1
|
Sabet HR, Ahmadi M, Akrami M, Motamed M, Keshavarzian O, Abdollahi M, Rezaei M, Akbari H. Effects of flaxseed supplementation on weight loss, lipid profiles, glucose, and high-sensitivity C-reactive protein in patients with coronary artery disease: A systematic review and meta-analysis of randomized controlled trials. Clin Cardiol 2024; 47:e24211. [PMID: 38269632 PMCID: PMC10790321 DOI: 10.1002/clc.24211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
This meta-analysis aimed to evaluate the effects of flaxseed supplementation on weight loss, lipid profiles, high-sensitivity C-reactive protein (hs-CRP), and glucose levels in patients with coronary artery disease (CAD). A systematic search was performed using various online databases, including Scopus, PubMed, Web of Science, EMBASE, and Cochrane Library, to identify relevant randomized controlled trials (RCTs) until June 2023. To evaluate heterogeneity among the selected studies, the Q-test and I2 statistics were employed. Data were combined using either a fixed- or random-effects model and presented as a weighted mean difference (WMD) with a 95% confidence interval (CI). Of the 428 citations, six RCTs were included. The pooled results did not show significant changes in the WMD of lipid factors (high-density lipoprotein cholesterol, triglycerides (TG), low-density lipoprotein cholesterol, and total cholesterol) following flaxseed intake. However, after performing a sensitivity analysis to determine the source of heterogeneity, flaxseed supplementation resulted in a significant decrease in TG levels (WMD = -18.39 mg/dL; 95% CI: -35.02, -1.75). Moreover, no significant differences were observed in either weight or BMI following flaxseed intake. However, the circulating levels of fasting blood glucose (WMD = -8.35 mg/dL; 95% CI: -15.01, -1.69, p = .01) and hs-CRP (WMD = -1.35 mg/L; 95% CI: -1.93, -0.77, p < .01) significantly decreased after the intervention. Flaxseed supplementation was associated with lowering FBS, hs-CRP, and TG levels but did not affect weight loss parameters and other lipid markers in CAD.
Collapse
Affiliation(s)
- Hamid Reza Sabet
- Medical Journalism Department, School of Paramedical SciencesShiraz University of Medical SciencesShirazIran
| | - Mohammad Ahmadi
- Students' Scientific Research CenterTehran University of Medical SciencesTehranIran
| | - Mehdi Akrami
- Cardiovascular DepartmentShiraz University of Medical SciencesShirazIran
| | - Mahsa Motamed
- Department of PsychiatryTehran University of Medical SciencesTehranIran
| | - Omid Keshavarzian
- Shiraz School for MedicineShiraz University of Medical SciencesShirazIran
| | - Mozhan Abdollahi
- Student Research Committee, School of MedicineShiraz University of Medical SciencesShirazIran
| | - Mehdi Rezaei
- Department of Cardiology, Fars‐Iranian Heart AssociationFars Society of Internal MedicineShirazIran
| | - Hamed Akbari
- Department of Clinical Biochemistry, Faculty of MedicineKerman University of Medical SciencesKermanIran
| |
Collapse
|
2
|
Ahmadi AR, Shirani F, Abiri B, Siavash M, Haghighi S, Akbari M. Impact of omega-3 fatty acids supplementation on the gene expression of peroxisome proliferator activated receptors- γ, α and fibroblast growth factor-21 serum levels in patients with various presentation of metabolic conditions: a GRADE assessed systematic review and dose-response meta-analysis of clinical trials. Front Nutr 2023; 10:1202688. [PMID: 38035345 PMCID: PMC10684744 DOI: 10.3389/fnut.2023.1202688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
There is some debate about the effects of omega-3 fatty acids on the regulation of adipose tissue related genes. This systematic review and meta-analysis aimed to evaluate the effects of omega-3 fatty acids supplementation on the gene expression of peroxisome proliferator activated receptors (PPAR-α and PPAR-γ) and serum fibroblast growth factor-21 (FGF-21) levels in adults with different presentation of metabolic conditions. To identify eligible studies, a systematic search was conducted in the Cochrane Library of clinical trials, Medline, Scopus, ISI Web of Science, and Google Scholar up to April 2022. Eligibility criteria included a clinical trial design, omega-3 fatty acids supplementation in adults, and reporting of at least one of the study outcomes. Effect sizes were synthesized using either fixed or random methods based on the level of heterogeneity. Fifteen studies met the inclusion criteria. Omega-3 fatty acids supplementation significantly increased the PPAR-γ (10 studies) and PPAR-α (2 studies) gene expression compared to the control group (WMD: 0.24; 95% CI: 0.12, 0.35; p < 0.001 and 0.09; 95% CI: 0.04, 0.13; p < 0.001, respectively). Serum FGF-21 (8 studies) levels exhibited no significant change following omega-3 fatty acids supplementation (p = 0.542). However, a dose-response relationship emerged between the dose of omega-3 fatty acids and both PPAR-γ gene expression and serum FGF-21 levels. Overall, this study suggests that omega-3 fatty acids supplementation may have positive effects on the regulation of adipose tissue related genes in patients with various presentation of metabolic condition. Further research is needed to validate these findings and ascertain the effectiveness of this supplementation approach in this population. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?, CRD42022338344.
Collapse
Affiliation(s)
| | - Fatemeh Shirani
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnazi Abiri
- Obesity Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansoor Siavash
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sasan Haghighi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Akbari
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Abdel Ghani AE, Al-Saleem MSM, Abdel-Mageed WM, AbouZeid EM, Mahmoud MY, Abdallah RH. UPLC-ESI-MS/MS Profiling and Cytotoxic, Antioxidant, Anti-Inflammatory, Antidiabetic, and Antiobesity Activities of the Non-Polar Fractions of Salvia hispanica L. Aerial Parts. PLANTS (BASEL, SWITZERLAND) 2023; 12:1062. [PMID: 36903922 PMCID: PMC10005563 DOI: 10.3390/plants12051062] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Salvia hispanica L. is an annual herbaceous plant commonly known as "Chia". It has been recommended for therapeutic use because of its use as an excellent source of fatty acids, protein, dietary fibers, antioxidants, and omega-3 fatty acids. A literature survey concerning phytochemical and biological investigations of chia extracts revealed less attention towards the non-polar extracts of S. hispanica L. aerial parts, which motivates us to investigate their phytochemical constituents and biological potentials. The phytochemical investigation of the non-polar fractions of S. hispanica L. aerial parts resulted in the tentative identification of 42 compounds using UPLC-ESI-MS/MS analysis with the isolation of β-sitosterol (1), betulinic acid (2), oleanolic acid (3), and β-sitosterol-3-O-β-D-glucoside (4). GLC-MS analysis of the seeds' oil showed a high concentration of omega-3 fatty acid, with a percentage of 35.64% of the total fatty acid content in the seed oil. The biological results revealed that the dichloromethane fraction showed promising DPPH radical-scavenging activity (IC50 = 14.73 µg/mL), antidiabetic activity with significant inhibition of the α-amylase enzyme (IC50 673.25 μg/mL), and anti-inflammatory activity using in vitro histamine release assay (IC50 61.8 μg/mL). Furthermore, the dichloromethane fraction revealed moderate cytotoxic activity against human lung cancer cell line (A-549), human prostate carcinoma (PC-3), and colon carcinoma (HCT-116) with IC50s 35.9 ± 2.1 μg/mL, 42.4 ± 2.3 μg/mL, and 47.5 ± 1.3 μg/mL, respectively, and antiobesity activity with IC50 59.3 μg/mL, using pancreatic lipase inhibitory assay. In conclusion, this study's findings not only shed light on the phytochemical constituents and biological activities of the non-polar fractions of chia but also should be taken as a basis for the future in vivo and clinical studies on the safety and efficacy of chia and its extracts. Further study should be focused towards the isolation of the active principles of the dichloromethane fraction and studying their efficacy, exact mechanism(s), and safety, which could benefit the pharmaceutical industry and folk medicine practitioners who use this plant to cure diseases.
Collapse
Affiliation(s)
- Afaf E. Abdel Ghani
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Muneera S. M. Al-Saleem
- Department of Chemistry, Science College, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wael M. Abdel-Mageed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Ehsan M. AbouZeid
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Marwa Y. Mahmoud
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Rehab H. Abdallah
- Pharmacognosy Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
4
|
Effects of supplementation with vegetable sources of alpha-linolenic acid (ALA) on inflammatory markers and lipid profile in individuals with chronic kidney disease: A systematic review and meta-analysis. Clin Nutr 2022; 41:1434-1444. [DOI: 10.1016/j.clnu.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/04/2022] [Accepted: 02/16/2022] [Indexed: 11/20/2022]
|
5
|
Therapeutic effects of an aspalathin-rich green rooibos extract, pioglitazone and atorvastatin combination therapy in diabetic db/db mice. PLoS One 2021; 16:e0251069. [PMID: 33983968 PMCID: PMC8118332 DOI: 10.1371/journal.pone.0251069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
Oral therapeutics used to treat type 2 diabetes and cardiovascular disease often fail to prevent the progression of disease and their comorbidities. Rooibos (Aspalathus linearis), an endemic South African plant used as an herbal tea, has demonstrated positive effects on glycemia and hypercholesterolemia. However, the treatment efficacy of rooibos extract in combination with conventional hypoglycemic and hypolipidemic medications on blood glucose and lipid profiles has not been established. This study aimed to investigate the effects of combining an aspalathin-rich green rooibos extract (Afriplex GRT™) with pioglitazone and atorvastatin, on blood glucose and lipid levels in obese diabetic (db/db) mice. Six-week-old male db/db mice and their nondiabetic lean littermate controls (db+) were divided into 8 experimental groups (n = 6/group). Db/db mice were treated daily either with pioglitazone (25 mg/kg), atorvastatin (80 mg/kg) and GRT (100 mg/kg), a combination of either drug with GRT or a combination of GRT-pioglitazone and atorvastatin for 5 weeks. Untreated vehicle controls were given dimethyl sulfoxide (0.1%) and phosphate buffered saline solution. At termination, serum and liver tissue were collected for lipid and gene expression analysis. Treatment with GRT, pioglitazone and atorvastatin combination effectively lowered fasting plasma glucose (FPG) levels in db/db mice (p = 0.02), whilst increasing body weight, liver weight, and reducing retroperitoneal fat weight. Atorvastatin monotherapy was effective at reducing cholesterol (from 4.00 ± 0.12 to 2.93 ± 0.13, p = 0.0003), LDL-C (from 0.58 ± 0.04 to 0.50 ± 0.00, p = 0.04), HDL-C (from 2.86 ± 0.05 to 2.50 ± 0.04, p = 0.0003) and TG (from 2.77 ± 0.50 to 1.48 ± 0.23, p = 0.04), compared to the untreated diabetic control. The hypotriglyceridemic effect of atorvastatin was enhanced when used in combination with both GRT and pioglitazone. The addition of pioglitazone to GRT significantly lowered FPG and TG. In db/db mice, Apoa1 was significantly downregulated in the liver, whilst Pparγ was significantly upregulated compared to their db+ counterparts. GRT monotherapy downregulated Apoa1 expression (p = 0.02). Atorvastatin combined with GRT significantly downregulated mRNA expression of Apoa1 (p = 0.03), whilst upregulating the expression of Pparγ (p = 0.03), Pparα (p = 0.002), Srebp1 (p = 0.002), and Fasn (p = 0.04). The GRT-pioglitazone-atorvastatin combination therapy downregulated Apoa1 (p = 0.006), whilst upregulating Fasn (p = 0.005), Pparα (p = 0.041), and Srebp1 (p = 0.03). Natural products can improve the efficacy of current drugs to prevent diabetes-associated complications. GRT in combination with pioglitazone enhanced the reduction of FPG, whilst the addition of atorvastatin to the combination, significantly lowered triglyceride levels. However, when GRT was used in combination with atorvastatin only cholesterol levels were affected. Although these results confirm both glucose- and lipoprotein-lowering biological effects of GRT in combination with pioglitazone and atorvastatin, increased expression of genes involved in lipogenesis, cholesterol, and fatty acid transport, β-oxidation, and synthesis and storage of fatty acids, may exacerbate the hepatotoxic effects of atorvastatin.
Collapse
|
6
|
Li J, Zhang H, Dong Y, Wang X, Wang G. Omega-3FAs Can Inhibit the Inflammation and Insulin Resistance of Adipose Tissue Caused by HHcy Induced Lipids Profile Changing in Mice. Front Physiol 2021; 12:628122. [PMID: 33643070 PMCID: PMC7907609 DOI: 10.3389/fphys.2021.628122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The adipose Nod-like receptor protein 3 (NLRP3) inflammasome initiates insulin resistance; however, the mechanism of inflammasome activation in adipose tissue remains elusive. In this study, homocysteine (Hcy) was found to participate in insulin resistance via a NLRP3 inflammasome-related process. Hcy-induced activation of NLRP3 inflammasomes were observed in adipose tissue during the generation of insulin resistance in vivo. This animal model suggests that diets high in omega-3 fatty acids alter serum and adipose lipid profiles, and in this way, omega-3 fatty acids may reduce adipose tissue inflammation and attenuate insulin resistance.
Collapse
Affiliation(s)
- Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yongqiang Dong
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ministry of Education, Peking University, Beijing, China
| | - Xian Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Ministry of Education, Peking University, Beijing, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Chen L, Li D, Zhu C, Ma X, Rong Y. Fatty Acids and Flavor Components in the Oil Extracted from Golden Melon Seeds. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Dongna Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Chuchu Zhu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Xia Ma
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Yuzhi Rong
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| |
Collapse
|
8
|
Khadke S, Mandave P, Kuvalekar A, Pandit V, Karandikar M, Mantri N. Synergistic Effect of Omega-3 Fatty Acids and Oral-Hypoglycemic Drug on Lipid Normalization through Modulation of Hepatic Gene Expression in High Fat Diet with Low Streptozotocin-Induced Diabetic Rats. Nutrients 2020; 12:E3652. [PMID: 33261004 PMCID: PMC7760711 DOI: 10.3390/nu12123652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus, which an outcome of impaired insulin action and its secretion, is concomitantly associated with lipid abnormalities. The study was designed to evaluate the combinational effect of omega-3 fatty acids (flax and fish oil) and glibenclamide on abnormal lipid profiles, increased blood glucose, and impaired liver and kidney functions in a high fat diet with low streptozotocin (STZ)-induced diabetic rats, including its probable mechanism of action. The male Wistar rats (n = 48) were distributed into eight groups. All animal groups except the healthy received a high fat diet (HFD) for 90 days. Further, diabetes was developed by low dose STZ (35 mg/kg). Diabetic animals received, omega-3 fatty acids (500 mg/kg), along with glibenclamide (0.25 mg/kg). Both flax and fish oil intervention decreased (p ≤ 0.001) serum triglycerides and very low density lipoprotein and elevated (p ≤ 0.001) high density lipoprotein levels in diabetic rats. Total cholesterol and low-density lipoprotein level was decreased (p ≤ 0.001) in fish oil-treated rats. However, it remained unaffected in the flax oil treatment group. Both flax and fish oil intervention downregulate the expression of fatty acid metabolism genes, transcription factors (sterol regulatory element-binding proteins-1c and nuclear factor-κβ), and their regulatory genes i.e., acetyl-coA carboxylase alpha, fatty acid synthase, and tumor necrosis factors-α. The peroxisome proliferator-activated receptor gamma gene expression was upregulated (p ≤ 0.001) in the fish oil treatment group. Whereas, carnitine palmitoyltransferase 1 and fatty acid binding protein gene expression were upregulated (p ≤ 0.001) in both flax and fish oil intervention group.
Collapse
Affiliation(s)
- Suresh Khadke
- Interactive Research School for Health Affairs, Bharati Vidyapeeth, Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India; (S.K.); (P.M.); (A.K.)
| | - Pallavi Mandave
- Interactive Research School for Health Affairs, Bharati Vidyapeeth, Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India; (S.K.); (P.M.); (A.K.)
| | - Aniket Kuvalekar
- Interactive Research School for Health Affairs, Bharati Vidyapeeth, Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India; (S.K.); (P.M.); (A.K.)
| | - Vijaya Pandit
- Department of Pharmacology, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth, Deemed to be University, Pune-Satara Road, Pune 411043, Maharashtra, India;
| | - Manjiri Karandikar
- Department of Pathology, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth, Deemed to Be University, Pune-Satara Road, Pune 411043, Maharashtra, India;
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
9
|
Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease. Food Chem Toxicol 2020; 143:111558. [PMID: 32640331 PMCID: PMC7335494 DOI: 10.1016/j.fct.2020.111558] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
Prevention and treatment of non-communicable diseases (NCDs), including cardiovascular disease, diabetes, obesity, cancer, Alzheimer's and Parkinson's disease, arthritis, non-alcoholic fatty liver disease and various infectious diseases; lately most notably COVID-19 have been in the front line of research worldwide. Although targeting different organs, these pathologies have common biochemical impairments - redox disparity and, prominently, dysregulation of the inflammatory pathways. Research data have shown that diet components like polyphenols, poly-unsaturated fatty acids (PUFAs), fibres as well as lifestyle (fasting, physical exercise) are important factors influencing signalling pathways with a significant potential to improve metabolic homeostasis and immune cells' functions. In the present manuscript we have reviewed scientific data from recent publications regarding the beneficial cellular and molecular effects induced by dietary plant products, mainly polyphenolic compounds and PUFAs, and summarize the clinical outcomes expected from these types of interventions, in a search for effective long-term approaches to improve the immune system response.
Collapse
|
10
|
The effects of n-3 fatty acids from flaxseed oil on genetic and metabolic profiles in patients with gestational diabetes mellitus: a randomised, double-blind, placebo-controlled trial. Br J Nutr 2020; 123:792-799. [PMID: 31902378 DOI: 10.1017/s0007114519003416] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study was performed to evaluate the effects of n-3 fatty acids from flaxseed oil on genetic and metabolic profiles in patients with gestational diabetes mellitus (GDM). This randomised, double-blind, placebo-controlled clinical trial was performed in sixty women with GDM. Participants were randomly divided into two groups to intake either 2 × 1000 mg/d n-3 fatty acids from flaxseed oil containing 400 mg α-linolenic acid in each capsule (n 30) or placebo (n 30) for 6 weeks. n-3 Fatty acid intake up-regulated PPAR-γ (P < 0·001) and LDL receptor (P = 0·004) and down-regulated gene expression of IL-1 (P = 0·002) and TNF-α (P = 0·001) in peripheral blood mononuclear cells of subjects with GDM. In addition, n-3 fatty acid supplementation reduced fasting plasma glucose (P = 0·001), insulin levels (P = 0·001) and insulin resistance (P < 0·001) and increased insulin sensitivity (P = 0·005) when compared with the placebo. Additionally, n-3 fatty acid supplementation was associated with a decrease in TAG (P < 0·001), VLDL-cholesterol (P < 0·001), total cholesterol (P = 0·01) and total cholesterol:HDL-cholesterol ratio (P = 0·01) when compared with placebo. n-3 Fatty acid administration was also associated with a significant reduction in high-sensitivity C-reactive protein (P = 0·006) and malondialdehyde (P < 0·001), and an increase in total nitrite (P < 0·001) and total glutathione levels (P = 0·006) when compared with the placebo. n-3 Fatty acid supplementation for 6 weeks to women with GDM had beneficial effects on gene expression related to insulin, lipid and inflammation, glycaemic control, lipids, inflammatory markers and oxidative stress.
Collapse
|
11
|
Ambulay JP, Rojas PA, Timoteo OS, Barreto TV, Colarossi A. Effect of the emulsion of Sacha Inchi (Plukenetia huayabambana) oil on oxidative stress and inflammation in rats induced to obesity. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
12
|
Long-term vitamin D and high-dose n-3 fatty acids' supplementation improve markers of cardiometabolic risk in type 2 diabetic patients with CHD. Br J Nutr 2019; 122:423-430. [PMID: 31309919 DOI: 10.1017/s0007114519001132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study was performed to evaluate the effects of vitamin D and n-3 fatty acids' co-supplementation on markers of cardiometabolic risk in diabetic patients with CHD. This randomised, double-blinded, placebo-controlled trial was conducted among sixty-one vitamin D-deficient diabetic patients with CHD. At baseline, the range of serum 25-hydroxyvitamin D levels in study participants was 6·3-19·9 ng/ml. Subjects were randomly assigned into two groups either taking 50 000 IU vitamin D supplements every 2 weeks plus 2× 1000 mg/d n-3 fatty acids from flaxseed oil (n 30) or placebo (n 31) for 6 months. Vitamin D and n-3 fatty acids' co-supplementation significantly reduced mean (P = 0·01) and maximum levels of left carotid intima-media thickness (CIMT) (P = 0·004), and mean (P = 0·02) and maximum levels of right CIMT (P = 0·003) compared with the placebo. In addition, co-supplementation led to a significant reduction in fasting plasma glucose (β -0·40 mmol/l; 95 % CI -0·77, -0·03; P = 0·03), insulin (β -1·66 μIU/ml; 95 % CI -2·43, -0·89; P < 0·001), insulin resistance (β -0·49; 95 % CI -0·72, -0·25; P < 0·001) and LDL-cholesterol (β -0·21 mmol/l; 95 % CI -0·41, -0·01; P = 0·04), and a significant increase in insulin sensitivity (β +0·008; 95 % CI 0·004, 0·01; P = 0·001) and HDL-cholesterol (β +0·09 mmol/l; 95 % CI 0·01, 0·17; P = 0·02) compared with the placebo. Additionally, high-sensitivity C-reactive protein (β -1·56 mg/l; 95 % CI -2·65, -0·48; P = 0·005) was reduced in the supplemented group compared with the placebo group. Overall, vitamin D and n-3 fatty acids' co-supplementation had beneficial effects on markers of cardiometabolic risk.
Collapse
|
13
|
Saleh-Ghadimi S, Kheirouri S, Golmohammadi A, Moludi J, Jafari-Vayghan H, Alizadeh M. Effect of flaxseed oil supplementation on anthropometric and metabolic indices in patients with coronary artery disease: A double-blinded randomized controlled trial. J Cardiovasc Thorac Res 2019; 11:152-160. [PMID: 31384411 PMCID: PMC6669420 DOI: 10.15171/jcvtr.2019.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/29/2019] [Indexed: 01/19/2023] Open
Abstract
Introduction: It has been established that omega 3 fatty acids have cardio-protective effects through modulation of cardiometabolic risk factors via multiple mechanisms. The aim of this study was to investigate the effects of flaxseed oil on anthropometric indices and lipid profile in patients with coronary artery disease (CAD). Methods: A randomized, double-blind, placebo-controlled trial was performed in 44 patients with CAD. The subjects were randomly assigned to receive either 200 ml of 1.5% fat milk supplemented by 5 g of flaxseed oil (containing 2.5 g α-Linolenic acid) as intervention or 200 ml of 1.5% fat milk as placebo group for 10 consecutive weeks. Anthropometric indices and lipid profile were assessed at baseline and post-intervention. Results: The results indicated that supplementation with flaxseed oil had no impact on anthropometric indices. Weight, body mass index, waist circumference and hip circumference decreased statistically significant within groups, but not between groups. At the end of the intervention, diastolic blood pressure (DBP) decreased significantly (P = 0.022) in the intervention group. Moreover, the triglyceride (TG) level decreased significantly in the intervention group from 173.45 (49.09) to 139.33 (34.26) (P < 0.001). Other lipid profile indices including total cholesterol, low density lipoprotein and high density lipoprotein did not differ significantly within and between groups. Conclusion: We observed that supplementation of flaxseed oil improved TG and DBP but had no effect on other lipid profiles and anthropometric indices in patients with CAD.
Collapse
Affiliation(s)
- Sevda Saleh-Ghadimi
- Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Golmohammadi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Moludi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
14
|
Xiang J, Lv Q, Yi F, Song Y, Le L, Jiang B, Xu L, Xiao P. Dietary Supplementation of Vine Tea Ameliorates Glucose and Lipid Metabolic Disorder via Akt Signaling Pathway in Diabetic Rats. Molecules 2019; 24:molecules24101866. [PMID: 31096578 PMCID: PMC6571802 DOI: 10.3390/molecules24101866] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 12/27/2022] Open
Abstract
A traditional Chinese tea with many pharmacological effects, vine tea (VT) is considered a potential dietary supplement to improve type 2 diabetes (T2D). To investigate the effect and mechanism of VT on glucose and lipid metabolic disorders in T2D rats, Wistar rats fed a normal diet served as the normal control, while rats fed a high-fat diet combined with low-dose streptozotocin (STZ)-induced T2D were divided into three groups: The model group (MOD); the positive control group (MET, metformin at 200 mg/kg/d); and the VT-treated group (VT500, allowed to freely drink 500 mg/L VT). After four weeks of intervention, biochemical metrics indicated that VT significantly ameliorated hyperglycemia, hyperlipidemia and hyperinsulinemia in T2D rats. Metabolomics research indicated that VT regulated the levels of metabolites closely related to glucose and lipid metabolism and promoted glycogen synthesis. Furthermore, VT had a significant influence on the expression of key genes involved in the Akt signaling pathway, inhibited gluconeogenesis through the Akt/Foxo1/Pck2 signaling pathway, and reduced fatty acid synthesis via the SREBP1c/Fasn signaling pathways. In conclusion, VT has great potential as a dietary supplement to ameliorate glucose and lipid metabolic disorders via the Akt signaling pathway in T2D rats.
Collapse
Affiliation(s)
- Jiamei Xiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| | - Qiuyue Lv
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Yanjun Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| | - Liang Le
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| | - Baoping Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
15
|
Coppey L, Davidson E, Shevalye H, Obrosov A, Yorek M. Effect of Early and Late Interventions with Dietary Oils on Vascular and Neural Complications in a Type 2 Diabetic Rat Model. J Diabetes Res 2019; 2019:5020465. [PMID: 31485451 PMCID: PMC6702827 DOI: 10.1155/2019/5020465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/28/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023] Open
Abstract
AIMS Determine the effect of dietary oils enriched in different mono- or polyunsaturated fatty acids, i.e., olive oil (18 : 1, oleic acid), safflower oil (18 : 2 n-6, linoleic acid), flaxseed oil (18 : 3 n-3, alpha linolenic acid), evening primrose oil (18 : 3 n-6, gamma linolenic acid), or menhaden oil (20:5/22 : 6 n-3 eicosapentaenoic/docosahexaenoic acids), on vascular and neural complications in high-fat-fed low-dose streptozotocin-treated Sprague-Dawley rats, an animal model for late-stage type 2 diabetes. MATERIALS AND METHODS Rats were fed a high-fat diet (45% kcal as fat primarily derived from lard) for 8 weeks and then treated with a low dose of streptozotocin (30 mg/kg) in order to induce hyperglycemia. After an additional 8 (early intervention) or 20 (late intervention) weeks, the different groups of rats were fed diets with 1/2 of the kcal of fat derived from lard replaced by the different dietary oils. In addition, a control group fed a standard diet (4.25% kcal as fat) and a diabetic group maintained on the high-fat diet were maintained. The treatment period was approximately 16 weeks. The endpoints evaluated included vascular reactivity of epineurial arterioles, motor and sensory nerve conduction velocity, thermal and corneal sensitivity, and innervation of sensory nerves in the cornea and skin. RESULTS Our findings show that menhaden and flaxseed oil provided the greatest benefit for correcting peripheral nerve damage caused by diabetes, whereas enriching the high-fat diet with menhaden oil provided the most benefit to acetylcholine-mediated vascular relaxation of epineurial arterioles of the sciatic nerve. Enriching the diets with fatty acids derived from the other oils provided none to partial improvements. CONCLUSIONS These studies imply that long-chain n-6 and n-3 polyunsaturated fatty acids could be an effective treatment for diabetic peripheral neuropathy with n-3 polyunsaturated fatty acids derived from fish oil being the most effective.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/diet therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/diet therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Angiopathies/diet therapy
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- Diabetic Neuropathies/diet therapy
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/physiopathology
- Diet, High-Fat
- Dietary Fats, Unsaturated/administration & dosage
- Dietary Fats, Unsaturated/pharmacology
- Drug Administration Schedule
- Fatty Liver/metabolism
- Fatty Liver/pathology
- Fatty Liver/physiopathology
- Lipid Metabolism/drug effects
- Male
- Rats
- Rats, Sprague-Dawley
- Sciatic Nerve/drug effects
- Sciatic Nerve/physiopathology
- Streptozocin
- Time Factors
Collapse
Affiliation(s)
- Lawrence Coppey
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Eric Davidson
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Hanna Shevalye
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Alexander Obrosov
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Mark Yorek
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Iowa City Health Care System, Iowa City, IA, USA
- Veterans Affairs Center for the Prevention and Treatment of Visual Loss, Iowa City, IA, USA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
Low-linoleic acid diet and oestrogen enhance the conversion of α-linolenic acid into DHA through modification of conversion enzymes and transcription factors. Br J Nutr 2018; 121:137-145. [DOI: 10.1017/s0007114518003252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractConversion of α-linolenic acid (ALA) into the longer chain n-3 PUFA has been suggested to be affected by the dietary intake of linoleic acid (LA), but the mechanism is not well known. Therefore, the purpose of this study was to evaluate the effect of a low-LA diet with and without oestrogen on the fatty acid conversion enzymes and transcription factors. Rats were fed a modified American Institute of Nutrition-93G diet with 0% n-3 PUFA or ALA, containing low or high amounts of LA for 12 weeks. At 8 weeks, the rats were injected with maize oil with or without 17β-oestradiol-3-benzoate (E) at constant intervals for the remaining 3 weeks. Both the low-LA diet and E significantly increased the hepatic expressions of PPAR-α, fatty acid desaturase (FADS) 2, elongase of very long chain fatty acids 2 (ELOVL2) and ELOVL5 but decreased sterol regulatory element binding protein 1. The low-LA diet, but not E, increased the hepatic expression of FADS1, and E increased the hepatic expression of oestrogen receptor-α and β. The low-LA diet and E had synergic effects on serum and liver levels of DHA and on the hepatic expression of PPAR-α. In conclusion, the low-LA diet and oestrogen increased the conversion of ALA into DHA by upregulating the elongases and desaturases of fatty acids through regulating the expression of transcription factors. The low-LA diet and E had a synergic effect on serum and liver levels of DHA through increasing the expression of PPAR-α.
Collapse
|
17
|
Yu X, Deng Q, Tang Y, Xiao L, Liu L, Yao P, Tang H, Dong X. Flaxseed Oil Attenuates Hepatic Steatosis and Insulin Resistance in Mice by Rescuing the Adaption to ER Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10729-10740. [PMID: 30145885 DOI: 10.1021/acs.jafc.8b03906] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Increasing evidence has demonstrated the benefits of α-linolenic acid-rich flaxseed oil (ALA-FO) against lipid metabolism abnormality in both rodent models and humans. However, the metabolic response of FO to insulin resistance and type 2 diabetes is still inconsistent. This study aimed to explore the effect of FO on chronic high fat diet (HFD)-induced hepatic steatosis, insulin resistance, and inflammation, mainly focusing on hepatic n-3 fatty acid remodeling and endoplasmic reticulum (ER) unfolded protein response. The results showed that lard-based HFD feeding for 16 weeks (60% fat-derived calories) induced whole-body insulin resistance, lipid profile abnormality, and inflammation in mice, which was alleviated by FO in a dose-dependent manner. Moreover, FO effectively improved hepatic steatosis and insulin resistance in mice by modulating the specific location of ALA and its long-chain n-3 fatty acids across hepatic lipid fractions and enhancing insulin-stimulated phosphorylation of hepatic insulin receptor subtract-1 (IRS-1) tyrosine 632 and protein kinase B (AKT) ( p < 0.05). Importantly, the differential depositions of ALA and its long-chain n-3 fatty acids in plasma and ER membranes were observed, concomitant with the rescued ER unfolded protein response and Jun N-terminal kinase (JNK) signaling in mice liver.
Collapse
Affiliation(s)
- Xiao Yu
- College of Food and Biological Engineering, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control , Zhengzhou University of Light Industry , Zhengzhou 450002 , China
| | - Qianchun Deng
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene and MOE Key Laboratory of Environment and Health, School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Lin Xiao
- Department of Nutrition and Food Hygiene and MOE Key Laboratory of Environment and Health, School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene and MOE Key Laboratory of Environment and Health, School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Ping Yao
- Department of Nutrition and Food Hygiene and MOE Key Laboratory of Environment and Health, School of Public Health , Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , China
| | - Hu Tang
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| | - Xuyan Dong
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture , Chinese Academy of Agricultural Sciences , Wuhan 430062 , China
| |
Collapse
|
18
|
Eraky SM, Abdel-Rahman N, Eissa LA. Modulating effects of omega-3 fatty acids and pioglitazone combination on insulin resistance through toll-like receptor 4 in type 2 diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 2018; 136:123-129. [PMID: 28716464 DOI: 10.1016/j.plefa.2017.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 05/19/2017] [Accepted: 06/15/2017] [Indexed: 12/26/2022]
Abstract
Toll-like receptor 4 (TLR-4) plays important roles in innate immunity. Changes in the reduction-oxidation balance of tissues can lead to a pro-inflammatory state and insulin resistance. An action thought to be mediated by TLRs. Omega-3 fatty acids and Peroxisome Proliferator Activated Receptor gamma (PPAR-γ) agonists as pioglitazone are used for decreasing inflammation. The aim of this study is to investigate the anti-diabetic effects of combining omega -3 fatty acid with pioglitazone on type 2 diabetes, and the modifying effects on TLR-4. Type 2 diabetes was induced in male Sprague-Dawley rats by combination of high fat diet and low dose streptozotocin (35mg/kg). Diabetic rats were treated with omega-3 fatty acids (10% W/W diet), pioglitazone (20mg/kg), and their combination for 4 weeks. Omega-3 fatty acids and the combination treatment significantly decreased TLR-4 activation. Omega-3 fatty acids, pioglitazone, and their combination significantly decreased TLR-4 mRNA expression, hepatic malondialdehyde, total cholesterol and triglycerides levels, compared to diabetic group. Pioglitazone and the combination significantly decreased blood glucose levels and improved insulin resistance. In conclusion, combining omega-3 fatty acids with pioglitazone showed potential effects in lowering blood glucose levels and improving lipid profile and insulin resistance. Such effects are mediated through modulation of TLR-4.
Collapse
Affiliation(s)
- Salma M Eraky
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516, Egypt.
| | - Noha Abdel-Rahman
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| | - Laila A Eissa
- Biochemistry department, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| |
Collapse
|
19
|
Lee HJ, Jung H, Cho H, Lee K, Hwang KT. Black Raspberry Seed Oil Improves Lipid Metabolism by Inhibiting Lipogenesis and Promoting Fatty-Acid Oxidation in High-Fat Diet-Induced Obese Mice and db
/db
Mice. Lipids 2018; 53:491-504. [DOI: 10.1002/lipd.12050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Hee Jae Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University, 1 Gwanak-ro, Gwanak-gu; Seoul, 08826 South Korea
| | - Hana Jung
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University, 1 Gwanak-ro, Gwanak-gu; Seoul, 08826 South Korea
- Department of Human Ecology; Korea National Open University, 86 Daehak-ro, Jongno-gu; Seoul, 03087 South Korea
| | - Hyunnho Cho
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University, 1 Gwanak-ro, Gwanak-gu; Seoul, 08826 South Korea
| | - Kiuk Lee
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University, 1 Gwanak-ro, Gwanak-gu; Seoul, 08826 South Korea
| | - Keum Taek Hwang
- Department of Food and Nutrition, and Research Institute of Human Ecology; Seoul National University, 1 Gwanak-ro, Gwanak-gu; Seoul, 08826 South Korea
| |
Collapse
|
20
|
Han H, Qiu F, Zhao H, Tang H, Li X, Shi D. Dietary flaxseed oil improved western-type diet-induced atherosclerosis in apolipoprotein-E knockout mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Ganesan K, Sukalingam K, Xu B. Impact of consumption and cooking manners of vegetable oils on cardiovascular diseases- A critical review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Dietary Flaxseed Oil Prevents Western-Type Diet-Induced Nonalcoholic Fatty Liver Disease in Apolipoprotein-E Knockout Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3256241. [PMID: 29081885 PMCID: PMC5610846 DOI: 10.1155/2017/3256241] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 02/08/2023]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has dramatically increased globally during recent decades. Intake of n-3 polyunsaturated fatty acids (PUFAs), mainly eicosapentaenoic acid (EPA, C20:5n-3) and docosahexaenoic acid (DHA, C22:6n-3), is believed to be beneficial to the development of NAFLD. However, little information is available with regard to the effect of flaxseed oil rich in α-linolenic acid (ALA, C18:3n-3), a plant-derived n-3 PUFA, in improving NAFLD. This study was to gain the effect of flaxseed oil on NAFLD and further investigate the underlying mechanisms. Apolipoprotein-E knockout (apoE-KO) mice were given a normal chow diet, a western-type high-fat and high-cholesterol diet (WTD), or a WTD diet containing 10% flaxseed oil (WTD + FO) for 12 weeks. Our data showed that consumption of flaxseed oil significantly improved WTD-induced NAFLD, as well as ameliorated impaired lipid homeostasis, attenuated oxidative stress, and inhibited inflammation. These data were associated with the modification effects on expression levels of genes involved in de novo fat synthesis (SREBP-1c, ACC), triacylglycerol catabolism (PPARα, CPT1A, and ACOX1), inflammation (NF-κB, IL-6, TNF-α, and MCP-1), and oxidative stress (ROS, MDA, GSH, and SOD).
Collapse
|
23
|
Tsai C, Rezamand P, Loucks W, Scholte C, Doumit M. The effect of dietary fat on fatty acid composition, gene expression and vitamin status in pre-ruminant calves. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Xu J, Rong S, Gao H, Chen C, Yang W, Deng Q, Huang Q, Xiao L, Huang F. A Combination of Flaxseed Oil and Astaxanthin Improves Hepatic Lipid Accumulation and Reduces Oxidative Stress in High Fat-Diet Fed Rats. Nutrients 2017; 9:nu9030271. [PMID: 28335388 PMCID: PMC5372934 DOI: 10.3390/nu9030271] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/11/2022] Open
Abstract
Hepatic lipid accumulation and oxidative stress are crucial pathophysiological mechanisms for non-alcoholic fatty liver disease (NAFLD). Thus, we examined the effect of a combination of flaxseed oil (FO) and astaxanthin (ASX) on hepatic lipid accumulation and oxidative stress in rats fed a high-fat diet. ASX was dissolved in flaxseed oil (1 g/kg; FO + ASX). Animals were fed diets containing 20% fat, where the source was lard, or 75% lard and 25% FO + ASX, or 50% lard and 50% FO + ASX, or FO + ASX, for 10 weeks. Substitution of lard with FO + ASX reduced steatosis and reduced hepatic triacylglycerol and cholesterol. The combination of FO and ASX significantly decreased hepatic sterol regulatory element-binding transcription factor 1 and 3-hydroxy-3-methylglutaryl-CoA reductase but increased peroxisome proliferator activated receptor expression. FO + ASX significantly suppressed fatty acid synthase and acetyl CoA carboxylase but induced carnitine palmitoyl transferase-1 and acyl CoA oxidase expression. FO + ASX also significantly elevated hepatic SOD, CAT and GPx activity and GSH, and markedly reduced hepatic lipid peroxidation. Thus, FO and ASX may reduce NAFLD by reversing hepatic steatosis and reducing lipid accumulation and oxidative stress.
Collapse
Affiliation(s)
- Jiqu Xu
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, 2 Xudong Second Road, Wuhan 430062, China.
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, No. 2, Huangjiahu Road, Wuhan 430065, China.
| | - Hui Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Chang Chen
- Department of Gastroenterology, The First People's Hospital of Yichang, The People's Hospital of China Three Gorges University, 2 Jiefang Road, Yichang 443000, China.
- Department of Gastroenterology, The People's Hospital of China Three Gorges University, 2 Jiefang Road, Yichang 443000, China.
| | - Wei Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Qianchun Deng
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, 2 Xudong Second Road, Wuhan 430062, China.
| | - Qingde Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, 2 Xudong Second Road, Wuhan 430062, China.
| | - Lingyun Xiao
- Functional Oil Laboratory Associated by Oil Crops Research Institute, Chinese Academy of Agricultural Sciences and Infinite (China) Co., LTD., 66 Jianzhong Road, Guangzhou 510665, China.
| | - Fenghong Huang
- Department of Nutriology, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, 2 Xudong Second Road, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, 2 Xudong Second Road, Wuhan 430062, China.
| |
Collapse
|
25
|
Ghadge A, Harsulkar A, Karandikar M, Pandit V, Kuvalekar A. Comparative anti-inflammatory and lipid-normalizing effects of metformin and omega-3 fatty acids through modulation of transcription factors in diabetic rats. GENES AND NUTRITION 2016; 11:10. [PMID: 27551311 PMCID: PMC4968436 DOI: 10.1186/s12263-016-0518-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence suggests beneficial effects of omega-3 fatty acids on diabetic complications. The present study compared the progressive effects of metformin and flax/fish oil on lipid metabolism, inflammatory markers, and liver and renal function test markers in streptozotocin-nicotinamide-induced diabetic rats. METHODS Streptozotocin-induced diabetic rats were randomized into control and four diabetic groups: streptozotocin (STZ), metformin (200 mg/kg body weight (b.w)/day (D)), flax and fish oil (500 mg/kg b.w/D). RESULTS Metformin and flax and fish oil exhibited increased expression of transcription factor peroxisome proliferator-activated receptor γ while the treatment downregulated sterol regulatory element-binding protein 1 and nuclear factor kβ as compared to those of the STZ group. Apart from modulation of transcription factor expression, the expression of fatty acid synthase, long chain acyl CoA synthase, and malonyl-CoA-acyl carrier protein transacylase was lowered by flax/fish oil treatment. Serum cholesterol, triglycerides, and VLDL were also significantly reduced in the treatment groups as compared to those in the STZ group. Although pathological abnormalities were seen in the liver and kidneys of rats on metformin, no significant changes in liver/renal function markers were observed at day 15 and day 30 of the treatment groups. Flax/fish oil had protective effects toward pathological abnormalities in the liver and kidney. Flax/fish oil improved lipid profile and alkaline phosphatase at day 30 as compared to that at day 15. CONCLUSIONS The present study demonstrates potential beneficial effects of metformin and flax/fish oil intervention in improving serum lipid profile by regulating the expression of transcription factors and genes involved in lipid metabolism in diabetic rats. In addition, these interventions also lowered the expression of atherogenic cytokines. The protective effects of flax/fish oil are worth investigating in human subjects on metformin monotherapy.
Collapse
Affiliation(s)
- Abhijit Ghadge
- Nutrigenomics and Functional Foods Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| | - Abhay Harsulkar
- Nutrigenomics and Functional Foods Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| | - Manjiri Karandikar
- Department of Pathology, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| | - Vijaya Pandit
- Department of Pharmacology, Bharati Vidyapeeth Medical College, Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| | - Aniket Kuvalekar
- Nutrigenomics and Functional Foods Laboratory, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune-Satara Road, Pune, Maharashtra 411043 India
| |
Collapse
|
26
|
Zheng J, Peng C, Ai Y, Wang H, Xiao X, Li J. Docosahexaenoic Acid Ameliorates Fructose-Induced Hepatic Steatosis Involving ER Stress Response in Primary Mouse Hepatocytes. Nutrients 2016; 8:nu8010055. [PMID: 26805874 PMCID: PMC4728666 DOI: 10.3390/nu8010055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
The increase in fructose consumption is considered to be a risk factor for developing nonalcoholic fatty liver disease (NAFLD). We investigated the effects of docosahexaenoic acid (DHA) on hepatic lipid metabolism in fructose-treated primary mouse hepatocytes, and the changes of Endoplasmic reticulum (ER) stress pathways in response to DHA treatment. The hepatocytes were treated with fructose, DHA, fructose plus DHA, tunicamycin (TM) or fructose plus 4-phenylbutyric acid (PBA) for 24 h. Intracellular triglyceride (TG) accumulation was assessed by Oil Red O staining. The mRNA expression levels and protein levels related to lipid metabolism and ER stress response were determined by real-time PCR and Western blot. Fructose treatment led to obvious TG accumulation in primary hepatocytes through increasing expression of fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC), two key enzymes in hepatic de novo lipogenesis. DHA ameliorates fructose-induced TG accumulation by upregulating the expression of carnitine palmitoyltransferase 1A (CPT-1α) and acyl-CoA oxidase 1 (ACOX1). DHA treatment or pretreatment with the ER stress inhibitor PBA significantly decreased TG accumulation and reduced the expression of glucose-regulated protein 78 (GRP78), total inositol-requiring kinase 1 (IRE1α) and p-IRE1α. The present results suggest that DHA protects against high fructose-induced hepatocellular lipid accumulation. The current findings also suggest that alleviating the ER stress response seems to play a role in the prevention of fructose-induced hepatic steatosis by DHA.
Collapse
Affiliation(s)
- Jinying Zheng
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China.
| | - Chuan Peng
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Yanbiao Ai
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China.
| | - Heng Wang
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Xiaoqiu Xiao
- Laboratory of Lipid & Glucose Metabolism, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Jibin Li
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China.
| |
Collapse
|
27
|
Wang G, Bonkovsky HL, de Lemos A, Burczynski FJ. Recent insights into the biological functions of liver fatty acid binding protein 1. J Lipid Res 2015; 56:2238-47. [PMID: 26443794 DOI: 10.1194/jlr.r056705] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 12/18/2022] Open
Abstract
Over four decades have passed since liver fatty acid binding protein (FABP)1 was first isolated. There are few protein families for which most of the complete tertiary structures, binding properties, and tissue occurrences are described in such detail and yet new functions are being uncovered for this protein. FABP1 is known to be critical for fatty acid uptake and intracellular transport and also has an important role in regulating lipid metabolism and cellular signaling pathways. FABP1 is an important endogenous cytoprotectant, minimizing hepatocyte oxidative damage and interfering with ischemia-reperfusion and other hepatic injuries. The protein may be targeted for metabolic activation through the cross-talk among many transcriptional factors and their activating ligands. Deficiency or malfunction of FABP1 has been reported in several diseases. FABP1 also influences cell proliferation during liver regeneration and may be considered as a prognostic factor for hepatic surgery. FABP1 binds and modulates the action of many molecules such as fatty acids, heme, and other metalloporphyrins. The ability to bind heme is another cytoprotective property and one that deserves closer investigation. The role of FABP1 in substrate availability and in protection from oxidative stress suggests that FABP1 plays a pivotal role during intracellular bacterial/viral infections by reducing inflammation and the adverse effects of starvation (energy deficiency).
Collapse
Affiliation(s)
- GuQi Wang
- Jiangxi Normal University, Nanchang, Jiangxi, People's Republic of China Department of Biology, University of North Carolina at Charlotte, Charlotte, NC Carolinas HealthCare System, Charlotte, NC
| | - Herbert L Bonkovsky
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC Carolinas HealthCare System, Charlotte, NC Wake Forest Baptist Medical Center, Winston-Salem, NC
| | - Andrew de Lemos
- Carolinas HealthCare System, Charlotte, NC Wake Forest Baptist Medical Center, Winston-Salem, NC
| | | |
Collapse
|
28
|
Khaire AA, Kale AA, Joshi SR. Maternal omega-3 fatty acids and micronutrients modulate fetal lipid metabolism: A review. Prostaglandins Leukot Essent Fatty Acids 2015; 98:49-55. [PMID: 25958298 DOI: 10.1016/j.plefa.2015.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/16/2022]
Abstract
It is well established that alterations in the mother's diet or metabolism during pregnancy has long-term adverse effects on the lipid metabolism in the offspring. There is growing interest in the role of specific nutrients especially omega-3 fatty acids in the pathophysiology of lipid disorders. A series of studies carried out in humans and rodents in our department have consistently suggested a link between omega-3 fatty acids especially docosahexaenoic acid and micronutrients (vitamin B12 and folic acid) in the one carbon metabolic cycle and its effect on the fatty acid metabolism, hepatic transcription factors and DNA methylation patterns. However the association of maternal intake or metabolism of these nutrients with fetal lipid metabolism is relatively less explored. In this review, we provide insights into the role of maternal omega-3 fatty acids and vitamin B12 and their influence on fetal lipid metabolism through various mechanisms which influence phosphatidylethanolamine-N-methyltransferase activity, peroxisome proliferator activated receptor, adiponectin signaling pathway and epigenetic process like chromatin methylation. This will help understand the possible mechanisms involved in fetal lipid metabolism and may provide important clues for the prevention of lipid disorders in the offspring.
Collapse
Affiliation(s)
- Amrita A Khaire
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Anvita A Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Sadhana R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India.
| |
Collapse
|
29
|
Flaxseed Oil Containing α -Linolenic Acid Ester of Plant Sterol Improved Atherosclerosis in ApoE Deficient Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:958217. [PMID: 26180602 PMCID: PMC4477243 DOI: 10.1155/2015/958217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/05/2015] [Indexed: 01/04/2023]
Abstract
Plant sterols (PS) have potential preventive function in atherosclerosis due to their cholesterol-lowering ability. Dietary α-linolenic acid in flaxseed oil is associated with a reduction in cardiovascular events through its hypolipidemic and anti-inflammation properties. This study was designed to evaluate the effects of flaxseed oil containing α-linolenic acid ester of PS (ALA-PS) on atherosclerosis and investigate the underlying mechanisms. C57BL/6 mice were administered a regular diet and apoE knockout (apoE-KO) mice were given a high fat diet alone or supplemented with 5% flaxseed oil with or without 3.3% ALA-PS for 18 weeks. Results demonstrated that flaxseed oil containing ALA-PS was synergistically interaction in ameliorating atherosclerosis as well as optimizing overall lipid levels, inhibiting inflammation and reducing oxidative stress. These data were associated with the modification effects on expression levels of genes involved in lipid metabolism (PPARα, HMGCR, and SREBPs), inflammation (IL-6, TNF, MCP-1, and VCAM-1), and oxidative stress (NADPH oxidase).
Collapse
|
30
|
Flaxseed oil containing flaxseed oil ester of plant sterol attenuates high-fat diet-induced hepatic steatosis in apolipoprotein-E knockout mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Atek-Mebarki F, Hichami A, Abdoul-Azize S, Bitam A, Koceïr EA, Khan NA. Eicosapentaenoic acid modulates fatty acid metabolism and inflammation in Psammomys obesus. Biochimie 2014; 109:60-6. [PMID: 25528298 DOI: 10.1016/j.biochi.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/09/2014] [Indexed: 11/19/2022]
Abstract
The desert gerbil, Psammomys obesus, is a unique polygenic animal model of metabolic syndrome (insulin resistance, obesity and type 2 diabetes), and these pathological conditions resemble to those in human beings. In this study, the animals were fed ad libitum either a natural diet (ND) which contained desertic halophile plants or a standard laboratory diet (STD) or a diet which contained eicosapentaenoic acid (EPA), hence, termed as EPA diet (EPAD). In EPAD, 50% of total lipid content was replaced by EPA oil. By employing real-time PCR, we assessed liver expression of key genes involved in fatty acid metabolism such as PPAR-α, SREBP-1c, LXR-α and CHREBP. We also studied the expression of two inflammatory genes, i.e., TNF-α and IL-1β, in liver and adipose tissue of these animals. The STD, considered to be a high caloric diet for this animal, triggered insulin resistance and high lipid levels, along with high hepatic SREBP-1c, LXR-α and CHREBP mRNA expression. TNF-α and IL-1β mRNA were also high in liver of STD fed animals. Feeding EPAD improved plasma glucose, insulin and triacylglycerol levels along with hepatic lipid composition. These observations suggest that EPA exerts beneficial effects in P. obesus.
Collapse
Affiliation(s)
- Feriel Atek-Mebarki
- Physiologie de la Nutrition & Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, Dijon 21000, France; Bioenergetics and Intermediary Metabolism Laboratory, Biological Sciences and Physiology Department, FSB, University of Sciences and Technology Houari Boumédiene (USTHB), Algiers, Algeria
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, Dijon 21000, France
| | - Souleymane Abdoul-Azize
- Physiologie de la Nutrition & Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, Dijon 21000, France
| | - Arezki Bitam
- Bioenergetics and Intermediary Metabolism Laboratory, Biological Sciences and Physiology Department, FSB, University of Sciences and Technology Houari Boumédiene (USTHB), Algiers, Algeria
| | - Elhadj Ahmed Koceïr
- Bioenergetics and Intermediary Metabolism Laboratory, Biological Sciences and Physiology Department, FSB, University of Sciences and Technology Houari Boumédiene (USTHB), Algiers, Algeria
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, UMR U866 INSERM/Université de Bourgogne/Agro-Sup, Dijon 21000, France.
| |
Collapse
|
32
|
Dong X, Xu H, Mai K, Xu W, Zhang Y, Ai Q. Cloning and characterization of SREBP-1 and PPAR-α in Japanese seabass Lateolabrax japonicus, and their gene expressions in response to different dietary fatty acid profiles. Comp Biochem Physiol B Biochem Mol Biol 2014; 180:48-56. [PMID: 25448051 DOI: 10.1016/j.cbpb.2014.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/19/2014] [Accepted: 10/02/2014] [Indexed: 01/22/2023]
Abstract
In the present study, putative cDNA of sterol regulatory element-binding protein 1 (SREBP-1) and peroxisome proliferator-activated receptor α (PPAR-α), key regulators of lipid homoeostasis, were cloned and characterized from liver of Japanese seabass (Lateolabrax japonicus), and their expression in response to diets enriched with fish oil (FO) or fatty acids such as palmitic acid (PA), stearic acid (SA), oleic acid (OA), α-linolenic acid (ALA), and n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), was investigated following feeding. The SREBP-1 of Japanese seabass appeared to be equivalent to SREBP-1a of mammals in terms of sequence feature and tissue expression pattern. The stimulation of the mRNA expression level of SREBP-1 in liver of Japanese seabass by dietary fatty acids significantly ranked as follows: PA, OA>SA, ALA, and n-3 LC-PUFA>FO. A new PPAR-α subtype in Japanese seabass, PPAR-α2, was cloned in this study, which is not on the same branch with Japanese seabass PPAR-α1 and mammalian PPAR-α in the phylogenetic tree. Liver gene expression of PPAR-α1 of Japanese seabass was inhibited by diets enriched with ALA or FO compared to diets enriched with PA or OA, while the gene expression of PPAR-α2 of Japanese seabass was up-regulated by diets enriched with ALA or n-3 LC-PUFA compared to diets enriched with OA or FO. This was the first evidence for the great divergence in response to dietary fatty acids between PPAR-α1 and PPAR-α2 of fish, which indicated probable functional distribution between PPAR-α isotypes of fish.
Collapse
Affiliation(s)
- Xiaojing Dong
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Houguo Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China; Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China.
| |
Collapse
|
33
|
Omega-3 fatty acid enriched chevon (goat meat) lowers plasma cholesterol levels and alters gene expressions in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:749341. [PMID: 24719886 PMCID: PMC3955685 DOI: 10.1155/2014/749341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 01/16/2023]
Abstract
In this study, control chevon (goat meat) and omega-3 fatty acid enriched chevon were obtained from goats fed a 50% oil palm frond diet and commercial goat concentrate for 100 days, respectively. Goats fed the 50% oil palm frond diet contained high amounts of α-linolenic acid (ALA) in their meat compared to goats fed the control diet. The chevon was then used to prepare two types of pellets (control or enriched chevon) that were then fed to twenty-male-four-month-old Sprague-Dawley rats (n = 10 in each group) for 12 weeks to evaluate their effects on plasma cholesterol levels, tissue fatty acids, and gene expression. There was a significant increase in ALA and docosahexaenoic acid (DHA) in the muscle tissues and liver of the rats fed the enriched chevon compared with the control group. Plasma cholesterol also decreased (P < 0.05) in rats fed the enriched chevon compared to the control group. The rat pellets containing enriched chevon significantly upregulated the key transcription factor PPAR-γ and downregulated SREBP-1c expression relative to the control group. The results showed that the omega-3 fatty acid enriched chevon increased the omega-3 fatty acids in the rat tissues and altered PPAR-γ and SREBP-1c genes expression.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Fatty acids influence human health and diseases in various ways. In recent years, much work has been carried out to elucidate the mechanisms by which dietary fatty acids control short-term and long-term cellular functions. We have reviewed herein the most recent studies on modulation of gene expression by fatty acids. A number of genes respond to transcription factors and present a transcription factor response element in their promoter regions. Fatty acids may exert their effects on metabolism by regulating gene transcription via transcription factors. Understanding how fatty acids control expression of metabolic genes is a promising strategy to be investigated by aiming to treat metabolic diseases such as insulin resistance, obesity, and type 2 diabetes mellitus. RECENT FINDINGS Fatty acids exert many of their biological effects through the modulation of the activity of transcription factors, such as sterol regulatory element-binding proteins, peroxisome proliferator-activated receptors, and liver X receptors. SUMMARY Fatty acid action through transcription factors controls the expression of several inflammatory and metabolic genes.
Collapse
Affiliation(s)
- Laureane N Masi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
35
|
Ortiz-Avila O, Sámano-García CA, Calderón-Cortés E, Pérez-Hernández IH, Mejía-Zepeda R, Rodríguez-Orozco AR, Saavedra-Molina A, Cortés-Rojo C. Dietary avocado oil supplementation attenuates the alterations induced by type I diabetes and oxidative stress in electron transfer at the complex II-complex III segment of the electron transport chain in rat kidney mitochondria. J Bioenerg Biomembr 2013; 45:271-87. [PMID: 23443911 DOI: 10.1007/s10863-013-9502-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/11/2013] [Indexed: 10/27/2022]
Abstract
Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90 days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria. This was associated with a protection against decreased electron transfer through high potential chain in complex III related to cytochromes c + c1 loss. During Fe(2+)-induced oxidative stress, avocado oil improved the activities of complexes II and III and enhanced the protection conferred by a lipophilic antioxidant against damage by Fe(2+). Avocado oil also decreased ROS generation in Fe(2+)-damaged mitochondria. Alterations in the ratio of C20:4/C18:2 fatty acids were observed in mitochondria from diabetic animals that not were corrected by avocado oil treatment, which yielded lower peroxidizability indexes only in diabetic mitochondria although avocado oil caused an augment in the total content of monounsaturated fatty acids. Moreover, a protective effect of avocado oil against lipid peroxidation was observed consistently only in control mitochondria. Since the beneficial effects of avocado oil in diabetic mitochondria were not related to increased resistance to lipid peroxidation, these effects were discussed in terms of the antioxidant activity of both C18:1 and the carotenoids reported to be contained in avocado oil.
Collapse
Affiliation(s)
- Omar Ortiz-Avila
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-3 Ciudad Universitaria, Morelia, Mich., México
| | | | | | | | | | | | | | | |
Collapse
|