1
|
Knop S, Szarejko M, Grząśko N, Bringhen S, Trautmann‐Grill K, Jurczyszyn A, Vacca A, Khandanpour C, Gamberi B, Pour L, Iversen KF, Stumpp MT, Suter C, Dawson KM, Zitt C, Legenne P, Stavropoulou V, Fey MF, Leupin N, Goldschmidt H. A phase 1b/2 study evaluating efficacy and safety of MP0250, a designed ankyrin repeat protein (DARPin) simultaneously targeting vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), in combination with bortezomib and dexamethasone, in patients with relapsed or refractory multiple myeloma. EJHAEM 2024; 5:940-950. [PMID: 39415900 PMCID: PMC11474421 DOI: 10.1002/jha2.968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 10/19/2024]
Abstract
MP0250 is a designed ankyrin repeat protein that specifically inhibits both vascular endothelial growth factor A (VEGF-A) and hepatocyte growth factor (HGF), aiming at potentiating cancer therapy by disrupting the tumour microenvironment. Encouraging results from a phase 1 trial of MP0250 in patients with solid tumours prompted further investigation in multiple myeloma (MM) as both MP0250 targets are reported to be drivers of MM pathogenesis. In this open-label, single-arm phase 1b/2 study (NCT03136653) in patients with proteasome inhibitor- and/or immunomodulatory drug-relapsed or refractory MM, MP0250 was administered every 3 weeks with standard bortezomib/dexamethasone regimen. Thirty-three patients received at least one dose of MP0250. The most frequent treatment-related adverse events were arterial hypertension (58.1%), thrombocytopenia (32.3%), proteinuria (29.0%) and peripheral oedema (19.4%). Of the 28 patients evaluable for response (median age: 60 [range 44-75]), nine achieved at least partial response, corresponding to an overall response rate of 32.1% (95% confidence interval [CI]: 17.9%, 50.7%), with a median duration of response of 8 months (95% CI 5-NR). An additional three patients achieved minimal response and nine stable diseases as the best overall response. Overall median progression-free survival was 4.2 months (95% CI 1.9-7.1). These findings are in line with the results of recent trials testing new agents on comparable patient cohorts and provide initial evidence of clinical benefit for patients with refractory/relapsed MM treated with MP0250 in combination with bortezomib/dexamethasone. Further clinical evaluation in the emerging MM treatment landscape would be required to confirm the clinical potential of MP0250.
Collapse
Affiliation(s)
- Stefan Knop
- Universitätsklinikum WürzburgWürzburgGermany
| | | | - Norbert Grząśko
- Department of Experimental HematooncologyMedical University of Lublin and Centrum Onkologii Ziemi LubelskiejLublinPoland
| | - Sara Bringhen
- SSD Clinical Trial in Oncoematologia e Myeloma, Dipartimento di OncologiaAzienda Ospedaliera‐Universitaria Città della Salute e della Scienza di TorinoTorinoItaly
| | | | - Artur Jurczyszyn
- Plasma Cell Dyscrasias Center, Department of HematologyJagiellonian University Medical CollegeKrakowPoland
| | - Angelo Vacca
- Department of Precision and Regenerative Medicine and Ionian Area Unit of Medicina Interna “Guido Baccelli”University of Bari Aldo MoroAzienda PoliclinicoBariItaly
| | - Cyrus Khandanpour
- Universitätsklinikum Münster, Münster, Germany and University Hospital Schleswig‐Holstein Campus LübeckUniversity Cancer Center Schleswig‐Holstein, and University of LübeckLübeckGermany
| | | | | | | | | | - Cosima Suter
- Molecular Partners AGZurich‐SchlierenSwitzerland
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Giannakoulas A, Stoikos P, Kouvata E, Kontouli KM, Fotiadis G, Stefani G, Amoutzias GD, Vassilopoulos G, Giannakoulas N. Angiogenesis and multiple myeloma: Exploring prognostic potential of adrenomedullin. Cancer Med 2024; 13:e70250. [PMID: 39315734 PMCID: PMC11420937 DOI: 10.1002/cam4.70250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Adrenomedullin (AM) is a multifunctional peptide which under basal conditions mainly regulates vasodilation and maintains vascular integrity but is also implicated in the pathogenesis of several malignancies, including multiple myeloma (MM). It has been shown that adrenomedullin is expressed by human myeloma cell lines and that it enhances MM-driven angiogenesis. However, the clinical impact of AM remains unknown. MATERIALS AND METHODS On that basis, we enrolled 32 newly diagnosed multiple myeloma patients (NDMM) and studied the potential of AM as a prognostic biomarker. RESULTS We report that elevated levels of AM trend with suboptimal treatment response and inferior survival of NDMM patients.
Collapse
Affiliation(s)
- Angelos Giannakoulas
- Laboratory of Hematology Department, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Panagiotis Stoikos
- Laboratory of Hematology Department, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Evangelia Kouvata
- Hematology Department, University Hospital of Larissa, Larissa, Greece
| | - Katerina M Kontouli
- Laboratory of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Georgios Fotiadis
- Hematology Department, University Hospital of Larissa, Larissa, Greece
| | - Georgia Stefani
- Hematology Department, University Hospital of Larissa, Larissa, Greece
| | - Grigorios D Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry & Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | | | | |
Collapse
|
3
|
Barton BE, Collins MK, Chau CH, Choo-Wosoba H, Venzon DJ, Steinebach C, Garchitorena KM, Shah B, Sarin EL, Gütschow M, Figg WD. Preclinical Evaluation of a Novel Series of Polyfluorinated Thalidomide Analogs in Drug-Resistant Multiple Myeloma. Biomolecules 2024; 14:725. [PMID: 38927128 PMCID: PMC11201495 DOI: 10.3390/biom14060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Immunomodulatory imide drugs (IMiDs) play a crucial role in the treatment landscape across various stages of multiple myeloma. Despite their evident efficacy, some patients may exhibit primary resistance to IMiD therapy, and acquired resistance commonly arises over time leading to inevitable relapse. It is critical to develop novel therapeutic options to add to the treatment arsenal to overcome IMiD resistance. We designed, synthesized, and screened a new class of polyfluorinated thalidomide analogs and investigated their anti-cancer, anti-angiogenic, and anti-inflammatory activity using in vitro and ex vivo biological assays. We identified four lead compounds that exhibit potent anti-myeloma, anti-angiogenic, anti-inflammatory properties using three-dimensional tumor spheroid models, in vitro tube formation, and ex vivo human saphenous vein angiogenesis assays, as well as the THP-1 inflammatory assay. Western blot analyses investigating the expression of proteins downstream of cereblon (CRBN) reveal that Gu1215, our primary lead candidate, exerts its activity through a CRBN-independent mechanism. Our findings demonstrate that the lead compound Gu1215 is a promising candidate for further preclinical development to overcome intrinsic and acquired IMiD resistance in multiple myeloma.
Collapse
Affiliation(s)
- Blaire E. Barton
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew K. Collins
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hyoyoung Choo-Wosoba
- Biostatics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J. Venzon
- Biostatics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian Steinebach
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Kathleen M. Garchitorena
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bhruga Shah
- Inova Heart and Vascular Institute, Inova Health System, Falls Church, VA 22042, USA
| | - Eric L. Sarin
- Inova Heart and Vascular Institute, Inova Health System, Falls Church, VA 22042, USA
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - William D. Figg
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Metselaar J, Lammers T, Boquoi A, Fenk R, Testaquadra F, Schemionek M, Kiessling F, Isfort S, Wilop S, Crysandt M. A phase I first-in-man study to investigate the pharmacokinetics and safety of liposomal dexamethasone in patients with progressive multiple myeloma. Drug Deliv Transl Res 2023; 13:915-923. [PMID: 36592287 PMCID: PMC9981510 DOI: 10.1007/s13346-022-01268-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/03/2023]
Abstract
Despite the introduction of multiple new drugs and combination therapies, conventional dexamethasone remains a cornerstone in the treatment of multiple myeloma (MM). Its application is, however, limited by frequent adverse effects of which the increased infection rate may have the strongest clinical impact. The efficacy-safety ratio of dexamethasone in MM may be increased by encapsulation in long-circulating PEG-liposomes, thereby both enhancing drug delivery to MM lesions and reducing systemic corticosteroid exposure. We evaluated the preliminary safety and feasibility of a single intravenous (i.v.) infusion of pegylated liposomal dexamethasone phosphate (Dex-PL) in heavily pretreated relapsing or progressive symptomatic MM patients within a phase I open-label non-comparative interventional trial at two dose levels. In the 7 patients that were enrolled (prior to having to close the study prematurely due to slow recruitment), Dex-PL was found to be well tolerated and, as compared to conventional dexamethasone, no new or unexpected adverse events were detected. Pharmacokinetic analysis showed high and persisting concentrations of dexamethasone in the circulation for over a week after i.v. administration, likely caused by the long-circulation half-life of the liposomes that retain dexamethasone as the inactive phosphate prodrug form, something which could significantly limit systemic exposure to the active parent drug. Thus, despite the limitations of this small first-in-man trial, Dex-PL seems safe and well tolerated without severe side effects. Follow-up studies are needed to confirm this in a larger patient cohort and to evaluate if i.v. Dex-PL can provide a safer and more efficacious dexamethasone treatment option for MM.
Collapse
Affiliation(s)
- Josbert Metselaar
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Amelie Boquoi
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Roland Fenk
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Fabio Testaquadra
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Susanne Isfort
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Stefan Wilop
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Martina Crysandt
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Center for Integrated Oncology, Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| |
Collapse
|
5
|
Lin C, Garcia-Gerique L, Bonner EE, Mastio J, Rosenwasser M, Cruz Z, Lawler M, Bernabei L, Muthumani K, Liu Q, Poncz M, Vogl T, Törngren M, Eriksson H, Vogl DT, Gabrilovich DI, Nefedova Y. S100A8/S100A9 Promote Progression of Multiple Myeloma via Expansion of Megakaryocytes. CANCER RESEARCH COMMUNICATIONS 2023; 3:420-430. [PMID: 36923707 PMCID: PMC10010194 DOI: 10.1158/2767-9764.crc-22-0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/30/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Multiple myeloma is characterized by clonal proliferation of plasma cells that accumulate preferentially in the bone marrow (BM). The tumor microenvironment is one of the leading factors that promote tumor progression. Neutrophils and monocytes are a major part of the BM tumor microenvironment, but the mechanism of their contribution to multiple myeloma progression remains unclear. Here, we describe a novel mechanism by which S100A8/S100A9 proteins produced by BM neutrophils and monocytes promote the expansion of megakaryocytes supporting multiple myeloma progression. S100A8/S100A9 alone was not sufficient to drive megakaryopoiesis but markedly enhanced the effect of thrombopoietin, an effect that was mediated by Toll-like receptor 4 and activation of the STAT5 transcription factor. Targeting S100A9 with tasquinimod as a single agent and in combination with lenalidomide and with proteasome inhibitors has potent antimyeloma effect that is at least partly independent of the adaptive immune system. This newly identified axis of signaling involving myeloid cells and megakaryocytes may provide a new avenue for therapeutic targeting in multiple myeloma. Significance We identified a novel mechanism by which myeloid cells promote myeloma progression independently of the adaptive immune system. Specifically, we discovered a novel role of S100A8/S100A9, the most abundant proteins produced by neutrophils and monocytes, in regulation of myeloma progression via promotion of the megakaryocyte expansion and angiogenesis. Tasquinimod, an inhibitor of S100A9, has potent antimyeloma effects as a single agent and in combination with lenalidomide and with proteasome inhibitors.
Collapse
Affiliation(s)
- Cindy Lin
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | | | - Jerome Mastio
- The Wistar Institute, Philadelphia, Pennsylvania
- ICC, Early Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Zachary Cruz
- The Wistar Institute, Philadelphia, Pennsylvania
| | | | - Luca Bernabei
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kar Muthumani
- The Wistar Institute, Philadelphia, Pennsylvania
- GeneOne Life Science, Inc, Fort Washington, Pennsylvania
| | - Qin Liu
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Mortimer Poncz
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | - Dan T. Vogl
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dmitry I. Gabrilovich
- The Wistar Institute, Philadelphia, Pennsylvania
- ICC, Early Oncology R&D, AstraZeneca, Gaithersburg, Maryland
| | | |
Collapse
|
6
|
Solimando AG, Da Vià MC, Bolli N, Steinbrunn T. The Route of the Malignant Plasma Cell in Its Survival Niche: Exploring “Multiple Myelomas”. Cancers (Basel) 2022; 14:cancers14133271. [PMID: 35805041 PMCID: PMC9265748 DOI: 10.3390/cancers14133271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Growing evidence points to multiple myeloma (MM) and its stromal microenvironment using several mechanisms to subvert effective immune and anti-tumor responses. Recent advances have uncovered the tumor-stromal cell influence in regulating the immune-microenvironment and have envisioned targeting these suppressive pathways to improve therapeutic outcomes. Nevertheless, some subgroups of patients include those with particularly unfavorable prognoses. Biological stratification can be used to categorize patient-, disease- or therapy-related factors, or alternatively, these biological determinants can be included in a dynamic model that customizes a given treatment to a specific patient. Genetic heterogeneity and current knowledge enforce a systematic and comprehensive bench-to-bedside approach. Given the increasing role of cancer stem cells (CSCs) in better characterizing the pathogenesis of solid and hematological malignancies, disease relapse, and drug resistance, identifying and describing CSCs is of paramount importance in the management of MM. Even though the function of CSCs is well-known in other cancer types, their role in MM remains elusive. With this review, we aim to provide an update on MM homing and resilience in the bone marrow micro milieu. These data are particularly interesting for clinicians facing unmet medical needs while designing novel treatment approaches for MM.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine ‘G. Baccelli’, University of Bari Medical School, 70124 Bari, Italy
- Department of Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany
- Correspondence: (A.G.S.); (T.S.); Tel.: +39-3395626475 (A.G.S.)
| | - Matteo Claudio Da Vià
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.D.V.); (N.B.)
| | - Niccolò Bolli
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.C.D.V.); (N.B.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Torsten Steinbrunn
- Department of Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: (A.G.S.); (T.S.); Tel.: +39-3395626475 (A.G.S.)
| |
Collapse
|
7
|
Abhijit Saha, Sarker K, Ghosh A, Mishra S, Sen S. Analogue Based Design, Synthesis, Biological Evaluation, and Molecular Docking of Some Thalidomide Metabolites as Selective Cytotoxic and Antiangiogenic Agents against Multiple Myeloma. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
High Output Heart Failure in Multiple Myeloma: Pathogenetic Considerations. Cancers (Basel) 2022; 14:cancers14030610. [PMID: 35158878 PMCID: PMC8833382 DOI: 10.3390/cancers14030610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Multiple myeloma is a plasma cell disorder that accounts for around 10% of all haematological malignancies. This neoplasia is often associated with a significant prevalence of cardiovascular complications resulting from several factors, unrelated and/or related to the disease. Among cardiovascular complications, the high output heart failure is of great importance as it is related to a worse prognosis for patients. It is important to point out that, despite the availability of more and more numerous and effective drugs, myeloma remains an incurable disease, with frequent relapses and several treatment lines, with the need, therefore, for a careful evaluation of patients, especially from a cardiological point of view. For this reason, we are proposing a comprehensive overview of different pathogenetic mechanisms responsible for high output heart failure in multiple myeloma, including artero-venous shunts, enhanced angiogenesis, glutamminolysis, hyperammonemia and hemorheological alterations, with the belief that a multidisciplinary approach, in clinical evaluation is critical for the optimal management of the patient. Abstract The high output heart failure is a clinical condition in which the systemic congestion is associated to a high output state, and it can be observed in a non-negligible percentage of hematological diseases, particularly in multiple myeloma, a condition in which the risk of adverse cardiovascular events may increase, with a worse prognosis for patients. For this reason, though an accurate literature search, we provided in this review a complete overview of different pathogenetic mechanisms responsible for high output heart failure in multiple myeloma. Indeed, this clinical finding is present in the 8% of multiple myeloma patients, and it may be caused by artero-venous shunts, enhanced angiogenesis, glutamminolysis, hyperammonemia and hemorheological alterations with increase in plasma viscosity. The high output heart failure in multiple myeloma is associated with significant morbidity and mortality, emphasizing the need for a multidisciplinary approach.
Collapse
|
9
|
Li S, Li S, Lin M, Li Z, He J, Qiu J, Zhang J. Interleukin-17 and vascular endothelial growth factor: new biomarkers for the diagnosis of papillary thyroid carcinoma in patients with Hashimoto's thyroiditis. J Int Med Res 2022; 50:3000605211067121. [PMID: 35023376 PMCID: PMC8793523 DOI: 10.1177/03000605211067121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective The incidences of papillary thyroid carcinoma (PTC) and Hashimoto’s thyroiditis (HT) have shown increasing trends. Numerous studies have shown a close relationship between the two diseases, but the exact mechanism linking PTC with HT is still unclear. Interleukin-17 (IL-17) plays an important role in the development of malignant tumors. However, information on the association between IL-17 and thyroid disease is lacking. Methods Tissue samples were collected from patients with thyroid diseases admitted to the thyroid surgery department of our hospital between May 2015 and December 2017. The characteristics of the thyroid were observed by ultrasonography, hematoxylin-eosin staining, enzyme-linked immunosorbent assays, and immunohistochemistry. Results We found that HT with carcinoma (HTC) showed unique characteristics in two-dimensional ultrasound images. Moreover, IL-17 and vascular endothelial growth factor (VEGF) levels showed gradually increasing trends during the process of HT malignant transformation, with a significant positive correlation between the two cytokines. Serum IL-17 and VEGF levels could distinguish between HTC and HT with benign adenoma. Conclusion Our data suggest that serum IL-17 and VEGF levels may represent novel biomarkers for the diagnosis of HT malignant nodules.
Collapse
Affiliation(s)
- Shuiping Li
- Department of Ultrasonography, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Shilin Li
- Department of Ultrasonography, Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Min Lin
- Department of Ultrasonography, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Zuolin Li
- Department of Ultrasonography, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Jinghua He
- Department of Ultrasonography, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Jincheng Qiu
- Department of Ultrasonography, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| | - Jiantang Zhang
- Department of Ultrasonography, Longyan First Affiliated Hospital of Fujian Medical University, Longyan 364000, China
| |
Collapse
|
10
|
Lim VM, Barney T, Jayaraman AL. Multiple myeloma and malignant lesions: a potential risk factor for local anesthetic systemic toxicity. Reg Anesth Pain Med 2021; 46:1103-1106. [PMID: 34535547 DOI: 10.1136/rapm-2021-102845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/30/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Multiple myeloma is a cancer of plasma cells that often leads to complications including osteolytic bone lesions, nephropathy and neuropathy. Multiple myeloma is only one etiology of many cancer pain conditions that may necessitate interventional pain treatment when refractory to multimodal medications. Notably, local anesthetic systemic toxicity is a rare but life-threatening complication of local anesthetic administered for these interventions. CASE PRESENTATION A 50-60-year-old woman presented with multiple myeloma complicated by chronic bone pain and in an acute pain crisis. A fluoroscopic-guided L4-5 epidural catheter was placed with clinical doses of bupivacaine for comfort to undergo MRI of the spine. Soon after, she became tachycardic, tachypneic and hypoxic requiring non-invasive positive pressure airway support. As this respiratory distress was attributed to a large pleural effusion, a pigtail catheter was inserted in the intensive care unit with submaximally dosed lidocaine infiltration. She then developed a left bundle branch block followed by cardiovascular collapse minimally responsive to high-dose inotrope and vasopressor support. Lipid emulsion was started with dramatic therapeutic response and recovery to baseline. A CT of the thoracolumbar spine showed worsening extensive lytic lesions throughout all vertebral bodies and ribs from diffuse myeloma. CONCLUSIONS Patients with oncologic lesions focal to the thoracolumbar spine may be at higher risk for local anesthetic systemic toxicity from palliative epidurals due to increased cancer-related angiogenesis. Likewise, local anesthetic infiltration for procedures near any malignant sites could have a similar risk and may require lower initial fractionated dosages with increased vigilance.
Collapse
Affiliation(s)
- Victoria M Lim
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Taylor Barney
- College of Osteopathic Medicine, Touro University Nevada, Henderson, Nevada, USA
| | - Arun L Jayaraman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| |
Collapse
|
11
|
Gastelum G, Veena M, Lyons K, Lamb C, Jacobs N, Yamada A, Baibussinov A, Sarafyan M, Shamis R, Kraut J, Frost P. Can Targeting Hypoxia-Mediated Acidification of the Bone Marrow Microenvironment Kill Myeloma Tumor Cells? Front Oncol 2021; 11:703878. [PMID: 34350119 PMCID: PMC8327776 DOI: 10.3389/fonc.2021.703878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is an incurable cancer arising from malignant plasma cells that engraft in the bone marrow (BM). The physiology of these cancer cells within the BM microenvironment (TME) plays a critical role in MM development. These processes may be similar to what has been observed in the TME of other (non-hematological) solid tumors. It has been long reported that within the BM, vascular endothelial growth factor (VEGF), increased angiogenesis and microvessel density, and activation of hypoxia-induced transcription factors (HIF) are correlated with MM progression but despite a great deal of effort and some modest preclinical success the overall clinical efficacy of using anti-angiogenic and hypoxia-targeting strategies, has been limited. This review will explore the hypothesis that the TME of MM engrafted in the BM is distinctly different from non-hematological-derived solid tumors calling into question how effective these strategies may be against MM. We further identify other hypoxia-mediated effectors, such as hypoxia-mediated acidification of the TME, oxygen-dependent metabolic changes, and the generation of reactive oxygen species (ROS), that may prove to be more effective targets against MM.
Collapse
Affiliation(s)
- Gilberto Gastelum
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Research, Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, CA, United States
| | - Mysore Veena
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Research, Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, CA, United States
| | - Kylee Lyons
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christopher Lamb
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicole Jacobs
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexandra Yamada
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alisher Baibussinov
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Martin Sarafyan
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rebeka Shamis
- Department of Research, Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, CA, United States
| | - Jeffry Kraut
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Research, Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, CA, United States
| | - Patrick Frost
- Department of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Research, Greater Los Angeles Veterans Administration Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
12
|
Lionetti M, Da Vià MC, Albano F, Neri A, Bolli N, Musto P. Genomics of Smoldering Multiple Myeloma: Time for Clinical Translation of Findings? Cancers (Basel) 2021; 13:3319. [PMID: 34282760 PMCID: PMC8269396 DOI: 10.3390/cancers13133319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/22/2022] Open
Abstract
Smoldering multiple myeloma (SMM) is an asymptomatic disorder of clonal bone marrow (BM) plasma cells (PCs) in between the premalignant condition known as monoclonal gammopathy of undetermined significance and overt multiple myeloma (MM). It is characterized by a deep biological heterogeneity that is reflected in a markedly variable progression risk among patients. Recently proposed risk stratification models mainly rely on indirect markers of disease burden and are unable to identify cases in whom clonal PCs have already undergone the "malignant switch" but major clonal expansion has not occurred yet. In the last years, the application of next-generation sequencing (NGS) techniques has led to profound advances in the understanding of the molecular bases of SMM progression, and in all likelihood, it will contribute to the needed improvement of SMM prognostication. In this Review, we describe the recent advances in characterizing the genomic landscape of SMM and intrinsic determinants of its progression, highlighting their implications in terms of understanding of tumor evolution and prognostication. We also review the main studies investigating the role of the microenvironment in this early disease stage. Finally, we mention the results of the first randomized clinical trials and discuss the potential clinical translability of the genomic insights.
Collapse
Affiliation(s)
- Marta Lionetti
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.L.); (M.C.D.V.); (A.N.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Matteo C. Da Vià
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.L.); (M.C.D.V.); (A.N.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Francesco Albano
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, 70124 Bari, Italy;
| | - Antonino Neri
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.L.); (M.C.D.V.); (A.N.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Niccolò Bolli
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (M.L.); (M.C.D.V.); (A.N.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Pellegrino Musto
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, 70124 Bari, Italy;
- Unit of Hematology and Stem Cell Transplantation, AOUC Policlinico, 70124 Bari, Italy
| |
Collapse
|
13
|
Giannakoulas N, Ntanasis-Stathopoulos I, Terpos E. The Role of Marrow Microenvironment in the Growth and Development of Malignant Plasma Cells in Multiple Myeloma. Int J Mol Sci 2021; 22:ijms22094462. [PMID: 33923357 PMCID: PMC8123209 DOI: 10.3390/ijms22094462] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
The development and effectiveness of novel therapies in multiple myeloma have been established in large clinical trials. However, multiple myeloma remains an incurable malignancy despite significant therapeutic advances. Accumulating data have elucidated our understanding of the genetic background of the malignant plasma cells along with the role of the bone marrow microenvironment. Currently, the interaction among myeloma cells and the components of the microenvironment are considered crucial in multiple myeloma pathogenesis. Adhesion molecules, cytokines and the extracellular matrix play a critical role in the interplay among genetically transformed clonal plasma cells and stromal cells, leading to the proliferation, progression and survival of myeloma cells. In this review, we provide an overview of the multifaceted role of the bone marrow microenvironment in the growth and development of malignant plasma cells in multiple myeloma.
Collapse
Affiliation(s)
- Nikolaos Giannakoulas
- Department of Hematology of University Hospital of Larisa, Faculty of Medicine, University of Thessaly, 41110 Larisa, Greece;
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
- Correspondence:
| |
Collapse
|
14
|
Abstract
The DARPin® drug platform was established with a vision to expand the medical use of biologics beyond what was possible with monoclonal antibodies. It is based on naturally occurring ankyrin repeat domains that are typically building blocks of multifunctional human proteins. The platform allows for the generation of diverse, well-behaved, multifunctional drug candidates. Recent clinical data illustrate the favorable safety profile of the first DARPin® molecules tested in patients. With the positive phase III results of the most advanced DARPin® drug candidate, abicipar, the DARPin® drug platform is potentially about to achieve its first marketing approval. This review highlights some of the key milestones and decisions encountered when transforming the DARPin® platform from an academic concept to a biotech drug pipeline engine.
Collapse
Affiliation(s)
- Michael T Stumpp
- Molecular Partners AG, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - Keith M Dawson
- Molecular Partners AG, Wagistrasse 14, 8952, Schlieren, Switzerland
| | - H Kaspar Binz
- Molecular Partners AG, Wagistrasse 14, 8952, Schlieren, Switzerland. .,Binz Biotech Consulting GmbH, Lüssirainstrasse 52, 6300, Zug, Switzerland.
| |
Collapse
|
15
|
Zheng W, Zhang S, Guo H, Chen X, Huang Z, Jiang S, Li M. Multi-omics analysis of tumor angiogenesis characteristics and potential epigenetic regulation mechanisms in renal clear cell carcinoma. Cell Commun Signal 2021; 19:39. [PMID: 33761933 PMCID: PMC7992844 DOI: 10.1186/s12964-021-00728-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tumor angiogenesis, an essential process for cancer proliferation and metastasis, has a critical role in prognostic of kidney renal clear cell carcinoma (KIRC), as well as a target in guiding treatment with antiangiogenic agents. However, tumor angiogenesis subtypes and potential epigenetic regulation mechanisms in KIRC patient remains poorly characterized. System evaluation of angiogenesis subtypes in KIRC patient might help to reveal the mechanisms of KIRC and develop more target treatments for patients. METHOD Ten independent tumor angiogenesis signatures were obtained from molecular signatures database (MSigDB) and gene set variation analysis was performed to calculate the angiogenesis score in silico using the Cancer Genome Atlas (TCGA) KIRC dataset. Tumor angiogenesis subtypes in 539 TCGA-KIRC patients were identified using consensus clustering analysis. The potential regulation mechanisms was studied using gene mutation, copy number variation, and differential methylation analysis (DMA). The master transcription factors (MTF) that cause the difference in tumor angiogenesis signals were completed by transcription factor enrichment analysis. RESULTS The angiogenesis score of a prognosis related angiogenesis signature including 189 genes was significantly correlated with immune score, stroma score, hypoxia score, and vascular endothelial growth factor (VEGF) signal score in 539 TCGA KIRC patients. MMRN2, CLEC14A, ACVRL1, EFNB2, and TEK in candidate gene set showed highest correlation coefficient with angiogenesis score in TCGA-KIRC patients. In addition, all of them were associated with overall survival in both TCGA-KIRC and E-MTAB-1980 KIRC data. Clustering analysis based on 183 genes in angiogenesis signature identified two prognosis related angiogenesis subtypes in TCGA KIRC patients. Two clusters also showed different angiogenesis score, immune score, stroma score, hypoxia score, VEGF signal score, and microenvironment score. DMA identified 59,654 differential methylation sites between two clusters and part of these sites were correlated with tumor angiogenesis genes including CDH13, COL4A3, and RHOB. In addition, RFX2, SOX13, and THRA were identified as top three MTF in regulating angiogenesis signature in KIRC patients. CONCLUSION Our study indicate that evaluation the angiogenesis subtypes of KIRC based on angiogenesis signature with 183 genes and potential epigenetic mechanisms may help to develop more target treatments for KIRC patients. Video Abstract.
Collapse
Affiliation(s)
- Wenzhong Zheng
- Department of Urology, Fujian Province, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Road, Fuzhou, 200001, People's Republic of China
| | - Shiqiang Zhang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China
| | - Huan Guo
- Department of Urology, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Xiaobao Chen
- Department of Urology, Fujian Province, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Road, Fuzhou, 200001, People's Republic of China
| | - Zhangcheng Huang
- Department of Urology, Fujian Province, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Road, Fuzhou, 200001, People's Republic of China
| | - Shaoqin Jiang
- Department of Urology, Fujian Province, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Road, Fuzhou, 200001, People's Republic of China
| | - Mengqiang Li
- Department of Urology, Fujian Province, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Road, Fuzhou, 200001, People's Republic of China.
| |
Collapse
|
16
|
Pavel A, del Giudice G, Federico A, Di Lieto A, Kinaret PAS, Serra A, Greco D. Integrated network analysis reveals new genes suggesting COVID-19 chronic effects and treatment. Brief Bioinform 2021; 22:1430-1441. [PMID: 33569598 PMCID: PMC7929418 DOI: 10.1093/bib/bbaa417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/13/2020] [Accepted: 12/19/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 disease led to an unprecedented health emergency, still ongoing worldwide. Given the lack of a vaccine or a clear therapeutic strategy to counteract the infection as well as its secondary effects, there is currently a pressing need to generate new insights into the SARS-CoV-2 induced host response. Biomedical data can help to investigate new aspects of the COVID-19 pathogenesis, but source heterogeneity represents a major drawback and limitation. In this work, we applied data integration methods to develop a Unified Knowledge Space (UKS) and used it to identify a new set of genes associated with SARS-CoV-2 host response, both in vitro and in vivo. Functional analysis of these genes reveals possible long-term systemic effects of the infection, such as vascular remodelling and fibrosis. Finally, we identified a set of potentially relevant drugs targeting proteins involved in multiple steps of the host response to the virus.
Collapse
Affiliation(s)
- Alisa Pavel
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Giusy del Giudice
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Antonio Federico
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Antonio Di Lieto
- Department of Forensic Psychiatry, Aarhus University, Aarhus, Denmark
| | - Pia A S Kinaret
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- BioMediTech Institute, Tampere University, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Dietrich K, Fiedler IA, Kurzyukova A, López-Delgado AC, McGowan LM, Geurtzen K, Hammond CL, Busse B, Knopf F. Skeletal Biology and Disease Modeling in Zebrafish. J Bone Miner Res 2021; 36:436-458. [PMID: 33484578 DOI: 10.1002/jbmr.4256] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Zebrafish are teleosts (bony fish) that share with mammals a common ancestor belonging to the phylum Osteichthyes, from which their endoskeletal systems have been inherited. Indeed, teleosts and mammals have numerous genetically conserved features in terms of skeletal elements, ossification mechanisms, and bone matrix components in common. Yet differences related to bone morphology and function need to be considered when investigating zebrafish in skeletal research. In this review, we focus on zebrafish skeletal architecture with emphasis on the morphology of the vertebral column and associated anatomical structures. We provide an overview of the different ossification types and osseous cells in zebrafish and describe bone matrix composition at the microscopic tissue level with a focus on assessing mineralization. Processes of bone formation also strongly depend on loading in zebrafish, as we elaborate here. Furthermore, we illustrate the high regenerative capacity of zebrafish bones and present some of the technological advantages of using zebrafish as a model. We highlight zebrafish axial and fin skeleton patterning mechanisms, metabolic bone disease such as after immunosuppressive glucocorticoid treatment, as well as osteogenesis imperfecta (OI) and osteopetrosis research in zebrafish. We conclude with a view of why larval zebrafish xenografts are a powerful tool to study bone metastasis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kristin Dietrich
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Imke Ak Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Kurzyukova
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Alejandra C López-Delgado
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Lucy M McGowan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Karina Geurtzen
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| | - Chrissy L Hammond
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Franziska Knopf
- Center for Regenerative Therapies TU Dresden (CRTD), Center for Healthy Aging TU Dresden, Dresden, Germany
| |
Collapse
|
18
|
Extracellular vesicles (EVs): What we know of the mesmerizing roles of these tiny vesicles in hematological malignancies? Life Sci 2021; 271:119177. [PMID: 33577843 DOI: 10.1016/j.lfs.2021.119177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Cancer is a complex disease in which a bidirectional collaboration between malignant cells and surrounding microenvironment creates an appropriate platform which ultimately facilitates the progression of the disease. The discovery of extracellular vesicles (EVs) was a turning point in the modern era of cancer biology, as their importance in human malignancies has set the stage to widen research interest in the field of cell-to-cell communication. The implication in short- and long-distance interaction via horizontally transfer of cellular components, ranging from non-coding RNAs to functional proteins, as well as stimulating target cells receptors by the means of ligands anchored on their membrane endows these "tiny vesicles with giant impacts" with incredible potential to re-educate normal tissues, and thus, to re-shape the surrounding niche. In this review, we highlight the pathogenic roles of EVs in human cancers, with an extensive focus on the recent advances in hematological malignancies.
Collapse
|
19
|
Complete Tumor Regression by Liposomal Bortezomib in a Humanized Mouse Model of Multiple Myeloma. Hemasphere 2020; 4:e463. [PMID: 32923984 PMCID: PMC7455224 DOI: 10.1097/hs9.0000000000000463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/29/2020] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is available in the text
Collapse
|
20
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
21
|
Palta A, Kaur M, Tahlan A, Dimri K. Evaluation of Angiogenesis in Multiple Myeloma by VEGF Immunoexpression and Microvessel Density. J Lab Physicians 2020; 12:38-43. [PMID: 32792792 PMCID: PMC7419170 DOI: 10.1055/s-0040-1714933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background
Multiple myeloma (MM) is a plasma cell disorder characterized by monoclonal proliferation of plasma cells in bone marrow. Plasmablastic MM is a morphologic subset of MM, containing ≥2% plasmablasts of all plasma cells.
Methods
The study included 30 consecutively diagnosed patients of MM (6 plasmablastic, 24 nonplasmablastic) over a span of 2 years. Angiogenesis in MM was assessed by analysis of vascular endothelial growth factor (VEGF) immunoexpression by plasma cells and microvessel density (MVD) using anti-CD34 antibody. CD34 and VEGF immunohistochemical staining was performed in all the 30 cases. Angiogenesis was studied in relation to plasmablastic morphology and clinical profile to determine if any correlation exists between these.
Results
The mean VEGF expression of 80.83 ± 7.36 in plasmablastic myeloma cases was significantly higher compared with a mean VEGF of 53.54 ±17.09 in nonplasmablastic cases. Most of the cases (66.6%) of plasmablastic myeloma exhibited strong (3+) VEGF expression. The difference in mean VEGF expression between plasmablastic and nonplasmablastic cases was found to be statistically significant (
p
= 0.001). The mean MVD in plasmablastic cases was 44.8 ± 3.69, while in the nonplasmablastic category, the mean MVD was 23.7 ± 5.14, difference being statistically significant (
p
< 0.05). Also, a positive correlation was found between VEGF expression and MVD.
Conclusion
A moderate/strong VEGF intensity and higher MVD were found in cases of plasmablastic MM, suggesting that a more aggressive histological disease may be associated with increased production of VEGF. This finding might be helpful to identify a subset of patients with adverse prognosis and to provide antiangiogenic therapy to improve their survival. However, studies comprising larger number of patients are required to bring out a statistical significance to further substantiate these findings.
Collapse
Affiliation(s)
- Anshu Palta
- Department of Pathology, Government Medical College and Hospital, Chandigarh, India
| | - Manveen Kaur
- Department of Pathology, Government Medical College and Hospital, Chandigarh, India
| | - Anita Tahlan
- Department of Pathology, Government Medical College and Hospital, Chandigarh, India
| | - Kislay Dimri
- Department of Radiation Oncology, Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
22
|
Weidle UH, Nopora A. Identification of MicroRNAs With In Vivo Efficacy in Multiple Myeloma-related Xenograft Models. Cancer Genomics Proteomics 2020; 17:321-334. [PMID: 32576578 PMCID: PMC7367608 DOI: 10.21873/cgp.20192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIM Multiple myeloma is a B-cell neoplasm, which can spread within the marrow of the bones forming many small tumors. In advanced disease, multiple myeloma can spread to the blood as plasma cell leukemia. In some cases, a localized tumor known as plasmacytoma is found within a single bone. Despite the approval of several agents such as melphalan, corticosteroids, proteasome inhibitors, thalidomide-based immuno-modulatory agents, histone deacetylase inhibitors, a nuclear export inhibitor and monoclonal antibodies daratuzumab and elatuzumab, the disease presently remains uncurable. MATERIALS AND METHODS In order to define new targets and treatment modalities we searched the literature for microRNAs, which increase or inhibit in vivo efficacy in multiple-myeloma-related xenograft models. RESULTS AND CONCLUSION We identified six up-regulated and twelve down-regulated miRs, which deserve further preclinical validation.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
23
|
Role of the Bone Marrow Milieu in Multiple Myeloma Progression and Therapeutic Resistance. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e752-e768. [PMID: 32651110 DOI: 10.1016/j.clml.2020.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023]
Abstract
Multiple myeloma (MM) is a cancer of the plasma cells within the bone marrow (BM). Studies have shown that the cellular and noncellular components of the BM milieu, such as cytokines and exosomes, play an integral role in MM pathogenesis and progression by mediating drug resistance and inducing MM proliferation. Moreover, the BM microenvironment of patients with MM facilitates cancer tolerance and immune evasion through the expansion of regulatory immune cells, inhibition of antitumor effector cells, and disruption of the antigen presentation machinery. These are of special relevance, especially in the current era of cancer immunotherapy. An improved understanding of the supportive role of the MM BM microenvironment will allow for the development of future therapies targeting MM in the context of the BM milieu to elicit deeper and more durable responses. In the present review, we have discussed our current understanding of the role of the BM microenvironment in MM progression and resistance to therapy and discuss novel potential approaches to alter its pro-MM function.
Collapse
|
24
|
Mrozik KM, Cheong CM, Hewett DR, Noll JE, Opperman KS, Adwal A, Russell DL, Blaschuk OW, Vandyke K, Zannettino ACW. LCRF-0006, a small molecule mimetic of the N-cadherin antagonist peptide ADH-1, synergistically increases multiple myeloma response to bortezomib. FASEB Bioadv 2020; 2:339-353. [PMID: 32617520 PMCID: PMC7325588 DOI: 10.1096/fba.2019-00073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
N-cadherin is a homophilic cell-cell adhesion molecule that plays a critical role in maintaining vascular stability and modulating endothelial barrier permeability. Pre-clinical studies have shown that the N-cadherin antagonist peptide, ADH-1, increases the permeability of tumor-associated vasculature thereby increasing anti-cancer drug delivery to tumors and enhancing tumor response. Small molecule library screens have identified a novel compound, LCRF-0006, that is a mimetic of the classical cadherin His-Ala-Val sequence-containing region of ADH-1. Here, we evaluated the vascular permeability-enhancing and anti-cancer properties of LCRF-0006 using in vitro vascular disruption and cell apoptosis assays, and a well-established pre-clinical model (C57BL/KaLwRij/5TGM1) of the hematological cancer multiple myeloma (MM). We found that LCRF-0006 disrupted endothelial cell junctions in a rapid, transient and reversible manner, and increased vascular permeability in vitro and at sites of MM tumor in vivo. Notably, LCRF-0006 synergistically increased the in vivo anti-MM tumor response to low-dose bortezomib, a frontline anti-MM agent, leading to regression of disease in 100% of mice. Moreover, LCRF-0006 and bortezomib synergistically induced 5TGM1 MM tumor cell apoptosis in vitro. Our findings demonstrate the potential clinical utility of LCRF-0006 to significantly increase bortezomib effectiveness and enhance the depth of tumor response in patients with MM.
Collapse
Affiliation(s)
- Krzysztof M. Mrozik
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
| | - Chee M. Cheong
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
| | - Duncan R. Hewett
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
| | - Jacqueline E. Noll
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
| | - Khatora S. Opperman
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
| | - Alaknanda Adwal
- Ovarian and Reproductive Cancer Biology LaboratoryRobinson Research InstituteThe University of AdelaideAdelaideAustralia
| | - Darryl L. Russell
- Ovarian and Reproductive Cancer Biology LaboratoryRobinson Research InstituteThe University of AdelaideAdelaideAustralia
| | - Orest W. Blaschuk
- Division of UrologyDepartment of SurgeryMcGill UniversityMontrealCanada
| | - Kate Vandyke
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
| | - Andrew C. W. Zannettino
- Myeloma Research LaboratoryAdelaide Medical SchoolFaculty of Health and Medical SciencesThe University of AdelaideAdelaideAustralia
- Precision Medicine ThemeSouth Australian Health and Medical Research Institute (SAHMRI)AdelaideAustralia
- Central Adelaide Local Health NetworkAdelaideAustralia
| |
Collapse
|
25
|
Gaudio A, Xourafa A, Rapisarda R, Zanoli L, Signorelli SS, Castellino P. Hematological Diseases and Osteoporosis. Int J Mol Sci 2020; 21:ijms21103538. [PMID: 32429497 PMCID: PMC7279036 DOI: 10.3390/ijms21103538] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/19/2023] Open
Abstract
Secondary osteoporosis is a common clinical problem faced by bone specialists, with a higher frequency in men than in women. One of several causes of secondary osteoporosis is hematological disease. There are numerous hematological diseases that can have a deleterious impact on bone health. In the literature, there is an abundance of evidence of bone involvement in patients affected by multiple myeloma, systemic mastocytosis, thalassemia, and hemophilia; some skeletal disorders are also reported in sickle cell disease. Recently, monoclonal gammopathy of undetermined significance appears to increase fracture risk, predominantly in male subjects. The pathogenetic mechanisms responsible for these bone loss effects have not yet been completely clarified. Many soluble factors, in particular cytokines that regulate bone metabolism, appear to play an important role. An integrated approach to these hematological diseases, with the help of a bone specialist, could reduce the bone fracture rate and improve the quality of life of these patients.
Collapse
Affiliation(s)
- Agostino Gaudio
- Correspondence: ; Tel.: +39-095-3781842; Fax: +39-095-378-2376
| | | | | | | | | | | |
Collapse
|
26
|
Hofmann JN, Landgren O, Landy R, Kemp TJ, Santo L, McShane CM, Shearer JJ, Lan Q, Rothman N, Pinto LA, Pfeiffer RM, Hildesheim A, Katki HA, Purdue MP. A Prospective Study of Circulating Chemokines and Angiogenesis Markers and Risk of Multiple Myeloma and Its Precursor. JNCI Cancer Spectr 2020; 4:pkz104. [PMID: 33336146 PMCID: PMC7083234 DOI: 10.1093/jncics/pkz104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/08/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Experimental and clinical studies have implicated certain chemokines and angiogenic cytokines in multiple myeloma (MM) pathogenesis. To investigate whether systemic concentrations of these markers are associated with future MM risk and progression from its precursor, monoclonal gammopathy of undetermined significance (MGUS), we conducted a prospective study within the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. METHODS We measured concentrations of 45 immunologic and pro-angiogenic markers in sera from 241 MM case patients, 441 participants with nonprogressing MGUS, and 258 MGUS-free control participants using Luminex-based multiplex assays and enzyme-linked immunosorbent assays. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression. We also evaluated absolute risk of progression using weighted Kaplan-Meier estimates. All statistical tests were two-sided. RESULTS Prediagnostic levels of six markers were statistically significantly elevated among MM case patients compared with MGUS-free control participants using a false discovery rate of 10% (EGF, HGF, Ang-2, CXCL12, CCL8, and BMP-9). Of these, three angiogenesis markers were associated with future progression from MGUS to MM: EGF (fourth vs first quartile: OR = 3.01, 95% CI = 1.61 to 5.63, P trend = .00028), HGF (OR = 2.59, 95% CI = 1.33 to 5.03, P trend = .015), and Ang-2 (OR = 2.14, 95% CI = 1.15 to 3.98, P trend = .07). A composite angiogenesis biomarker score substantially stratified risk of MGUS progression to MM beyond established risk factors for progression, particularly during the first 5 years of follow-up (areas under the curve of 0.71 and 0.64 with and without the angiogenesis marker score, respectively). CONCLUSIONS Our prospective findings provide new insights into mechanisms involved in MM development and suggest that systemic angiogenesis markers could potentially improve risk stratification models for MGUS patients.
Collapse
Affiliation(s)
- Jonathan N Hofmann
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ola Landgren
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca Landy
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Troy J Kemp
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Loredana Santo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Charlene M McShane
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health, Queen’s University, Belfast, Northern Ireland, UK
| | - Joseph J Shearer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Ligia A Pinto
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Ruth M Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Hormuzd A Katki
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
27
|
Marino S, Petrusca DN, Roodman GD. Therapeutic targets in myeloma bone disease. Br J Pharmacol 2020; 178:1907-1922. [PMID: 31647573 DOI: 10.1111/bph.14889] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM) is the second most common haematological malignancy and is characterized by a clonal proliferation of neoplastic plasma cells within the bone marrow. MM is the most frequent cancer involving the skeleton, causing osteolytic lesions, bone pain and pathological fractures that dramatically decrease MM patients' quality of life and survival. MM bone disease (MBD) results from uncoupling of bone remodelling in which excessive bone resorption is not compensated by new bone formation, due to a persistent suppression of osteoblast activity. Current management of MBD includes antiresorptive agents, bisphosphonates and denosumab, that are only partially effective due to their inability to repair the existing lesions. Thus, research into agents that prevent bone destruction and more importantly repair existing lesions by inducing new bone formation is essential. This review discusses the mechanisms regulating the uncoupled bone remodelling in MM and summarizes current advances in the treatment of MBD. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Medicine, Division Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Daniela N Petrusca
- Department of Medicine, Division Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - G David Roodman
- Department of Medicine, Division Hematology/Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
28
|
Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat 2020; 48:100663. [DOI: 10.1016/j.drup.2019.100663] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/01/2019] [Accepted: 11/03/2019] [Indexed: 02/07/2023]
|
29
|
D'Souza L, Bhattacharya D. Plasma cells: You are what you eat. Immunol Rev 2019; 288:161-177. [PMID: 30874356 DOI: 10.1111/imr.12732] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022]
Abstract
Plasma cells are terminally differentiated B lymphocytes that constitutively secrete antibodies. These antibodies can provide protection against pathogens, and their quantity and quality are the best clinical correlates of vaccine efficacy. As such, plasma cell lifespan is the primary determinant of the duration of humoral immunity. Yet dysregulation of plasma cell function can cause autoimmunity or multiple myeloma. The longevity of plasma cells is primarily dictated by nutrient uptake and non-transcriptionally regulated metabolic pathways. We have previously shown a positive effect of glucose uptake and catabolism on plasma cell longevity and function. In this review, we discuss these findings with an emphasis on nutrient uptake and its effects on respiratory capacity, lifespan, endoplasmic reticulum stress, and antibody secretion in plasma cells. We further discuss how some of these pathways may be dysregulated in multiple myeloma, potentially providing new therapeutic targets. Finally, we speculate on the connection between plasma cell intrinsic metabolism and systemic changes in nutrient availability and metabolic diseases.
Collapse
Affiliation(s)
- Lucas D'Souza
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
30
|
Hinterleitner C, Pecher AC, Kreißelmeier KP, Budde U, Kanz L, Kopp HG, Jaschonek K. Disease progression and defects in primary hemostasis as major cause of bleeding in multiple myeloma. Eur J Haematol 2019; 104:26-35. [PMID: 31541609 DOI: 10.1111/ejh.13331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES In patients with multiple myeloma (MM), unexpected bleeding complications remain a major issue. Since routine coagulation parameters are often inconspicuous, diagnosis and treatment of the underlying coagulation disorders are challenging. PATIENTS AND METHODS In our single-center observational study, we analyzed 164 patients with MM for coagulation disorders and bleeding complications. RESULTS Prolonged closure times (CTs), measured by PFA-100, were the most common, abnormal coagulation test, found in 66% of bleeding patients vs 5% in non-bleeding, followed by qualitative defects of von Willebrand factor (VWF:CB/VWF:Ag ratios), found in 34% vs 1% in the non-bleeding group. Increased serum free light chains (SFLC) and SFLC ratios were significantly associated with prolonged CTs and acquired von Willebrand syndrome (AVWS). Prolonged CTs and AVWS were associated with disease progression, determined by dynamics of SFLC ratios (P < .001), serum creatinine level (P = .013), Beta-2 microglobulin (P = .03), LDH (P = .016), and bone marrow infiltration (P < .001). Of note, response to myeloma therapy was frequently correlated with normalization of coagulation parameters. CONCLUSIONS Bleeding complications in MM are predominantly caused by defects in primary hemostasis and associated with disease progression. In a peri-interventional workup, determination of CTs and VWF:CB/VWF:Ag ratios are of significant importance to assess bleeding risk.
Collapse
Affiliation(s)
- Clemens Hinterleitner
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Eberhard-Karls University, Tuebingen, Germany
| | - Ann-Christin Pecher
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Eberhard-Karls University, Tuebingen, Germany
| | - Klaus-Peter Kreißelmeier
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Eberhard-Karls University, Tuebingen, Germany
| | - Ulrich Budde
- Medilys Laborgesellschaft mbH, Asklepios Klinik Hamburg-Altona, Hamburg, Germany
| | - Lothar Kanz
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Eberhard-Karls University, Tuebingen, Germany
| | - Hans-Georg Kopp
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Eberhard-Karls University, Tuebingen, Germany
| | - Karl Jaschonek
- Department of Medical Oncology, Hematology, Immunology, Rheumatology and Pulmonology, Eberhard-Karls University, Tuebingen, Germany
| |
Collapse
|
31
|
Green AC, Lath D, Hudson K, Walkley B, Down JM, Owen R, Evans HR, Paton-Hough J, Reilly GC, Lawson MA, Chantry AD. TGFβ Inhibition Stimulates Collagen Maturation to Enhance Bone Repair and Fracture Resistance in a Murine Myeloma Model. J Bone Miner Res 2019; 34:2311-2326. [PMID: 31442332 DOI: 10.1002/jbmr.3859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/09/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022]
Abstract
Multiple myeloma is a plasma cell malignancy that causes debilitating bone disease and fractures, in which TGFβ plays a central role. Current treatments do not repair existing damage and fractures remain a common occurrence. We developed a novel low tumor phase murine model mimicking the plateau phase in patients as we hypothesized this would be an ideal time to treat with a bone anabolic. Using in vivo μCT we show substantial and rapid bone lesion repair (and prevention) driven by SD-208 (TGFβ receptor I kinase inhibitor) and chemotherapy (bortezomib and lenalidomide) in mice with human U266-GFP-luc myeloma. We discovered that lesion repair occurred via an intramembranous fracture repair-like mechanism and that SD-208 enhanced collagen matrix maturation to significantly improve fracture resistance. Lesion healing was associated with VEGFA expression in woven bone, reduced osteocyte-derived PTHrP, increased osteoblasts, decreased osteoclasts, and lower serum tartrate-resistant acid phosphatase 5b (TRACP-5b). SD-208 also completely prevented bone lesion development in mice with aggressive JJN3 tumors, and was more effective than an anti-TGFβ neutralizing antibody (1D11). We also discovered that SD-208 promoted osteoblastic differentiation (and overcame the TGFβ-induced block in osteoblastogenesis) in myeloma patient bone marrow stromal cells in vitro, comparable to normal donors. The improved bone quality and fracture-resistance with SD-208 provides incentive for clinical translation to improve myeloma patient quality of life by reducing fracture risk and fatality. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alanna C Green
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Darren Lath
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Katie Hudson
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Brant Walkley
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield, UK
| | - Jennifer M Down
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Robert Owen
- INSIGNEO Institute of In Silico Medicine, Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - Holly R Evans
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Julia Paton-Hough
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Gwendolen C Reilly
- INSIGNEO Institute of In Silico Medicine, Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | - Michelle A Lawson
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK
| | - Andrew D Chantry
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Mellanby Centre for Bone Research, University of Sheffield Medical School, University of Sheffield, Sheffield, UK.,Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| |
Collapse
|
32
|
Piechowski J. Plausibility of trophoblastic-like regulation of cancer tissue. Cancer Manag Res 2019; 11:5033-5046. [PMID: 31213916 PMCID: PMC6549421 DOI: 10.2147/cmar.s190932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/30/2019] [Indexed: 01/15/2023] Open
Abstract
Background: Thus far, a well-established logical pattern of malignancy does not exist. The current approach to cancer properties is primarily descriptive with usually, for each of them, extensive analyses of the underlying associated biomolecular mechanisms. However, this remains a catalog and it would be valuable to determine the organizational chart that could account for their implementation, hierarchical links and input into tumor regulation. Hypothesis: Striking phenotypic similarities exist between trophoblast (invasive and expanding early placenta) and cancer regarding cell functions, logistics of development, means of protection and capacity to hold sway over the host organism. The concept of cancer cell trophoblastic-like transdifferentiation appears to be a rational proposal in an attempt to explain this analogy and provide a consistent insight into how cancer cells are functioning. Should this concept be validated, it could pave the way to promising research and therapeutic perspectives given that the trophoblastic properties are vital for the tumor while they are permanently epigenetically turned off in normal cells. Specifically targeting expression of the trophoblastic master genes could thereby be envisaged to jeopardize the tumor and its metastases without, in principle, inducing adverse side effects in the healthy tissues. Conclusion: A wide set of functional features of cancer tissue regulation, including some apparently paradoxical facts, was reviewed. Cancer cell misuse of physiological trophoblastic functions can clearly account for them, which identifies trophoblastic-like transdifferentiation as a likely key component of malignancy and makes it a potential relevant anticancer target.
Collapse
|
33
|
Rizzieri D, Paul B, Kang Y. Metabolic alterations and the potential for targeting metabolic pathways in the treatment of multiple myeloma. ACTA ACUST UNITED AC 2019; 5. [PMID: 31020046 PMCID: PMC6476731 DOI: 10.20517/2394-4722.2019.05] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metabolism is defined as the collection of complex biochemical processes that living cells use to generate energy and maintain their growth and survival. Metabolism encompasses the synthesis and breakdown of glucose, fatty acids, and amino acids; the generation of energy (ATP); and oxidative phosphorylation. In cancer cells, metabolism can be commandeered to promote tumor growth and cellular proliferation. These alterations in metabolism have emerged as an additional hallmark of various cancers. In this review we focus on metabolic alterations in multiple myeloma (MM) - a malignancy of plasma cells - including derangements in glycolysis, gluconeogenesis, the tricarboxylic acid cycle, oxidative phosphorylation, and fatty acid/amino acid synthesis and degradation. Particular focus is given to metabolic alterations that contribute to myeloma cell growth, proliferation and drug resistance. Finally, novel approaches that target metabolic pathways for the treatment of MM are discussed.
Collapse
Affiliation(s)
- Dustin Rizzieri
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC 27710, USA
| | - Barry Paul
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC 27710, USA
| | - Yubin Kang
- Division of Hematological Malignancies and Cellular Therapy, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
34
|
Corrado C, Costa V, Giavaresi G, Calabrese A, Conigliaro A, Alessandro R. Long Non Coding RNA H19: A New Player in Hypoxia-Induced Multiple Myeloma Cell Dissemination. Int J Mol Sci 2019; 20:ijms20040801. [PMID: 30781795 PMCID: PMC6413127 DOI: 10.3390/ijms20040801] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
The long non-coding RNA H19 (lncH19) is broadly transcribed in the first stage of development and silenced in most cells of an adult organism; it appears again in several tumors where, through different molecular mediators, promotes cell proliferation, motility and metastases. LncH19 has been associated with hypoxia-inducible factor 1-alpha (HIF-1α) activation and, in some tumors, it has proved to be necessary and required to sustain hypoxic responses. Here we propose to investigate a putative role for the lncH19 in hypoxia induced multiple myeloma (MM) progression. Transcriptional analysis of MM cell lines (RPMI and MM1.S) exposed to normoxia or hypoxia (1% O2) was done in order to evaluate lncH19 levels under hypoxic stimulation. Then, to investigate the role of lncH19 in hypoxia mediated MM progression, transcriptional, protein and functional assays have been performed on hypoxia stimulated MM cell lines, silenced or not for lncH19. Our data demonstrated that hypoxic stimulation in MM cell lines induced the overexpression of lncH19, which, in turn, is required for the expression of the hypoxia induced genes involved in MM dissemination, such as C-X-C Motif Chemokine Receptor 4 (CXCR4) and Snail. Moreover, adhesion assays demonstrated that lncH19 silencing abrogates the increased adhesion on stromal cells induced by the hypoxic condition. Finally, Western blot analysis indicated that lncH19 silencing impaired HIF1α nuclear translocation. The LncH19, required for the induction of hypoxic responses in MM cells, could represent a new therapeutic target for MM.
Collapse
Affiliation(s)
- Chiara Corrado
- Department of BioMedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Via Divisi 83, 90133 Palermo, Italy.
| | - Viviana Costa
- IRCCS ISTITUTO ORTOPEDICO RIZZOLI, 40138 Bologna, Italy.
| | - Gianluca Giavaresi
- IRCCS ISTITUTO ORTOPEDICO RIZZOLI, 40138 Bologna, Italy.
- Laboratory of Preclinical and Surgical Studies, IRCCS ISTITUTO ORTOPEDICO RIZZOLI, 40138 Bologna, Italy.
| | - Annalisa Calabrese
- Department of BioMedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Via Divisi 83, 90133 Palermo, Italy.
| | - Alice Conigliaro
- Department of BioMedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Via Divisi 83, 90133 Palermo, Italy.
| | - Riccardo Alessandro
- Department of BioMedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), Via Divisi 83, 90133 Palermo, Italy.
| |
Collapse
|
35
|
Homotypic and Heterotypic Activation of the Notch Pathway in Multiple Myeloma-Enhanced Angiogenesis: A Novel Therapeutic Target? Neoplasia 2018; 21:93-105. [PMID: 30529074 PMCID: PMC6282459 DOI: 10.1016/j.neo.2018.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 11/22/2022] Open
Abstract
Interactions of multiple myeloma (MM) cells with endothelial cells (ECs) enhance angiogenesis and MM progression. Here, we investigated the role of Notch signaling in the cross talk between ECs and MM cells enabling angiogenesis. MMECs showed higher expression of Jagged1/2 ligands, of activated Notch1/2 receptors, and of Hes1/Hey1 Notch target genes than ECs from monoclonal gammopathy of undetermined significance patients, suggesting that homotypic activation of Notch pathway occurs in MM. MM cells co-cultured with MMECs triggered Notch activation in these cells through a cell-to-cell contact-dependent way via Jagged1/2, resulting in Hes1/Hey1 overexpression. The angiogenic effect of Notch pathway was analyzed through Notch1/2·siRNAs and the γ-secretase inhibitor MK-0752 by in vitro (adhesion, migration, chemotaxis, angiogenesis) and in vivo (Vk12598/C57B/6 J mouse model) studies. Activated Notch1/2 pathway was associated with the overangiogenic MMEC phenotype: Notch1/2 knockdown or MK-0752 treatment reduced Hes1/Hey1 expression, impairing in vitro angiogenesis of both MMECs alone and co-cultured with MM cells. MM cells were unable to restore angiogenic abilities of treated MMECs, proving that MMEC angiogenic activities closely rely on Notch pathway. Furthermore, Notch1/2 knockdown affected VEGF/VEGFR2 axis, indicating that the Notch pathway interferes with VEGF-mediated control on angiogenesis. MK-0752 reduced secretion of proangiogenic/proinflammatory cytokines in conditioned media, thus inhibiting blood vessel formation in the CAM assay. In the Vk12598/C57B/6 J mouse, MK-0752 treatment restrained angiogenesis by reducing microvessel density. Overall, homotypic and heterotypic Jagged1/2-mediated Notch activation enhances MMECs angiogenesis. Notch axis inhibition blocked angiogenesis in vitro and in vivo, suggesting that the Notch pathway may represent a novel therapeutic target in MM.
Collapse
|
36
|
Leone P, Di Lernia G, Solimando AG, Cicco S, Saltarella I, Lamanuzzi A, Ria R, Frassanito MA, Ponzoni M, Ditonno P, Dammacco F, Racanelli V, Vacca A. Bone marrow endothelial cells sustain a tumor-specific CD8 + T cell subset with suppressive function in myeloma patients. Oncoimmunology 2018; 8:e1486949. [PMID: 30546939 DOI: 10.1080/2162402x.2018.1486949] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 01/07/2023] Open
Abstract
Endothelial cells (EC) line the bone marrow microvasculature and are in close contact with CD8+ T cells that come and go across the permeable capillaries. Because of these intimate interactions, we investigated the capacity of EC to act as antigen-presenting cells (APC) and modulate CD8+ T cell activation and proliferation in bone marrow of patients with multiple myeloma (MM) and monoclonal gammopathy of undetermined significance. We found that EC from MM patients show a phenotype of semi-professional APC given that they express low levels of the co-stimulatory molecules CD40, CD80 and CD86, and of the inducible co-stimulator ligand (ICOSL). In addition, they do not undergo the strong switch from immunoproteasome to standard proteasome subunit expression which is typical of mature professional APC such as dendritic cells. EC can trap and present antigen to CD8+ T cells, stimulating a central memory CD8+ T cell population that expresses Foxp3 and produces high amounts of IL-10 and TGF-β. Another CD8+ T cell population is stimulated by professional APC, produces IFN-γ, and exerts antitumor activity. Thus, two distinct CD8+ T cell populations coexist in the bone marrow of MM patients: the first population is sustained by EC, expresses Foxp3, produces IL-10 and TGF-β, and exerts pro-tumor activity by negatively regulating the second population. This study adds new insight into the role that EC play in MM biology and describes an additional immune regulatory mechanism that inhibits the development of antitumor immunity and may impair the success of cancer immunotherapy.
Collapse
Affiliation(s)
- Patrizia Leone
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Giuseppe Di Lernia
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Roberto Ria
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Maurilio Ponzoni
- Pathology Unit & Leukemia Unit, San Raffaele Hospital Scientific Institute, Milan, Italy
| | - Paolo Ditonno
- Hematology Unit, IRCCS "Giovanni Paolo II", Bari, Italy
| | - Franco Dammacco
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "Guido Baccelli", University of Bari Medical School, Bari, Italy
| |
Collapse
|
37
|
Caracciolo D, Montesano M, Altomare E, Scionti F, Di Martino MT, Tagliaferri P, Tassone P. The potential role of miRNAs in multiple myeloma therapy. Expert Rev Hematol 2018; 11:793-803. [DOI: 10.1080/17474086.2018.1517041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Emanuela Altomare
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Campus Salvatore Venuta, Catanzaro, Italy
| |
Collapse
|
38
|
Abstract
Multiple myeloma (MM) is the second-most-common hematologic malignancy and the most frequent cancer to involve bone. MM bone disease (MMBD) has devastating consequences for patients, including dramatic bone loss, severe bone pain, and pathological fractures that markedly decrease the quality of life and impact survival of MM patients. MMBD results from excessive osteoclastic bone resorption and persistent suppressed osteoblastic bone formation, causing lytic lesions that do not heal, even when patients are in complete and prolonged remission. This review discusses the cellular and molecular mechanisms that regulate the uncoupling of bone remodeling in MM, the effects of MMBD on tumor growth, and potential therapeutic approaches that may prevent severe bone loss and repair damaged bone in MM patients.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Medicine, Division Hematology Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - G David Roodman
- Department of Medicine, Division Hematology Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Roudebush VA Medical Center, Indianapolis, Indiana 46202
| |
Collapse
|
39
|
Rozic G, Paukov L, Cohen Z, Shapira I, Duek A, Bejamini O, Avigdor A, Nagler A, Koman I, Leiba M. STK405759 as a combination therapy with bortezomib or dexamethasone, in in vitro and in vivo multiple myeloma models. Oncotarget 2018; 9:31367-31379. [PMID: 30140376 PMCID: PMC6101139 DOI: 10.18632/oncotarget.25825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/12/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable hematological malignancy. Combination regimens of conventional and novel drugs have improved patient’s survival. However, most patients inevitably relapse and become refractory to the current therapeutic armamentarium. We investigated the efficacy of combining the microtubule-targeting agent STK405759 with dexamethasone or bortezomib in vitro and in vivo. STK405759 combined with dexamethasone or bortezomib had synergistic cytotoxic activity in RPMIS, CAG and MM1.S human MM cell lines through activation of caspase 2, 3, 8, 9 and PARP. These treatments remained cytotoxic in the presence of bone marrow stroma cells. In other MM cells, including cells resistant to vincristine, melphalan, mitoxantrone or dexamethasone, these combinations decreased significantly survival as compared to single agents. In in vivo studies, STK405759 disrupted existing blood vessels in xenograft tumors, acting not only as a cytotoxic agent but also as an anti-angiogenic drug. Mice treated with STK405759 in combination with dexamethasone or bortezomib resulted in greater tumor growth inhibition, increased overall response and prolonged survival as compared to as compared to BTZ or DEXA alone. Their anticancer activity was mediated by activation of apoptosis and reduction of tumor microvessel density. These preclinical studies provide the rationale for future clinical trials of STK405759, dexamethasone and bortezomib combinations to improve the outcome of multiple myeloma patients.
Collapse
Affiliation(s)
- Gabriela Rozic
- Ariel University, Ariel, Israel.,Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Lena Paukov
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Ziv Cohen
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | | | - Adrian Duek
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Ohad Bejamini
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Abraham Avigdor
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | - Arnon Nagler
- Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel
| | | | - Merav Leiba
- Division of Hematology, Assuta, Ashdod University Hospital, Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
40
|
Wallington-Beddoe CT, Bennett MK, Vandyke K, Davies L, Zebol JR, Moretti PAB, Pitman MR, Hewett DR, Zannettino ACW, Pitson SM. Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget 2018; 8:43602-43616. [PMID: 28467788 PMCID: PMC5546428 DOI: 10.18632/oncotarget.17115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
The proteasome inhibitor bortezomib has proven to be invaluable in the treatment of myeloma. By exploiting the inherent high immunoglobulin protein production of malignant plasma cells, bortezomib induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), resulting in myeloma cell death. In most cases, however, the disease remains incurable highlighting the need for new therapeutic targets. Sphingosine kinase 2 (SK2) has been proposed as one such therapeutic target for myeloma. Our observations that bortezomib and SK2 inhibitors independently elicited induction of ER stress and the UPR prompted us to examine potential synergy between these agents in myeloma. Targeting SK2 synergistically contributed to ER stress and UPR activation induced by bortezomib, as evidenced by activation of the IRE1 pathway and stress kinases JNK and p38MAPK, thereby resulting in potent synergistic myeloma apoptosis in vitro. The combination of bortezomib and SK2 inhibition also exhibited strong in vivo synergy and favourable effects on bone disease. Therefore, our studies suggest that perturbations of sphingolipid signalling can synergistically enhance the effects seen with proteasome inhibition, highlighting the potential for the combination of these two modes of increasing ER stress to be formally evaluated in clinical trials for the treatment of myeloma patients.
Collapse
Affiliation(s)
- Craig T Wallington-Beddoe
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia
| | - Melissa K Bennett
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia
| | - Kate Vandyke
- SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lorena Davies
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Julia R Zebol
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Paul A B Moretti
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Duncan R Hewett
- School of Medicine, University of Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia
| |
Collapse
|
41
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
42
|
Rao L, De Veirman K, Giannico D, Saltarella I, Desantis V, Frassanito MA, Solimando AG, Ribatti D, Prete M, Harstrick A, Fiedler U, De Raeve H, Racanelli V, Vanderkerken K, Vacca A. Targeting angiogenesis in multiple myeloma by the VEGF and HGF blocking DARPin ® protein MP0250: a preclinical study. Oncotarget 2018; 9:13366-13381. [PMID: 29568363 PMCID: PMC5862584 DOI: 10.18632/oncotarget.24351] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/25/2018] [Indexed: 01/10/2023] Open
Abstract
The investigational drug MP0250 is a multi-specific DARPin® molecule that simultaneously binds and neutralizes VEGF and HGF with high specificity and affinity. Here we studied the antiangiogenic effects of the MP0250 in multiple myeloma (MM). In endothelial cells (EC) isolated from bone marrow (BM) of MM patients (MMEC) MP0250 reduces VEGFR2 and cMet phosphorylation and affects their downstream signaling cascades. MP0250 influences the secretory profile of MMEC and inhibits their in vitro angiogenic activities (spontaneous and chemotactic migration, adhesion, spreading and capillarogenesis). Compared to anti-VEGF or anti-HGF neutralizing mAbs, MP0250 strongly reduces capillary network formation and vessel-sprouting in a Matrigel angiogenesis assay. MP0250 potentiates the effect of bortezomib in the same in vitro setting. It significantly reduces the number of newly formed vessels in the choriollantoic membrane assay (CAM) and the Matrigel plug assay. In the syngeneic 5T33MM tumor model, MP0250 decreases the microvessel density (MVD) and the combination MP0250/bortezomib lowers the percentage of idiotype positive cells and the serum levels of M-protein. Overall results define MP0250 as a strong antiangiogenic agent with potential as a novel combination drug for treatment of MM patients.
Collapse
Affiliation(s)
- Luigia Rao
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Donato Giannico
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Ilaria Saltarella
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Vanessa Desantis
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Maria Antonia Frassanito
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Marcella Prete
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | | | | | - Hendrik De Raeve
- Department of Pathology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
43
|
Role of Galectins in Multiple Myeloma. Int J Mol Sci 2017; 18:ijms18122740. [PMID: 29258207 PMCID: PMC5751341 DOI: 10.3390/ijms18122740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Galectins are a family of lectins that bind β-galactose-containing glycoconjugates and are characterized by carbohydrate-recognition domains (CRDs). Galectins exploit several biological functions, including angiogenesis, regulation of immune cell activities and cell adhesion, in both physiological and pathological processes, as tumor progression. Multiple myeloma (MM) is a plasma cell (PC) malignancy characterized by the tight adhesion between tumoral PCs and bone marrow (BM) microenvironment, leading to the increase of PC survival and drug resistance, MM-induced neo-angiogenesis, immunosuppression and osteolytic bone lesions. In this review, we explore the expression profiles and the roles of galectin-1, galectin-3, galectin-8 and galectin-9 in the pathophysiology of MM. We focus on the role of these lectins in the interplay between MM and BM microenvironment cells showing their involvement in MM progression mainly through the regulation of PC survival and MM-induced angiogenesis and osteoclastogenesis. The translational impact of these pre-clinical pieces of evidence is supported by recent data that indicate galectins could be new attractive targets to block MM cell growth in vivo and by the evidence that the expression levels of LGALS1 and LGALS8, genes encoding for galectin-1 and galectin-8 respectively, correlate to MM patients’ survival.
Collapse
|
44
|
Moschetta M, Kawano Y, Sacco A, Belotti A, Ribolla R, Chiarini M, Giustini V, Bertoli D, Sottini A, Valotti M, Ghidini C, Serana F, Malagola M, Imberti L, Russo D, Montanelli A, Rossi G, Reagan MR, Maiso P, Paiva B, Ghobrial IM, Roccaro AM. Bone Marrow Stroma and Vascular Contributions to Myeloma Bone Homing. Curr Osteoporos Rep 2017; 15:499-506. [PMID: 28889371 DOI: 10.1007/s11914-017-0399-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF THE REVIEW Herein we dissect mechanisms behind the dissemination of cancer cells from primary tumor site to the bone marrow, which are necessary for metastasis development, with a specific focus on multiple myeloma. RECENT FINDINGS The ability of tumor cells to invade vessels and reach the systemic circulation is a fundamental process for metastasis development; however, the interaction between clonal cells and the surrounding microenvironment is equally important for supporting colonization, survival, and growth in the secondary sites of dissemination. The intrinsic propensity of tumor cells to recognize a favorable milieu where to establish secondary growth is the basis of the "seed and soil" theory. This theory assumes that certain tumor cells (the "seeds") have a specific affinity for the milieu of certain organs (the "soil"). Recent literature has highlighted the important contributions of the vascular niche to the hospitable "soil" within the bone marrow. In this review, we discuss the crucial role of stromal cells and endothelial cells in supporting primary growth, homing, and metastasis to the bone marrow, in the context of multiple myeloma, a plasma cell malignancy with the unique propensity to primarily grow and metastasize to the bone marrow.
Collapse
Affiliation(s)
| | - Yawara Kawano
- Department of Hematology, Kumamoto University Hospital, Kumamoto, Japan
| | - Antonio Sacco
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, P.le Spedali Civili, n.1, 25123, Brescia, Italy
- CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Angelo Belotti
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Rossella Ribolla
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Marco Chiarini
- CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
- Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Viviana Giustini
- CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Diego Bertoli
- CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Sottini
- CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
- Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Monica Valotti
- CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
- Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Claudia Ghidini
- CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
- Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Federico Serana
- CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
- Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Michele Malagola
- Adult Bone Marrow Transplantation Unit, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Luisa Imberti
- CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
- Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Domenico Russo
- CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
- Adult Bone Marrow Transplantation Unit, ASST Spedali Civili di Brescia, University of Brescia, Brescia, Italy
| | - Alessandro Montanelli
- CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
- Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Giuseppe Rossi
- CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy
- Department of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Michaela R Reagan
- Maine Medical Center Research Institute, University of Maine, Scarborough, ME, USA
| | - Patricia Maiso
- Clinical and Translational Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | - Bruno Paiva
- Clinical and Translational Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Aldo M Roccaro
- Clinical Research Development and Phase I Unit, ASST Spedali Civili di Brescia, P.le Spedali Civili, n.1, 25123, Brescia, Italy.
- CREA Laboratory, ASST Spedali Civili di Brescia, Brescia, Italy.
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Bone disease is a defining characteristic of multiple myeloma (MM) and the major cause of morbidity. It manifests as lytic lesions or osteopenia and is often associated with severe pain, pathological fracture, spinal cord compression, vertebral collapse, and hypercalcemia. Here, we have reviewed recent data on understanding its biology and treatment. RECENT FINDINGS The imbalance between bone regeneration and bone resorption underlies the pathogenesis of osteolytic bone disease. Increased osteoclast proliferation and activity accompanied by inhibition of bone-forming osteoblasts leads to progressive bone loss and lytic lesions. Although tremendous progress has been made, MM remains an incurable disease. Novel agents targeting bone disease are under investigation with the goal of not only preventing bone loss and improving bone quality but also harnessing MM tumor growth. Current data illustrate that the interactions between MM cells and the tumor-bone microenvironment contribute to the bone disease and continued MM progression. A better understanding of this microenvironment is critical for novel therapeutic treatments of both MM and associated bone disease.
Collapse
Affiliation(s)
- Cristina Panaroni
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Professional Office Building 216, 55 Fruit Street, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Andrew J Yee
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Professional Office Building 216, 55 Fruit Street, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Noopur S Raje
- Center for Multiple Myeloma, Massachusetts General Hospital Cancer Center, Professional Office Building 216, 55 Fruit Street, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
46
|
Endothelial progenitor cells in multiple myeloma neovascularization: a brick to the wall. Angiogenesis 2017; 20:443-462. [PMID: 28840415 DOI: 10.1007/s10456-017-9571-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of plasma cells in the bone marrow that leads to events such as bone destruction, anaemia and renal failure. Despite the several therapeutic options available, there is still no effective cure, and the standard survival is up to 4 years. The evolution from the asymptomatic stage of monoclonal gammopathy of undetermined significance to MM and the progression of the disease itself are related to cellular and molecular alterations in the bone marrow microenvironment, including the development of the vasculature. Post-natal vasculogenesis is characterized by the recruitment to the tumour vasculature of bone marrow progenitors, known as endothelial progenitor cells (EPCs), which incorporate newly forming blood vessels and differentiate into endothelial cells. Several processes related to EPCs, such as recruitment, mobilization, adhesion and differentiation, are tightly controlled by cells and molecules in the bone marrow microenvironment. In this review, the bone marrow microenvironment and the mechanisms associated to the development of the neovasculature promoted by EPCs are discussed in detail in both a non-pathological scenario and in MM. The latest developments in therapy targeting the vasculature and EPCs in MM are also highlighted. The identification and characterization of the pathways relevant to the complex setting of MM are of utter importance to identify not only biomarkers for an early diagnosis and disease progression monitoring, but also to reveal intervention targets for more effective therapy directed to cancer cells and the endothelial mediators relevant to neovasculature development.
Collapse
|
47
|
Brunetti G, Faienza MF, Colaianni G, Grano M, Colucci S. Mechanisms of Altered Bone Remodeling in Multiple Myeloma. Clin Rev Bone Miner Metab 2017. [DOI: 10.1007/s12018-017-9236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Wallington-Beddoe CT, Bennett MK, Vandyke K, Davies L, Zebol JR, Moretti PA, Pitman MR, Hewett DR, Zannettino AC, Pitson SM. Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget 2017. [DOI: 10.18632/oncotarget.17115 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Craig T. Wallington-Beddoe
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Melissa K. Bennett
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Kate Vandyke
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lorena Davies
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Julia R. Zebol
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Paul A.B. Moretti
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Melissa R. Pitman
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Duncan R. Hewett
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C.W. Zannettino
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stuart M. Pitson
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| |
Collapse
|
49
|
Wallington-Beddoe CT, Bennett MK, Vandyke K, Davies L, Zebol JR, Moretti PA, Pitman MR, Hewett DR, Zannettino AC, Pitson SM. Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget 2017. [DOI: 10.18632/oncotarget.17115 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Craig T. Wallington-Beddoe
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Melissa K. Bennett
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Kate Vandyke
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lorena Davies
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Julia R. Zebol
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Paul A.B. Moretti
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Melissa R. Pitman
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Duncan R. Hewett
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C.W. Zannettino
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stuart M. Pitson
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| |
Collapse
|
50
|
Wallington-Beddoe CT, Bennett MK, Vandyke K, Davies L, Zebol JR, Moretti PA, Pitman MR, Hewett DR, Zannettino AC, Pitson SM. Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget 2017. [DOI: 10.18632/oncotarget.17115 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Craig T. Wallington-Beddoe
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Melissa K. Bennett
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Kate Vandyke
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lorena Davies
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Julia R. Zebol
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Paul A.B. Moretti
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Melissa R. Pitman
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Duncan R. Hewett
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C.W. Zannettino
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stuart M. Pitson
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| |
Collapse
|