1
|
Pandey T, Kaundal RS, Pandey V. Biophysical characterization of hydrogen sulfide: A fundamental exploration in understanding significance in cell signaling. Biophys Chem 2024; 314:107317. [PMID: 39236424 DOI: 10.1016/j.bpc.2024.107317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Hydrogen sulfide (H₂S) has emerged as a significant signaling molecule involved in various physiological processes, including vasodilation, neurotransmission, and cytoprotection. Its interactions with biomolecules are critical to understand its roles in health and disease. Recent advances in biophysical characterization techniques have shed light on the complex interactions of H₂S with proteins, nucleic acids, and lipids. Proteins are primary targets for H₂S, which can modify cysteine residues through S-sulfhydration, impacting protein function and signaling pathways. Advanced spectroscopic techniques, such as mass spectrometry and NMR, have enabled the identification of specific sulfhydrated sites and provided insights into the structural and functional consequences of these modifications. Nucleic acids also interact with H₂S, although this area is less explored compared to proteins. Recent studies have demonstrated that H₂S can induce modifications in nucleic acids, affecting gene expression and stability. Techniques like gel electrophoresis and fluorescence spectroscopy have been utilized to investigate these interactions, revealing that H₂S can protect DNA from oxidative damage and modulate RNA stability and function. Lipids, being integral components of cell membranes, interact with H₂S, influencing membrane fluidity and signaling. Biophysical techniques such as electron paramagnetic resonance (EPR) and fluorescence microscopy have elucidated the effects of H₂S on lipid membranes. These studies have shown that H₂S can alter lipid packing and dynamics, which may impact membrane-associated signaling pathways and cellular responses to stress. In the current work we have integrated this with key scientific explainations to provide a comprehensive review.
Collapse
Affiliation(s)
- Tejasvi Pandey
- Department of Forensic Sciences, School for Bioengineering and Biosciences Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajinder Singh Kaundal
- Department of Physics, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vivek Pandey
- Department of Chemistry, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
2
|
Aluko EO, David UE, Ojetola AA, Fasanmade AA. Aqueous extract of Peristrophe bivalvis (L.) Merr. leaf reversed the detrimental effects of nitric oxide synthase inhibitor on blood lipid profile and glucose level. PLoS One 2024; 19:e0308338. [PMID: 39240961 PMCID: PMC11379291 DOI: 10.1371/journal.pone.0308338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/21/2024] [Indexed: 09/08/2024] Open
Abstract
There is evidence that nitric oxide (NO) modulates the metabolism of glucose and lipid, and some antihypertensive medications have been shown to affect glucose and lipid metabolism. Peristrophe bivalvis is a medicinal plant that has been shown to have antihypertensive properties. The study investigated the effect of aqueous extract of Peristrophe bivalvis leaf (APB) on fasting blood glucose level (FBG) and lipid profile in rats pretreated with nitro-L-arginine methyl ester (L-NAME). Male Wistar rats (150-170 g, n=30) were randomly divided into two groups: control (CT, n=5) and L-NAME pretreated (n=25). CT received 5 mL/kg of distilled water [DW]) while L-NAME pretreated group received 60 mg/kg of L-NAME (L-NAME60) for eight weeks. After eight weeks, the L-NAME pretreated group was randomly subdivided into L-NAME group (LN), L-NAME recovery group (LRE), L-NAME ramipril group (LRA), and L-NAME APB group (LAPB). The groups received L-NAME60+DW, DW, L-NAME60+10 mg/kg ramipril, and L-NAME60+APB (200 mg/kg), respectively, for five weeks. Serum NO, lipid profile, cyclic guanosine monophosphate (cGMP), and insulin were measured by spectrophotometry, assay kits, and ELISA, respectively. Data were analysed using ANOVA at p < 0.05. At the eighth week, a fall in FBG and an increase in triglyceride, total cholesterol, and low-density lipoprotein cholesterol were recorded in L8 compared to CT. The same effects were also noticed in the thirteenth week in LN. However, FBG was significantly increased and lipid levels were decreased in LAPB compared to LN. A significant increase was observed in cGMP level in LAPB compared to LN. The study showed that APB corrected the hyperlipidemia and hypoglycemia caused by L-NAME, and this effect might be via the activation of cGMP.
Collapse
Affiliation(s)
- Esther Oluwasola Aluko
- Physiology Department, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Akwa-Ibom State, Nigeria
| | - Ubong Edem David
- Physiology Unit, Ajayi Crowther University, Oyo, Oyo State, Nigeria
| | - Abodunrin Adebayo Ojetola
- Department of Physiology, Faculty of Basic Medical Sciences, Adeleke University, Ede, Osun State, Nigeria
| | - Adesoji Adedipe Fasanmade
- Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
3
|
Kumari R, Kapoor P, Mir BA, Singh M, Parrey ZA, Rakhra G, Parihar P, Khan MN, Rakhra G. Unlocking the versatility of nitric oxide in plants and insights into its molecular interplays under biotic and abiotic stress. Nitric Oxide 2024; 150:1-17. [PMID: 38972538 DOI: 10.1016/j.niox.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
In plants, nitric oxide (NO) has become a versatile signaling molecule essential for mediating a wide range of physiological processes under various biotic and abiotic stress conditions. The fundamental function of NO under various stress scenarios has led to a paradigm shift in which NO is now seen as both a free radical liberated from the toxic product of oxidative metabolism and an agent that aids in plant sustenance. Numerous studies on NO biology have shown that NO is an important signal for germination, leaf senescence, photosynthesis, plant growth, pollen growth, and other processes. It is implicated in defense responses against pathogensas well as adaptation of plants in response to environmental cues like salinity, drought, and temperature extremes which demonstrates its multifaceted role. NO can carry out its biological action in a variety of ways, including interaction with protein kinases, modifying gene expression, and releasing secondary messengers. In addition to these signaling events, NO may also be in charge of the chromatin modifications, nitration, and S-nitrosylation-induced posttranslational modifications (PTM) of target proteins. Deciphering the molecular mechanism behind its essential function is essential to unravel the regulatory networks controlling the responses of plants to various environmental stimuli. Taking into consideration the versatile role of NO, an effort has been made to interpret its mode of action based on the post-translational modifications and to cover shreds of evidence for increased growth parameters along with an altered gene expression.
Collapse
Affiliation(s)
- Ritu Kumari
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Preedhi Kapoor
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Bilal Ahmad Mir
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Maninder Singh
- Department of Biotechnology and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zubair Ahmad Parrey
- Plant Physiology and Biochemistry Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Gurseen Rakhra
- Department of Nutrition & Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, 121004, India
| | - Parul Parihar
- Department of Biosciences and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 47913, Saudi Arabia
| | - Gurmeen Rakhra
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
4
|
Ma X, Luan Z, Zhao Q, Yang A, Li J. NIR-Triggered Release of Nitric Oxide by Upconversion-Based Nanoplatforms to Enhance Osteogenic Differentiation of Mesenchymal Stem Cells for Osteoporosis Therapy. Biomater Res 2024; 28:0058. [PMID: 39040622 PMCID: PMC11260887 DOI: 10.34133/bmr.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Stem cell therapy is an attractive approach to bone tissue regeneration in osteoporosis (OP); however, poor cell engraftment and survival within injured tissues limits its success in clinical settings. Nitric oxide (NO) is an important signaling molecule involved in various physiological processes, with emerging evidence supporting its diverse roles in modulating stem cell behavior, including survival, migration, and osteogenic differentiation. To control and enhance osteogenic differentiation of mesenchymal stem cells (MSCs) for OP therapy, we designed a near-infrared (NIR) light-triggered NO-releasing nanoplatform based on upconversion nanoparticles (UCNPs) that converts 808-nm NIR light into visible light, stimulating NO release by light control. We demonstrate that the UCNP nanoplatforms can encapsulate a light-sensitive NO precursor, Roussin's black salt (RBS), through the implementation of a surface mesoporous silica coating. Upon exposure to 808-nm irradiation, NO is triggered by the controlled upconversion of UCNP visible light at the desired time and location. This controlled release mechanism facilitates photoregulated differentiation of MSCs toward osteogenic lineage and avoids thermal effects and phototoxicity on cells, thus offering potential therapeutic applications for treating OP in vivo. Following the induction of osteogenic differentiation, the UCNP nanoplatforms exhibit the capability to serve as nanoprobes for the real-time detection of differentiation through enzymatic digestion and fluorescence recovery of UCNPs, enabling assessment of the therapeutic efficacy of OP treatment. Consequently, these UCNP-based nanoplatforms present a novel approach to control and enhance osteogenic differentiation of MSCs for OP therapy, simultaneously detecting osteogenic differentiation for evaluating treatment effectiveness.
Collapse
Affiliation(s)
- Xulu Ma
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics,
South China Normal University, Guangzhou 510631, China
| | - Zhao Luan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics,
South China Normal University, Guangzhou 510631, China
| | - Qingxin Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics,
South China Normal University, Guangzhou 510631, China
| | - Anli Yang
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510060, China
| | - Jinming Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics,
South China Normal University, Guangzhou 510631, China
| |
Collapse
|
5
|
Premi L, Rocchetti G, Lucini L, Morelli L, Rebecchi A. Replacement of nitrates and nitrites in meat-derived foods through the utilization of coagulase-negative staphylococci : A review. Curr Res Food Sci 2024; 8:100731. [PMID: 38623273 PMCID: PMC11016579 DOI: 10.1016/j.crfs.2024.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/23/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Nitrates and nitrites, which are synthetic additives, are traditionally used as curing agents in meat-based products. These synthetic additives are employed in the preparation of fermented meat foods to improve quality characteristics and microbiological safety, develop distinct flavours and red-colour stability, and counteract lipid oxidation. Nitrites also display significant bacteriostatic and bactericidal action against spoilage microorganisms and foodborne pathogens (such as Clostridium botulinum and Listeria monocytogenes). However, meat curing is currently under scrutiny because of its links to cardiovascular diseases and colorectal cancer. Based on the current literature, this review provides recent scientific evidence on the potential utilisation of coagulase-negative staphylococci (CNS) as nitrate and nitrite substitutes in meat-based foods. Indeed, CNS are reported to reproduce the characteristic red pigmentation and maintain the typical high-quality traits of cured-meats, thanks to their arginine degradation pathway, thus providing the nitrite-related desirable attributes in cured meat. The alternative strategy, still based on the NOS pathway, consisting of supplementing meat with arginine to release nitric oxide (NO) and obtain a meat characterised by the desired pinkish-red colour, is also reviewed. Exploiting NOS-positive CNS strains seems particularly challenging because of CNS technological adaptation and the oxygen dependency of the NOS reaction; however, this exploitation could represent a turning point in replacing nitrates and nitrites in meat foods.
Collapse
Affiliation(s)
- Lara Premi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Annalisa Rebecchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
6
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
7
|
Caminiti R, Carresi C, Mollace R, Macrì R, Scarano F, Oppedisano F, Maiuolo J, Serra M, Ruga S, Nucera S, Tavernese A, Gliozzi M, Musolino V, Palma E, Muscoli C, Rubattu S, Volterrani M, Federici M, Volpe M, Mollace V. The potential effect of natural antioxidants on endothelial dysfunction associated with arterial hypertension. Front Cardiovasc Med 2024; 11:1345218. [PMID: 38370153 PMCID: PMC10869541 DOI: 10.3389/fcvm.2024.1345218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Arterial hypertension represents a leading cause of cardiovascular morbidity and mortality worldwide, and the identification of effective solutions for treating the early stages of elevated blood pressure (BP) is still a relevant issue for cardiovascular risk prevention. The pathophysiological basis for the occurrence of elevated BP and the onset of arterial hypertension have been widely studied in recent years. In addition, consistent progress in the development of novel, powerful, antihypertensive drugs and their appropriate applications in controlling BP have increased our potential for successfully managing disease states characterized by abnormal blood pressure. However, the mechanisms responsible for the disruption of endogenous mechanisms contributing to the maintenance of BP within a normal range are yet to be fully clarified. Recently, evidence has shown that several natural antioxidants containing active ingredients originating from natural plant extracts, used alone or in combination, may represent a valid solution for counteracting the development of arterial hypertension. In particular, there is evidence to show that natural antioxidants may enhance the viability of endothelial cells undergoing oxidative damage, an effect that could play a crucial role in the pathophysiological events accompanying the early stages of arterial hypertension. The present review aims to reassess the role of oxidative stress on endothelial dysfunction in the onset and progression of arterial hypertension and that of natural antioxidants in covering several unmet needs in the treatment of such diseases.
Collapse
Affiliation(s)
- Rosamaria Caminiti
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Cristina Carresi
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Rocco Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | - Roberta Macrì
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Jessica Maiuolo
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Maria Serra
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Annamaria Tavernese
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele Roma, Rome, Italy
| | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, Italy
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | - Massimo Federici
- Department of Systems Medicine, University “Tor Vergata” of Rome, Rome, Italy
| | | | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University “Magna Graecia” of Catanzaro, Catanzaro, Italy
- Renato Dulbecco Institute, Catanzaro, Italy
| |
Collapse
|
8
|
Ranatunge I, Soysa P. Polyphenol Mediated Suppression of Hepatocellular Carcinoma (HepG2) Cell Proliferation by Clerodendrum infortunatum L. Root. Asian Pac J Cancer Prev 2024; 25:351-363. [PMID: 38285803 PMCID: PMC10911716 DOI: 10.31557/apjcp.2024.25.1.351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024] Open
Abstract
OBJECTIVE Clerodendrum infortunatum L. has long been used in traditional medicine in Sri Lanka for tumours, cancer, and certain skin diseases. The present study aimed to assess the anticancer properties of the aqueous extract of C. infortunatum L. root (AECIR) through the activation of the apoptotic pathway on hepatocellular carcinoma (HepG2) and thus give it a scientific validation. Further, the contribution of polyphenols in antioxidant activity and cell cytotoxicity was investigated. METHODS Powdered plant material was boiled with water (100°C) to obtained AECIR. The DPPH assay was used to determine the antioxidant potential. The activity of AECIR on HepG2 and normal rat fibroblast (CC1) cell growth was determined using MTT assay. The morphological changes related to apoptotic pathway was examined by Ethidium Bromide/Acridine Orange (EB/AO), Rhodamine 123 (Rh123) and DNA fragmentation assay. RESULTS The AECIR demonstrated antioxidant potential with an EC50 of 350.2 ± 1.5 ug/mL for DPPH assay. The HO•, H2O2 and •NO free radical scavenging activity was observed with EC50 of 19.7 ± 2.3, 11.7 ± 0.1 and 273.1 ± 0.9 ug/mL, respectively. The antiproliferative effect of AECIR on HepG2 cells was observed in a time and dose dependent manner with an EC50 of 239.1 ± 1.3 μg/mL while CC1 cells showed a nontoxic effect with an EC50 1062.7 ± 3.4 μg/mL after 24hrs treatment. A significant decrease in antioxidant activity (p<0.001) and 90% HepG2 cell viability was observed with polyphenol removed AECIR compared to the polyphenol present AECIR. The EB/AO uptake, depletion of mitochondrial transmembrane potential, and DNA fragmentation assay results revealed that the apoptosis was induced by AECIR. CONCLUSION The obtained result of the present study demonstrates that the antioxidant potential and antiproliferative activity of AECIR is attributed to the presence of polyphenols. Furthermore, the findings provide the scientific base for anti-cancer potential of AECIR.
Collapse
Affiliation(s)
- Imali Ranatunge
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| | | |
Collapse
|
9
|
Geravand S, Karami M, Sahraei H, Rahimi F. Protective effects of L-arginine on Alzheimer's disease: Modulating hippocampal nitric oxide levels and memory deficits in aluminum chloride-induced rat model. Eur J Pharmacol 2023; 958:176030. [PMID: 37660966 DOI: 10.1016/j.ejphar.2023.176030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
There is evidence that high daily intake of aluminum (Al) is associated with an increased risk of dementia or cognitive decline. We injected L-arginine into the dorsal hippocampus (DH) of an AlCl3-induced Alzheimer's model and studied memory deficit, β-amyloid (βA) accumulation, neurodegeneration, and molecular changes. Male Wistar rats were cannulated unilaterally in the DH under a stereotaxic apparatus and a dose of AlCl3 (1-200 μg/rat) was injected into the CA1. After recovery, L-arginine and L-NAME (0.05-25 μg/rat) were injected into CA1 and animals were tested in novelty seeking task. One group received βA (2 μg/rat, intra CA1) as a reference group. Control groups received saline (1 μL/rat, intra-CA1) and galantamine (25 μg/rat, intra-CA1), respectively. Finally, rats were anesthetized and hippocampal tissues were isolated on ice. Levels of neuronal NO synthase (nNOS), β-secretase and soluble guanylyl cyclase (sGC) were measured by western blotting. βA formation and the number of CA1 neurons were assessed by Congo red and Nissl staining. NOS activation by NADPH-diaphorase (NADPH-d) was investigated. All data were analyzed using analysis of variance (ANOVA) at α = 0.05 level. Like βA, AlCl3 (25 μg/rat) caused accumulation of βA in the DH and increased stopping of the animal on the novel side (indicating a recall deficit). CA1 neurons decreased, and nNOS and β-secretase, but not sGC, showed a change consistent with Alzheimer's. However, prophylactic intervention of L-arginine at 3-9 μg/rat was protective, probably by nNOS stimulation in DH, as shown by NADPH-d assay. L-arginine may protect against Alzheimer's by increasing hippocampal NO levels.
Collapse
Affiliation(s)
- Samira Geravand
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
| | - Manizheh Karami
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran.
| | - Hedayat Sahraei
- Department of Physiology, School of Medicine, Baghiyatallah University of Medical Sciences, Tehran, Iran
| | - Fardin Rahimi
- Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
10
|
Serreli G, Deiana M. Role of Dietary Polyphenols in the Activity and Expression of Nitric Oxide Synthases: A Review. Antioxidants (Basel) 2023; 12:antiox12010147. [PMID: 36671009 PMCID: PMC9854440 DOI: 10.3390/antiox12010147] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023] Open
Abstract
Nitric oxide (NO) plays several key roles in the functionality of an organism, and it is usually released in numerous organs and tissues. There are mainly three isoforms of the enzyme that produce NO starting from the metabolism of arginine, namely endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), and neuronal nitric oxide synthase (nNOS). The expression and activity of these isoforms depends on the activation/deactivation of different signaling pathways at an intracellular level following different physiological and pathological stimuli. Compounds of natural origin such as polyphenols, which are obtainable through diet, have been widely studied in recent years in in vivo and in vitro investigations for their ability to induce or inhibit NO release, depending on the tissue. In this review, we aim to disclose the scientific evidence relating to the activity of the main dietary polyphenols in the modulation of the intracellular pathways involved in the expression and/or functionality of the NOS isoforms.
Collapse
|
11
|
Taskin S, Celik H, Cakirca G, Manav V, Taskin A. Nitric oxide synthase activity: A novel potential biomarker for predicting Alopecia areata. J Cosmet Dermatol 2022; 21:7075-7080. [PMID: 36093562 DOI: 10.1111/jocd.15378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Alopecia areata is a dermatological disease characterized by nonscarring type hair loss. The cause of Alopecia areata not known exactly but studies support that it has an autoimmune etiology in which oxidative stress play an important role. AIM This study was conducted to evaluate the level of nitrosative stress in Alopecia areata and to investigate the predictive power of nitrosative stress parameters for Alopecia areata. PATIENTS/METHODS Thirty patients diagnosed with Alopecia areata, and 30 healthy controls were included in a prospective, cross-sectional study. In both groups, nitric oxide (NO· ), peroxynitrite (ONOO- ), and nitric oxide synthase (NOS) activity as nitrosative stress markers were measured spectrophotometrically in serum samples. The predictive power of nitrosative stress parameters in Alopecia areata and control groups was compared with binary logistic regression and Receiver Operating Characteristic analysis. RESULTS NO· , ONOO- , and NOS activity were significantly higher in patients with Alopecia areata than in the control group (p = 0.001; p < 0.001; p < 0.001, respectively). A positive correlation was found between the parameters. Significantly, binary logistic regression modeling suggested that increases in NOS (p = 0.003, OR = 1.305, 95% CI = 1.095-1.556) activity were associated with Alopecia areata. CONCLUSION According to the data obtained from the present study, patients with Alopecia areata were exposed to potent nitrosative stress. In particular, peroxynitrite, which acts as a bridge between reactive oxygen species and reactive nitrogen species, caused the expansion of the oxidative stress cascade. Nitrosative stress might play a role in the etiopathogenesis of Alopecia areata. Nitrosative stress parameters, particularly NOS activity, may be potential markers for Alopecia areata.
Collapse
Affiliation(s)
- Seyhan Taskin
- Department of Physiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Hakim Celik
- Department of Physiology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Gokhan Cakirca
- Department of Biochemistry, Sanliurfa Mehmet Akif Inan Training and Research Hospital, Sanliurfa, Turkey
| | - Vildan Manav
- Department of Dermatology, İstanbul Training and Research Hospital, İstanbul, Turkey
| | - Abdullah Taskin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Harran University, Sanliurfa, Turkey
| |
Collapse
|
12
|
Nanoparticle-based delivery of nitric oxide for therapeutic applications. Ther Deliv 2022; 13:403-427. [DOI: 10.4155/tde-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nitric oxide (NO), a low molecular weight signaling molecule, plays critical roles in both cellular health and disease. There is continued interest in new modalities for the controlled therapeutic delivery of NO to cells and tissues. The physicochemical properties of NO (including its short half-life and on-demand synthesis at the point of function), however, pose considerable challenges for its specific and efficient delivery. Recently, a number of nanoparticle (NP)-based systems are described that address some of these issues by taking advantage of the unique attributes of the NP carrier to effect efficient NO delivery. This review highlights the progress that has been made over the past 5 years in the use of various constructs for the therapeutic delivery of NO.
Collapse
|
13
|
Fu Y, Liu H, He L, Ma S, Chen X, Wang K, Zhao F, Qi F, Guan S, Liu Z. Prenatal chronic stress impairs the learning and memory ability via inhibition of the NO/cGMP/PKG pathway in the Hippocampus of offspring. Behav Brain Res 2022; 433:114009. [PMID: 35850398 DOI: 10.1016/j.bbr.2022.114009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/28/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
Numerous clinical and animal studies have found that antenatal chronic stress can lead to pathological changes the hippocampal development from embryos to adult, but the mechanisms are not well understood. Proteomic analyses provide a new insight to explore the potential mechanisms of this impairment. In this study, gestating rats were subjected to chronic unpredictable mild stress (CUMS) during pregnant days using nine different stimulations, and the changes of the learning and memory performance and the expression of proteins in the hippocampus of offspring were measured. It was found that prenatal chronic stress led to growth retardation, impaired spatial learning and memory ability in the offspring. Furthermore, prenatal stress caused various degrees of damage to neurons, Nissl body, mitochondria and synaptic structures in hippocampal CA3 region of offspring. In addition, 26 significantly different expressed proteins (DEPs) were found between the two groups by using isoquantitative tag-based relative and absolute quantification (iTRAQ) proteomics analysis. Further analyses of these DEPs showed that involved with different molecular functions and several biological processes, such as biological regulation and metabolic processes. Among these, the KEGG pathway enrichment showed that learning and memory impairment was mainly associated with the cyclic guanosine monophosphate protein kinase G (cGMP-PKG) pathway. At the same time, compared with OPC group, the NO, nNOS and cGMP level were significantly decreased, and the expression of PKG protein was also dropped. All of these results suggested that pregnant rats exposed to chronic psychological stress might impair spatial learning and memory ability of offspring, by disturbing the NO/cGMP/PKG signaling pathway.
Collapse
Affiliation(s)
- Youjuan Fu
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Hongya Liu
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ling He
- Obstetrics and Gynecology Center, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Shuqin Ma
- Obstetrics and Gynecology Center, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Xiaohui Chen
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Kai Wang
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Feng Zhao
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Faqiu Qi
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Suzhen Guan
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| | - Zhihong Liu
- School of Public Health and Management, Ningxia Medical University, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
14
|
Hazell G, Khazova M, Cohen H, Felton S, Raj K. Post-exposure persistence of nitric oxide upregulation in skin cells irradiated by UV-A. Sci Rep 2022; 12:9465. [PMID: 35676302 PMCID: PMC9177615 DOI: 10.1038/s41598-022-13399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
Evidence suggests that exposure to UV-A radiation can liberate nitric oxide from skin cells eliciting vasodilation in-vivo. However, the duration of nitric oxide release in skin cells after UV exposure is not well studied, with emphasis on UV-B mediated iNOS upregulation. The current study demonstrated persistence of nitric oxide release in a dark reaction after moderate UV-A exposure, peaking around 48 h post exposure; this effect was shown in keratinocytes, fibroblasts and endothelial cells from neonatal donors and keratinocytes from aged donors and confirmed the hypothesis that UV-A exposure appeared to upregulate cNOS alongside iNOS. Release of nitric oxide in the skin cells induced by a moderate exposure to UV-A in sunlight may be especially beneficial for some demographic groups such as the elderly, hypertensive patients or those with impaired nitric oxide function, not only during exposure but many hours and days after that.
Collapse
Affiliation(s)
- Gareth Hazell
- UK Health Security Agency, Chilton, Didcot, OX11 0RQ, UK.
| | - Marina Khazova
- UK Health Security Agency, Chilton, Didcot, OX11 0RQ, UK
| | - Howard Cohen
- Elizabeth House, 515 Limpsfield Road, Warlingham, CR6 9LF, Surrey, UK
| | - Sarah Felton
- Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LJ, UK
| | - Ken Raj
- UK Health Security Agency, Chilton, Didcot, OX11 0RQ, UK
| |
Collapse
|
15
|
Hudkova O, Krysiuk I, Drobot L, Latyshko N. Rhabdomyolysis attenuates activity of semicarbazide sensitive amine oxidase as the marker of nephropathy in diabetic rats. UKRAINIAN BIOCHEMICAL JOURNAL 2022. [DOI: 10.15407/ubj94.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
16
|
Velusamy P, Su CH, Ramasamy P, Arun V, Rajnish N, Raman P, Baskaralingam V, Senthil Kumar SM, Gopinath SCB. Volatile Organic Compounds as Potential Biomarkers for Noninvasive Disease Detection by Nanosensors: A Comprehensive Review. Crit Rev Anal Chem 2022; 53:1828-1839. [PMID: 35201946 DOI: 10.1080/10408347.2022.2043145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biomarkers are biological molecules associated with physiological changes of the body and aids in the detecting the onset of disease in patients. There is an urgent need for self-monitoring and early detection of cardiovascular and other health complications. Several blood-based biomarkers have been well established in diagnosis and monitoring the onset of diseases. However, the detection level of biomarkers in bed-side analysis is difficult and complications arise due to the endothelial dysfunction. Currently single volatile organic compounds (VOCs) based sensors are available for the detection of human diseases and no dedicated nanosensor is available for the elderly. Moreover, accuracy of the sensors based on a single analyte is limited. Hence, breath analysis has received enormous attention in healthcare due to its relatively inexpensive, rapid, and noninvasive methods for detecting diseases. This review gives a detailed analysis of how biomarker imprinted nanosensor can be used as a noninvasive method for detecting VOC to health issues early using exhaled breath analysis.
Collapse
Affiliation(s)
- Palaniyandi Velusamy
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, Taishan, Taipei, Taiwan
| | - Palaniappan Ramasamy
- Research and Development Wing, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu, India
| | - Viswanathan Arun
- Department of Biotechnology SRFBMST, Sri Ramachandra Institute of Higher Education & Research, Chennai, Tamil Nadu, India
| | - Narayanan Rajnish
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Pachaiappan Raman
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Vaseeharan Baskaralingam
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sakkarapalayam Murugesan Senthil Kumar
- Electroorganic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute, Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology and Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
- Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling, Kedah, Malaysia
| |
Collapse
|
17
|
Bollati C, Cruz-Chamorro I, Aiello G, Li J, Bartolomei M, Santos-Sánchez G, Ranaldi G, Ferruzza S, Sambuy Y, Arnoldi A, Lammi C. Investigation of the intestinal trans-epithelial transport and antioxidant activity of two hempseed peptides WVSPLAGRT (H2) and IGFLIIWV (H3). Food Res Int 2022; 152:110720. [PMID: 35181114 DOI: 10.1016/j.foodres.2021.110720] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
A preceding paper has shown that a hempseed peptic hydrolysate displays a cholesterol-lowering activity with a statin-like mechanism of action in HepG2 cells and a potential hypoglycemic activity by the inhibition of dipeptidyl peptidase-IV in Caco-2 cells. In the framework of a research aimed at fostering the multifunctional behavior of hempseed peptides, we present here the identification and evaluation of some antioxidant peptides from the same hydrolysate. After evaluation of its diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, a trans-epithelial transport experiment was performed using differentiated Caco-2 cells that permitted the identification of five transported peptides that were synthesized and evaluated by measuring the oxygen radical absorbance capacity (ORAC), the ferric reducing antioxidant power (FRAP), and the 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS), and diphenyl-2-picrylhydrazyl radical DPPH assays. The most active peptides, i.e. WVSPLAGRT (H2) and IGFLIIWV (H3), were then tested in cell assays. Both peptides were able to reduce the H2O2-induced reactive oxygen species (ROS), lipid peroxidation, and nitric oxide (NO) production levels in HepG2 cells, via the modulation of Nrf-2 and iNOS pathways, respectively.
Collapse
Affiliation(s)
- Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Ivan Cruz-Chamorro
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Gilda Aiello
- Department of Human Science and Quality of Life Promotion, Telematic University San Raffaele, 00166 Rome, Italy
| | - Jianqiang Li
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Martina Bartolomei
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Guillermo Santos-Sánchez
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Giulia Ranaldi
- CREA, Food and Nutrition Research Centre, Via Ardeatina, 546, 00178 Roma RM, Italy
| | - Simonetta Ferruzza
- CREA, Food and Nutrition Research Centre, Via Ardeatina, 546, 00178 Roma RM, Italy
| | - Yula Sambuy
- CREA, Food and Nutrition Research Centre, Via Ardeatina, 546, 00178 Roma RM, Italy
| | - Anna Arnoldi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy.
| |
Collapse
|
18
|
Yun B, King M, Draz MS, Kline T, Rodriguez-Palacios A. Oxidative reactivity across kingdoms in the gut: Host immunity, stressed microbiota and oxidized foods. Free Radic Biol Med 2022; 178:97-110. [PMID: 34843918 DOI: 10.1016/j.freeradbiomed.2021.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species play a major role in the induction of programmed cell death and numerous diseases. Production of reactive oxygen species is ubiquitous in biological systems such as humans, bacteria, fungi/yeasts, and plants. Although reactive oxygen species are known to cause diseases, little is known about the importance of the combined oxidative stress burden in the gut. Understanding the dynamics and the level of oxidative stress 'reactivity' across kingdoms could help ascertain the combined consequences of free radical accumulation in the gut lumen. Here, we present fundamental similarities of oxidative stress derived from the host immune cells, bacteria, yeasts, plants, and the therein-derived diets, which often accentuate the burden of free radicals by accumulation during storage and cooking conditions. Given the described similarities, oxidative stress could be better understood and minimized by monitoring the levels of oxidative stress in the feces to identify pro-inflammatory factors. However, we illustrate that dietary studies rarely monitor oxidative stress markers in the feces, and therefore our knowledge on fecal oxidative stress monitoring is limited. A more holistic approach to understanding oxidative stress 'reactivity' in the gut could help improve strategies to use diet and microbiota to prevent intestinal diseases.
Collapse
Affiliation(s)
- Bahda Yun
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Maria King
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Terence Kline
- Veterinary Technology Program, Cuyahoga Community College, Cleveland, OH, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
19
|
Fay JM, Kabanov AV. Interpolyelectrolyte Complexes as an Emerging Technology for Pharmaceutical Delivery of Polypeptides. REVIEWS AND ADVANCES IN CHEMISTRY 2022; 12. [PMCID: PMC9987408 DOI: 10.1134/s2634827622600177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Polyelectrolyte complexes and the derivatives thereof comprise some of the most promising vehicles for the encapsulation and delivery of macromolecular therapeutics. In particular, protein therapeutics, which present a host of special considerations, can often be effectively packaged and delivered using interpolyelectrolyte complexes. While the technologies are still in the developmental phase, there are numerous examples of complexes where control is exerted over spacial and temporal delivery of a model protein cargo or candidate protein therapeutic agent. Here we provide a historical and practical background to promote a deeper understanding of interpolyelectrolyte complexes and the derivative technologies. Additionally, we review the physical principles underlying the association of polyelectrolyte complexes and the application of those principles to novel strategies and technologies driving interpolyelectrolyte complexation. Then, the application of polyelectrolyte complex technology to protein therapeutics is discussed in detail including discussions of several types of protein cargo with a special emphasis on Brain-Derived Neurotrophic Factor. Finally, we focus on the use of stealth polymers in block ionomer complexes, specifically PEG; its benefits, flaws, and possible alternatives. Comprehensive understanding of the field may promote the continued development of derivative technologies for the delivery of particularly intransigent protein therapeutics, much as has been accomplished for small molecule drugs. We also aim to link current advances to the historical developments which inaugurated the field. With consideration to the field, industrial and academic researchers can utilize the discussed technologies and continue to elucidate novel modalities for a myriad of therapeutic and commercial applications.
Collapse
Affiliation(s)
- James M. Fay
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, NC 27599-7362 Chapel Hill, USA ,Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, NC 27599-7260 Chapel Hill, USA
| | - Alexander V. Kabanov
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, NC 27599-7362 Chapel Hill, USA ,Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, NC 27599-7260 Chapel Hill, USA ,Faculty of Chemistry, Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
20
|
Garren M, Maffe P, Melvin A, Griffin L, Wilson S, Douglass M, Reynolds M, Handa H. Surface-Catalyzed Nitric Oxide Release via a Metal Organic Framework Enhances Antibacterial Surface Effects. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56931-56943. [PMID: 34818503 PMCID: PMC9728615 DOI: 10.1021/acsami.1c17248] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It has been previously demonstrated that metal nanoparticles embedded into polymeric materials doped with nitric oxide (NO) donor compounds can accelerate the release rate of NO for therapeutic applications. Despite the advantages of elevated NO surface flux for eradicating opportunistic bacteria in the initial hours of application, metal nanoparticles can often trigger a secondary biocidal effect through leaching that can lead to unfavorable cytotoxic responses from host cells. Alternatively, copper-based metal organic frameworks (MOFs) have been shown to stabilize Cu2+/1+ via coordination while demonstrating longer-term catalytic performance compared to their salt counterparts. Herein, the practical application of MOFs in NO-releasing polymeric substrates with an embedded NO donor compound was investigated for the first time. By developing composite thermoplastic silicon polycarbonate polyurethane (TSPCU) scaffolds, the catalytic effects achievable via intrapolymeric interactions between an MOF and NO donor compound were investigated using the water-stable copper-based MOF H3[(Cu4Cl)3(BTTri)8-(H2O)12]·72H2O (CuBTTri) and the NO donor S-nitroso-N-acetyl-penicillamine (SNAP). By creating a multifunctional triple-layered composite scaffold with CuBTTri and SNAP, the surface flux of NO from catalyzed SNAP decomposition was found tunable based on the variable weight percent CuBTTri incorporation. The tunable NO surface fluxes were found to elicit different cytotoxic responses in human cell lines, enabling application-specific tailoring. Challenging the TSPCU-NO-MOF composites against 24 h bacterial growth models, the enhanced NO release was found to elicit over 99% reduction in adhered and over 95% reduction in planktonic methicillin-resistant Staphylococcus aureus, with similar results observed for Escherichia coli. These results indicate that the combination of embedded MOFs and NO donors can be used as a highly efficacious tool for the early prevention of biofilm formation on medical devices.
Collapse
Affiliation(s)
- Mark Garren
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Patrick Maffe
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Alyssa Melvin
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Lauren Griffin
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sarah Wilson
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Melissa Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
- Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
21
|
Kim M, Park SC, Lee DY. Glycyrrhizin as a Nitric Oxide Regulator in Cancer Chemotherapy. Cancers (Basel) 2021; 13:cancers13225762. [PMID: 34830916 PMCID: PMC8616433 DOI: 10.3390/cancers13225762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Glycyrrhizin (GL) has anti-cancer, anti-inflammatory, anti-viral, and anti-oxidant activity. In particular, GL reduces multidrug resistance (MDR) in cancer cells, which is a major obstacle to chemotherapy. Nitric oxide (NO) also plays an important role in MDR, and GL affects NO concentration in the tumor microenvironment. However, the effects of GL and NO interaction on MDR have not been reviewed. Here, we review the role of GL as an NO regulator in cancer cells and its subsequent anti-MDR effect and posit that GL is a promising MDR inhibitor for cancer chemotherapy. Abstract Chemotherapy is used widely for cancer treatment; however, the evolution of multidrug resistance (MDR) in many patients limits the therapeutic benefits of chemotherapy. It is important to overcome MDR for enhanced chemotherapy. ATP-dependent efflux of drugs out of cells is the main mechanism of MDR. Recent studies have suggested that nitric oxide (NO) can be used to overcome MDR by inhibiting the ATPase function of ATP-dependent pumps. Several attempts have been made to deliver NO to the tumor microenvironment (TME), however there are limitations in delivery. Glycyrrhizin (GL), an active compound of licorice, has been reported to both reduce the MDR effect by inhibiting ATP-dependent pumps and function as a regulator of NO production in the TME. In this review, we describe the potential role of GL as an NO regulator and MDR inhibitor that efficiently reduces the MDR effect in cancer chemotherapy.
Collapse
Affiliation(s)
- Minsu Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Seok Chan Park
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (M.K.); (S.C.P.)
- Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Korea
- Elixir Pharmatech Inc., Seoul 04763, Korea
- Correspondence:
| |
Collapse
|
22
|
Kashfi K, Kannikal J, Nath N. Macrophage Reprogramming and Cancer Therapeutics: Role of iNOS-Derived NO. Cells 2021; 10:3194. [PMID: 34831416 PMCID: PMC8624911 DOI: 10.3390/cells10113194] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide and its production by iNOS is an established mechanism critical to tumor promotion or suppression. Macrophages have important roles in immunity, development, and progression of cancer and have a controversial role in pro- and antitumoral effects. The tumor microenvironment consists of tumor-associated macrophages (TAM), among other cell types that influence the fate of the growing tumor. Depending on the microenvironment and various cues, macrophages polarize into a continuum represented by the M1-like pro-inflammatory phenotype or the anti-inflammatory M2-like phenotype; these two are predominant, while there are subsets and intermediates. Manipulating their plasticity through programming or reprogramming of M2-like to M1-like phenotypes presents the opportunity to maximize tumoricidal defenses. The dual role of iNOS-derived NO also influences TAM activity by repolarization to tumoricidal M1-type phenotype. Regulatory pathways and immunomodulation achieve this through miRNA that may inhibit the immunosuppressive tumor microenvironment. This review summarizes the classical physiology of macrophages and polarization, iNOS activities, and evidence towards TAM reprogramming with current information in glioblastoma and melanoma models, and the immunomodulatory and therapeutic options using iNOS or NO-dependent strategies.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| | - Jasmine Kannikal
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, New York, NY 10023, USA;
| | - Niharika Nath
- Department of Biological and Chemical Sciences, College of Arts and Sciences, New York Institute of Technology, New York, NY 10023, USA;
| |
Collapse
|
23
|
Akomolafe SF, Olasehinde TA, Oladapo IF, Oyeleye SI. Diet Supplemented with Chrysophyllum albidum G. Don (Sapotaceae) Fruit Pulp Improves Reproductive Function in Hypertensive Male Rats. Reprod Sci 2021; 29:540-556. [PMID: 34591290 DOI: 10.1007/s43032-021-00746-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022]
Abstract
Hypertension has been implicated as a risk factor of reproductive disorders. High blood pressure may trigger impaired sperm quality and biomarkers of reproductive disorders. This study aims to investigate the effect of diet supplemented with Chrysophyllum albidum fruit pulp (FP) on sperm parameters, reproductive hormones, and antioxidant markers in testes and epididymis of hypertensive rats. Male Wistar rats were divided into seven groups (n = 10): normotensive control rats [NC], cyclosporine (25 mg/kg)-induced hypertensive rats [Hypert], hypertensive rats treated with captopril (10 mg/kg/day) [Hypert + Capt], hypertensive [Hypert + 2%FP and Hypert + 4%FP], and normotensive [2%FP and 4%FP] rats treated with 2% and 4% of diet supplemented with African star apple fruit's pulp [FP]. Hemodynamic parameters (arterial pressure, diastolic, and systolic pressure), sperm count, sperm motility, reproductive hormones, reactive oxygen species, and malondialdehyde levels were assessed. Diet supplemented with FP fed to hypertensive rats reduced mean arterial pressure, diastolic and systolic blood pressure, and heart rate. Furthermore, FP improved sperm quality in hypertensive rats by increasing sperm count, sperm motility with a concomitant reduction in sperm abnormality. FP also increased 3β and 17β-hydroxysteroid hydrogenase (3β-HSD and 17β -HSD) activities, as well as testosterone, luteinizing hormone, and follicle-stimulating hormone levels. Besides, FP triggered a significant increase in 3β-HSD, 17β -HSD, and STAR expression in rats' testicular tissues. Diet supplemented with FP also reduced ROS and malondialdehyde levels and triggered an increase in thiol levels, catalase, and glutathione-S-transferase activities. This study revealed that FP supplemented diet improved sexual function in cyclosporine-induced hypertensive rats by reducing blood pressure and modulation of sperm parameters, steroidogenic enzymes, and reproductive hormones.
Collapse
Affiliation(s)
- Seun F Akomolafe
- Department of Biochemistry, Ekiti State University, Private Mail Bag 5363, Ado-Ekiti, Nigeria.
| | - Tosin A Olasehinde
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice Eastern Cape, South Africa
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria
| | - Iyabo F Oladapo
- Department of Basic Medical Science, College of Health Science and Technology, Ijero Ekiti, Nigeria
| | - Sunday I Oyeleye
- Biomedical Technology Department, Federal University of Technology, Akure, Nigeria
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology Akure, Akure, Ondo State, Nigeria
| |
Collapse
|
24
|
Erdinest N, London N, Ovadia H, Levinger N. Nitric Oxide Interaction with the Eye. Vision (Basel) 2021; 5:29. [PMID: 34207828 PMCID: PMC8293394 DOI: 10.3390/vision5020029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) is acknowledged as a vital intercellular messenger in multiple systems in the body. Medicine has focused on its functions and therapeutic applications for decades, especially in cardiovascular and nervous systems, and its role in immunological responses. This review was composed to demonstrate the prevalence of NO in components of the ocular system, including corneal cells and multiple cells in the retina. It discussed NO's assistance during the immune, inflammation and wound-healing processes. NO is identified as a vascular endothelial relaxant that can alter the choroidal blood flow and prompt or suppress vascular changes in age-related macular degeneration and diabetes, as well as the blood supply to the optic nerve, possibly influencing the progression of glaucoma. It will provide a deeper understanding of the role of NO in ocular homeostasis, the delicate balance between overproduction or underproduction and the effect on the processes from aqueous outflow and subsequent intraocular pressure to axial elongation and the development of myopia. This review also recognized the research and investigation of therapies being developed to target the NO complex and treat various ocular diseases.
Collapse
Affiliation(s)
- Nir Erdinest
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (N.E.); (N.L.)
| | | | - Haim Ovadia
- Agnes Ginges, Center for Human Neurogenetics, Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Nadav Levinger
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (N.E.); (N.L.)
- Enaim Refractive Surgery Center, Jerusalem 9438307, Israel
| |
Collapse
|
25
|
Adefegha SA, Assmann CE, Schetinger MRC, de Andrade CM, Emanuelli T. Moringa oleifera modulates cholinergic and purinergic enzymes activity in BV-2 microglial cells. Metab Brain Dis 2021; 36:627-638. [PMID: 33394288 DOI: 10.1007/s11011-020-00659-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/17/2020] [Indexed: 01/15/2023]
Abstract
Microglia are immune cells that are resident in central nervous system. Activation of microglial cells are detrimental to the survival of neurons. Thus, prevention of microglia activation and/or protection against microglia activation could be potential therapeutic strategy towards the management of inflammation-mediated neurodegenerative diseases. Moringa oleifera is widely consumed as food and used in folklore medicine for treating several diseases. This study was convened to investigate the effect of aqueous extract of Moringa oleifera on cell viability, cholinergic and purinergic enzymes in BV-2 microglial cultured cell. Aqueous extract of Moringa oleifera was prepared, lyophilized and reconstituted in 0.5% dimethylsulphoxide (DMSO). Cells were treated with Moringa oleifera extracts (0.1-100 μg/mL) and assessed for cell viability and nitric oxide production. Furthermore, the effect of Moringa oleifera on enzymes of cholinergic (acetylcholinesterase) and purinergic (nucleoside triphosphate diphosphohydrolase; NTPDase, 5' nucleotidase and adenosine deaminase; ADA) systems in BV-2 microglial cells were determined. Incubation of BV-2 microglia cell with M. oleifera extract maintained cell viability, modulated cholinergic and purinergic enzymes activity. The phenolic compounds found in M. oleifera extracts, include chlorogenic acid, rutin; quercetin pentoside, kaempferol derivative and quercetin derivative. Thus, this study suggest that the potential therapeutic effect of the phenolic compounds found in M. oleifera may have been responsible for the maintenance of cell viability in BV-2 microglia cells and modulation of cholinergic as well as purinergic enzymes activity.
Collapse
Affiliation(s)
- Stephen Adeniyi Adefegha
- Functional Foods, Nutraceuticals and Phytomedicine Laboratory, Department of Biochemistry, Federal University of Technology, Akure, Nigeria.
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exacts Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
- Graduate Program in Veterinary Medicine, Department of Small Animals, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
- Department of Food Science and Technology, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| | - Charles Elias Assmann
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exacts Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Maria Rosa Chitolina Schetinger
- Graduate Program in Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exacts Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Cinthia Melazzo de Andrade
- Graduate Program in Veterinary Medicine, Department of Small Animals, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Center for Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
26
|
Johnson TO, Abolaji AO, Omale S, Longdet IY, Kutshik RJ, Oyetayo BO, Adegboyega AE, Sagay A. Benzo[a]pyrene and Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide induced locomotor and reproductive senescence and altered biochemical parameters of oxidative damage in Canton-S Drosophila melanogaster. Toxicol Rep 2021; 8:571-580. [PMID: 33777703 PMCID: PMC7985712 DOI: 10.1016/j.toxrep.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/25/2021] [Accepted: 03/06/2021] [Indexed: 01/20/2023] Open
Abstract
Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon (PAH) commonly found in cigarette smoke, automobile exhaust fumes, grilled meat, and smoked food among others. Exposure to B[a]P is associated with a range of toxic effects including developmental, neurological, oxidative, inflammatory, mutagenic, carcinogenic and mortal. Efficient and more affordable experimental models like Drosophila melanogaster could provide more insight into the mechanism of PAH toxicity and help develop new strategies for prevention, diagnosis and treatment of PAH-related conditions. In this study, we examined the induction of some biochemical changes along with mortality and functional senescence by B[a]P and its metabolite, benzo[a]pyrene- 7,8-dihydrodiol-910-epoxide (BPDE) in the Canton-S strain of Drosophila melanogaster, with the aim to establish an alternative assay medium for B[a]P toxicity in flies. Flies were exposed to 2-200 μM of B[a]P and 1-10 μM of BPDE through diet for a seven-day survival assay followed by a four-day treatment to determine the effects of the compounds on negative geotaxis, fecundity and some biochemical parameters of oxidative damage. BPDE significantly reduced the survival rate of flies along the 7 days of exposure whereas B[a]P did not cause any significant change in the survival rate of flies. B[a]P and BPDE significantly reduced the climbing ability of flies after 4 days of exposure. Rate of emergence of flies significantly reduced at 10-200 μM of B[a]P and 5-10 μM of BPDE. Both compounds caused various levels of alterations in the values of reduced glutathione (GSH), total thiol (T-SH), glutathione-S-transferase (GST), catalase (CAT), hydrogen peroxide (H2O2), nitric oxide (NO) and acetylcholinesterase (AChE) of the flies. The compounds also exhibited high binding affinities and molecular interactions with the active site amino acid residues of Drosophila GST and the inhibitor binding site of Drosophila AChE in an in silico molecular docking analysis, with BPDE forming stable hydrogen bonds with AChE. Hence, the Canton-S strain of Drosophila melanogaster could offer a simple and affordable assay medium to study B[a]P toxicity.
Collapse
Affiliation(s)
- Titilayo Omolara Johnson
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Amos Olalekan Abolaji
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Simeon Omale
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
- Africa Center of Excellence in Phytomedicine Research and Development, University of Jos, Jos, Nigeria
| | - Ishaya Yohanna Longdet
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Richard Joseph Kutshik
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Bolaji Oyenike Oyetayo
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Abayomi Emmanuel Adegboyega
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Atiene Sagay
- Department of Obstetrics and Gynecology, College of Health Sciences, University of Jos, Jos, Nigeria
| |
Collapse
|
27
|
Mintz J, Vedenko A, Rosete O, Shah K, Goldstein G, Hare JM, Ramasamy R, Arora H. Current Advances of Nitric Oxide in Cancer and Anticancer Therapeutics. Vaccines (Basel) 2021; 9:94. [PMID: 33513777 PMCID: PMC7912608 DOI: 10.3390/vaccines9020094] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a short-lived, ubiquitous signaling molecule that affects numerous critical functions in the body. There are markedly conflicting findings in the literature regarding the bimodal effects of NO in carcinogenesis and tumor progression, which has important consequences for treatment. Several preclinical and clinical studies have suggested that both pro- and antitumorigenic effects of NO depend on multiple aspects, including, but not limited to, tissue of generation, the level of production, the oxidative/reductive (redox) environment in which this radical is generated, the presence or absence of NO transduction elements, and the tumor microenvironment. Generally, there are four major categories of NO-based anticancer therapies: NO donors, phosphodiesterase inhibitors (PDE-i), soluble guanylyl cyclase (sGC) activators, and immunomodulators. Of these, NO donors are well studied, well characterized, and also the most promising. In this study, we review the current knowledge in this area, with an emphasis placed on the role of NO as an anticancer therapy and dysregulated molecular interactions during the evolution of cancer, highlighting the strategies that may aid in the targeting of cancer.
Collapse
Affiliation(s)
- Joel Mintz
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie, FL 33328, USA;
| | - Anastasia Vedenko
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
| | - Omar Rosete
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Khushi Shah
- College of Arts and Sciences, University of Miami, Miami, FL 33146, USA;
| | - Gabriella Goldstein
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Joshua M. Hare
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Himanshu Arora
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.V.); (J.M.H.)
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
28
|
Extra Virgin Olive Oil Phenolic Extract on Human Hepatic HepG2 and Intestinal Caco-2 Cells: Assessment of the Antioxidant Activity and Intestinal Trans-Epithelial Transport. Antioxidants (Basel) 2021; 10:antiox10010118. [PMID: 33467632 PMCID: PMC7829860 DOI: 10.3390/antiox10010118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
In the framework of research aimed at promoting the nutraceutical properties of the phenolic extract (BUO) obtained from an extra virgin olive oil of the Frantoio cultivar cultivated in Tuscany (Italy), with a high total phenols content, this study provides a comprehensive characterization of its antioxidant properties, both in vitro by Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity, ferric reducing antioxidant power, and 2,2-diphenyl-1-picrylhydrazyl assays, and at the cellular level in human hepatic HepG2 and human intestinal Caco-2 cells. Notably, in both cell systems, after H2O2 induced oxidative stress, the BUO extract reduced reactive oxygen species, lipid peroxidation, and NO overproduction via modulation of inducible nitric oxide synthase protein levels. In parallel, the intestinal transport of the different phenolic components of the BUO phytocomplex was assayed on differentiated Caco-2 cells, a well-established model of mature enterocytes. The novelty of our study lies in having investigated the antioxidant effects of a complex pool of phenolic compounds in an extra virgin olive oil (EVOO) extract, using either in vitro assays or liver and intestinal cell models, rather than the effects of single phenols, such as hydroxytyrosol or oleuropein. Finally, the selective trans-epithelial transport of some oleuropein derivatives was observed for the first time in differentiated Caco-2 cells.
Collapse
|
29
|
Rouillard KR, Novak OP, Pistiolis AM, Yang L, Ahonen MJR, McDonald RA, Schoenfisch MH. Exogenous Nitric Oxide Improves Antibiotic Susceptibility in Resistant Bacteria. ACS Infect Dis 2021; 7:23-33. [PMID: 33291868 DOI: 10.1021/acsinfecdis.0c00337] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Antibiotic resistance in bacteria is a major global threat and a leading cause for healthcare-related morbidity and mortality. Resistant biofilm infections are particularly difficult to treat owing to the protective biofilm matrix, which decreases both antibiotic efficacy and clearance by the host. Novel antimicrobial agents that are capable of eradicating resistant infections are greatly needed to combat the rise of antibiotic-resistant bacteria, particularly in patients with cystic fibrosis who are frequently colonized by multidrug-resistant species. Our research group has developed nitric oxide-releasing biopolymers as alternatives to conventional antibiotics. Here, we show that nitric oxide acts as a broad-spectrum antibacterial agent while also improving the efficacy of conventional antibiotics when delivered sequentially. Alone, nitric oxide kills a broad range of bacteria in planktonic and biofilm form without engendering resistance. In combination with conventional antibiotics, nitric oxide increases bacterial susceptibility to multiple classes of antibiotics and slows the development of antibiotic resistance. We anticipate that the use of nitric oxide in combination with antibiotics may improve the outcome of patients with refractory infections, particularly those that are multidrug-resistant.
Collapse
Affiliation(s)
- Kaitlyn R. Rouillard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Olivia P. Novak
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alex M. Pistiolis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lei Yang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mona J. R. Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Vast Therapeutics, Durham, North Carolina 27703, United States
| | | | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Vast Therapeutics, Durham, North Carolina 27703, United States
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
30
|
Nitric oxide-inducing Genistein elicits apoptosis-like death via an intense SOS response in Escherichia coli. Appl Microbiol Biotechnol 2020; 104:10711-10724. [PMID: 33170329 DOI: 10.1007/s00253-020-11003-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 01/06/2023]
Abstract
Increasing prevalence of multidrug-resistant untreatable infections has prompted researchers to trial alternative treatments such as a substitute for traditional antibiotics. This study endeavored to elucidate the antibacterial mechanism(s) of this isoflavone, via analysis of relationship between genistein and Escherichia coli. Furthermore, this investigation analyzed whether genistein generates nitric oxide (NO) in E. coli as NO contributes to cell death. RecA, an essential protein for the bacterial SOS response, was detected through western blot, and the activated caspases decreased without RecA. The results showed that the NO induced by genistein affected the bacterial DNA. Under conditions of acute DNA damage, an SOS response called apoptosis-like death occurred, affecting DNA repair. These results suggested that RecA was bacterial caspase-like protein. In addition, NO was toxic to the bacterial cells and induced dysfunction of the plasma membrane. Thus, membrane depolarization and phosphatidylserine exposure were observed similarly to eukaryotic apoptosis. In conclusion, the combined results demonstrated that the antibacterial mode of action(s) of genistein was a NO-induced apoptosis-like death, and the role of RecA suggested that it contributed to the SOS response of NO defense. KEY POINTS: • Genistein generates nitric oxide in E. coli. • Genistein exhibits intense SOS response in E. coli. • Genistein-induced NO causes apoptosis-like death in E. coli.
Collapse
|
31
|
Yan S, Resta TC, Jernigan NL. Vasoconstrictor Mechanisms in Chronic Hypoxia-Induced Pulmonary Hypertension: Role of Oxidant Signaling. Antioxidants (Basel) 2020; 9:E999. [PMID: 33076504 PMCID: PMC7602539 DOI: 10.3390/antiox9100999] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Elevated resistance of pulmonary circulation after chronic hypoxia exposure leads to pulmonary hypertension. Contributing to this pathological process is enhanced pulmonary vasoconstriction through both calcium-dependent and calcium sensitization mechanisms. Reactive oxygen species (ROS), as a result of increased enzymatic production and/or decreased scavenging, participate in augmentation of pulmonary arterial constriction by potentiating calcium influx as well as activation of myofilament sensitization, therefore mediating the development of pulmonary hypertension. Here, we review the effects of chronic hypoxia on sources of ROS within the pulmonary vasculature including NADPH oxidases, mitochondria, uncoupled endothelial nitric oxide synthase, xanthine oxidase, monoamine oxidases and dysfunctional superoxide dismutases. We also summarize the ROS-induced functional alterations of various Ca2+ and K+ channels involved in regulating Ca2+ influx, and of Rho kinase that is responsible for myofilament Ca2+ sensitivity. A variety of antioxidants have been shown to have beneficial therapeutic effects in animal models of pulmonary hypertension, supporting the role of ROS in the development of pulmonary hypertension. A better understanding of the mechanisms by which ROS enhance vasoconstriction will be useful in evaluating the efficacy of antioxidants for the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
| | | | - Nikki L. Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (S.Y.); (T.C.R.)
| |
Collapse
|
32
|
Rancan EA, Frota EI, de Freitas TMN, Jordani MC, Évora PRB, Castro-e-Silva O. Evaluation of Indigo carmine on hepatic ischemia and reperfusion injury. Acta Cir Bras 2020; 35:e202000901. [PMID: 32996998 PMCID: PMC7518224 DOI: 10.1590/s0102-865020200090000001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/01/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To evaluate the effects of treatment with Indigo Carmine (IC) on rat livers subjected to ischemia-reperfusion injury. METHODS The animals were subdivided into 4 groups: 1.SHAM group(SH) - saline; 2.SHAM group with IC-2mg/Kg(SHIC); 3.IR group - rats submitted to ischemia and reperfusion with saline(IR); 4.IR group with IC-2mg/Kg(IRIC). The IR protocol consists of liver exposure and administration of drug or saline intravenously, followed by 60 minutes of ischemia and 15 of reperfusion. Liver samples were collected for biochemical analysis. RESULTS State 3 of mitochondrial respiration showed a significant worsening of the IRIC group in relation to all others. State 4 showed a difference between IRIC and SHIC. The Respiratory Control Ratio showed statistical decrease in IR and IRIC versus Sham. The osmotic swelling showed significant difference between SHxIR; SHICxIRIC and SHxIRIC. There was a significant increase in ALT in the IRIC group in relation to all the others. Concerning the nitrate dosage, there was a decrease in the group treated with IC(IRxIRIC). There was no difference regarding the dosage of Malondialdehyde. CONCLUSION IC was not able to protect mitochondria from IR injury and proved to be a potentiating agent, acting in synergy with the IR injury promoting damage to the hepatocyte membranes.
Collapse
Affiliation(s)
- Eduardo Alexandre Rancan
- Graduate student, Faculdade de Medicina de Marília (FAMEMA), Marilia-SP, Brazil. Technical procedures; acquisition, analysis and interpretation of data, manuscript preparation
| | - Eloísa Ianes Frota
- Graduate student, Faculdade de Medicina de Marília (FAMEMA), Marilia-SP, Brazil. Technical procedures; acquisition, analysis and interpretation of data, manuscript preparation
| | - Tábata Marina Nóbrega de Freitas
- Graduate student, Faculdade de Medicina de Marília (FAMEMA), Marilia-SP, Brazil. Technical procedures; acquisition, analysis and interpretation of data, manuscript preparation
| | - Maria Cecília Jordani
- Master, Biochemistry, Division of Digestive Surgery, Department of Surgery and Anatomy, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (FMRP-USP), Ribeirao Preto-SP, Brazil. Acquisition and interpretation of data, statistics analysis
| | - Paulo Roberto Barbosa Évora
- PhD, Full Professor, Division of Thoracic and Cardiovascular Surgery, Department of Surgery and Anatomy, FMRP-USP, Ribeirao Preto-SP, Brazil. Conception and design of the study, manuscript writing, critical revision
| | - Orlando Castro-e-Silva
- PhD, Full Professor, Surgery and Anatomy Department, FMRP-USP, Ribeirao Preto-SP, Brazil. Conception and design of the study, analysis and interpretation of data, manuscript writing, critical revision
| |
Collapse
|
33
|
Mohd Faudzi SM, Leong SW, Auwal FA, Abas F, Wai LK, Ahmad S, Tham CL, Shaari K, Lajis NH, Yamin BM. In silico studies, nitric oxide, and cholinesterases inhibition activities of pyrazole and pyrazoline analogs of diarylpentanoids. Arch Pharm (Weinheim) 2020; 354:e2000161. [PMID: 32886410 DOI: 10.1002/ardp.202000161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/09/2022]
Abstract
A new series of pyrazole, phenylpyrazole, and pyrazoline analogs of diarylpentanoids (excluding compounds 3a, 4a, 5a, and 5b) was pan-assay interference compounds-filtered and synthesized via the reaction of diarylpentanoids with hydrazine monohydrate and phenylhydrazine. Each analog was evaluated for its anti-inflammatory ability via the suppression of nitric oxide (NO) on IFN-γ/LPS-activated RAW264.7 macrophage cells. The compounds were also investigated for their inhibitory capability toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), using a modification of Ellman's spectrophotometric method. The most potent NO inhibitor was found to be phenylpyrazole analog 4c, followed by 4e, when compared with curcumin. In contrast, pyrazole 3a and pyrazoline 5a were found to be the most selective and effective BChE inhibitors over AChE. The data collected from the single-crystal X-ray diffraction analysis of compound 5a were then applied in a docking simulation to determine the potential binding interactions that were responsible for the anti-BChE activity. The results obtained signify the potential of these pyrazole and pyrazoline scaffolds to be developed as therapeutic agents against inflammatory conditions and Alzheimer's disease.
Collapse
Affiliation(s)
- Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - S Wei Leong
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faruk A Auwal
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Food Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Lam K Wai
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chau L Tham
- Department of Biomedical Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nordin H Lajis
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Bohari M Yamin
- School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
34
|
Jeong K, Sung I, Joo HU, Kwon T, Yuk JM, Kwon Y, Kim H. Molecular design of nitro-oxide-substituted cycloalkane derivatives for high-energy-density materials. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
The Compound Expression of HSP90 and INOS in the Testis of Diabetic Rats as Cellular and Pathologic Adverse Effects of Diabetes. Anal Cell Pathol (Amst) 2020; 2020:3906583. [PMID: 32676275 PMCID: PMC7336198 DOI: 10.1155/2020/3906583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Diabetes is increasingly prevalent at global level and associated with various impacts including the male reproductive system. Aims This research is aimed at investigating the influence of diabetes on the localization and expression of HSP90 and iNOS in the testicular tissue of diabetic rats. Methods A diabetic model was developed through a single injection of alloxan monohydrate intraperitoneally (purchased from Sigma-Aldrich) 120 mg/kg body weight following fasting for 12 hrs. The experiment involved two groups, the control and diabetic groups with 10 albino rats in each group. Diabetes was considered if glucose concentration was ≥200 mg/dl. The experiment duration was for one month. After the experiment had finished, all rats were terminated and prepared for routine histological and immunohistochemical examination. Results The results revealed that diabetes caused morphological changes at histological level in testicular tissue. Immunohistochemical examination showed that diabetes significantly upregulated the expression of both HSP90 and iNOS in the testicular tissue of diabetic rats as compared with that of the control group (p < 0.001). Conclusion Diabetes may induce adverse health effects on the male reproduction through upregulation of HSP90 and iNOS in the testicular tissue of diabetic rats.
Collapse
|
36
|
Jan R, Roy R, Bhor R, Pai K, Satsangi PG. Toxicological screening of airborne particulate matter in atmosphere of Pune: Reactive oxygen species and cellular toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:113724. [PMID: 32078875 DOI: 10.1016/j.envpol.2019.113724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Present study screened the toxicological assessment of airborne particulate matter (PM), mechanistic investigation, relationship between the physicochemical characteristics and its associated toxic response. The average concentration of both PM10 and PM2.5 exceeded the Indian National Ambient Air Quality Standards. In present study, PM bound metals; Fe, Cu, Cr, Ni, Mn, Pb, Cd, Zn, Sr and Co have been taken into account with total metal concentration of 0.83 and 0.44 μg m-3 of PM10 and PM2.5 mass concentrations, respectively. The contribution of redox active metals (Fe, Cu, Cr, Ni and Mn) in PM was more as compared to non-redox metals (Pb, Cd and Co) indicating significant risk to the exposed population as these metals possess the ability to produce reactive oxygen species (ROS) which are responsible for various diseases. The cytotoxicity profiles of PM samples determined by MTT assay on two different cell lines (A549 and PBMC) exhibited dose-dependent effects after 24 h exposure, but the consequences differ with respect to particle size and sampling periods. A significant decrease in cell viability with varying PM concentrations (20, 40, 60, 80 and 100 μg ml-1) with respect to control was found in both cell lines. Incubation of RBC suspension with PM samples caused pronounced disruption of RBC and thus exhibited substantial hemolytic behavior. PM samples showed a range of potency to produce reactive oxygen species (ROS). Almost all PM samples increased the level of pro-inflammatory mediator (Nitric oxide) when compared to corresponding unexposed controls suggesting the important role of reactive nitrogen species in induction of cellular toxicity.
Collapse
Affiliation(s)
- Rohi Jan
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Ritwika Roy
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Renuka Bhor
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - Kalpana Pai
- Department of Zoology, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India
| | - P Gursumeeran Satsangi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, 411007, India.
| |
Collapse
|
37
|
Topchieva LV, Balan OV, Korneva VA, Malysheva IE, Pankrasheva KA. The Nitric Oxide Metabolite Level and NOS2 and NOS3 Gene Transcripts in Patients with Essential Arterial Hypertension. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Bould J, Clegg W, Waddell PG, Cvačka J, Dušek M, Londesborough MGS. A Reversible NO-Triggered Multiple Metallaborane Cluster Fusion by Ligand Expulsion/Addition from (PMe 2Ph) 4Pt 2B 10H 10 to Afford (PMe 2Ph) 8Pt 8B 40H 40 and (PMe 2Ph) 5Pt 4B 20H 20. Inorg Chem 2020; 59:5030-5040. [PMID: 32207620 DOI: 10.1021/acs.inorgchem.0c00247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The dimetallic boron hydride cluster, (PMe2Ph)4Pt2B10H10 (1-Pt2), is known to reversibly sequester small molecules (e.g., O2, CO, and SO2) across its Pt-Pt cluster vector. Here, we report the very different effect of the addition of nitric oxide (NO) to solutions of (1-Pt2) that prompts the elimination of some of its phosphine ligands and the autofusion of the resultant {(PMe2Ph)xPt2B10H10} units to afford the metallaborane conglomerates (PMe2Ph)8Pt8B40H40 (2-Pt8, 38%) and (PMe2Ph)5Pt4B20H20 (3-Pt4, 34%). Single-crystal X-ray studies of these multicluster assemblies reveal the links between the clusters to be a combination of both Pt-Pt bonds and Pt-μH-B 2-electron, 3-center bonds in (2-Pt8) and Pt-μH-B 2-electron, 3-center bonds in (3-Pt4). For compound (2-Pt8), the cluster assemblage can be effectively reversed by the addition of ethyl isonitrile (EtNC) to afford (EtNC)3(PMe2Ph)2Pt2B10H10 4 in quantitative yield. The compounds were characterized by mass spectrometry, multielement NMR spectroscopy, and single-crystal X-ray diffraction studies.
Collapse
Affiliation(s)
- Jonathan Bould
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež, 250 68, Czech Republic
| | - William Clegg
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Paul G Waddell
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
| | - Michal Dušek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Michael G S Londesborough
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež, 250 68, Czech Republic
| |
Collapse
|
39
|
Extra Virgin Olive Oil Polyphenols: Modulation of Cellular Pathways Related to Oxidant Species and Inflammation in Aging. Cells 2020; 9:cells9020478. [PMID: 32093046 PMCID: PMC7072812 DOI: 10.3390/cells9020478] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 01/18/2023] Open
Abstract
The olive-oil-centered Mediterranean diet has been associated with extended life expectancy and a reduction in the risk of age-related degenerative diseases. Extra virgin olive oil (EVOO) itself has been proposed to promote a "successful aging", being able to virtually modulate all the features of the aging process, because of its great monounsaturated fatty acids content and its minor bioactive compounds, the polyphenols above all. Polyphenols are mostly antioxidant and anti-inflammatory compounds, able to modulate abnormal cellular signaling induced by pro-inflammatory stimuli and oxidative stress, as that related to NF-E2-related factor 2 (Nrf-2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which have been identified as important modulators of age-related disorders and aging itself. This review summarizes existing literature about the interaction between EVOO polyphenols and NF-κB and Nrf-2 signaling pathways. Reported studies show the ability of EVOO phenolics, mainly hydroxytyrosol and tyrosol, to activate Nrf-2 signaling, inducing a cellular defense response and to prevent NF-κB activation, thus suppressing the induction of a pro-inflammatory phenotype. Literature data, although not exhaustive, indicate as a whole that EVOO polyphenols may significantly help to modulate the aging process, so tightly connected to oxidative stress and chronic inflammation.
Collapse
|
40
|
Casin KM, Kohr MJ. An emerging perspective on sex differences: Intersecting S-nitrosothiol and aldehyde signaling in the heart. Redox Biol 2020; 31:101441. [PMID: 32007450 PMCID: PMC7212482 DOI: 10.1016/j.redox.2020.101441] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease is the leading cause of the death for both men and women. Although baseline heart physiology and the response to disease are known to differ by sex, little is known about sex differences in baseline molecular signaling, especially with regard to redox biology. In this review, we describe current research on sex differences in cardiac redox biology with a focus on the regulation of nitric oxide and aldehyde signaling. Furthermore, we argue for a new perspective on cardiovascular sex differences research, one that focuses on baseline redox biology without the elimination or disruption of sex hormones.
Collapse
Affiliation(s)
- Kevin M Casin
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
41
|
Okoro EE, Osoniyi OR, Jabeen A, Shams S, Choudhary MI, Onajobi FD. Anti-proliferative and immunomodulatory activities of fractions from methanol root extract of Abrus precatorius L. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0143-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Abrus precatorius possesses various therapeutic properties including anticancer potentials. This study evaluated the anti-proliferative activities of fractions of methanol root extract of A. precatorius on breast and cervical cancer cells and their immunomodulatory effect. Phytochemical screening was done by FTIR and GCMS. In vitro anti-proliferative effect was evaluated on human breast cancer (AU565) and cervical cancer (HeLa) cells and on murine fibroblast (NIH 3 T3) cells. Antioxidant activity was performed via DPPH radical scavenging assay. The immunomodulatory potential of fractions was evaluated by inhibition of phagocytes oxidative burst (ROS), Nitric oxide (NO) and proinflammatory cytokine TNF-α.
Results
A. precatorius fractions showed different chemical groups and were somewhat selective in antiproliferative activity against studied cancer cells. Ethyl acetate fraction showed the most significant antiproliferative activity with IC50 values of 18.10 μg/mL and 11.89 μg/mL against AU565 and HeLa cells respectively. Hexane fraction significantly (p < 0.05) inhibited HeLa cells (IC50 18.24 ± 0.16 μg/mL), whereas aqueous fraction showed mild inhibition (IC50 46.46 ± 0.14 μg/mL) on AU565 cell proliferation. All fractions showed no cytotoxicity against NIH-3 T3 murine fibroblast normal cells. All fractions showed potent and significant (p < 0.001) DPPH radical scavenging activity as well as suppressed phagocytic oxidative burst. Hexane (< 1 μg/mL), ethyl acetate (< 1 μg/mL), and butanol (5.74 μg/mL) fractions potently inhibited the cytokine TNF- α, hexane (< 1 μg/mL) and ethyl acetate (< 1 μg/mL) fractions also potently inhibited NO.
Conclusions
The antiproliferative activities and suppressive effect on the phagocytic oxidative burst, NO and proinflammatory cytokine might be due to the synergistic actions of bioactive compounds especially flavonoids present in the assayed fractions and therefore, suggest chemotherapeutic use of A. precatorius in cancer treatment.
Collapse
|
42
|
The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep 2019; 39:BSR20191601. [PMID: 31371631 PMCID: PMC6712439 DOI: 10.1042/bsr20191601] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Cryopreservation has facilitated advancement of biological research by allowing the storage of cells over prolonged periods of time. While cryopreservation at extremely low temperatures would render cells metabolically inactive, cells suffer insults during the freezing and thawing process. Among such insults, the generation of supra-physiological levels of reactive oxygen species (ROS) could impair cellular functions and survival. Antioxidants are potential additives that were reported to partially or completely reverse freeze-thaw stress-associated impairments. This review aims to discuss the potential sources of cryopreservation-induced ROS and the effectiveness of antioxidant administration when used individually or in combination.
Collapse
|
43
|
The anti-invasive activity of Robinia pseudoacacia L. and Amorpha fruticosa L. on breast cancer MDA-MB-231 cell line. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00257-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Zálešák F, Bon DJYD, Pospíšil J. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol Res 2019; 146:104284. [PMID: 31136813 DOI: 10.1016/j.phrs.2019.104284] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Abstract
Lignans and neolignans are plant secondary metabolites derived from the oxidative coupling of phenylpropanoids. Biological activity of these phenolic compounds ranges from antioxidant, antitumor (terminaloside P, IC50 = 10 nM), anti-inflammatory, anti-neurodegenerative (schibitubin B, IC50 = 3.2 nM) and antiviral (patentiflorin A, IC50 = 14-23 nM) to antimicrobial. In addition, it was observed that several members of this group, namely enterolactone and its biochemical precursors also known as phytoestrogens, possess important protective properties. Most of these lignans and neolignans are presented in reasonable amounts in one's diet and thus the protection they provide against the colon and breast cancer, to name a few, is even more important to note. Similarly, neuroprotective properties were observed (schisanwilsonin G, IC50 = 3.2 nM) These structural motives also serve as an important starting point in the development of anticancer drugs. Presumably the most famous members of this family, etoposide and teniposide, synthetic derivatives of podophyllotoxin, are used in the clinical treatment of lymphocytic leukemia, certain brain tumors, and lung tumors already for nearly 20 years. This review describes 413 lignans and neolignans which have been isolated between 2016 and mid-2018 being reported in more than 300 peer-reviewed articles. It covers their source, structure elucidation, and bioactivity. Within the review, the structure-based overview of compounds as well as the bioactivity-based overview of compounds are described.
Collapse
Affiliation(s)
- František Zálešák
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic.
| | - David Jean-Yves Denis Bon
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic.
| | - Jiří Pospíšil
- Department of Organic Chemistry, Faculty of Science, Palacky University, tř. 17. listopadu 1192/12, CZ-771 46 Olomouc, Czech Republic; Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic.
| |
Collapse
|
45
|
Pinheiro WO, Fascineli ML, Farias GR, Horst FH, de Andrade LR, Corrêa LH, Magalhães KG, Sousa MH, de Almeida MC, Azevedo RB, Lacava ZGM. The influence of female mice age on biodistribution and biocompatibility of citrate-coated magnetic nanoparticles. Int J Nanomedicine 2019; 14:3375-3388. [PMID: 31123402 PMCID: PMC6511116 DOI: 10.2147/ijn.s197888] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Magnetic nanoparticles (MNPs) have been successfully tested for several purposes in medical applications. However, knowledge concerning the effects of nanostructures on elderly organisms is remarkably scarce. PURPOSE To fill part of this gap, this work aimed to investigate biocompatibility and bio-distribution aspects of magnetic nanoparticles coated with citrate (NpCit) in both elderly and young healthy mice. METHODS NpCit (2.4 mg iron) was administered intraperitoneally, and its toxicity was evaluated for 28 days through clinical, biochemical, hematological, and histopathological examinations. In addition, its biodistribution was evaluated by spectrometric (inductively coupled plasma optical emission spectrometry) and histological methods. RESULTS NpCit presented age-dependent effects, inducing very slight and temporary biochemical and hematological changes in young animals. These changes were even weaker than the effects of the aging process, especially those related to the hematological data, tumor necrosis factor alpha, and nitric oxide levels. On the other hand, NpCit showed a distinct set of results in the elderly group, sometimes reinforcing (decrease of lymphocytes and increase of monocytes) and sometimes opposing (erythrocyte parameters and cytokine levels) the aging changes. Leukocyte changes were still observed on the 28th day after treatment in the elderly group. Slight evidence of a decrease in liver and immune functions was detected in elderly mice treated or not treated with NpCit. It was noted that tissue damage or clinical changes related to aging or to the NpCit treatment were not observed. As detected for aging, the pattern of iron biodistribution was significantly different after NpCit administration: extra iron was detected until the 28th day, but in different organs of elderly (liver and kidneys) and young (spleen, liver, and lungs) mice. CONCLUSION Taken together, the data show NpCit to be a stable and reasonably biocompatible sample, especially for young mice, and thus appropriate for biomedical applications. The data showed important differences after NpCit treatment related to the animals' age, and this emphasizes the need for further studies in older animals to appropriately extend the benefits of nanotechnology to the elderly population.
Collapse
Affiliation(s)
- Willie O Pinheiro
- Department of Genetics and Morphology, Institute of Biological Sciences, CNANO, University of Brasilia, Brasilia, DF 70910-900, Brazil,
- Post-graduation Program in Molecular Pathology, Faculty of Medicine, University of Brasilia, Brasília, DF 70910-900, Brazil,
| | - Maria L Fascineli
- Department of Genetics and Morphology, Institute of Biological Sciences, CNANO, University of Brasilia, Brasilia, DF 70910-900, Brazil,
| | - Gabriel R Farias
- Department of Genetics and Morphology, Institute of Biological Sciences, CNANO, University of Brasilia, Brasilia, DF 70910-900, Brazil,
| | - Frederico H Horst
- Department of Genetics and Morphology, Institute of Biological Sciences, CNANO, University of Brasilia, Brasilia, DF 70910-900, Brazil,
| | - Laise Rodrigues de Andrade
- Department of Genetics and Morphology, Institute of Biological Sciences, CNANO, University of Brasilia, Brasilia, DF 70910-900, Brazil,
| | - Luis Henrique Corrêa
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Marcelo Henrique Sousa
- Green Nanotechnology Group, Faculty of Ceilandia, University of Brasilia, Brasília, DF 72220-900, Brazil
| | - Marcos C de Almeida
- Department of Genetics and Morphology, Institute of Biological Sciences, CNANO, University of Brasilia, Brasilia, DF 70910-900, Brazil,
| | - Ricardo B Azevedo
- Department of Genetics and Morphology, Institute of Biological Sciences, CNANO, University of Brasilia, Brasilia, DF 70910-900, Brazil,
| | - Zulmira G M Lacava
- Department of Genetics and Morphology, Institute of Biological Sciences, CNANO, University of Brasilia, Brasilia, DF 70910-900, Brazil,
- Post-graduation Program in Molecular Pathology, Faculty of Medicine, University of Brasilia, Brasília, DF 70910-900, Brazil,
| |
Collapse
|
46
|
Serreli G, Melis MP, Corona G, Deiana M. Modulation of LPS-induced nitric oxide production in intestinal cells by hydroxytyrosol and tyrosol metabolites: Insight into the mechanism of action. Food Chem Toxicol 2019; 125:520-527. [DOI: 10.1016/j.fct.2019.01.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/04/2023]
|
47
|
Taysi S, Tascan AS, Ugur MG, Demir M. Radicals, Oxidative/Nitrosative Stress and Preeclampsia. Mini Rev Med Chem 2019; 19:178-193. [DOI: 10.2174/1389557518666181015151350] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 11/01/2016] [Accepted: 02/28/2017] [Indexed: 12/23/2022]
Abstract
Preeclampsia (PE) has a profound effect in increasing both maternal and fetal morbidity and
mortality especially in third World. Disturbances of extravillous trophoblast migration toward uterine
spiral arteries is characteristic feature of PE, which, in turn, leads to increased uteroplacental vascular
resistance and by vascular dysfunction resulting in reduced systemic vasodilatory properties. Underlying
pathogenesis appeared to be an altered bioavailability of nitric oxide (NO•) and tissue damage
caused by increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The
increase in ROS and RNS production or the decrease in antioxidant mechanisms generates a condition
called oxidative and nitrosative stress, respectively, defined as the imbalance between pro- and antioxidants
in favor of the oxidants. Additionally, ROS might trigger platelet adhesion and aggregation
leading to intravascular coagulopathy. ROS-induced coagulopathy causes placental infarction and impairs
the uteroplacental blood flow in PE. As a consequence of these disorders could result in deficiencies
in oxygen and nutrients required for normal fetal development resulting in fetal growth restriction.
On the one hand, enzymatic and nonenzymatic antioxidants scavenge ROS and protect tissues against
oxidative damage. More specifically, placental antioxidant enzymes including catalase, superoxide
dismutase (SOD), and glutathione peroxidase (GSH-Px) protect the vasculature from ROS, maintaining
the vascular function. On the other hand, ischemia in placenta in PE reduces the antioxidant activity.
Collectively, the extent of oxidative stress would increase and therefore leads to the development
of the pathological findings of PE including hypertension and proteinuria. Our goal in this article is to
review current literature about researches demonstrating the interplay between oxidative, nitrosative
stresses and PE, about their roles in the pathophysiology of PE and also about the outcomes of current
clinical trials aiming to prevent PE with antioxidant supplementation.
Collapse
Affiliation(s)
- Seyithan Taysi
- Department of Medical Biochemistry, Gaziantep University, Medical School, Gaziantep, Turkey
| | - Ayse Saglam Tascan
- Department of Medical Biochemistry, Gaziantep University, Medical School, Gaziantep, Turkey
| | - Mete Gurol Ugur
- Obstetrics and Gynecology, Gaziantep University, Medical School, Gaziantep, Turkey
| | - Mustafa Demir
- Division of Obstetrics and Gynecology, Golbasi State Hospital, Adiyaman, Turkey
| |
Collapse
|
48
|
Uckun Z, Guzel S, Canacankatan N, Yalaza C, Kibar D, Coskun Yilmaz B. Potential protective effects of naringenin against vancomycin-induced nephrotoxicity via reduction on apoptotic and oxidative stress markers in rats. Drug Chem Toxicol 2018; 43:104-111. [PMID: 30257567 DOI: 10.1080/01480545.2018.1512612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Vancomycin (VCM), a glycopeptide antibiotic, is a drug widely used in severe infections. However, VCM induce notable nephrotoxic side effects. Naringenin (NAR) is a natural of flavonoid and are known as strongly antioxidant, nefroprotective, antiapoptotic, and anti-inflammatory. The purpose of this study was to determine the potential protective effects of NAR against VCM-induced nephrotoxicity by measuring apoptotic and oxidative stress markers and evaluating histopathological alterations in rats. For this purpose, we used male Wistar albino rats that divided into seven groups: (i) Control [saline, intraperitoneally (i.p.)], (ii) carboxymethyl cellulose (0.5% CMC, orally), (iii) VCM (400 mg/kg, i.p.), (iv) NAR100 (100 mg/kg, orally), (v) VCM + NAR25 (25 mg/kg, orally), (vi) VCM + NAR50 (50 mg/kg, orally), and (vii) VCM + NAR100 (100 mg/kg, orally) groups. VCM administration was started one day after the first treatment of NAR and continued across 7-day. Caspase-3, -8, and-9 activities and malondialdehyde (MDA) and nitric oxide (NO) levels were measured by colorimetric methods in the kidney tissues, creatinine, and blood urea nitrogen (BUN) levels were analyzed based on ELISA in serum. Caspase-3 and -8 activities, NO levels, serum creatinine and BUN levels were significantly higher in VCM group in comparison with VCM + NAR (25, 50, and 100) groups (p < 0.05). Caspase-9 activity and MDA were significantly higher in VCM group compared to VCM + NAR (25 and 50) groups (p < 0.05). Histopathological alterations in VCM group were significantly diminished by administration of NAR, especially NAR 25. In conclusion, NAR 25 and 50 mg have more potent protective effects on VCM-induced nephrotoxicity compared to NAR 100 mg.
Collapse
Affiliation(s)
- Zuhal Uckun
- Department of Pharmaceutical Toxicology, Mersin University, Mersin, Turkey
| | - Sevda Guzel
- Department of Pharmacognosy, Mersin University, Mersin, Turkey
| | | | - Cem Yalaza
- Department of Medical Services and Techniques, Toros University Vocational School, Mersin, Turkey
| | - Deniz Kibar
- Department of Histology and Embryology, Mersin University, Mersin, Turkey
| | - Banu Coskun Yilmaz
- Department of Histology and Embryology, Mersin University, Mersin, Turkey
| |
Collapse
|
49
|
Olajide OJ, Fatoye JO, Idowu OF, Ilekoya D, Gbadamosi IT, Gbadamosi MT, Asogwa NT. Reversal of behavioral decline and neuropathology by a complex vitamin supplement involves modulation of key neurochemical stressors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:120-131. [PMID: 30005307 DOI: 10.1016/j.etap.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Metal ions are crucial for normal neurochemical signaling and perturbations in their homeostasis have been associated with neurodegenerative processes. Hypothesizing that in vivo modulation of key neurochemical processes including metal ion regulation (by transferrin receptor-1: TfR-1) in cells can improve disease outcome, we investigated the efficacy of a complex vitamin supplement (CVS) containing B-vitamins and ascorbic acid in preventing/reversing behavioral decline and neuropathology in rats. Wistar rats (eight weeks-old) were assigned into five groups (n = 8), including controls and those administered CVS (400 mg/kg/day) for two weeks before or after AlCl3 (100 mg/kg)-induced neurotoxicity. Following behavioral assessments, prefrontal cortex (PFC) and hippocampus were prepared for biochemical analyses, histology and histochemistry. CVS significantly reversed reduction of exploratory/working memory, frontal-dependent motor deficits, cognitive decline, memory dysfunction and anxiety. These correlated with CVS-dependent modulation of TfP-1 expression that were accompanied by significant reversal of neural oxidative stress in expressed superoxide dismutase, nitric oxide, catalase, glutathione peroxidase and malondialdehyde. Furthermore, CVS inhibited neural bioenergetics dysfunction, with increased labelling of glucokinase within PFC and hippocampus correlating with increased glucose-6-phosphate dehydrogenase and decreased lactate dehydrogenase expressions. These relates to inhibition of over-expressed acetylcholinesterase and increased total protein synthesis. Histological and Nissl staining of thin sections corroborated roles of CVS in reversing AlCl3-induced neuropathology. Summarily, we showed the role of CVS in normalizing important neurochemical molecules linking concurrent progression of oxidative stress, bioenergetics deficits, synaptic dysfunction and cellular hypertrophy during neurodegeneration.
Collapse
Affiliation(s)
- Olayemi Joseph Olajide
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Nigeria.
| | - John Oluwasegun Fatoye
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Nigeria
| | - Oluwakunmi Folashade Idowu
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Nigeria
| | - Damilola Ilekoya
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Nigeria
| | - Ismail Temitayo Gbadamosi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Nigeria
| | | | - Nnaemeka Tobechukwu Asogwa
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Nigeria; Central Research Laboratories Ltd, 132b University Road, Ilorin, Nigeria
| |
Collapse
|
50
|
KOHUTIAR M, ECKHARDT A, MIKŠÍK I, ŠANTOROVÁ P, WILHELM J. Proteomic Analysis of Peroxynitrite-Induced Protein Nitration in Isolated Beef Heart Mitochondria. Physiol Res 2018. [DOI: 10.33549/10.33549/physiolres.933608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are exposed to reactive nitrogen species under physiological conditions and even more under several pathologic states. In order to reveal the mechanism of these processes we studied the effects of peroxynitrite on isolated beef heart mitochondria in vitro. Peroxynitrite has the potential to nitrate protein tyrosine moieties, break the peptide bond, and eventually release the membrane proteins into the solution. All these effects were found in our experiments. Mitochondrial proteins were resolved by 2D electrophoresis and the protein nitration was detected by immunochemical methods and by nano LC-MS/MS. Mass spectrometry confirmed nitration of ATP synthase subunit beta, pyruvate dehydrogenase E1 component subunit beta, citrate synthase and acetyl-CoA acetyltransferase. Immunoblot detection using chemiluminiscence showed possible nitration of other proteins such as cytochrome b-c1 complex subunit 1, NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, elongation factor Tu, NADH dehydrogenase [ubiquinone] flavoprotein 2, heat shock protein beta-1 and NADH dehydrogenase [ubiquinone] iron-sulfur protein 8. ATP synthase beta subunit was nitrated both in membrane and in fraction prepared by osmotic lysis. The high sensitivity of proteins to nitration by peroxynitrite is of potential biological importance, as these enzymes are involved in various pathways associated with energy production in the heart.
Collapse
Affiliation(s)
- M. KOHUTIAR
- Department of Medical Chemistry and Clinical Biochemistry, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | | | | | | | | |
Collapse
|