1
|
Gupta M, Dwivedi V, Kumar S, Patel A, Niazi P, Yadav VK. Lead toxicity in plants: mechanistic insights into toxicity, physiological responses of plants and mitigation strategies. PLANT SIGNALING & BEHAVIOR 2024; 19:2365576. [PMID: 38899525 PMCID: PMC11195469 DOI: 10.1080/15592324.2024.2365576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Soil toxicity is a major environmental issue that leads to numerous harmful effects on plants and human beings. Every year a huge amount of Pb is dumped into the environment either from natural sources or anthropogenically. Being a heavy metal it is highly toxic and non-biodegradable but remains in the environment for a long time. It is considered a neurotoxic and exerts harmful effects on living beings. In the present review article, investigators have emphasized the side effects of Pb on the plants. Further, the authors have focused on the various sources of Pb in the environment. Investigators have emphasized the various responses including molecular, biochemical, and morphological of plants to the toxic levels of Pb. Further emphasis was given to the effect of elevated levels of Pb on the microbial population in the rhizospheres. Further, emphasized the various remediation strategies for the Pb removal from the soil and water sources.
Collapse
Affiliation(s)
- Minoti Gupta
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Chandigarh, Punjab, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh, India
| | - Swatantar Kumar
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Chandigarh, Punjab, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Parwiz Niazi
- Department of Biology, Faculty of Education, Kandahar University, Kandahar, Afghanistan
- Department of Plant Protection, Faculty of Agriculture, EGE University, İzmir, Turkey
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
2
|
Latib F, Zafendi MAI, Mohd Lazaldin MA. The use of vitamin E in ocular health: Bridging omics approaches with Tocopherol and Tocotrienol in the management of glaucoma. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100224. [PMID: 39415777 PMCID: PMC11481750 DOI: 10.1016/j.fochms.2024.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Vitamin E, encompassing tocopherols and tocotrienols is celebrated for its powerful antioxidant properties, which help neutralize free radicals and protect cells from oxidative damage. Over the years, research has shown that both tocopherols and tocotrienols offer significant benefits, including protection against radiation damage, cholesterol regulation, cardiovascular health, and neurological disorders. This wide range of benefits highlights the need for further exploration of vitamin E's role in managing various diseases. One particularly promising area is its potential application in treating ocular diseases like glaucoma. Despite advances in treatment, current options have limitations, making the investigation of alternative approaches crucial. Omics technologies, which allow for a detailed examination of biological systems, could provide valuable insights into how tocopherols and tocotrienols work at a molecular level. Their neuroprotective and antioxidative properties make them promising candidates for glaucoma management. Additionally, the sustainability of vitamin E is noteworthy, as by-products from its production can be repurposed into valuable resources for nutraceuticals and pharmaceuticals. As research continues, integrating omics technologies with the study of vitamin E derivatives could unveil new therapeutic possibilities, further enhancing our understanding of its diverse health benefits and its potential role in preventing and managing diseases.
Collapse
Affiliation(s)
- Fazira Latib
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | | | | |
Collapse
|
3
|
Rong H, Yu Y, Zhang B, Tao D, Zhu T, Wu D, Ma F. Effect of solution plasma process on microorganism sterilization, physicochemical properties and nutrients of milk. Food Chem 2024; 460:140721. [PMID: 39111040 DOI: 10.1016/j.foodchem.2024.140721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
Solution plasma process (SPP) was used for sterilizing Staphylococcus aureus (S. aureus) in raw milk (RM). The sterilization efficacy analysis and kinetics analysis showed bacterial concentration and the distance between electrodes were negatively correlated with the sterilization effect, while discharge voltage was positive. The better sterilization effect was achieved at 4 kV. The electrochemical indices analysis indicated that pH value of RM had no changed. The DO content decreased. The conductivity increased with the increasing discharge voltage. The nutrient content analysis revealed that the content of acidity, lactose, fat, and protein decreased. RM after SPP treatment exhibited higher values of sourness and slightly lower values of astringency than the control. The higher discharge voltage and narrower distance between electrodes presented the stronger effect. The structural characterization of CMs and MFGs was carried out using a laser particle sizer, FTIR, 1H NMR, XRD, and AFM. The results showed that the main chemical structure of CMs was unchanged basically. The SPP with the narrower distance between electrodes and lower discharge voltage significantly reduced the size and aggregation of MFGs at the molecular level. At 4 kV/2 mm, the particle sizes of CMs and MFGs were reduced from 238 nm and 523 nm to 224 nm and 302 nm, respectively. The average diameter of MFGs was reduced from 45 nm to 18 nm. Therefore, SPP is a potential method in the milk industry and provides a new idea for the preservation and processing of beverage.
Collapse
Affiliation(s)
- Haifeng Rong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Yu
- China Certification & Inspection Group Liaoning Co., Ltd., Shenyang 110866, China
| | - Baiqing Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongbing Tao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Tingyu Zhu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongge Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengming Ma
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
4
|
Sharma M, Devi P, Kaushal S, Ul-Ahsan A, Mehra S, Budhwar M, Chopra M. Cyto and Genoprotective Potential of Tannic Acid Against Cadmium and Nickel Co-exposure Induced Hepato-Renal Toxicity in BALB/c Mice. Biol Trace Elem Res 2024; 202:5624-5636. [PMID: 38393487 DOI: 10.1007/s12011-024-04117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Tannic acid (TA) is a metal chelating polyphenol that plays a crucial role in metal detoxification, but its modulatory role in co-exposure of these heavy metals' exposure needs to be explored. Cadmium (Cd) and nickel (Ni) are inorganic hazardous chemicals in the environment. Humans are prone to be exposed to the co-exposure of Cd and Ni, but the toxicological interactions of these metals are poorly defined. Present study was undertaken to study the preventive role of TA in Cd-Ni co-exposure-evoked hepato-renal toxicity in BALB/c mice. In the current investigation, increased oxidative stress in metal intoxicated groups was confirmed by elevated peroxidation of the lipids and significant lowering of endogenous antioxidant enzymes. Altered hepato-renal serum markers, DNA fragmentation, and histological alterations were also detected in the metal-treated groups. Present study revealed that Cd is a stronger toxicant than Ni and when co-exposure was administered, additive, sub-additive, and detrimental effects were observed. Prophylactic treatment with TA significantly reinstated the levels of lipid peroxidation (LPO), non-enzymatic, and enzymatic antioxidants. Moreover, it also restored the serum biomarker levels, DNA damage, and histoarchitecture of the given tissues. TA due to its metal chelating and anti-oxidative properties exhibited cyto- and genoprotective potential against Cd-Ni co-exposure-induced hepatic and renal injury.
Collapse
Affiliation(s)
- Madhu Sharma
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Pooja Devi
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Surbhi Kaushal
- School of Basic and Applied Sciences, Maharaja Agrasen University, Solan, Himachal Pradesh, India, 174103
| | - Aitizaz Ul-Ahsan
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Sweety Mehra
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Muskan Budhwar
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014
| | - Mani Chopra
- Cell and Molecular Biology Lab, Department of Zoology, Panjab University, Chandigarh, India, 160014.
| |
Collapse
|
5
|
Gonçalves S, Peixoto F, da Silveria TFF, Barros L, Gaivão I. Antigenotoxic and cosmetic potential of elderberry ( Sambucus nigra) extract: protection against oxidative DNA damage. Food Funct 2024; 15:10795-10810. [PMID: 39400280 DOI: 10.1039/d4fo03217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The integrity of the genome is under constant threat from both endogenous and exogenous factors that induce oxidative stress and accelerate ageing. The demand for natural and organic cosmetics is rising due to the harmful effects of synthetic genotoxic agents on human health and the environment. Elderberry (Sambucus nigra L.), a fruit rich in bioactive compounds such as polyphenols, has demonstrated significant antioxidant properties. This study aimed to evaluate elderberry extract's chemical characterization and biological activities in peripheral blood mononuclear cells exposed to streptonigrin and H2O2, both known for causing DNA damage. The antigenotoxic evaluation and antioxidant assays (ABTS and DPPH) were conducted to assess its biological properties. Using the Comet assay enhanced with formamidopyrimidine-DNA glycosylase (Fpg) to detect oxidized purines, we found that elderberry extract significantly reduced DNA damage. These findings suggest that elderberry has potential as a natural alternative to synthetic ingredients in cosmetics, offering protective benefits against DNA damage and contributing to anti-ageing and skin health.
Collapse
Affiliation(s)
- Sara Gonçalves
- Centre for Animal Sciences and Veterinary Studies (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Academic Clinical Center of Trás-os-Montes and Alto Douro (CACTMAD), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Francisco Peixoto
- Centro de Química de Vila Real (CQVR), Biology and Environment Department, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Tayse F F da Silveria
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel Gaivão
- Centre for Animal Sciences and Veterinary Studies (CECAV), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Department of Genetics and Biotechnology, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| |
Collapse
|
6
|
Zhao G, Zhao Y, Liang W, Lu H, Liu H, Deng Y, Zhu T, Guo Y, Chang L, Garcia-Barrio MT, Chen YE, Zhang J. Endothelial KLF11 is a novel protector against diabetic atherosclerosis. Cardiovasc Diabetol 2024; 23:381. [PMID: 39462409 PMCID: PMC11514907 DOI: 10.1186/s12933-024-02473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Atherosclerotic cardiovascular diseases remain the leading cause of mortality in diabetic patients, with endothelial cell (EC) dysfunction serving as the initiating step of atherosclerosis, which is exacerbated in diabetes. Krüppel-like factor 11 (KLF11), known for its missense mutations leading to the development of diabetes in humans, has also been identified as a novel protector of vascular homeostasis. However, its role in diabetic atherosclerosis remains unexplored. METHODS Diabetic atherosclerosis was induced in both EC-specific KLF11 transgenic and knockout mice in the Ldlr-/- background by feeding a diabetogenic diet with cholesterol (DDC). Single-cell RNA sequencing (scRNA-seq) was utilized to profile EC dysfunction in diabetic atherosclerosis. Additionally, gain- and loss-of-function experiments were conducted to investigate the role of KLF11 in hyperglycemia-induced endothelial cell dysfunction. RESULTS We found that endothelial KLF11 deficiency significantly accelerates atherogenesis under diabetic conditions, whereas KLF11 overexpression remarkably inhibits it. scRNA-seq profiling demonstrates that loss of KLF11 increases endothelial-to-mesenchymal transition (EndMT) during atherogenesis under diabetic conditions. Utilizing gain- and loss-of-function approaches, our in vitro study reveals that KLF11 significantly inhibits EC inflammatory activation and TXNIP-induced EC oxidative stress, as well as Notch1/Snail-mediated EndMT under high glucose exposure. CONCLUSION Our study demonstrates that endothelial KLF11 is an endogenous protective factor against diabetic atherosclerosis. These findings indicate that manipulating KLF11 could be a promising approach for developing novel therapies for diabetes-related cardiovascular complications.
Collapse
Affiliation(s)
- Guizhen Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, 77204, USA
| | - Yang Zhao
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Wenying Liang
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Haocheng Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, People's Republic of China
| | - Hongyu Liu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Yongjie Deng
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Tianqing Zhu
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Yanhong Guo
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Lin Chang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Minerva T Garcia-Barrio
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| | - Jifeng Zhang
- Frankel Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
7
|
Rodriguez P, López-Landa A, Romo-Parra H, Rubio-Osornio M, Rubio C. Unraveling the ozone impact and oxidative stress on the nervous system. Toxicology 2024; 509:153973. [PMID: 39423999 DOI: 10.1016/j.tox.2024.153973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/07/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Ozone (O₃), a potent oxidant, can penetrate the body through breathing, generating reactive oxygen species (ROS) and triggering inflammatory processes. Oxidative stress, an imbalance between the production of ROS and the body's antioxidant capacity, plays a crucial role in the pathophysiology of various neurodegenerative diseases. This phenomenon can negatively impact the Central Nervous System (CNS), inducing structural and functional alterations that contribute to the development of neurological pathologies. This review examines how O₃-induced oxidative stress affects the nervous system by analyzing existing literature on the involved molecular mechanisms and potential antioxidant systems to mitigate its effects. Through a comprehensive review of experimental studies, our objective is to shed light on the interaction between O₃ and the nervous system, as well as its signaling pathways and altered genes, providing a foundation for future research in this field. Several studies have demonstrated that prolonged exposure to O₃ leads to increased expression of reactive oxygen species, causing alterations in the blood-brain barrier and damage to astrocytes and microglia. These effects can lead to an increase in the production of proinflammatory cytokines, neurotoxins, and genes, exacerbating neuronal damage and accelerating the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and other neurological disorders. The results of this review suggest that exposure to O₃ may induce oxidative damage to the nervous system, which could have significant implications for public health.
Collapse
Affiliation(s)
- Paola Rodriguez
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico
| | - Alejandro López-Landa
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico; Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Héctor Romo-Parra
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico; Psychology Department, Universidad Iberoamericana, Mexico, Mexico
| | - Moisés Rubio-Osornio
- Neurochemistry Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico
| | - Carmen Rubio
- Neurophysiology Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico, Mexico.
| |
Collapse
|
8
|
He W, Liu Z, Zhang H, Liu Q, Weng Z, Wang D, Guo W, Xu J, Wang D, Jiang Z, Gu A. Bisphenol S decreased lifespan and healthspan via insulin/IGF-1-like signaling-against mitochondrial stress in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117136. [PMID: 39353373 DOI: 10.1016/j.ecoenv.2024.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Bisphenol S (BPS) is widely presented and affects aging with unclear mechanisms. Here, we applied C. elegans to evaluate the effects of BPS on lifespan and healthspan and to investigate the underlying mechanisms. Both early-life and whole-life exposure to BPS at environmentally relevant doses (0.6, 6, 60 μg/L) significantly decreased lifespan, and healthspan (body bend, pharyngeal pumping, and lipofuscin accumulation). BPS exposure impaired mitochondrial structure and function, which promoted ROS production to induce oxidative stress. Furthermore, BPS increased expressions of the insulin/IGF-like signaling (IIS). Also, BPS inhibited expression of the IIS transcription factor daf-16 and its downstream anti-oxidative genes. Quercetin effectively improved BPS-induced oxidative stress byreversing BPS-regulated IIS/daf-16 pathway and anti-oxidative gene expressions. In daf-2 and daf-16 mutants, the effects of BPS and quercetin on lifespan, healthspan, oxidative stress, and anti-oxidative genes expressions were reversed, demonstrating the requirement of IIS/daf-16 for aging regulation. Molecular docking and molecular dynamics simulations confirmed the stable interaction between DAF-2 and BPS mainly via three residues (VAL1260, GLU1329, and MET1395), which was attenuated by quercetin. Our results highlighted that adverse effects of BPS on impairing lifespan and healthspan by affecting IIS/daf-16 function against mitochondrial stress, which could be inhibited by quercetin treatment. Thus, we first revealed the underlying mechanisms of BPS-induced aging and the potential treatment.
Collapse
Affiliation(s)
- Wenmiao He
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China
| | - Zhiwei Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongchao Zhang
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Dongmei Wang
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Wenhui Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, China.
| | - Zhaoyan Jiang
- Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
9
|
Gurhan H, Barnes F. Frequency-Dependent Antioxidant Responses in HT-1080 Human Fibrosarcoma Cells Exposed to Weak Radio Frequency Fields. Antioxidants (Basel) 2024; 13:1237. [PMID: 39456490 PMCID: PMC11504554 DOI: 10.3390/antiox13101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
This study explores the complex relationship between radio frequency (RF) exposure and cancer cells, focusing on the HT-1080 human fibrosarcoma cell line. We investigated the modulation of reactive oxygen species (ROS) and key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase, and glutathione (GSH), as well as mitochondrial superoxide levels and cell viability. Exposure to RF fields in the 2-5 MHz range at very weak intensities (20 nT) over 4 days resulted in distinct, frequency-specific cellular effects. Significant increases in SOD and GSH levels were observed at 4 and 4.5 MHz, accompanied by reduced mitochondrial superoxide levels and enhanced cell viability, suggesting improved mitochondrial function. In contrast, lower frequencies like 2.5 MHz induced oxidative stress, evidenced by GSH depletion and increased mitochondrial superoxide levels. The findings demonstrate that cancer cells exhibit frequency-specific sensitivity to RF fields even at intensities significantly below current safety standards, highlighting the need to reassess exposure limits. Additionally, our analysis of the radical pair mechanism (RPM) offers deeper insight into RF-induced cellular responses. The modulation of ROS and antioxidant enzyme activities is significant for cancer treatment and has broader implications for age-related diseases, where oxidative stress is a central factor in cellular degeneration. The findings propose that RF fields may serve as a therapeutic tool to selectively modulate oxidative stress and mitochondrial function in cancer cells, with antioxidants playing a key role in mitigating potential adverse effects.
Collapse
Affiliation(s)
- Hakki Gurhan
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr 425 UCB, Boulder, CO 80309, USA
| | - Frank Barnes
- Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, 1111 Engineering Dr 425 UCB, Boulder, CO 80309, USA
| |
Collapse
|
10
|
Hussain M, Ghori MU, Aslam MN, Abbas S, Shafique M, Awan FR. Serum uric acid: an independent risk factor for cardiovascular disease in Pakistani Punjabi patients. BMC Cardiovasc Disord 2024; 24:546. [PMID: 39385070 PMCID: PMC11465846 DOI: 10.1186/s12872-024-04055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/16/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND It is well-known that serum uric acid (SUA) can increase the risk of hypertension, diabetes, obesity and dyslipidemia. However, its independent association with the risk of cardiovascular diseases (CVD) is controversial particularly in different populations. Hence, this study was aimed to assess an independent association of SUA with CVD risk in a Punjabi Pakistani cohort. METHODS This is a retrospective observational study in which 502 human subjects having CVD, hypertension and/or diabetes were grouped based on SUA levels as normouricemia (n = 266) and hyperuricemia (n = 236). Role of SUA was assessed in increasing the risk of CVD independent of other key confounding factors (i.e. age, gender, dyslipidemia, hypertension, diabetes, dietary and life-style habits). All clinical and biochemical data were analyzed in SPSS (ver. 20). RESULTS Subjects aged 55 ± 13 years were of both genders (males: 52%). SUA levels were significantly different among clinical subtypes of CVD [i.e. acute coronary syndrome (ACS), myocardial infarction (MI) and heart failure (HF)]. Spearman correlation showed a significantly positive association between CVD and SUA (rho = 0.149, p < 0.001). Multivariate logistic regression of SUA quartiles showed that hyperuricemia is associated with CVD [3rd quartile: OR: 1.78 (CI: 1.28-2.48), p = 0.001 and 4th quartile: OR: 2.37 (CI: 1.72-3.27), p < 0.001]. Moreover, this association remained significant even after adjusting for confounding factors. CONCLUSION This study showed that SUA is positively associated with CVD, thus it can act as an independent risk factor for CVD.
Collapse
Affiliation(s)
- Misbah Hussain
- Diabetes and Cardio-Metabolic Disorders Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Department of Biotechnology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Muhammad Umer Ghori
- Diabetes and Cardio-Metabolic Disorders Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
- Department of Bioinformatics and Biotechnology, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan
| | | | - Shahid Abbas
- Faisalabad Institute of Cardiology (FIC), Faisalabad, Pakistan
| | - Muhammad Shafique
- Institute of Microbiology, Government College University, Liaquat Block 2nd Floor, Jhang Road, Faisalabad, 38000, Pakistan
| | - Fazli Rabbi Awan
- Diabetes and Cardio-Metabolic Disorders Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan.
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan.
| |
Collapse
|
11
|
Laghezza Masci V, Ovidi E, Tomassi W, De Vita D, Garzoli S. Exploring the Bioactive Potential of Taraxacum officinale F.H. Wigg Aerial Parts on MDA Breast Cancer Cells: Insights into Phytochemical Composition, Antioxidant Efficacy, and Gelatinase Inhibition within 3D Cellular Models. PLANTS (BASEL, SWITZERLAND) 2024; 13:2829. [PMID: 39409699 PMCID: PMC11482471 DOI: 10.3390/plants13192829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
In this work, aerial parts of Taraxacum officinale F.H. Wigg. produced in Umbria, Italy, were chemically investigated by solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) to describe their volatile profile. The results obtained showed the preponderant presence of monoterpenes, with limonene and 1,8-cineole as the main components. Further analyses by GC/MS after derivatization reaction were performed to characterize the non-volatile fraction highlighting the presence of fatty acids and di- and triterpenic compounds. T. officinale methanol and dichloromethane extracts, first analyzed by HRGC/MS, were investigated to evaluate the antioxidant activity, cytotoxicity, and antiproliferative properties of MDA cells on the breast cancer cell line and MCF 10A normal epithelial cells as well as the antioxidant activity by colorimetric assays. The impact on matrix metalloproteinases MMP-9 and MMP-2 was also explored in 3D cell systems to investigate the extracts' efficacy in reducing cell invasiveness. The extracts tested showed no cytotoxic activity with EC50 > 250 µg/mL on both cell lines. The DPPH assay revealed higher antioxidant activity in the MeOH extract compared with the DCM extract, while the FRAP assay showed a contrasting result, with the DCM extract exhibiting slightly greater antioxidant capacity. After treatment for 24 h with a non-cytotoxic concentration of 500 µg/mL of the tested extracts, gelatin zymography and Western blot analyses demonstrated that both MeOH and DCM extracts influenced the expression of MMP-9 and MMP-2 in MDA cells within the 3D cell model, leading to a significant decrease in the levels of these gelatinases, which are crucial markers of tumor invasiveness.
Collapse
Affiliation(s)
- Valentina Laghezza Masci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (V.L.M.); (E.O.); (W.T.)
| | - Elisa Ovidi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (V.L.M.); (E.O.); (W.T.)
| | - William Tomassi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy; (V.L.M.); (E.O.); (W.T.)
| | - Daniela De Vita
- Dipartimento di Biologia Ambientale, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Krishnamurthy HK, Pereira M, Rajavelu I, Jayaraman V, Krishna K, Wang T, Bei K, Rajasekaran JJ. Oxidative stress: fundamentals and advances in quantification techniques. Front Chem 2024; 12:1470458. [PMID: 39435263 PMCID: PMC11491411 DOI: 10.3389/fchem.2024.1470458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative species, generated endogenously via metabolism or from exogenous sources, play crucial roles in the body. At low levels, these species support immune functions by participating in phagocytosis. They also aid in cellular signaling and contribute to vasomodulation. However, when the levels of oxidative species exceed the body's antioxidant capacity to neutralize them, oxidative stress occurs. This stress can damage cellular macromolecules such as lipids, DNA, RNA, and proteins, driving the pathogenesis of diseases and aging through the progressive deterioration of physiological functions and cellular structures. Therefore, the body's ability to manage oxidative stress and maintain it at optimal levels is essential for overall health. Understanding the fundamentals of oxidative stress, along with its reliable quantification, can enable consistency and comparability in clinical practice across various diseases. While direct quantification of oxidant species in the body would be ideal for assessing oxidative stress, it is not feasible due to their high reactivity, short half-life, and the challenges of quantification using conventional techniques. Alternatively, quantifying lipid peroxidation, damage products of nucleic acids and proteins, as well as endogenous and exogenous antioxidants, serves as appropriate markers for indicating the degree of oxidative stress in the body. Along with the conventional oxidative stress markers, this review also discusses the role of novel markers, focusing on their biological samples and detection techniques. Effective quantification of oxidative stress may enhance the understanding of this phenomenon, aiding in the maintenance of cellular integrity, prevention of age-associated diseases, and promotion of longevity.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianhao Wang
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | - Kang Bei
- Vibrant Sciences LLC., Santa Clara, CA, United States
| | | |
Collapse
|
13
|
Burgos-Santamaría A, Rodríguez-Rodríguez P, Arnalich-Montiel A, Arribas SM, Fernández-Riveira C, Barrio-Pérez IM, Río J, Ligero JM, Quintana-Villamandos B. OXY-SCORE and Volatile Anesthetics: A New Perspective of Oxidative Stress in EndoVascular Aneurysm Repair-A Randomized Clinical Trial. Int J Mol Sci 2024; 25:10770. [PMID: 39409100 PMCID: PMC11476523 DOI: 10.3390/ijms251910770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
An aortic aneurysm (AA) is a life-threatening condition. Oxidative stress may be a common pathway linking multiple mechanisms of an AA, including vascular inflammation and metalloproteinase activity. Endovascular aneurysm repair (EVAR) is the preferred surgical approach for AA treatment. During surgery, inflammation and ischemia-reperfusion injury occur, and reactive oxygen species (ROS) play a key role in their modulation. Increased perioperative oxidative stress is associated with higher postoperative complications. The use of volatile anesthetics during surgery has been shown to reduce oxidative stress. Individual biomarkers only partially reflect the oxidative status of the patients. A global indicator of oxidative stress (OXY-SCORE) has been validated in various pathologies. This study aimed to compare the effects of the main volatile anesthetics, sevoflurane and desflurane, on oxidative status during EVAR. Eighty consecutive patients undergoing EVAR were randomized into two groups: sevoflurane and desflurane. Plasma biomarkers of oxidative damage (protein carbonylation and malondialdehyde) and antioxidant defense (total thiols, glutathione, nitrates, superoxide dismutase, and catalase activity) were measured before surgery and 24 h after EVAR. The analysis of individual biomarkers showed no significant differences between the groups. However, the OXY-SCORE was positive in the desflurane group (indicating a shift towards antioxidants) and negative in the sevoflurane group (favoring oxidants) (p < 0.044). Compared to sevoflurane, desflurane had a positive effect on oxidative stress during EVAR. The OXY-SCORE could provide a more comprehensive perspective on oxidative stress in this patient population.
Collapse
Affiliation(s)
- Alba Burgos-Santamaría
- Department of Anesthesia and Intensive Care, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (A.A.-M.); (C.F.-R.); (I.M.B.-P.); (B.Q.-V.)
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Autónoma University, 28029 Madrid, Spain; (P.R.-R.); (S.M.A.)
| | - Ana Arnalich-Montiel
- Department of Anesthesia and Intensive Care, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (A.A.-M.); (C.F.-R.); (I.M.B.-P.); (B.Q.-V.)
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Autónoma University, 28029 Madrid, Spain; (P.R.-R.); (S.M.A.)
| | - Carmen Fernández-Riveira
- Department of Anesthesia and Intensive Care, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (A.A.-M.); (C.F.-R.); (I.M.B.-P.); (B.Q.-V.)
| | - I. María Barrio-Pérez
- Department of Anesthesia and Intensive Care, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (A.A.-M.); (C.F.-R.); (I.M.B.-P.); (B.Q.-V.)
| | - Javier Río
- Department of Angiology and Vascular Surgery, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (J.R.); (J.M.L.)
| | - José Manuel Ligero
- Department of Angiology and Vascular Surgery, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (J.R.); (J.M.L.)
| | - Begoña Quintana-Villamandos
- Department of Anesthesia and Intensive Care, Gregorio Marañón’s University Hospital, 28007 Madrid, Spain; (A.A.-M.); (C.F.-R.); (I.M.B.-P.); (B.Q.-V.)
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
14
|
Olasehinde TA, Olaniran AO. Assessment of Neurotoxic Mechanisms of Individual and Binary Mixtures of Cobalt, Nickel and Lead in Hippocampal Neuronal Cells. ENVIRONMENTAL TOXICOLOGY 2024. [PMID: 39365032 DOI: 10.1002/tox.24418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 10/05/2024]
Abstract
Many studies have focused on the neurotoxic effects of single metals, while investigation on the exposure to metal mixtures, which mainly occur in real-life situations, is scarce. This study sought to assess the neurotoxic effect of Ni, Co, and Pb binary mixtures and their individual effects in hippocampal neuronal cells (HT-22). Cells were exposed to Ni, Co, and Pb separately for 48 h at 37°C and 5% CO2, and cell viability was assessed. Morphological assessment of the cells exposed to binary mixtures of Co, Ni, and Pb and single metals was assessed using a microscope. Furthermore, acetylcholinesterase (AChE) activity, oxidative stress biomarkers (glutathione [GSH] and malondialdehyde [MDA] levels, catalase [CAT], and glutathione-S transferase [GST] activities) and nitric oxide [NO] levels were evaluated after treatment with the binary mixtures and single metals. Binary mixtures of the metals reduced cell viability, exerting an additivity action. The combinations also exerted synergistic action, as revealed by the combination index. Furthermore, a significant reduction in AChE activity, GSH levels, CAT and GST activities, and high MDA and NO levels were observed in neuronal cells. The additive interactions and synergistic actions of the binary mixtures might contribute to the significant reduction of AChE activity, GSH levels, GST, and CAT activities, and an increase in MDA and NO levels. The findings from this study revealed significant evidence that binary mixtures of Co, Pb, and Ni may induce impaired neuronal function and, ultimately, neurodegeneration.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Lagos, Nigeria
- Discipline of Microbiology, School of Life Sciences, University of Kwazulu-Natal, Durban, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, University of Kwazulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Guo B, Tao Y, Yang T, Su X, Tan X, Tian W, Xie L. Biomaterials based on advanced oxidation processes in tooth whitening: fundamentals, progress, and models. J Mater Chem B 2024; 12:9459-9477. [PMID: 39193628 DOI: 10.1039/d4tb01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The increasing desire for aesthetically pleasing teeth has resulted in the widespread use of tooth whitening treatments. Clinical tooth whitening products currently rely on hydrogen peroxide formulations to degrade dental pigments through oxidative processes. However, they usually cause side effects such as tooth sensitivity and gingival irritation due to the use of high concentrations of hydrogen peroxide or long-time contact. In recent years, various novel materials and reaction patterns have been developed to tackle the issues related to H2O2-based tooth whitening. These can be broadly classified as advanced oxidation processes (AOPs). AOPs generate free radicals that have potent oxidizing properties, which can thereby increase the oxidation power and/or reduce the exposure time and can probably minimize the side effects of tooth bleaching. While there have been several reviews on clinical tooth whitening and the application of novel nanomaterials, a review based on the concept of AOPs in tooth bleaching application has not yet been conducted. This review describes the common types and mechanisms of AOPs, summarizes the latest research progress of new tooth bleaching materials based on AOPs, and proposes a model for tooth bleaching and a rate control step at the molecular level. The paper also reviews the shortcomings and suggests future development directions.
Collapse
Affiliation(s)
- Bingyi Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610299, China
| | - Yun Tao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Tiantian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaofan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xinzhi Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Li Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Rutgers School of Dental Medicine, Newark, New Jersey, USA
| |
Collapse
|
16
|
Fedoruk A, Shadyro O, Edimecheva I, Fedoruk D, Khrutskin V, Kirkovsky L, Sorokin V, Talkachova H. Free radical fragmentation and oxidation in the polar part of lysophospholipids: Results of the study of blood serum of healthy donors and patients with acute surgical pathology. Redox Biol 2024; 76:103309. [PMID: 39178730 PMCID: PMC11388268 DOI: 10.1016/j.redox.2024.103309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/03/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024] Open
Abstract
The interaction of reactive oxygen species with cell membrane lipids is usually considered in the context of lipid peroxidation in the nonpolar component of the membrane. In this work, for the first time, data were obtained indicating that damage to human cell membranes can occur in the polar part of lysophospholipids at the interface with the aqueous environment due to free radical fragmentation (FRF) processes. FRF products, namely 1-hexadecanoyloxyacetone (PAc) and 1-octadecanoyloxyacetone (SAc), were identified in human serum, and a GC-MS method was developed to quantify PAc and SAc. The content of FRF products in serum samples of 52 healthy donors was found to be in the range of 1.98-4.75 μmol/L. A linear regression equation, CPAc&SAc (μmol/L) = 0.51 + 0.064 × years, was derived to describe the relationship between age and content of FRF products. In 70 patients with acute surgical pathology in comparison with the control group of healthy donors, two distinct clusters with different concentration levels of FRF products were revealed. The first cluster: groups of 43 patients with various localized inflammatory-destructive lesions of hollow organ walls and bacterial translocation (septic inflammation) of abdominal cavity organs. These patients showed a 1.5-1.9-fold (p = 0.012) decrease in the total concentration of PAc and SAc in serum. In the second cluster: groups of 27 patients with ischemia-reperfusion tissue damage (aseptic inflammation), - a statistically significant increase in the concentration of FRF products was observed: in 2.2-4.0 times (p = 0.0001). The obtained data allow us to further understand the role of free-radical processes in the damage of lipid molecules. FRF products can potentially be used as markers of the degree of free-radical damage of hydroxyl containing phospholipids.
Collapse
Affiliation(s)
- Alexey Fedoruk
- Department of Hepatology and Minimally Invasive Surgery, Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology, 220087, Semashko st., 8, Minsk, Belarus; Department of Transplantology, Institute of Advanced Studies and retraining of Healthcare Personnel in Educational Institutions «Belarusian State Medical University», 220083, Dzerzhinsky Ave., 83, Minsk, Belarus.
| | - Oleg Shadyro
- Laboratory of Chemistry of Free Radical Processes, Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, Leningradskaya st., 14, Minsk, Belarus; Department of Radiation Chemistry and Chemical Pharmaceutical Technologies, Belarusian State University, 220030, Nezavisimosti av., 4, Minsk, Belarus
| | - Irina Edimecheva
- Laboratory of Chemistry of Free Radical Processes, Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, Leningradskaya st., 14, Minsk, Belarus.
| | - Dmitry Fedoruk
- Department of Hepatology and Minimally Invasive Surgery, Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology, 220087, Semashko st., 8, Minsk, Belarus.
| | - Valery Khrutskin
- Laboratory of Chemistry of Free Radical Processes, Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, Leningradskaya st., 14, Minsk, Belarus; Department of Radiation Chemistry and Chemical Pharmaceutical Technologies, Belarusian State University, 220030, Nezavisimosti av., 4, Minsk, Belarus.
| | - Leanid Kirkovsky
- Department of Hepatology and Minimally Invasive Surgery, Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology, 220087, Semashko st., 8, Minsk, Belarus.
| | - Viktor Sorokin
- Laboratory of Chemistry of Free Radical Processes, Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, Leningradskaya st., 14, Minsk, Belarus; Department of Radiation Chemistry and Chemical Pharmaceutical Technologies, Belarusian State University, 220030, Nezavisimosti av., 4, Minsk, Belarus.
| | - Halina Talkachova
- Department of Hepatology and Minimally Invasive Surgery, Minsk Scientific and Practical Center for Surgery, Transplantology and Hematology, 220087, Semashko st., 8, Minsk, Belarus.
| |
Collapse
|
17
|
Takallou S, Hajikarimlou M, Al-Gafari M, Wang J, Jagadeesan SK, Kazmirchuk TDD, Arnoczki C, Moteshareie H, Said KB, Azad T, Holcik M, Samanfar B, Smith M, Golshani A. Oxidative stress-induced YAP1 expression is regulated by NCE102, CDA2, and BCS1. FEBS J 2024; 291:4602-4618. [PMID: 39102301 DOI: 10.1111/febs.17243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Maintaining cellular homeostasis in the face of stress conditions is vital for the overall well-being of an organism. Reactive oxygen species (ROS) are among the most potent cellular stressors and can disrupt the internal redox balance, giving rise to oxidative stress. Elevated levels of ROS can severely affect biomolecules and have been associated with a range of pathophysiological conditions. In response to oxidative stress, yeast activator protein-1 (Yap1p) undergoes post-translation modification that results in its nuclear accumulation. YAP1 has a key role in oxidative detoxification by promoting transcription of numerous antioxidant genes. In this study, we identified previously undescribed functions for NCE102, CDA2, and BCS1 in YAP1 expression in response to oxidative stress induced by hydrogen peroxide (H2O2). Deletion mutant strains for these candidates demonstrated increased sensitivity to H2O2. Our follow-up investigation linked the activity of these genes to YAP1 expression at the level of translation. Under oxidative stress, global cap-dependent translation is inhibited, prompting stress-responsive genes like YAP1 to employ alternative modes of translation. We provide evidence that NCE102, CDA2, and BCS1 contribute to cap-independent translation of YAP1 under oxidative stress.
Collapse
Affiliation(s)
- Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| | | | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Kamaledin B Said
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Saudi Arabia
| | - Taha Azad
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, Canada
| | - Bahram Samanfar
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Canada
- Department of Biology, Carleton University, Ottawa, Canada
| |
Collapse
|
18
|
Li A, Qin Y, Gong G. The Changes of Mitochondria during Aging and Regeneration. Adv Biol (Weinh) 2024; 8:e2300445. [PMID: 38979843 DOI: 10.1002/adbi.202300445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/30/2024] [Indexed: 07/10/2024]
Abstract
Aging and regeneration are opposite cellular processes. Aging refers to progressive dysfunction in most cells and tissues, and regeneration refers to the replacement of damaged or dysfunctional cells or tissues with existing adult or somatic stem cells. Various studies have shown that aging is accompanied by decreased regenerative abilities, indicating a link between them. The performance of any cellular process needs to be supported by the energy that is majorly produced by mitochondria. Thus, mitochondria may be a link between aging and regeneration. It should be interesting to discuss how mitochondria behave during aging and regeneration. The changes of mitochondria in aging and regeneration discussed in this review can provide a timely and necessary study of the causal roles of mitochondrial homeostasis in longevity and health.
Collapse
Affiliation(s)
- Anqi Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuan Qin
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guohua Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
19
|
Banu HS, Parvin IS, Priyadharshini SD, Gayathiri E, Prakash P, Pratheep T. Molecular insights into the antioxidant and anticancer properties: A comprehensive analysis through molecular modeling, docking, and dynamics studies. J Cell Biochem 2024; 125:e30564. [PMID: 38747366 DOI: 10.1002/jcb.30564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 10/13/2024]
Abstract
Plants are rich sources of therapeutic compounds that often lack the side effects commonly found in synthetic chemicals. Researchers have effectively synthesized pharmaceuticals from natural sources, taking inspiration from traditional medicine, in their pursuit of modern drugs. This study aims to evaluate the phenolic and flavonoid content of Solanum virginianum seeds using different solvent extracts, enzymatic assays including 2,2-diphenyl-1-picrylhydrazyl activity, reducing power, and superoxide activity. Our phytochemical screening identified active compounds, such as phenols, flavonoids, tannins, and alkaloids. The methanol extract notably possesses higher levels of total phenolic and flavonoid content in comparison to the other extracts. The results highlight the superior antioxidant activity of methanol-extracted leaves, demonstrated by their exceptional IC50 values, which surpass the established standard. In this study, molecular docking techniques were used to assess the binding affinity and to predict the binding conformation of the compounds. Quercetin 3-O beta-d-galactopyranoside displayed a binding energy of -8.35 kcal/mol with several important amino acid residues, PHE222, TRP440, ILE184, LEU192, VAL221, LEU218, SER185, and ALA188. Kaempferol 3-O-beta-l-glucopyranoside exhibited a binding energy of -8.33 kcal/mol, interacting with specific amino acid residues including ALA 441, VAL318, VAL322, MET307, ILI409, GLY442, and PHE439. The results indicate that the methanol extract has a distinct composition of biologically active constituents compared to the other extracts. Overall, seeds exhibit promise as natural antioxidants and potential agents for combating cancer. This study highlights the significance of utilizing the therapeutic capabilities of natural compounds and enhancing our comprehension of their pharmacological characteristics.
Collapse
Affiliation(s)
- Hamza Serina Banu
- Department of Chemistry, Vellalar College for Women (Autonomous), Erode, Tamilnadu, India
| | - Ismail Sheriff Parvin
- Department of Chemistry, Vellalar College for Women (Autonomous), Erode, Tamilnadu, India
| | | | - Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, India
| | - Palanisamy Prakash
- Department of Botany, Periyar University, Periyar Palkalai Nagar, Salem, Tamil Nadu, India
| | - Thangaraj Pratheep
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, Tamil Nadu, India
| |
Collapse
|
20
|
Belenichev I, Bukhtiyarova N, Ryzhenko V, Makyeyeva L, Morozova O, Oksenych V, Kamyshnyi O. Methodological Approaches to Experimental Evaluation of Neuroprotective Action of Potential Drugs. Int J Mol Sci 2024; 25:10475. [PMID: 39408802 PMCID: PMC11477376 DOI: 10.3390/ijms251910475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The authors propose a novel approach to a comprehensive evaluation of neuroprotective effects using both in vitro and in vivo methods. This approach allows for the initial screening of numerous newly synthesized chemical compounds and substances from plant and animal sources while saving animal life by reducing the number of animals used in research. In vitro techniques, including mitochondrial suspensions and neuronal cell cultures, enable the assessment of neuroprotective activity, which can be challenging in intact organisms. The preliminary methods help outline the neuroprotection mechanism depending on the neurodestruction agent. The authors have validated a model of acute cerebrovascular accident, which simulates key cerebrovascular phenomena such as reduced cerebral blood flow, energy deficit, glutamate-calcium excitotoxicity, oxidative stress, and early gene expression. A significant advantage of this model is its ability to reproduce the clinical picture of cerebral ischemia: impaired motor activity; signs of neurological deficits (paresis, paralysis, etc.); as well as disturbances in attention, learning, and memory. Crucial to this approach is the selection of biochemical, molecular, and cellular markers to evaluate nerve tissue damage and characterize potential neuroprotective agents. Additionally, a comprehensive set of molecular, biochemical, histological, and immunohistochemical methods is proposed for evaluating neuroprotective effects and underlying mechanisms of potential pharmaceutical compounds.
Collapse
Affiliation(s)
- Igor Belenichev
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Nina Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Victor Ryzhenko
- Department of Medical and Pharmaceutical Informatics and Advanced Technologies, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Lyudmyla Makyeyeva
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Oksana Morozova
- Department of Pharmacology and Medical Formulation with Course of Normal Physiology, Zaporizhzhia State Medical and Pharmaceutical University, 69035 Zaporizhzhia, Ukraine
| | - Valentyn Oksenych
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
21
|
Sharma P, Sharma A, Lee HJ. Antioxidant potential of exopolysaccharides from lactic acid bacteria: A comprehensive review. Int J Biol Macromol 2024:135536. [PMID: 39349319 DOI: 10.1016/j.ijbiomac.2024.135536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
Exopolysaccharides (EPSs) from lactic acid bacteria (LAB) have multifunctional capabilities owing to their diverse structural conformations, monosaccharide compositions, functional groups, and molecular weights. A review paper on EPS production and antioxidant potential of different LAB genera has not been thoroughly reviewed. Therefore, the current review provides comprehensive information on the biosynthesis of EPSs, including the isolation source, type, characterization techniques, and application, with a primary focus on their antioxidant potential. According to this review, 17 species of Lactobacillus, five species of Bifidobacterium, four species of Leuconostoc, three species of Weissella, Enterococcus, and Lactococcus, two species of Pediococcus, and one Streptococcus species have been documented to exhibit antioxidant activity. Of the 111 studies comprehensively reviewed, 98 evaluated the radical scavenging activity of EPSs through chemical-based assays, whereas the remaining studies documented the antioxidant activity using cell and animal models. Studies have shown that different LAB genera have a unique capacity to produce homo- (HoPs) and heteropolysaccharides (HePs), with varied carbohydrate compositions, linkages, and molecular weights. Leuconostoc, Weissella, and Pediococcus were the main HoPs producers, whereas the remaining genera were the main HePs producers. Recent trends in EPSs production and blending to improve their properties have also been discussed.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
22
|
Li S, Xu J, Qian Y, Zhang R. Hydrogel in the Treatment of Traumatic Brain Injury. Biomater Res 2024; 28:0085. [PMID: 39328790 PMCID: PMC11425593 DOI: 10.34133/bmr.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
The high prevalence of traumatic brain injury (TBI) poses an important global public health challenge. Current treatment modalities for TBI primarily involve pharmaceutical interventions and surgical procedures; however, the efficacy of these approaches remains limited. In the field of regenerative medicine, hydrogels have garnered significant attention and research efforts. This review provides an overview of the existing landscape and pathological manifestations of TBI, with a specific emphasis on delineating the therapeutic potential of hydrogels incorporated with various bioactive agents for TBI management. Particularly, the review delves into the utilization and efficacy of hydrogels based on extracellular matrix (ECM), stem cell-loaded, drug-loaded, self-assembled peptide structures or conductive in the context of TBI treatment. These applications are shown to yield favorable outcomes such as tissue damage mitigation, anti-inflammatory effects, attenuation of oxidative stress, anti-apoptotic properties, promotion of neurogenesis, and facilitation of angiogenesis. Lastly, a comprehensive analysis of the merits and constraints associated with hydrogel utilization in TBI treatment is presented, aiming to steer and advance future research endeavors in this domain.
Collapse
Affiliation(s)
- Shanhe Li
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Jiajun Xu
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yuqing Qian
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People' Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
23
|
Kury M, de Oliveira Ribeiro RA, de Souza Costa CA, Florez FLE, Cavalli V. Co-doped titanium dioxide nanoparticles decrease the cytotoxicity of experimental hydrogen peroxide gels for in-office tooth bleaching. Clin Oral Investig 2024; 28:550. [PMID: 39320486 DOI: 10.1007/s00784-024-05916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
OBJECTIVE To evaluate the efficacy and cytotoxicity of experimental 6% and 35% hydrogen peroxide gels (HP6 or HP35) incorporated with titanium dioxide nanoparticles (NP) co-doped with nitrogen and fluorine and irradiated with a violet LED light (LT). METHODS Bovine enamel-dentin disks adapted to artificial pulp chambers were randomly assigned to bleaching (n = 8/group): NC (negative control), NP, HP6, HP6 + LT, HP6 + NP, HP6 + NP + LT, HP35, HP35 + LT, HP35 + NP, HP35 + NP + LT, and commercial HP35 (COM). Color (ΔE00) and whiteness index (ΔWID) changes were measured before and 14 days after bleaching. The extracts (culture medium + diffused gel components) collected after the first session were applied to odontoblast-like MDPC-23 cells, which were assessed concerning their viability, oxidative stress, and morphology. The amount of HP diffused through the disks was determined. Data were analyzed by generalized linear models or Kruskal Wallis Tests (α = 5%). RESULTS: HP6 + NP + LT exhibited ΔE00 and ΔWID higher than HP6 (p < 0.05) and similar to all HP35 groups. HP6 + NP + LT showed the lowest HP diffusion, and the highest cell viability (%) among bleached groups, preserving cell morphology and number of living cells similar to NC and NP. HP6 + LT, HP6 + NP, and HP6 + NP + LT exhibited the lowest cell oxidative stress among bleached groups (p < 0.05). HP35, HP35 + LT, and HP35 (COM) displayed the lowest cell viability. CONCLUSION HP6 achieved significantly higher color and whiteness index changes when incorporated with nanoparticles and light-irradiated and caused lower cytotoxicity than HP35 gels. The nanoparticles significantly increased cell viability and reduced the hydrogen peroxide diffusion and oxidative stress, regardless of HP concentration. CLINICAL SIGNIFICANCE Incorporation of co-doped titanium dioxide nanoparticles combined with violet irradiation within the HP6 gel could promote a higher perceivable and acceptable efficacy than HP6 alone, potentially reaching the optimal esthetic outcomes rendered by HP35. This approach also holds the promise of reducing cytotoxic damages and, consequently, tooth sensitivity.
Collapse
Affiliation(s)
- Matheus Kury
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, 901 Limeira Avenue, Areião, Piracicaba, SP, 13414-903, Brazil
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, SP, Brazil
| | | | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Fernando Luís Esteban Florez
- Department of Restorative Sciences, Division of Dental Biomaterials, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vanessa Cavalli
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, 901 Limeira Avenue, Areião, Piracicaba, SP, 13414-903, Brazil.
| |
Collapse
|
24
|
Craige SM, Mammel RK, Amiri N, Willoughby OS, Drake JC. Interplay of ROS, mitochondrial quality, and exercise in aging: Potential role of spatially discrete signaling. Redox Biol 2024; 77:103371. [PMID: 39357424 PMCID: PMC11474192 DOI: 10.1016/j.redox.2024.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Affiliation(s)
- Siobhan M Craige
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA.
| | - Rebecca K Mammel
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA
| | - Niloufar Amiri
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA; Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, 24061, USA
| | - Orion S Willoughby
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA
| | - Joshua C Drake
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, 24061, USA.
| |
Collapse
|
25
|
Gogna T, Housden BE, Houldsworth A. Exploring the Role of Reactive Oxygen Species in the Pathogenesis and Pathophysiology of Alzheimer's and Parkinson's Disease and the Efficacy of Antioxidant Treatment. Antioxidants (Basel) 2024; 13:1138. [PMID: 39334797 PMCID: PMC11429442 DOI: 10.3390/antiox13091138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's (AD) and Parkinson's Disease (PD) are life-altering diseases that are characterised by progressive memory loss and motor dysfunction. The prevalence of AD and PD is predicted to continuously increase. Symptoms of AD and PD are primarily mediated by progressive neuron death and dysfunction in the hippocampus and substantia nigra. Central features that drive neurodegeneration are caspase activation, DNA fragmentation, lipid peroxidation, protein carbonylation, amyloid-β, and/or α-synuclein formation. Reactive oxygen species (ROS) increase these central features. Currently, there are limited therapeutic options targeting these mechanisms. Antioxidants reduce ROS levels by the induction of antioxidant proteins and direct neutralisation of ROS. This review aims to assess the effectiveness of antioxidants in reducing ROS and neurodegeneration. Antioxidants enhance major endogenous defences against ROS including superoxide dismutase, catalase, and glutathione. Direct neutralisation of ROS by antioxidants protects against ROS-induced cytotoxicity. The combination of Indirect and direct protective mechanisms prevents ROS-induced α-synuclein and/or amyloid-β formation. Antioxidants ameliorate ROS-mediated oxidative stress and subsequent deleterious downstream effects that promote apoptosis. As a result, downstream harmful events including neuron death, dysfunction, and protein aggregation are decreased. The protective effects of antioxidants in human models have yet to directly replicate the success seen in cell and animal models. However, the lack of diversity in antioxidants for clinical trials prevents a definitive answer if antioxidants are protective. Taken together, antioxidant treatment is a promising avenue in neurodegenerative disease therapy and subsequent clinical trials are needed to provide a definitive answer on the protective effects of antioxidants. No current treatment strategies have significant impact in treating advanced AD and PD, but new mimetics of endogenous mitochondrial antioxidant enzymes (Avasopasem Manganese, GC4419 AVA) may be a promising innovative option for decelerating neurodegenerative progress in the future at the mitochondrial level of OS.
Collapse
Affiliation(s)
- Talin Gogna
- Neuroscience, Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| | - Benjamin E Housden
- Living Systems Institute, Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Annwyne Houldsworth
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| |
Collapse
|
26
|
Ahmed MR, Anaya IO, Nishina Y. Investigating the radical properties of oxidized carbon materials under photo-irradiation: behavior of carbon radicals and their application in catalytic reactions. Chem Commun (Camb) 2024; 60:10544-10547. [PMID: 39229730 DOI: 10.1039/d4cc03101f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Oxidized carbon materials have abundant surface functional groups and customizable properties, making them an excellent platform for generating radicals. Unlike reactive oxygen species such as hydroxide or superoxide radicals that have been reported previously, oxidized carbon also produces stable carbon radicals under photo-irradiation. This has been confirmed through electron spin resonance. Among the various oxidized carbon materials synthesized, graphene oxide shows the largest number of carbon radicals when exposed to blue LED light. The light absorption capacity, high surface area, and unique structural characteristics of oxidized carbon materials offer a unique function for radical-mediated oxidative reactions.
Collapse
Affiliation(s)
- Md Razu Ahmed
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
- Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Israel Ortiz Anaya
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Yuta Nishina
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
27
|
Kar P, Oriola AO, Oyedeji AO. Toward Understanding the Anticancer Activity of the Phytocompounds from Eugenia uniflora Using Molecular Docking, in silico Toxicity and Dynamics Studies. Adv Appl Bioinform Chem 2024; 17:71-82. [PMID: 39318425 PMCID: PMC11421442 DOI: 10.2147/aabc.s473928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/22/2024] [Indexed: 09/26/2024] Open
Abstract
Background The Surinam cherry, Eugenia uniflora belongs to the family Myrtaceae, an edible fruit-bearing medicinal plant with various biological properties. Several anticancer studies have been conducted on its essential oils while the non-essential oil compounds including phenolics, flavonoids, and carotenoids have not been fully investigated. Purpose Therefore, the study evaluated the in silico anticancer potentials of phenolic, flavonoid, and carotenoid compounds of E. uniflora against the MDM2 and Bcl-xL proteins, which are known to promote cancer cell growth and malignancy. The physicochemical parameters, validation, cytotoxicity, and mutagenicity of the polyphenols were determined using the SwissADME, pkCSM, ProTox-II, and vNN-ADMET online servers respectively. Lastly, the promising phytocompounds were validated using molecular dynamics (MD) simulation. Results An extensive literature search resulted in the compilation of forty-four (44) polyphenols from E. uniflora. Top-rank among the screened polyphenols is galloylastragalin, which exhibited a binding energy score of -8.7 and -8.5 kcal/mol with the hydrophobic interactions (Ala93, Val141) and (Leu54, Val93, Ile99), as well as hydrogen bond interactions (Tyr195) and (Gln72) of the proteins Bcl-xL and MDM2 respectively. A complete in silico toxicity assessment revealed that the compounds, galloylastragalin, followed by myricetin, resveratrol, p-Coumaroylquinic acid, and cyanidin-3-O-glucoside, were potentially non-mutagenic, non-carcinogenic, non-cytotoxic, and non-hepatotoxic. During the 120 ns MD simulations, the RMSF analysis of galloylastragalin- MDM2 (complex 1) and galloylastragalin- Bcl-xL (complex 2) showed the fewest fluctuations, indicating the conformational stability of the respective complexes. Conclusion This study has shown that polyphenol compounds of E. uniflora led by galloylastragalin, are potent inhibitors of the MDM2 and Bcl-xL cancer proteins. Thus, they may be considered as candidate polyphenols for further anticancer studies.
Collapse
Affiliation(s)
- Pallab Kar
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha, 5117, South Africa
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha, 5117, South Africa
| | - Ayodeji O Oriola
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha, 5117, South Africa
| | - Adebola O Oyedeji
- African Medicinal Flora and Fauna Research Niche, Walter Sisulu University, Mthatha, 5117, South Africa
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha, 5117, South Africa
| |
Collapse
|
28
|
Kandy AT, Chand J, Baba MZ, Subramanian G. Is SIRT3 and Mitochondria a Reliable Target for Parkinson's Disease and Aging? A Narrative Review. Mol Neurobiol 2024:10.1007/s12035-024-04486-w. [PMID: 39287746 DOI: 10.1007/s12035-024-04486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Aging is a complicated degenerative process that has been thoroughly researched in a variety of taxa, including mammals, worms, yeast, and flies. One important controller of organismal lifetime is the conserved deacetylase protein known as silencing information regulator 2 (SIR2). It has been demonstrated that overexpressing SIR2 lengthens the life span in worms, flies, and yeast, demonstrating its function in enhancing longevity. SIRT3 is a member of the sirtuin protein family, identified as a major regulator of longevity and aging. Sirtuin 3 (SIRT3), a possible mitochondrial tumor suppressor, has been explicitly linked to the control of cellular reactive oxygen species (ROS) levels, the Warburg effect, and carcinogenesis. SIRT3 plays a significant part in neurodegenerative illnesses such as Parkinson's and Alzheimer's disease by decreasing the oxidative stress in mitochondria and reducing the ROS levels. Furthermore, SIRT3 has been linked to metabolic and cardiovascular disorders, indicating its wider role in the pathophysiology of disease and possible therapeutic applications.
Collapse
Affiliation(s)
- Amarjith Thiyyar Kandy
- Department of Pharmaceutical Chemistry, JSS College Of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu-643001, India
| | - Jagdish Chand
- Department of Pharmaceutical Chemistry, JSS College Of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu-643001, India
| | - Mohammad Zubair Baba
- Department of Pharmaceutical Chemistry, JSS College Of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu-643001, India
| | - Gomathy Subramanian
- Department of Pharmaceutical Chemistry, JSS College Of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamilnadu-643001, India.
| |
Collapse
|
29
|
Lu XQ, Li J, Wang B, Qin S. Computational Insights into the Radical Scavenging Activity and Xanthine Oxidase Inhibition of the Five Anthocyanins Derived from Grape Skin. Antioxidants (Basel) 2024; 13:1117. [PMID: 39334776 PMCID: PMC11428504 DOI: 10.3390/antiox13091117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Anthocyanins, typical polyphenol compounds in grape skin, have attracted increasing interest due to their health-promoting properties. In this body of work, five representative anthocyanins (Cy-3-O-glc, Dp-3-O-glc, Pn-3-O-glc, Mv-3-O-glc, and Pt-3-O-glc) were studied using the density functional theory (DFT) to elucidate structure-radical scavenging activity in the relationship and the reaction path underlying the radical-trapping process. Based on thermodynamic parameters involved in HAT, SET-PT, and SPLET mechanisms, along with the structural attributes, it was found that the C4' hydroxyl group mainly contributes to the radical scavenging activities of the investigated compounds. Pt-3-O-glc exhibits a good antioxidant capacity among the five compounds. The preferred radical scavenging mechanisms vary in different phases. For the Pt-3-O-glc compound, the calculations indicate the thermodynamically favoured product is benzodioxole, rather than o-quinone, displaying considerably reduced energy in double HAT mechanisms. Additionally, the thermodynamic and kinetic calculations indicate that the reaction of •OH into the 4'-OH site of Pt-3-O-glc has a lower energy barrier (7.6 kcal/mol), a higher rate constant (5.72 × 109 M-1 s-1), and exhibits potent •OH radical scavenging properties. Molecular docking results have shown the strong affinity of the studied anthocyanins with the pro-oxidant enzyme xanthine oxidase, displaying their significant role in inhibiting ROS formation.
Collapse
Affiliation(s)
- Xiao-Qin Lu
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jindong Li
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Bin Wang
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shu Qin
- Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
30
|
Silva CHF, Silva MMCL, Paiva WS, de Medeiros MJC, Queiroz MF, Matta LDM, dos Santos ES, Rocha HAO. Optimizing Antioxidant Potential: Factorial Design-Based Formulation of Fucoidan and Gallic Acid-Conjugated Dextran Blends. Mar Drugs 2024; 22:417. [PMID: 39330298 PMCID: PMC11433055 DOI: 10.3390/md22090417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
The role of oxidative stress in health and homeostasis has generated interest in the scientific community due to its association with cardiovascular and neurodegenerative diseases, cancer, and other diseases. Therefore, extensive research seeks to identify new exogenous antioxidant compounds for supplementation. Polysaccharides are recognized for their antioxidant properties. However, polysaccharide chemical modifications are often necessary to enhance these properties. Therefore, dextran was conjugated with gallic acid (Dex-Gal) and later combined with fucoidan A (FucA) to formulate blends aimed at achieving superior antioxidant activity compared to individual polysaccharides. A factorial design was employed to combine FucA and Dex-Gal in different proportions, resulting in five blends (BLD1, BLD2, BLD3, BLD4, and BLD5). An analysis of surface graphs from in vitro antioxidant tests, including total antioxidant capacity (TAC), reducing power, and hydroxyl radical scavenging, guided the selection of BLD4 as the optimal formulation. Tests on 3T3 fibroblasts under various conditions of oxidative stress induced by hydrogen peroxide revealed that BLD4 provided enhanced protection compared to its isolated components. The BLD4 formulation, resulting from the combination of Dex-Gal and FucA, showed promise as an antioxidant strategy, outperforming its individual components and suggesting its potential as a supplement to mitigate oxidative stress in adverse health conditions.
Collapse
Affiliation(s)
- Cynthia Haynara Ferreira Silva
- Departamento de Bioquimica, Programa de Pós-Graduação em Bioquímica e Biologia Molecular—PPgBBM, Centro de Biociências, Universidade Federal do Rio Grande do Norte—UFRN, Natal 59078-970, Brazil; (C.H.F.S.); (M.M.C.L.S.); (W.S.P.); (M.F.Q.); (L.D.M.M.)
| | - Maylla Maria Correia Leite Silva
- Departamento de Bioquimica, Programa de Pós-Graduação em Bioquímica e Biologia Molecular—PPgBBM, Centro de Biociências, Universidade Federal do Rio Grande do Norte—UFRN, Natal 59078-970, Brazil; (C.H.F.S.); (M.M.C.L.S.); (W.S.P.); (M.F.Q.); (L.D.M.M.)
| | - Weslley Souza Paiva
- Departamento de Bioquimica, Programa de Pós-Graduação em Bioquímica e Biologia Molecular—PPgBBM, Centro de Biociências, Universidade Federal do Rio Grande do Norte—UFRN, Natal 59078-970, Brazil; (C.H.F.S.); (M.M.C.L.S.); (W.S.P.); (M.F.Q.); (L.D.M.M.)
| | - Mayara Jane Campos de Medeiros
- Laboratório de Química de Coordenação e Polímeros (LQCPol), Instituto de Química, Universidade Federal do Rio Grande do Norte—UFRN, Natal 59078-970, Brazil
| | - Moacir Fernandes Queiroz
- Departamento de Bioquimica, Programa de Pós-Graduação em Bioquímica e Biologia Molecular—PPgBBM, Centro de Biociências, Universidade Federal do Rio Grande do Norte—UFRN, Natal 59078-970, Brazil; (C.H.F.S.); (M.M.C.L.S.); (W.S.P.); (M.F.Q.); (L.D.M.M.)
| | - Luciana Duarte Martins Matta
- Departamento de Bioquimica, Programa de Pós-Graduação em Bioquímica e Biologia Molecular—PPgBBM, Centro de Biociências, Universidade Federal do Rio Grande do Norte—UFRN, Natal 59078-970, Brazil; (C.H.F.S.); (M.M.C.L.S.); (W.S.P.); (M.F.Q.); (L.D.M.M.)
| | - Everaldo Silvino dos Santos
- Laboratório de Engenharia Bioquímica, Departamento de Engenharia Química, Universidade Federal do Rio Grande do Norte—UFRN, Natal 59078-970, Brazil;
| | - Hugo Alexandre Oliveira Rocha
- Departamento de Bioquimica, Programa de Pós-Graduação em Bioquímica e Biologia Molecular—PPgBBM, Centro de Biociências, Universidade Federal do Rio Grande do Norte—UFRN, Natal 59078-970, Brazil; (C.H.F.S.); (M.M.C.L.S.); (W.S.P.); (M.F.Q.); (L.D.M.M.)
| |
Collapse
|
31
|
Tuğal Aslan D, Göktaş Z. The Therapeutic Potential of Theobromine in Obesity: A Comprehensive Review. Nutr Rev 2024:nuae122. [PMID: 39271172 DOI: 10.1093/nutrit/nuae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Obesity, characterized by chronic low-grade inflammation, is a significant health concern. Phytochemicals found in plants are being explored for therapeutic use, particularly in combating obesity. Among these, theobromine, commonly found in cocoa and chocolate, shows promise. Although not as extensively studied as caffeine, theobromine exhibits positive effects on human health. It improves lipid profiles, aids in asthma treatment, lowers blood pressure, regulates gut microbiota, reduces tumor formation, moderates blood glucose levels, and acts as a neuroprotective agent. Studies demonstrate its anti-obesity effects through mechanisms such as browning of white adipose tissue, activation of brown adipose tissue, anti-inflammatory properties, and reduction of oxidative stress. This study aims to suggest theobromine as a potential therapeutic agent against obesity-related complications.
Collapse
Affiliation(s)
- Dilem Tuğal Aslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Altindag, Ankara, Turkiye
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Altindag, Ankara, Turkiye
| |
Collapse
|
32
|
Hourtovenko C, Sreetharan S, Tharmalingam S, Tai TC. Impact of Ionizing Radiation Exposure on Placental Function and Implications for Fetal Programming. Int J Mol Sci 2024; 25:9862. [PMID: 39337351 PMCID: PMC11432287 DOI: 10.3390/ijms25189862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Accidental exposure to high-dose radiation while pregnant has shown significant negative effects on the developing fetus. One fetal organ which has been studied is the placenta. The placenta performs all essential functions for fetal development, including nutrition, respiration, waste excretion, endocrine communication, and immunological functions. Improper placental development can lead to complications during pregnancy, as well as the occurrence of intrauterine growth-restricted (IUGR) offspring. IUGR is one of the leading indicators of fetal programming, classified as an improper uterine environment leading to the predisposition of diseases within the offspring. With numerous studies examining fetal programming, there remains a significant gap in understanding the placenta's role in irradiation-induced fetal programming. This review aims to synthesize current knowledge on how irradiation affects placental function to guide future research directions. This review provides a comprehensive overview of placental biology, including its development, structure, and function, and summarizes the placenta's role in fetal programming, with a focus on the impact of radiation on placental biology. Taken together, this review demonstrates that fetal radiation exposure causes placental degradation and immune function dysregulation. Given the placenta's crucial role in fetal development, understanding its impact on irradiation-induced IUGR is essential.
Collapse
Affiliation(s)
- Cameron Hourtovenko
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| | - Shayen Sreetharan
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Medical Imaging, London Health Sciences Centre, 339 Windermere Rd., London, ON N6A 5A5, Canada
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| | - T C Tai
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
33
|
Li L, Liu X, Han C, Tian L, Wang Y, Han B. Ferroptosis in radiation-induced brain injury: roles and clinical implications. Biomed Eng Online 2024; 23:93. [PMID: 39261942 PMCID: PMC11389269 DOI: 10.1186/s12938-024-01288-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Radiation-induced brain injury (RBI) presents a significant challenge for patients undergoing radiation therapy for head, neck, and intracranial tumors. This review aims to elucidate the role of ferroptosis in RBI and its therapeutic implications. Specifically, we explore how ferroptosis can enhance the sensitivity of tumor cells to radiation while also examining strategies to mitigate radiation-induced damage to normal brain tissues. By investigating the mechanisms through which radiation increases cellular reactive oxygen species (ROS) and initiates ferroptosis, we aim to develop targeted therapeutic strategies that maximize treatment efficacy and minimize neurotoxicity. The review highlights key regulatory factors in the ferroptosis pathway, including glutathione peroxidase 4 (GPX4), cystine/glutamate antiporter system Xc- (System Xc-), nuclear factor erythroid 2-related factor 2 (NRF2), Acyl-CoA synthetase long-chain family member 4 (ACSL4), and others, and their interactions in the context of RBI. Furthermore, we discuss the clinical implications of modulating ferroptosis in radiation therapy, emphasizing the potential for selective induction of ferroptosis in tumor cells and inhibition in healthy cells. The development of advanced diagnostic tools and therapeutic strategies targeting ferroptosis offers a promising avenue for enhancing the safety and efficacy of radiation therapy, underscoring the need for further research in this burgeoning field.
Collapse
Affiliation(s)
- Lifang Li
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Xia Liu
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Chunfeng Han
- Department of Pharmacy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Licheng Tian
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Yongzhi Wang
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China
| | - Baolin Han
- Department of Radiotherapy, Tianjin Medical University Baodi Hospital, Tianjin, 301800, China.
| |
Collapse
|
34
|
Rasouli MA, Dumesic DA, Singhal V. Male infertility and obesity. Curr Opin Endocrinol Diabetes Obes 2024:01266029-990000000-00106. [PMID: 39253759 DOI: 10.1097/med.0000000000000883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The increasing rate of obesity is having an adverse impact on male reproduction. RECENT FINDINGS The negative effect of reactive oxygen species on male reproductive tissues and the age of onset of obesity are new areas of research on male infertility. SUMMARY This review highlights how obesity impairs male reproduction through complex mechanisms, including metabolic syndrome, lipotoxicity, sexual dysfunction, hormonal and adipokine alterations as well as epigenetic changes, and how new management strategies may improve the reproductive health of men throughout life.
Collapse
Affiliation(s)
| | | | - Vibha Singhal
- Division of Endocrinology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
35
|
Kumar A, Singh MK, Singh V, Shrivastava A, Sahu DK, Bisht D, Singh S. The role of autophagy dysregulation in low and high-grade nonmuscle invasive bladder cancer: A survival analysis and clinicopathological association. Urol Oncol 2024:S1078-1439(24)00570-2. [PMID: 39256148 DOI: 10.1016/j.urolonc.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Bladder cancer disproportionately affects men and often presents as nonmuscle-invasive bladder cancer (NMIBC). Despite initial treatments, the recurrence and progression of NMIBC are linked to autophagy. This study investigates the expression of autophagy genes (mTOR, ULK1, Beclin1, and LC3) in low and high-grade NMIBC, providing insights into potential prognostic markers and therapeutic targets. MATERIAL AND METHODS A total of 115 tissue samples (n = 85 NMIBC (pTa, pT1, and CIS) and n = 30 control from BPH patients) were collected. The expression level of autophagy genes (mTOR, ULK1, Beclin1, and LC3) and their proteins were assessed in low and high-grade NMIBC, along with control tissue samples using quantitative real-time polymerase chain reaction and western blotting. Association with clinicopathological characteristics and autophagy gene expression was analyzed by multivariate and univariate survival analysis using SPSS. RESULT In high-grade NMIBC, ULK1, P = 0.0150, Beclin1, P = 0.0041, and LC3, P = 0.0014, were substantially downregulated, whereas mTOR, P = 0.0006, was significantly upregulated. The KM plots show significant survival outcomes with autophagy genes. The clinicopathological characters, high grade (P = 0.019), tumor stage (CIS P = 0.039, pT1 P = 0.018, P = 0.045), male (P = 0.010), lymphovascular invasion (P = 0.028) and autophagy genes (ULK1 P = 0.002, beclin1 (P = 0.010, P = 0.022) were associated as risk factors for survival outcome in NMIBC patients. CONCLUSION The upregulated mTOR, downregulated ULK1, and beclin1 expression is linked to a high-grade, CIS and pT1 stage, resulting in poor recurrence-free survival and progression-free survival and highlights the prognostic significance of autophagy gene in nonmuscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Mukul Kumar Singh
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Vishwajeet Singh
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India.
| | - Ashutosh Shrivastava
- Center For Advance Research, Faculty of Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Dinesh Kumar Sahu
- Central Research Facility, Post Graduate Institute of Child Health, Noida, Uttar Pradesh, India
| | - Dakshina Bisht
- Department Microbiology, Santosh Deemed to Be University, Ghaziabad, Uttar Pradesh, India
| | - Shubhendu Singh
- Department Microbiology, Santosh Deemed to Be University, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
36
|
Sakr MF, El-Khalek AMA, Mohammad NS, Abouhashem NS, Gaballah MH, Ragab HM. Estimation of postmortem interval using histological and oxidative biomarkers in human bone marrow. Forensic Sci Med Pathol 2024; 20:910-919. [PMID: 37987965 DOI: 10.1007/s12024-023-00753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
In forensic medicine, estimating the postmortem interval (PMI) is of great importance for the timeline and the reconstruction of the events surrounding death. Bone marrow (BM) is one of the largest organs in the body, with good resistance to autolysis and contamination. Therefore, the present study aims to correlate different postmortem intervals and bone marrow antioxidant enzyme levels using an Enzyme-linked immunosorbent assay (ELISA). In addition, detection of the changes in the histological structure of human bone marrow in relation to the time passed since death. BM samples from 20 forensic autopsy cadavers were obtained from cases referred to the Department of Forensic Medicine in the Ministry of Justice, Dakahlia Governorate, processed for histopathological examination as well as estimation of reduced glutathione (GSH), glutathione peroxidase (GPX), and glutathione reductase (GRX) using ELISA. Results of ELISA analysis showed a significant decrease in the level of antioxidant enzymes with increasing PMI; regarding histopathological examination, from 6 to > 18 h PMI, the changes in morphology after death were gradual, progressive, and regular, indicating great value in PMI determination. Also, 18 h of PMI showed loss of cellular details, absence of fat cells, and necrosis of BM with the nucleus dispersed as eosinophilic debris. Estimation of antioxidant enzymes level in human bone marrow using ELISA and detection of the changes in the histological structure of human bone marrow in relation to time passed since the death, either separately or in combination, can be used to estimate PMI accurately.
Collapse
Affiliation(s)
| | - Amal Mohamad Abd El-Khalek
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nanies Sameeh Mohammad
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Nehal S Abouhashem
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Hosnia M Ragab
- Department of Public Health and Community Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
37
|
Santos DF, Simão S, Nóbrega C, Bragança J, Castelo-Branco P, Araújo IM. Oxidative stress and aging: synergies for age related diseases. FEBS Lett 2024; 598:2074-2091. [PMID: 39112436 DOI: 10.1002/1873-3468.14995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 10/04/2024]
Abstract
Aging is characterized by a progressive decline in physiological function and underlies several disabilities, including the increased sensitivity of cells and tissues to undergo pathological oxidative stress. In recent years, efforts have been made to better understand the relationship between age and oxidative stress and further develop therapeutic strategies to minimize the impact of both events on age-related diseases. In this work, we review the impact of the oxidant and antioxidant systems during aging and disease development and discuss the crosstalk of oxidative stress and other aging processes, with a focus on studies conducted in elderly populations.
Collapse
Affiliation(s)
- Daniela F Santos
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
| | - Sónia Simão
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
| | - José Bragança
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Inês M Araújo
- Algarve Biomedical Center (ABC), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), Loulé, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
38
|
Jiang C, Shi Q, Yang J, Ren H, Zhang L, Chen S, Si J, Liu Y, Sha D, Xu B, Ni J. Ceria nanozyme coordination with curcumin for treatment of sepsis-induced cardiac injury by inhibiting ferroptosis and inflammation. J Adv Res 2024; 63:159-170. [PMID: 37871772 PMCID: PMC11380017 DOI: 10.1016/j.jare.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
INTRODUCTION Sepsis-induced cardiac injury is the leading cause of death in patients. Recent studies have reported that reactive oxygen species (ROS)-mediated ferroptosis and macrophage-induced inflammation are the two main key roles in the process of cardiac injury. The combination of ferroptosis and inflammation inhibition is a feasible strategy in the treatment of sepsis-induced cardiac injury. OBJECTIVES In the present study, ceria nanozyme coordination with curcumin (CeCH) was designed by a self-assembled method with human serum albumin (HSA) to inhibit ferroptosis and inflammation of sepsis-induced cardiac injury. METHODS AND RESULTS The formed CeCH obtained the superoxide dismutase (SOD)-like and catalase (CAT)-like activities from ceria nanozyme to scavenge ROS, which showed a protective effect on cardiomyocytes in vitro. Furthermore, it also showed ferroptosis inhibition to reverse cell death from RSL3-induced cardiomyocytes, denoted from curcumin. Due to the combination therapy of ceria nanozyme and curcumin, the formed CeCH NPs could also promote M2 macrophage polarization to reduce inflammation in vitro. In the lipopolysaccharide (LPS)-induced sepsis model, the CeCH NPs could effectively inhibit ferroptosis, reverse inflammation, and reduce the release of pro-inflammatory factors, which markedly alleviated the myocardial injury and recover the cardiac function. CONCLUSION Overall, the simple self-assembled strategy with ceria nanozyme and curcumin showed a promising clinical application for sepsis-induced cardiac injury by inhibiting ferroptosis and inflammation.
Collapse
Affiliation(s)
- Chenxiao Jiang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Qianzhi Shi
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Jing Yang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Hao Ren
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Lu Zhang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Shan Chen
- Department of General Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jiayi Si
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China
| | - Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Dujuan Sha
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of General Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Jie Ni
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210008, China; Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
39
|
Baltrėnaitė-Gedienė E, Lomnicki S, Ogunmusi O. Research of the impact of environmentally persistent free radicals on chemical element behaviour in the soil-plant system. CHEMOSPHERE 2024; 364:143088. [PMID: 39146994 DOI: 10.1016/j.chemosphere.2024.143088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Environmentally persistent free radicals (EPFRs) may pose a potential risk to the ecosystem and human health via oxidation stress and are considered emerging contaminants. Being stable with a lifetime of minutes or several months and abundant in transitional matrices (e.g. biochar), EPFRs continue to affect deposits (e.g. soil) and related media (plants) when the transitional matrices (e.g. biochar) are applied. The impact of EPFR on the plant uptake of chemical elements (CEs) was studied in the field conditions where, for two years, biochar and fertilisers were applied to the agricultural soil for winter triticale cultivation. EPFRs determination methods, along with the element uptake indices (bioaccumulation and biophilicity) and the method of the dynamic factors were applied. Results have shown that EPFRs have influenced the soil properties relevant to CE soil bioavailability and bioaccumulation in plants. The impact of EPFRs on CE transport in the soil-plant system was observed to influence the biogeochemical behaviour of CEs in the soil-plant system. This work provides the first findings on EPFRs-induces changes on CE bioavailability and bioaccumulation intensity, indicating the higher plant uptake risk of some potentially toxic elements (such as Cr).
Collapse
Affiliation(s)
- Edita Baltrėnaitė-Gedienė
- Institute of Environmental Protection, Vilnius Gediminas Technical University (VilniusTech), Saulėtekio al. 11, LT-10245, Vilnius, Lithuania.
| | - Slawomir Lomnicki
- Department of Environmental Sciences, Louisiana State University, 1251 Energy Coast & Environment Bldg., Baton Rouge, LA, 70803, United States
| | - Oluwafeyikemi Ogunmusi
- Department of Environmental Sciences, Louisiana State University, 1251 Energy Coast & Environment Bldg., Baton Rouge, LA, 70803, United States
| |
Collapse
|
40
|
Oke OE, Akosile OA, Oni AI, Opowoye IO, Ishola CA, Adebiyi JO, Odeyemi AJ, Adjei-Mensah B, Uyanga VA, Abioja MO. Oxidative stress in poultry production. Poult Sci 2024; 103:104003. [PMID: 39084145 PMCID: PMC11341942 DOI: 10.1016/j.psj.2024.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Oxidative stress (OS) is a major concern that impacts the overall health of chickens in modern production systems. It is characterized by an imbalance between antioxidant defence mechanisms and the production of reactive oxygen species (ROS). This literature review aims to provide a comprehensive overview of oxidative stress in poultry production, with an emphasis on its effects on growth performance, immune responses, and reproductive outcomes. This review highlights the intricate mechanisms underlying OS and discusses how various factors, including dietary components, genetic predispositions, and environmental stressors can exacerbate the production of ROS. Additionally, the impact of oxidative stress on the production performance and physiological systems of poultry is examined. The study also emphasizes the relationship between oxidative stress and poultry diseases, highlighting how impaired antioxidant defenses increase bird's susceptibility to infections. The review assesses the existing approaches to reducing oxidative stress in chickens in response to these challenges. This includes managing techniques to lower stress in the production environment, antioxidant supplements, and nutritional interventions. The effectiveness of naturally occurring antioxidants, including plant extracts, minerals, and vitamins to improve poultry resistance to oxidative damage is also examined. To improve the antioxidant defenses of poultry under stress conditions, the activation of cellular homeostatic networks termed vitagenes, such as Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is necessary for the synthesis of protective factors that can counteract the increased production of ROS and RNS. Future studies into novel strategies for managing oxidative stress in chicken production would build on these research advances and the knowledge gaps identified in this review.
Collapse
Affiliation(s)
- O E Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria; Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo.
| | - O A Akosile
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A I Oni
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - I O Opowoye
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - C A Ishola
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - J O Adebiyi
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - A J Odeyemi
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - B Adjei-Mensah
- Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo
| | - V A Uyanga
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - M O Abioja
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
41
|
Rezaei K, Mastali G, Abbasgholinejad E, Bafrani MA, Shahmohammadi A, Sadri Z, Zahed MA. Cadmium neurotoxicity: Insights into behavioral effect and neurodegenerative diseases. CHEMOSPHERE 2024; 364:143180. [PMID: 39187026 DOI: 10.1016/j.chemosphere.2024.143180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Cadmium (Cd) induced neurotoxicity has become a growing concern due to its potential adverse effects on the Central Nervous System. Cd is a Heavy Metal (HM) that is released into the environment, through several industrial processes. It poses a risk to the health of the community by polluting air, water, and soil. Cd builds up in the brain and other neural tissues, raising concerns about its effect on the nervous system due to its prolonged biological half-life. Cd can enter into the neurons, hence increasing the production of Reactive Oxygen Species (ROS) in them and impairing their antioxidant defenses. Cd disrupts the Calcium (Ca2+) balance in neurons, affects the function of the mitochondria, and triggers cell death pathways. As a result of these pathways, the path to the development of many neurological diseases affected by environmental factors, especially Cd, such as Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS) is facilitated. There are cognitive deficits associated with long exposure to Cd. Memory disorders are present in both animals and humans. Cd alters the brain's function and performance in critical periods. There are lifelong consequences of Cd exposure during critical brain development stages. The susceptibility to neurotoxic effects is increased by interactions with a variety of risk factors. Cd poses risks to neuronal function and behavior, potentially contributing to neurodegenerative diseases like Parkinson's disease (PD) and AD as well as cognitive issues. This article offers a comprehensive overview of Cd-induced neurotoxicity, encompassing risk assessment, adverse effect levels, and illuminating intricate pathways.
Collapse
Affiliation(s)
- Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Ghazaleh Mastali
- Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Elham Abbasgholinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Melika Arab Bafrani
- Multiple Sclerosis Research Center (MSRC), Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Zahra Sadri
- The Department of Biological Science, Molecular and Cell Biology, Dedman College of Humanities and Sciences Southern Methodist University (SMU), Dallas, TX, USA.
| | | |
Collapse
|
42
|
Vachirarojpisan T, Srivichit B, Vaseenon S, Powcharoen W, Imerb N. Therapeutic roles of coenzyme Q10 in peripheral nerve injury-induced neurosensory disturbances: Mechanistic insights from injury to recovery. Nutr Res 2024; 129:55-67. [PMID: 39217889 DOI: 10.1016/j.nutres.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Peripheral nerve injuries (PNIs) are prevalent conditions mainly resulting from systemic causes, including autoimmune diseases and diabetes mellitus, or local causes, for example, chemical injury and perioperative nerve injury, which can cause a varying level of neurosensory disturbances (NSDs). Coenzyme Q10 (CoQ10) is an essential regulator of mitochondrial respiration and oxidative metabolism. Here, we review the pathophysiology of NSDs caused by PNIs, the current understanding of CoQ10's bioactivities, and its potential therapeutic roles in nerve regeneration, based on evidence from experimental and clinical studies involving CoQ10 supplementation. In summary, CoQ10 supplementation shows promise as a neuroprotective agent, potentially enhancing treatment efficacy for NSDs by reducing oxidative stress and inflammation. Future studies should focus on well-designed clinical trials with large sample sizes, using CoQ10 formulations with proven bioavailability and varying treatment duration, to further elucidate its neuroprotective effects and to optimize nerve regeneration in PNIs-induced NSDs.
Collapse
Affiliation(s)
- Thanyaphorn Vachirarojpisan
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Bhumrapee Srivichit
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Savitri Vaseenon
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Warit Powcharoen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Napatsorn Imerb
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
43
|
Bi W, Mu X, Li Y, Sun Q, Xiang L, Hu M, Liu H. Delivery of neurotrophin-3 by RVG-Lamp2b-modified mesenchymal stem cell-derived exosomes alleviates facial nerve injury. Hum Cell 2024; 37:1378-1393. [PMID: 38858338 DOI: 10.1007/s13577-024-01086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024]
Abstract
We aim to investigate the effect of RVG-Lamp2b-modified exosomes (exos) loaded with neurotrophin-3 (NT-3) on facial nerve injury. Exos were collected from control cells (Ctrl Exo) or bone marrow mesenchymal stem cells co-transfected with RVG-Lamp2b and NT-3 plasmids (RVG-NT-3 Exo) by gradient centrifugation and identified by western blotting, transmission electron microscopy, and nanoparticle tracking analysis. Effect of RVG-NT-3 Exo on oxidative stress damage was determined by analysis of the morphology, viability, and ROS production of neurons. Effect of RVG-NT-3 Exo on facial nerve axotomy (FNA) was determined by detecting ROS production, neuroinflammatory reaction, microglia activation, facial motor neuron (FMN) death, and myelin sheath repair. Loading NT-3 and modifying with RVG-Lamp2b did not alter the properties of the exos. Moreover, RVG-NT-3 Exo could effectively target neurons to deliver NT-3. Treatment with RVG-NT-3 Exo lowered H2O2-induced oxidative stress damage in primary neurons and Nsc-34 cells. RVG-NT-3 Exo treatment significantly decreased ROS production, neuroinflammatory response, FMN death, and elevated microglia activation and myelin sheath repair in FNA rat models. Our findings suggested that RVG-NT-3 Exo-mediated delivery of NT-3 is effective for the treatment of facial nerve injury.
Collapse
Affiliation(s)
- Wenting Bi
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, 100000, China
| | - Xiaodan Mu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100000, China
| | - Yongfeng Li
- Department of Stomatology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102200, China
| | - Qingyan Sun
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Lei Xiang
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 102200, China
| | - Min Hu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Huawei Liu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
44
|
El-Sappah AH, Zhu Y, Huang Q, Chen B, Soaud SA, Abd Elhamid MA, Yan K, Li J, El-Tarabily KA. Plants' molecular behavior to heavy metals: from criticality to toxicity. FRONTIERS IN PLANT SCIENCE 2024; 15:1423625. [PMID: 39280950 PMCID: PMC11392792 DOI: 10.3389/fpls.2024.1423625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/22/2024] [Indexed: 09/18/2024]
Abstract
The contamination of soil and water with high levels of heavy metals (HMs) has emerged as a significant obstacle to agricultural productivity and overall crop quality. Certain HMs, although serving as essential micronutrients, are required in smaller quantities for plant growth. However, when present in higher concentrations, they become very toxic. Several studies have shown that to balance out the harmful effects of HMs, complex systems are needed at the molecular, physiological, biochemical, cellular, tissue, and whole plant levels. This could lead to more crops being grown. Our review focused on HMs' resources, occurrences, and agricultural implications. This review will also look at how plants react to HMs and how they affect seed performance as well as the benefits that HMs provide for plants. Furthermore, the review examines HMs' transport genes in plants and their molecular, biochemical, and metabolic responses to HMs. We have also examined the obstacles and potential for HMs in plants and their management strategies.
Collapse
Affiliation(s)
- Ahmed H El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Yumin Zhu
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Bo Chen
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Salma A Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Kuan Yan
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
45
|
Benedusi M, Lee H, Lim Y, Valacchi G. Oxidative State in Cutaneous Melanoma Progression: A Question of Balance. Antioxidants (Basel) 2024; 13:1058. [PMID: 39334716 PMCID: PMC11428248 DOI: 10.3390/antiox13091058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Reactive oxygen species (ROS) are highly bioactive molecules involved not only in tissue physiology but also in the development of different human conditions, including premature aging, cardiovascular pathologies, neurological and neurodegenerative disorders, inflammatory diseases, and cancer. Among the different human tumors, cutaneous melanoma, the most aggressive and lethal form of skin cancer, is undoubtedly one of the most well-known "ROS-driven tumor", of which one of the main causes is represented by ultraviolet (UV) rays' exposure. Although the role of excessive ROS production in melanoma development in pro-tumorigenic cell fate is now well established, little is known about its contribution to the progression of the melanoma metastatic process. Increasing evidence suggests a dual role of ROS in melanoma progression: excessive ROS production may enhance cellular growth and promote therapeutic resistance, but at the same time, it can also have cytotoxic effects on cancer cells, inducing their apoptosis. In this context, the aim of the present work was to focus on the relationship between cell redox state and the signaling pathways directly involved in the metastatic processes. In addition, oxidative or antioxidant therapeutic strategies for metastatic melanoma were also reviewed and discussed.
Collapse
Affiliation(s)
- Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
46
|
Huerta Ojeda Á, Rodríguez Rojas J, Cuevas Guíñez J, Ciriza Velásquez S, Cancino-López J, Barahona-Fuentes G, Yeomans-Cabrera MM, Pavez L, Jorquera-Aguilera C. The Effects of Maca ( Lepidium meyenii Walp) on Cellular Oxidative Stress: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2024; 13:1046. [PMID: 39334705 PMCID: PMC11428906 DOI: 10.3390/antiox13091046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/30/2024] Open
Abstract
Lepidium meyenii Walp (LmW) or Maca, including its bioactive components such as macamides, among others, has demonstrated antioxidant effects. However, the effect size (ES) of LmW on oxidative stress has not been qualitatively described and calculated. The primary objective of this systematic review and meta-analysis was to review and qualitatively describe the studies published up to 2023 that supplemented LmW to control cellular oxidative stress; the secondary objective was to calculate the ES of the different interventions. The search was designed following the PRISMA® guidelines for systematic reviews and meta-analyses and performed in the Web of Science, Scopus, SPORTDiscus, PubMed, and MEDLINE until 2023. The selection of studies included randomized controlled trials, with tests and post-tests, both in vitro and in vivo in animals and humans. The methodological quality and risk of bias were evaluated with the CAMARADES tool. The main variables were reduced glutathione, glutathione peroxidase, superoxide dismutase, and malondialdehyde. The analysis was conducted with a pooled standardized mean difference (SMD) through Hedges' g test (95% CI). Eleven studies were included in the systematic review and eight in the meta-analysis. They revealed a small effect for reduced glutathione (SMD = 0.89), a large effect for glutathione peroxidase (SMD = 0.96), a moderate effect for superoxide dismutase (SMD = 0.68), and a moderate effect for malondialdehyde (SMD = -0.53). According to the results, the phytochemical compounds of LmW effectively controlled cellular oxidative stress, mainly macamides. It was also determined that a higher dose of LmW generated a greater antioxidant effect. However, information concerning humans is scarce.
Collapse
Affiliation(s)
- Álvaro Huerta Ojeda
- Núcleo de Investigación en Salud, Actividad Física y Deporte ISAFYD, Universidad de Las Américas, Viña del Mar 2531098, Chile; (Á.H.O.); (G.B.-F.)
| | - Javiera Rodríguez Rojas
- Facultad de Ciencias, Escuela de Nutrición y Dietética, Magíster en Nutrición para la Actividad Física y el Deporte, Universidad Mayor, Santiago 8580745, Chile; (J.R.R.); (J.C.G.); (S.C.V.)
| | - Jorge Cuevas Guíñez
- Facultad de Ciencias, Escuela de Nutrición y Dietética, Magíster en Nutrición para la Actividad Física y el Deporte, Universidad Mayor, Santiago 8580745, Chile; (J.R.R.); (J.C.G.); (S.C.V.)
| | - Stephanie Ciriza Velásquez
- Facultad de Ciencias, Escuela de Nutrición y Dietética, Magíster en Nutrición para la Actividad Física y el Deporte, Universidad Mayor, Santiago 8580745, Chile; (J.R.R.); (J.C.G.); (S.C.V.)
| | - Jorge Cancino-López
- Exercise Physiology and Metabolism Laboratory, Escuela de Kinesiología, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Guillermo Barahona-Fuentes
- Núcleo de Investigación en Salud, Actividad Física y Deporte ISAFYD, Universidad de Las Américas, Viña del Mar 2531098, Chile; (Á.H.O.); (G.B.-F.)
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | | - Leonardo Pavez
- Núcleo de Investigación en Ciencias Biológicas (NICB), Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago 7500975, Chile;
| | - Carlos Jorquera-Aguilera
- Facultad de Ciencias, Escuela de Nutrición y Dietética, Universidad Mayor, Santiago 8580745, Chile;
| |
Collapse
|
47
|
Lee HD, Kim JH, Choi JH, Kim KH, Ku J, Choi K, Kim HY, Lee S, Cho IH. Exploring phytochemicals and pharmacological properties of Populus × tomentiglandulosa. Front Pharmacol 2024; 15:1406623. [PMID: 39263565 PMCID: PMC11387176 DOI: 10.3389/fphar.2024.1406623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Populus × tomentiglandulosa (PT), a tree endemic to Korea, shows promising potential as a natural therapeutic agent owing to its potent anti-inflammatory properties. However, the isolation and analysis of phytochemical compounds in PT and related species remains underexplored. Therefore, this study aims to investigate the biochemical profile of PT and evaluate its extracts and fractions for anti-inflammatory activities. Nine compounds were isolated, including two novel flavonoids (luteolin 7-O-β-d-glucuronide butyl ester and chrysoeriol 7-O-β-d-glucuronide butyl ester) from the Salicaceae family for the first time. The ethyl acetate fraction exhibited significant radical scavenging activity against various radicals, including DPPH, ABTS+, •OH, and O2 - radicals. PT extracts and the ethyl acetate fraction showed minimal cytotoxicity in Raw 264.7 macrophages at concentrations below 500 and 100 μg/mL, respectively. Furthermore, PT extracts and fractions significantly suppressed the protein expression of proinflammatory mediators (iNOS and IL-6) in LPS-stimulated Raw 264.7 macrophages, highlighting their potent anti-inflammatory effects. These findings suggest that PT holds promise as a valuable natural therapeutic intervention for various oxidative stress and inflammation-related disorders, underscoring the need for further exploration of its clinical applications.
Collapse
Affiliation(s)
- Hak-Dong Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
- Natural Product Institute of Science and Technology, Anseong, Republic of Korea
| | - Ji Hyun Kim
- Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jajung Ku
- Department of Forest Bioresources, National Institute of Forest Science, Suwon, Republic of Korea
| | - Kyung Choi
- Garden and Plant Resources Division, Korea National Arboretum, Pocheon, Republic of Korea
| | - Hyun Young Kim
- Department of Food Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
- Natural Product Institute of Science and Technology, Anseong, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
48
|
Prasad S, Singh S, Menge S, Mohapatra I, Kim S, Helland L, Singh G, Singh A. Gut redox and microbiome: charting the roadmap to T-cell regulation. Front Immunol 2024; 15:1387903. [PMID: 39234241 PMCID: PMC11371728 DOI: 10.3389/fimmu.2024.1387903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
The gastrointestinal (GI) tract redox environment, influenced by commensal microbiota and bacterial-derived metabolites, is crucial in shaping T-cell responses. Specifically, metabolites from gut microbiota (GM) exhibit robust anti-inflammatory effects, fostering the differentiation and regulation of CD8+ tissue-resident memory (TRM) cells, mucosal-associated invariant T (MAIT) cells, and stabilizing gut-resident Treg cells. Nitric oxide (NO), a pivotal redox mediator, emerges as a central regulator of T-cell functions and gut inflammation. NO impacts the composition of the gut microbiome, driving the differentiation of pro-inflammatory Th17 cells and exacerbating intestinal inflammation, and supports Treg expansion, showcasing its dual role in immune homeostasis. This review delves into the complex interplay between GI redox balance and GM metabolites, elucidating their profound impact on T-cell regulation. Additionally, it comprehensively emphasizes the critical role of GI redox, particularly reactive oxygen species (ROS) and NO, in shaping T-cell phenotype and functions. These insights offer valuable perspectives on disease mechanisms and potential therapeutic strategies for conditions associated with oxidative stress. Understanding the complex cross-talk between GI redox, GM metabolites, and T-cell responses provides valuable insights into potential therapeutic avenues for immune-mediated diseases, underscoring the significance of maintaining GI redox balance for optimal immune health.
Collapse
Affiliation(s)
- Sujata Prasad
- Translational Division, MLM Labs, LLC, Oakdale, MN, United States
| | - Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Samuel Menge
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Stefan Kim
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Logan Helland
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Amar Singh
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
49
|
Liu F, Wang W, Wang F, Zhou L, Luo G, Zhang G, Zhu T, Che Q, Li D. Polyketide Derivatives from the Mangrove-Derived Fungus Penicillium sp. HDN15-312. Mar Drugs 2024; 22:360. [PMID: 39195476 DOI: 10.3390/md22080360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Four new polyketides, namely furantides A-B (1-2), talamin E (3) and arugosinacid A (4), and two known polyketides were obtained from the mangrove-derived fungus Penicillium sp. HDN15-312 using the One Strain Many Compounds (OSMAC) strategy. Their chemical structures, including configurations, were elucidated by detailed analysis of extensive NMR spectra, HRESIMS and ECD. The DPPH radicals scavenging activity of 3, with an IC50 value of 6.79 µM, was better than vitamin C.
Collapse
Affiliation(s)
- Fuhao Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenxue Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Feifei Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Luning Zhou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guangyuan Luo
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Sanya Oceanographic Institute, Ocean University of China, Sanya 572025, China
| |
Collapse
|
50
|
Rukh G, Akbar S, Rehman G, Alarfaj FK, Zou Q. StackedEnC-AOP: prediction of antioxidant proteins using transform evolutionary and sequential features based multi-scale vector with stacked ensemble learning. BMC Bioinformatics 2024; 25:256. [PMID: 39098908 PMCID: PMC11298090 DOI: 10.1186/s12859-024-05884-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Antioxidant proteins are involved in several biological processes and can protect DNA and cells from the damage of free radicals. These proteins regulate the body's oxidative stress and perform a significant role in many antioxidant-based drugs. The current invitro-based medications are costly, time-consuming, and unable to efficiently screen and identify the targeted motif of antioxidant proteins. METHODS In this model, we proposed an accurate prediction method to discriminate antioxidant proteins namely StackedEnC-AOP. The training sequences are formulation encoded via incorporating a discrete wavelet transform (DWT) into the evolutionary matrix to decompose the PSSM-based images via two levels of DWT to form a Pseudo position-specific scoring matrix (PsePSSM-DWT) based embedded vector. Additionally, the Evolutionary difference formula and composite physiochemical properties methods are also employed to collect the structural and sequential descriptors. Then the combined vector of sequential features, evolutionary descriptors, and physiochemical properties is produced to cover the flaws of individual encoding schemes. To reduce the computational cost of the combined features vector, the optimal features are chosen using Minimum redundancy and maximum relevance (mRMR). The optimal feature vector is trained using a stacking-based ensemble meta-model. RESULTS Our developed StackedEnC-AOP method reported a prediction accuracy of 98.40% and an AUC of 0.99 via training sequences. To evaluate model validation, the StackedEnC-AOP training model using an independent set achieved an accuracy of 96.92% and an AUC of 0.98. CONCLUSION Our proposed StackedEnC-AOP strategy performed significantly better than current computational models with a ~ 5% and ~ 3% improved accuracy via training and independent sets, respectively. The efficacy and consistency of our proposed StackedEnC-AOP make it a valuable tool for data scientists and can execute a key role in research academia and drug design.
Collapse
Affiliation(s)
- Gul Rukh
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Shahid Akbar
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Fawaz Khaled Alarfaj
- Department of Management Information Systems (MIS), School of Business, King Faisal University (KFU), 31982, Al-Ahsa, Saudi Arabia
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, People's Republic of China.
| |
Collapse
|