s to speciate selenium in freshwater biota. While these methods provided a good starting point, recent improvements in analytical chemistry methodology have demonstrated that selenium speciation in biota is far more complex than originally thought. Here, we review the recent literature that suggests that there are numerous additional selenium species present in freshwater food chains and that the toxicities of these other selenium species, both individually and in combination, have not been evaluated in freshwater fishes. Evidence from studies on birds and mammals suggests that the other selenium forms differ in their metabolic pathways and toxicity from selenomethionine. Therefore, we conclude that toxicity testing using selenomethionine-spiked feed is only partly addressing the question "what is the toxicity of selenium to freshwater fishes?" and that using the results of these experiments to derive freshwater quality criteria may lead to biased water quality criteria. We also discuss additional studies that are needed in order to derive a more ecologically relevant freshwater quality criterion for selenium.
Collapse
Affiliation(s)
- Mark C Rigby
- Parsons, 10235 South Jordan Gateway, Suite 300, South Jordan, Utah 84095, USA.
| | | | | |
Collapse
|
32
|
Font M, Lizarraga E, Ibáñez E, Plano D, Sanmartín C, Palop JA. Structural variations on antitumour agents derived from bisacylimidoselenocarbamate. A proposal for structure–activity relationships based on the analysis of conformational behaviour. Eur J Med Chem 2013; 66:489-98. [DOI: 10.1016/j.ejmech.2013.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 01/18/2023]
|
33
|
Benner MJ, Settles ML, Murdoch GK, Hardy RW, Robison BD. Sex-specific transcriptional responses of the zebrafish (Danio rerio) brain selenoproteome to acute sodium selenite supplementation. Physiol Genomics 2013; 45:653-66. [PMID: 23737534 DOI: 10.1152/physiolgenomics.00030.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The potential benefits of selenium (Se) supplementation are currently under investigation for prevention of certain cancers and treatment of neurological disorders. However, little is known concerning the response of the brain to increased dietary Se under conditions of Se sufficiency, despite the majority of Se supplementation trials occurring in healthy, Se sufficient subjects. We evaluated the transcriptional response of Se-dependent genes, selenoproteins and the genes necessary for their synthesis (the selenoproteome), in the zebrafish (Danio rerio) brain to supplementation with nutritionally relevant levels of dietary Se (sodium selenite) during conditions of assumed Se sufficiency. We first used a microarray approach to analyze the response of the brain selenoproteome to dietary Se supplementation for 14 days and then assessed the immediacy and time-scale transcriptional response of the brain selenoproteome to 1, 7, and 14 days of Se supplementation by quantitative real-time PCR (qRT-PCR). The microarray approach did not indicate large-scale influences of Se on the brain transcriptome as a whole or the selenoproteome specifically; only one nonselenoproteome gene (si:ch73-44m9.2) was significantly differentially expressed. Our qRT-PCR results, however, indicate that increases of dietary Se cause small, but significant transcriptional changes within the brain selenoproteome, even after only 1 day of supplementation. These responses were dynamic over a short period of supplementation in a manner highly dependent on sex and the duration of Se supplementation. In nutritional intervention studies, it may be necessary to utilize methods such as qRT-PCR, which allow larger sample sizes, for detecting subtle transcriptional changes in the brain.
Collapse
Affiliation(s)
- Maia J Benner
- Department of Biological Sciences, University of Idaho, Moscow, Idaho83844-3051, USA
| | | | | | | | | |
Collapse
|
34
|
Kipp AP, Frombach J, Deubel S, Brigelius-Flohé R. Selenoprotein W as biomarker for the efficacy of selenium compounds to act as source for selenoprotein biosynthesis. Methods Enzymol 2013; 527:87-112. [PMID: 23830627 DOI: 10.1016/b978-0-12-405882-8.00005-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Selenium is an essential trace element and, like all elements, present in many different compounds with unequivocal functions. This fact is only sporadically mentioned when recommended intake or supplementation is indicated just as "selenium." In mammals, selenium is an integral part of selenoproteins as selenocysteine. Selenocysteine is formed from serine at the respective tRNA((ser)sec), a reaction that requires selenophosphate formed from selenide and ATP. Thus, only compounds that can be metabolized into selenide can serve as sources for selenoprotein biosynthesis. We therefore tested the ability of selenium compounds such as sodium selenite, methylseleninic acid (MeSeA), Se-methyl selenocysteine, and selenomethionine to increase the activity, protein, or mRNA levels of commonly used biomarkers of the selenium status, glutathione peroxidase-1 (GPx1) and thioredoxin reductase, and of putatively new biomarkers, selenoprotein W1 (SepW1), selenoprotein H, and selenoprotein 15 in three different cell lines. Selenite and MeSeA were most efficient in increasing all markers tested, whereas the other compounds had only marginal effects. Effects were higher in the noncancerous young adult mouse colon cells than in the cancer cell lines HepG2 and HT-29. At the protein level, SepW1 responded as well as GPx1 and at the mRNA level, even better. Thus, the outcome of selenium treatment strongly depends on the chemical form, the cell type, and the biomarker used for testing efficacy.
Collapse
Affiliation(s)
- Anna Patricia Kipp
- Department Biochemistry of Micronutrients, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | | | | |
Collapse
|