1
|
Rauseo D, Contreras-Baeza Y, Faurand H, Cárcamo N, Suárez R, von Faber-Castell A, Silva F, Mora-González V, Wyss MT, Baeza-Lehnert F, Ruminot I, Alvarez-Navarro C, San Martín A, Weber B, Sandoval PY, Barros LF. Lactate-carried Mitochondrial Energy Overflow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604361. [PMID: 39071354 PMCID: PMC11275747 DOI: 10.1101/2024.07.19.604361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We addressed the question of mitochondrial lactate metabolism using genetically-encoded sensors. The organelle was found to contain a dynamic lactate pool that leads to dose- and time-dependent protein lactylation. In neurons, mitochondrial lactate reported blood lactate levels with high fidelity. The exchange of lactate across the inner mitochondrial membrane was found to be mediated by a high affinity H+-coupled transport system involving the mitochondrial pyruvate carrier MPC. Assessment of electron transport chain activity and determination of lactate flux showed that mitochondria are tonic lactate producers, a phenomenon driven by energization and stimulated by hypoxia. We conclude that an overflow mechanism caps the redox level of mitochondria, while saving energy in the form of lactate.
Collapse
Affiliation(s)
- Daniela Rauseo
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Yasna Contreras-Baeza
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Hugo Faurand
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Nataly Cárcamo
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - Raibel Suárez
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Alexandra von Faber-Castell
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland
- Neuroscience Center Zurich, ETH and University Zurich, Switzerland
| | - Franco Silva
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | | | - Matthias T Wyss
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland
- Neuroscience Center Zurich, ETH and University Zurich, Switzerland
| | - Felipe Baeza-Lehnert
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Germany
| | - Iván Ruminot
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - Carlos Alvarez-Navarro
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile
- Unidad de Proteómica, AUSTRAL-omics, Universidad Austral de Chile
| | - Alejandro San Martín
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland
- Neuroscience Center Zurich, ETH and University Zurich, Switzerland
| | - Pamela Y Sandoval
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - L Felipe Barros
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
2
|
Nietz AK, Popa LS, Streng ML, Carter RE, Kodandaramaiah SB, Ebner TJ. Wide-Field Calcium Imaging of Neuronal Network Dynamics In Vivo. BIOLOGY 2022; 11:1601. [PMID: 36358302 PMCID: PMC9687960 DOI: 10.3390/biology11111601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A central tenet of neuroscience is that sensory, motor, and cognitive behaviors are generated by the communications and interactions among neurons, distributed within and across anatomically and functionally distinct brain regions. Therefore, to decipher how the brain plans, learns, and executes behaviors requires characterizing neuronal activity at multiple spatial and temporal scales. This includes simultaneously recording neuronal dynamics at the mesoscale level to understand the interactions among brain regions during different behavioral and brain states. Wide-field Ca2+ imaging, which uses single photon excitation and improved genetically encoded Ca2+ indicators, allows for simultaneous recordings of large brain areas and is proving to be a powerful tool to study neuronal activity at the mesoscopic scale in behaving animals. This review details the techniques used for wide-field Ca2+ imaging and the various approaches employed for the analyses of the rich neuronal-behavioral data sets obtained. Also discussed is how wide-field Ca2+ imaging is providing novel insights into both normal and altered neural processing in disease. Finally, we examine the limitations of the approach and new developments in wide-field Ca2+ imaging that are bringing new capabilities to this important technique for investigating large-scale neuronal dynamics.
Collapse
Affiliation(s)
- Angela K. Nietz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S. Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martha L. Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E. Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Nakanishi M, Nemoto M, Kawai HD. Cortical nicotinic enhancement of tone-evoked heightened activities and subcortical nicotinic enlargement of activated areas in mouse auditory cortex. Neurosci Res 2022; 181:55-65. [DOI: 10.1016/j.neures.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/19/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
|
4
|
Özugur S, Kunz L, Straka H. Relationship between oxygen consumption and neuronal activity in a defined neural circuit. BMC Biol 2020; 18:76. [PMID: 32615976 PMCID: PMC7333326 DOI: 10.1186/s12915-020-00811-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/16/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Neuronal computations related to sensory and motor activity along with the maintenance of spike discharge, synaptic transmission, and associated housekeeping are energetically demanding. The most efficient metabolic process to provide large amounts of energy equivalents is oxidative phosphorylation and thus dependent on O2 consumption. Therefore, O2 levels in the brain are a critical parameter that influences neuronal function. Measurements of O2 consumption have been used to estimate the cost of neuronal activity; however, exploring these metabolic relationships in vivo and under defined experimental conditions has been limited by technical challenges. RESULTS We used isolated preparations of Xenopus laevis tadpoles to perform a quantitative analysis of O2 levels in the brain under in vivo-like conditions. We measured O2 concentrations in the hindbrain in relation to the spike discharge of the superior oblique eye muscle-innervating trochlear nerve as proxy for central nervous activity. In air-saturated bath Ringer solution, O2 levels in the fourth ventricle and adjacent, functionally intact hindbrain were close to zero. Inhibition of mitochondrial activity with potassium cyanide or fixation of the tissue with ethanol raised the ventricular O2 concentration to bath levels, indicating that the brain tissue consumed the available O2. Gradually increasing oxygenation of the Ringer solution caused a concurrent increase of ventricular O2 concentrations. Blocking spike discharge with the local anesthetics tricaine methanesulfonate diminished the O2 consumption by ~ 50%, illustrating the substantial O2 amount related to neuronal activity. In contrast, episodes of spontaneous trochlear nerve spike bursts were accompanied by transient increases of the O2 consumption with parameters that correlated with burst magnitude and duration. CONCLUSIONS Controlled experimental manipulations of both the O2 level as well as the neuronal activity under in vivo-like conditions allowed to quantitatively relate spike discharge magnitudes in a particular neuronal circuitry with the O2 consumption in this area. Moreover, the possibility to distinctly manipulate various functional parameters will yield more insight in the coupling between metabolic and neuronal activity. Thus, apart from providing quantitative empiric evidence for the link between physiologically relevant spontaneous spike discharge in the brain and O2-dependent metabolism, isolated amphibian preparations are promising model systems to further dissociate the O2 dynamics in relation to neuronal computations.
Collapse
Affiliation(s)
- Suzan Özugur
- Department Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Lars Kunz
- Department Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Großhaderner Str. 2, 82152, Planegg, Germany.
| |
Collapse
|
5
|
Liu RX, Ma J, Wang B, Tian T, Guo N, Liu SJ. No DCX-positive neurogenesis in the cerebral cortex of the adult primate. Neural Regen Res 2020; 15:1290-1299. [PMID: 31960815 PMCID: PMC7047795 DOI: 10.4103/1673-5374.272610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Whether endogenous neurogenesis occurs in the adult cortex remains controversial. An increasing number of reports suggest that doublecortin (DCX)-positive neurogenesis persists in the adult primate cortex, attracting enormous attention worldwide. In this study, different DCX antibodies were used together with NeuN antibodies in immunohistochemistry and western blot assays using adjacent cortical sections from adult monkeys. Antibody adsorption, antigen binding, primary antibody omission and antibody-free experiments were used to assess specificity of the signals. We found either strong fluorescent signals, medium-weak intensity signals in some cells, weak signals in a few perikarya or near complete lack of labeling in adjacent cortical sections incubated with the various DCX antibodies. The putative DCX-positive cells in the cortex were also positive for NeuN, a specific marker of mature neurons. However, further experiments showed that most of these signals were either the result of antibody cross reactivity, the non-specificity of secondary antibodies or tissue autofluorescence. No confirmed DCX-positive cells were detected in the adult macaque cortex by immunofluorescence. Our findings show that DCX-positive neurogenesis does not occur in the cerebral cortex of adult primates, and that false-positive signals (artefacts) are caused by antibody cross reactivity and autofluorescence. The experimental protocols were approved by the Institutional Animal Care and Use Committee of the Institute of Neuroscience, Beijing, China (approval No. IACUC-AMMS-2014-501).
Collapse
Affiliation(s)
- Ruo-Xu Liu
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Jie Ma
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Bin Wang
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Tian Tian
- Department of Pharmacy, Medical College, Huanghe S&T University, Zhengzhou, Henan Province, China
| | - Ning Guo
- Institute of Military Cognition and Brain Sciences, Beijing, China
| | - Shao-Jun Liu
- Institute of Military Cognition and Brain Sciences, Beijing, China
| |
Collapse
|
6
|
Ghanbari L, Carter RE, Rynes ML, Dominguez J, Chen G, Naik A, Hu J, Sagar MAK, Haltom L, Mossazghi N, Gray MM, West SL, Eliceiri KW, Ebner TJ, Kodandaramaiah SB. Cortex-wide neural interfacing via transparent polymer skulls. Nat Commun 2019; 10:1500. [PMID: 30940809 PMCID: PMC6445105 DOI: 10.1038/s41467-019-09488-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 03/12/2019] [Indexed: 11/22/2022] Open
Abstract
Neural computations occurring simultaneously in multiple cerebral cortical regions are critical for mediating behaviors. Progress has been made in understanding how neural activity in specific cortical regions contributes to behavior. However, there is a lack of tools that allow simultaneous monitoring and perturbing neural activity from multiple cortical regions. We engineered 'See-Shells'-digitally designed, morphologically realistic, transparent polymer skulls that allow long-term (>300 days) optical access to 45 mm2 of the dorsal cerebral cortex in the mouse. We demonstrate the ability to perform mesoscopic imaging, as well as cellular and subcellular resolution two-photon imaging of neural structures up to 600 µm deep. See-Shells allow calcium imaging from multiple, non-contiguous regions across the cortex. Perforated See-Shells enable introducing penetrating neural probes to perturb or record neural activity simultaneously with whole cortex imaging. See-Shells are constructed using common desktop fabrication tools, providing a powerful tool for investigating brain structure and function.
Collapse
Affiliation(s)
- Leila Ghanbari
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, MN, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Twin Cities, MN, USA
| | - Mathew L Rynes
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, MN, USA
| | - Judith Dominguez
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, MN, USA
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Twin Cities, MN, USA
| | - Anant Naik
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, MN, USA
| | - Jia Hu
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, MN, USA
| | | | - Lenora Haltom
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, MN, USA
| | - Nahom Mossazghi
- Department of Neuroscience, University of Minnesota, Twin Cities, MN, USA
| | - Madelyn M Gray
- Department of Neuroscience, University of Minnesota, Twin Cities, MN, USA
| | - Sarah L West
- Department of Neuroscience, University of Minnesota, Twin Cities, MN, USA
| | - Kevin W Eliceiri
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Twin Cities, MN, USA
| | - Suhasa B Kodandaramaiah
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, MN, USA.
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, MN, USA.
| |
Collapse
|
7
|
Barros LF, Bolaños JP, Bonvento G, Bouzier-Sore AK, Brown A, Hirrlinger J, Kasparov S, Kirchhoff F, Murphy AN, Pellerin L, Robinson MB, Weber B. Current technical approaches to brain energy metabolism. Glia 2018; 66:1138-1159. [PMID: 29110344 PMCID: PMC5903992 DOI: 10.1002/glia.23248] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/14/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022]
Abstract
Neuroscience is a technology-driven discipline and brain energy metabolism is no exception. Once satisfied with mapping metabolic pathways at organ level, we are now looking to learn what it is exactly that metabolic enzymes and transporters do and when, where do they reside, how are they regulated, and how do they relate to the specific functions of neurons, glial cells, and their subcellular domains and organelles, in different areas of the brain. Moreover, we aim to quantify the fluxes of metabolites within and between cells. Energy metabolism is not just a necessity for proper cell function and viability but plays specific roles in higher brain functions such as memory processing and behavior, whose mechanisms need to be understood at all hierarchical levels, from isolated proteins to whole subjects, in both health and disease. To this aim, the field takes advantage of diverse disciplines including anatomy, histology, physiology, biochemistry, bioenergetics, cellular biology, molecular biology, developmental biology, neurology, and mathematical modeling. This article presents a well-referenced synopsis of the technical side of brain energy metabolism research. Detail and jargon are avoided whenever possible and emphasis is given to comparative strengths, limitations, and weaknesses, information that is often not available in regular articles.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos (CECs), Valdivia, 5110466, Chile
| | - Juan P Bolaños
- Instituto de Biologia Funcional y Genomica-CSIC, Universidad de Salamanca, CIBERFES, Salamanca, 37007, Spain
| | - Gilles Bonvento
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536, CNRS-Université Bordeaux 146 rue Léo-Saignat, Bordeaux, France
| | - Angus Brown
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Johannes Hirrlinger
- Carl Ludwig Institute of Physiology, University of Leipzig, Liebigstr. 27, D-04103, Leipzig, Germany
- Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, D-37075, Germany
| | - Sergey Kasparov
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, University Walk, BS8 1TD, United Kingdom
- Baltic Federal University, Kalinigrad, Russian Federation
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Building 48, Homburg, 66421, Germany
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093
| | - Luc Pellerin
- Département de Physiologie, 7 rue du Bugnon, Lausanne, CH1005, Switzerland
| | - Michael B Robinson
- Department of Pediatrics, and Department of Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Hedges VL, Chen G, Yu L, Krentzel AA, Starrett JR, Zhu JN, Suntharalingam P, Remage-Healey L, Wang JJ, Ebner TJ, Mermelstein PG. Local Estrogen Synthesis Regulates Parallel Fiber-Purkinje Cell Neurotransmission Within the Cerebellar Cortex. Endocrinology 2018; 159:1328-1338. [PMID: 29381778 PMCID: PMC5839732 DOI: 10.1210/en.2018-00039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 02/04/2023]
Abstract
Estrogens affect cerebellar activity and cerebellum-based behaviors. Within the adult rodent cerebellum, the best-characterized action of estradiol is to enhance glutamatergic signaling. However, the mechanisms by which estradiol promotes glutamatergic neurotransmission remain unknown. Within the mouse cerebellum, we found that estrogen receptor activation of metabotropic glutamate receptor type 1a strongly enhances neurotransmission at the parallel fiber-Purkinje cell synapse. The blockade of local estrogen synthesis within the cerebellum results in a diminution of glutamatergic neurotransmission. Correspondingly, decreased estrogen availability via gonadectomy or blockade of aromatase activity negatively affects locomotor performance. These data indicate that locally derived, and not just gonad-derived, estrogens affect cerebellar physiology and function. In addition, estrogens were found to facilitate parallel fiber-Purkinje cell synaptic transmission in both sexes. As such, the actions of estradiol to support cerebellar neurotransmission and cerebellum-based behaviors might be fundamental to understanding the normal processing of activity within the cerebellar cortex.
Collapse
Affiliation(s)
- Valerie L. Hedges
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lei Yu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Amanda A. Krentzel
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Joseph R. Starrett
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | | | - Luke Remage-Healey
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Paul G. Mermelstein
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Correspondence: Paul G. Mermelstein, PhD, Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455. E-mail:
| |
Collapse
|
9
|
Brosel S, Grothe B, Kunz L. An auditory brainstem nucleus as a model system for neuronal metabolic demands. Eur J Neurosci 2018; 47:222-235. [PMID: 29205598 DOI: 10.1111/ejn.13789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 02/03/2023]
Abstract
The correlation between neuronal activity and metabolism is essential for coding, plasticity, neurological disorders and the interpretation of functional neuroimaging data. Most likely, metabolic requirements depend upon neuron type, and macroscopic energy demands vary with brain region. However, specific needs of individual neuron types are enigmatic. Therefore, we monitored metabolic activity in the lateral superior olive (LSO), an auditory brainstem nucleus containing only one neuron type. LSO neurons exhibit extreme but well-described biophysics with firing rates of several hundred hertz and low input resistances of a few megaohms. We recorded changes in NADH and flavin adenine dinucleotide (FAD) autofluorescence and O2 concentration in acute brainstem slices of Mongolian gerbils (Meriones unguiculatus) following electrical stimulation. The LSO shows the typical biphasic NADH/FAD response up to a physiologically relevant frequency of 400 Hz. In the same animal, we compared the LSO with the hippocampal CA1 region and the cerebral cortex. The rate of NADH/FADH2 consumption and regeneration was slowest in LSO. However, frequency dependence was only similar during the consumption phase but varied during regeneration within the three brain regions. Changes in NADH, FAD and O2 levels and blocking metabolic reactions indicate a pronounced contribution of mitochondrial oxidative phosphorylation in the LSO which is known for the other brain regions as well. Lactate transport and interconversion are involved in LSO metabolism as we found in immunohistochemical and pharmacological experiments. Our findings show that the LSO represents an apt, biophysically distinct model for brain metabolism and that neuronal properties determine metabolic needs.
Collapse
Affiliation(s)
- Sonja Brosel
- Department Biology II, Division of Neurobiology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Benedikt Grothe
- Department Biology II, Division of Neurobiology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Lars Kunz
- Department Biology II, Division of Neurobiology, LMU Munich, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
10
|
Chen G, Carter RE, Cleary JD, Reid TS, Ranum LP, Swanson MS, Ebner TJ. Altered levels of the splicing factor muscleblind modifies cerebral cortical function in mouse models of myotonic dystrophy. Neurobiol Dis 2018; 112:35-48. [PMID: 29331264 PMCID: PMC5859959 DOI: 10.1016/j.nbd.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 01/18/2023] Open
Abstract
Myotonic dystrophy (DM) is a progressive, multisystem disorder affecting skeletal muscle, heart, and central nervous system. In both DM1 and DM2, microsatellite expansions of CUG and CCUG RNA repeats, respectively, accumulate and disrupt functions of alternative splicing factors, including muscleblind (MBNL) proteins. Grey matter loss and white matter changes, including the corpus callosum, likely underlie cognitive and executive function deficits in DM patients. However, little is known how cerebral cortical circuitry changes in DM. Here, flavoprotein optical imaging was used to assess local and contralateral responses to intracortical motor cortex stimulation in DM-related mouse models. In control mice, brief train stimulation generated ipsilateral and contralateral homotopic fluorescence increases, the latter mediated by the corpus callosum. Single pulse stimulation produced an excitatory response with an inhibitory-like surround response mediated by GABAA receptors. In a mouse model of DM2 (Mbnl2 KO), we observed prolonged and increased responsiveness to train stimulation and loss of the inhibition from single pulse stimulation. Conversely, mice overexpressing human MBNL1 (MBNL1-OE) exhibited decreased contralateral response to train stimulation and reduction of inhibitory-like surround to single pulse stimulation. Therefore, altering levels of two key DM-associated splicing factors modifies functions of local cortical circuits and contralateral responses mediated through the corpus callosum.
Collapse
Affiliation(s)
- Gang Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Russell E Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - John D Cleary
- Center for NeuroGenetics, Department of Molecular Genetics & Microbiology and Neurology, College of Medicine, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Tammy S Reid
- Center for NeuroGenetics, Department of Molecular Genetics & Microbiology and Neurology, College of Medicine, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Laura P Ranum
- Center for NeuroGenetics, Department of Molecular Genetics & Microbiology and Neurology, College of Medicine, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Maurice S Swanson
- Center for NeuroGenetics, Department of Molecular Genetics & Microbiology and Neurology, College of Medicine, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Effect of temperature on FAD and NADH-derived signals and neurometabolic coupling in the mouse auditory and motor cortex. Pflugers Arch 2017; 469:1631-1649. [PMID: 28785802 DOI: 10.1007/s00424-017-2037-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/03/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
Tight coupling of neuronal metabolism to synaptic activity is critical to ensure that the supply of metabolic substrates meets the demands of neuronal signaling. Given the impact of temperature on metabolism, and the wide fluctuations of brain temperature observed during clinical hypothermia, we examined the effect of temperature on neurometabolic coupling. Intrinsic fluorescence signals of the oxidized form of flavin adenine dinucleotide (FAD) and the reduced form of nicotinamide adenine dinucleotide (NADH), and their ratios, were measured to assess neural metabolic state and local field potentials were recorded to measure synaptic activity in the mouse brain. Brain slice preparations were used to remove the potential impacts of blood flow. Tight coupling between metabolic signals and local field potential amplitudes was observed at a range of temperatures below 29 °C. However, above 29 °C, the metabolic and synaptic signatures diverged such that FAD signals were diminished, but local field potentials retained their amplitude. It was also observed that the declines in the FAD signals seen at high temperatures (and hence the decoupling between synaptic and metabolic events) are driven by low FAD availability at high temperatures. These data suggest that neurometabolic coupling, thought to be critical for ensuring the metabolic health of the brain, may show temperature dependence, and is related to temperature-dependent changes in FAD supplies.
Collapse
|
12
|
Rapid Postnatal Expansion of Neural Networks Occurs in an Environment of Altered Neurovascular and Neurometabolic Coupling. J Neurosci 2017; 36:6704-17. [PMID: 27335402 DOI: 10.1523/jneurosci.2363-15.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 05/10/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In the adult brain, increases in neural activity lead to increases in local blood flow. However, many prior measurements of functional hemodynamics in the neonatal brain, including functional magnetic resonance imaging (fMRI) in human infants, have noted altered and even inverted hemodynamic responses to stimuli. Here, we demonstrate that localized neural activity in early postnatal mice does not evoke blood flow increases as in the adult brain, and elucidate the neural and metabolic correlates of these altered functional hemodynamics as a function of developmental age. Using wide-field GCaMP imaging, the development of neural responses to somatosensory stimulus is visualized over the entire bilaterally exposed cortex. Neural responses are observed to progress from tightly localized, unilateral maps to bilateral responses as interhemispheric connectivity becomes established. Simultaneous hemodynamic imaging confirms that spatiotemporally coupled functional hyperemia is not present during these early stages of postnatal brain development, and develops gradually as cortical connectivity is established. Exploring the consequences of this lack of functional hyperemia, measurements of oxidative metabolism via flavoprotein fluorescence suggest that neural activity depletes local oxygen to below baseline levels at early developmental stages. Analysis of hemoglobin oxygenation dynamics at the same age confirms oxygen depletion for both stimulus-evoked and resting-state neural activity. This state of unmet metabolic demand during neural network development poses new questions about the mechanisms of neurovascular development and its role in both normal and abnormal brain development. These results also provide important insights for the interpretation of fMRI studies of the developing brain. SIGNIFICANCE STATEMENT This work demonstrates that the postnatal development of neuronal connectivity is accompanied by development of the mechanisms that regulate local blood flow in response to neural activity. Novel in vivo imaging reveals that, in the developing mouse brain, strong and localized GCaMP neural responses to stimulus fail to evoke local blood flow increases, leading to a state in which oxygen levels become locally depleted. These results demonstrate that the development of cortical connectivity occurs in an environment of altered energy availability that itself may play a role in shaping normal brain development. These findings have important implications for understanding the pathophysiology of abnormal developmental trajectories, and for the interpretation of functional magnetic resonance imaging data acquired in the developing brain.
Collapse
|
13
|
Croce AC, Bottiroli G. Autofluorescence Spectroscopy for Monitoring Metabolism in Animal Cells and Tissues. Methods Mol Biol 2017; 1560:15-43. [PMID: 28155143 DOI: 10.1007/978-1-4939-6788-9_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Excitation of biological substrates with light at a suitable wavelength can give rise to a light emission in the ultraviolet (UV)-visible, near-infrared (IR) spectral range, called autofluorescence (AF). This is a widespread phenomenon, ascribable to the general presence of biomolecules acting as endogenous fluorophores (EFs) in the organisms of the whole life kingdom. In cytochemistry and histochemistry, AF is often an unwanted signal enhancing the background and affecting in particular the detection of low signals or rare positive labeling spots of exogenous markers. Conversely, AF is increasingly considered as a powerful diagnostic tool because of its role as an intrinsic biomarker directly dependent on the nature, amount, and microenvironment of the EFs, in a strict relationship with metabolic processes and structural organization of cells and tissues. As a consequence, AF carries multiple information that can be decrypted by a proper analysis of the overall emission signal, allowing the characterization and monitoring of cell metabolism in situ, in real time and in the absence of perturbation from exogenous markers. In the animal kingdom, AF studies at the cellular level take advantage of the essential presence of NAD(P)H and flavins, primarily acting as coenzymes at multiple steps of common metabolic pathways for energy production, reductive biosynthesis and antioxidant defense. Additional EFs such as vitamin A, porphyrins, lipofuscins, proteins, and neuromediators can be detected in different kinds of cells and bulk tissues, and can be exploited as photophysical biomarkers of specific normal or altered morphofunctional properties, from the retinoid storage in the liver to aging processes, metabolic disorders or cell transformation processes. The AF phenomenon involves all living system, and literature reports numerous investigations and diagnostic applications of AF, taking advantage of continuously developing self-assembled or commercial instrumentation and measuring procedures, making almost impossible to provide their comprehensive description. Therefore a brief summary of the history of AF observations and of the development of measuring systems is provided, along with a description of the most common EFs and their metabolic significance. From our direct experience, examples of AF imaging and microspectrofluorometric procedures performed under a single excitation in the near-UV range for cell and tissue metabolism studies are then reported.
Collapse
Affiliation(s)
- Anna C Croce
- Institute of Molecular Genetics (IGM) - CNR, via Abbiategrasso, 207, 27100, Pavia, Italy.
| | - Giovanni Bottiroli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Uytingco CR, Puche AC, Munger SD. Using Intrinsic Flavoprotein and NAD(P)H Imaging to Map Functional Circuitry in the Main Olfactory Bulb. PLoS One 2016; 11:e0165342. [PMID: 27902689 PMCID: PMC5130181 DOI: 10.1371/journal.pone.0165342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/10/2016] [Indexed: 12/02/2022] Open
Abstract
Neurons exhibit strong coupling of electrochemical and metabolic activity. Increases in intrinsic fluorescence from either oxidized flavoproteins or reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] in the mitochondria have been used as an indicator of neuronal activity for the functional mapping of neural circuits. However, this technique has not been used to investigate the flow of olfactory information within the circuitry of the main olfactory bulb (MOB). We found that intrinsic flavoprotein fluorescence signals induced by electrical stimulation of single glomeruli displayed biphasic responses within both the glomerular (GL) and external plexiform layers (EPL) of the MOB. Pharmacological blockers of mitochondrial activity, voltage-gated Na+ channels, or ionotropic glutamate receptors abolished stimulus-dependent flavoprotein responses. Blockade of GABAA receptors enhanced the amplitude and spatiotemporal spread of the flavoprotein signals, indicating an important role for inhibitory neurotransmission in shaping the spread of neural activity in the MOB. Stimulus-dependent spread of fluorescence across the GL and EPL displayed a spatial distribution consistent with that of individual glomerular microcircuits mapped by neuroanatomic tract tracing. These findings demonstrated the feasibility of intrinsic fluorescence imaging in the olfactory systems and provided a new tool to examine the functional circuitry of the MOB.
Collapse
Affiliation(s)
- Cedric R Uytingco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Adam C Puche
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Steven D Munger
- Center for Smell and Taste, University of Florida, Gainesville, Florida, United States of America.,Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida, United States of America.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
15
|
Rapid Postnatal Expansion of Neural Networks Occurs in an Environment of Altered Neurovascular and Neurometabolic Coupling. J Neurosci 2016. [PMID: 27335402 DOI: 10.1523/jneurosci.2363‐15.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED In the adult brain, increases in neural activity lead to increases in local blood flow. However, many prior measurements of functional hemodynamics in the neonatal brain, including functional magnetic resonance imaging (fMRI) in human infants, have noted altered and even inverted hemodynamic responses to stimuli. Here, we demonstrate that localized neural activity in early postnatal mice does not evoke blood flow increases as in the adult brain, and elucidate the neural and metabolic correlates of these altered functional hemodynamics as a function of developmental age. Using wide-field GCaMP imaging, the development of neural responses to somatosensory stimulus is visualized over the entire bilaterally exposed cortex. Neural responses are observed to progress from tightly localized, unilateral maps to bilateral responses as interhemispheric connectivity becomes established. Simultaneous hemodynamic imaging confirms that spatiotemporally coupled functional hyperemia is not present during these early stages of postnatal brain development, and develops gradually as cortical connectivity is established. Exploring the consequences of this lack of functional hyperemia, measurements of oxidative metabolism via flavoprotein fluorescence suggest that neural activity depletes local oxygen to below baseline levels at early developmental stages. Analysis of hemoglobin oxygenation dynamics at the same age confirms oxygen depletion for both stimulus-evoked and resting-state neural activity. This state of unmet metabolic demand during neural network development poses new questions about the mechanisms of neurovascular development and its role in both normal and abnormal brain development. These results also provide important insights for the interpretation of fMRI studies of the developing brain. SIGNIFICANCE STATEMENT This work demonstrates that the postnatal development of neuronal connectivity is accompanied by development of the mechanisms that regulate local blood flow in response to neural activity. Novel in vivo imaging reveals that, in the developing mouse brain, strong and localized GCaMP neural responses to stimulus fail to evoke local blood flow increases, leading to a state in which oxygen levels become locally depleted. These results demonstrate that the development of cortical connectivity occurs in an environment of altered energy availability that itself may play a role in shaping normal brain development. These findings have important implications for understanding the pathophysiology of abnormal developmental trajectories, and for the interpretation of functional magnetic resonance imaging data acquired in the developing brain.
Collapse
|
16
|
Potter LE, Paylor JW, Suh JS, Tenorio G, Caliaperumal J, Colbourne F, Baker G, Winship I, Kerr BJ. Altered excitatory-inhibitory balance within somatosensory cortex is associated with enhanced plasticity and pain sensitivity in a mouse model of multiple sclerosis. J Neuroinflammation 2016; 13:142. [PMID: 27282914 PMCID: PMC4901403 DOI: 10.1186/s12974-016-0609-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic neuropathic pain is a common symptom of multiple sclerosis (MS). MOG35-55-induced experimental autoimmune encephalomyelitis (EAE) has been used as an animal model to investigate the mechanisms of pain in MS. Previous studies have implicated sensitization of spinal nociceptive networks in the pathogenesis of pain in EAE. However, the involvement of supraspinal sites of nociceptive integration, such as the primary somatosensory cortex (S1), has not been defined. We therefore examined functional, structural, and immunological alterations in S1 during the early stages of EAE, when pain behaviors first appear. We also assessed the effects of the antidepressant phenelzine (PLZ) on S1 alterations and nociceptive (mechanical) sensitivity in early EAE. PLZ has been shown to restore central nervous system (CNS) tissue concentrations of GABA and the monoamines (5-HT, NA) in EAE. We hypothesized that PLZ treatment would also normalize nociceptive sensitivity in EAE by restoring the balance of excitation and inhibition (E-I) in the CNS. METHODS We used in vivo flavoprotein autofluorescence imaging (FAI) to assess neural ensemble responses in S1 to vibrotactile stimulation of the limbs in early EAE. We also used immunohistochemistry (IHC), and Golgi-Cox staining, to examine synaptic changes and neuroinflammation in S1. Mechanical sensitivity was assessed at the clinical onset of EAE with Von Frey hairs. RESULTS Mice with early EAE exhibited significantly intensified and expanded FAI responses in S1 compared to controls. IHC revealed increased vesicular glutamate transporter (VGLUT1) expression and disrupted parvalbumin+ (PV+) interneuron connectivity in S1 of EAE mice. Furthermore, peri-neuronal nets (PNNs) were significantly reduced in S1. Morphological analysis of excitatory neurons in S1 revealed increased dendritic spine densities. Iba-1+ cortical microglia were significantly elevated early in the disease. Chronic PLZ treatment was found to normalize mechanical thresholds in EAE. PLZ also normalized S1 FAI responses, neuronal morphologies, and cortical microglia numbers and attenuated VGLUT1 reactivity-but did not significantly attenuate the loss of PNNs. CONCLUSIONS These findings implicate a pro-excitatory shift in the E-I balance of the somatosensory CNS, arising early in the pathogenesis EAE and leading to large-scale functional and structural plasticity in S1. They also suggest a novel antinociceptive effect of PLZ treatment.
Collapse
Affiliation(s)
- Liam E Potter
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 8-120, Edmonton, AB, T6G 2G3, Canada
| | - John W Paylor
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychiatry (NRU), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Jee Su Suh
- Department of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 8-120, Edmonton, AB, T6G 2G3, Canada
| | - Gustavo Tenorio
- Department of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 8-120, Edmonton, AB, T6G 2G3, Canada
| | - Jayalakshmi Caliaperumal
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Fred Colbourne
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychology, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Glen Baker
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychiatry (NRU), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Ian Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Psychiatry (NRU), University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,Department of Pharmacology, University of Alberta, Edmonton, AB, T6E 2H7, Canada. .,Department of Anesthesiology and Pain Medicine, University of Alberta, Clinical Sciences Building, 8-120, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
17
|
Distribution of N-Acetylgalactosamine-Positive Perineuronal Nets in the Macaque Brain: Anatomy and Implications. Neural Plast 2016; 2016:6021428. [PMID: 26881119 PMCID: PMC4735937 DOI: 10.1155/2016/6021428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/17/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022] Open
Abstract
Perineuronal nets (PNNs) are extracellular molecules that form around neurons near the end of critical periods during development. They surround neuronal cell bodies and proximal dendrites. PNNs inhibit the formation of new connections and may concentrate around rapidly firing inhibitory interneurons. Previous work characterized the important role of perineuronal nets in plasticity in the visual system, amygdala, and spinal cord of rats. In this study, we use immunohistochemistry to survey the distribution of perineuronal nets in representative areas of the primate brain. We also document changes in PNN prevalence in these areas in animals of different ages. We found that PNNs are most prevalent in the cerebellar nuclei, surrounding >90% of the neurons there. They are much less prevalent in cerebral cortex, surrounding less than 10% of neurons in every area that we examined. The incidence of perineuronal nets around parvalbumin-positive neurons (putative fast-spiking interneurons) varies considerably between different areas in the brain. Our survey indicates that the presence of PNNs may not have a simple relationship with neural plasticity and may serve multiple functions in the central nervous system.
Collapse
|
18
|
Functional hyperspectral imaging captures subtle details of cell metabolism in olfactory neurosphere cells, disease-specific models of neurodegenerative disorders. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:56-63. [PMID: 26431992 DOI: 10.1016/j.bbamcr.2015.09.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/17/2015] [Accepted: 09/25/2015] [Indexed: 12/26/2022]
Abstract
Hyperspectral imaging uses spectral and spatial image information for target detection and classification. In this work hyperspectral autofluorescence imaging was applied to patient olfactory neurosphere-derived cells, a cell model of a human metabolic disease MELAS (mitochondrial myopathy, encephalomyopathy, lactic acidosis, stroke-like syndrome). By using an endogenous source of contrast subtle metabolic variations have been detected between living cells in their full morphological context which made it possible to distinguish healthy from diseased cells before and after therapy. Cellular maps of native fluorophores, flavins, bound and free NADH and retinoids unveiled subtle metabolic signatures and helped uncover significant cell subpopulations, in particular a subpopulation with compromised mitochondrial function. Taken together, our results demonstrate that multispectral spectral imaging provides a new non-invasive method to investigate neurodegenerative and other disease models, and it paves the way for novel cellular characterisation in health, disease and during treatment, with proper account of intrinsic cellular heterogeneity.
Collapse
|
19
|
Abnormal excitability and episodic low-frequency oscillations in the cerebral cortex of the tottering mouse. J Neurosci 2015; 35:5664-79. [PMID: 25855180 DOI: 10.1523/jneurosci.3107-14.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Ca(2+) channelopathies caused by mutations of the CACNA1A gene that encodes the pore-forming subunit of the human Cav2.1 (P/Q-type) voltage-gated Ca(2+) channel include episodic ataxia type 2 (EA2). Although, in EA2 the emphasis has been on cerebellar dysfunction, patients also exhibit episodic, nonmotoric abnormalities involving the cerebral cortex. This study demonstrates episodic, low-frequency oscillations (LFOs) throughout the cerebral cortex of tottering (tg/tg) mice, a widely used model of EA2. Ranging between 0.035 and 0.11 Hz, the LFOs in tg/tg mice can spontaneously develop very high power, referred to as a high-power state. The LFOs in tg/tg mice are mediated in part by neuronal activity as tetrodotoxin decreases the oscillations and cortical neuron discharge contain the same low frequencies. The high-power state involves compensatory mechanisms because acutely decreasing P/Q-type Ca(2+) channel function in either wild-type (WT) or tg/tg mice does not induce the high-power state. In contrast, blocking l-type Ca(2+) channels, known to be upregulated in tg/tg mice, reduces the high-power state. Intriguingly, basal excitatory glutamatergic neurotransmission constrains the high-power state because blocking ionotropic or metabotropic glutamate receptors results in high-power LFOs in tg/tg but not WT mice. The high-power LFOs are decreased markedly by acetazolamide and 4-aminopyridine, the primary treatments for EA2, suggesting disease relevance. Together, these results demonstrate that the high-power LFOs in the tg/tg cerebral cortex represent a highly abnormal excitability state that may underlie noncerebellar symptoms that characterize CACNA1A mutations.
Collapse
|
20
|
Croce AC, Bottiroli G. Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur J Histochem 2014; 58:2461. [PMID: 25578980 PMCID: PMC4289852 DOI: 10.4081/ejh.2014.2461] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 12/18/2022] Open
Abstract
Native fluorescence, or autofluorescence (AF), consists in the emission of light in the UV-visible, near-IR spectral range when biological substrates are excited with light at suitable wavelength. This is a well-known phenomenon, and the strict relationship of many endogenous fluorophores with morphofunctional properties of the living systems, influencing their AF emission features, offers an extremely powerful resource for directly monitoring the biological substrate condition. Starting from the last century, the technological progresses in microscopy and spectrofluorometry were convoying attention of the scientific community to this phenomenon. In the future, the interest in the autofluorescence will certainly continue. Current instrumentation and analytical procedures will likely be overcome by the unceasing progress in new devices for AF detection and data interpretation, while a progress is expected in the search and characterization of endogenous fluorophores and their roles as intrinsic biomarkers.
Collapse
Affiliation(s)
- A C Croce
- Institute of Molecular Genetics of the National Research Council, University of Pavia.
| | | |
Collapse
|
21
|
Characterization of activity-dependent changes in flavoprotein fluorescence in cerebellar slices from juvenile rats. Neurosci Lett 2014; 584:17-22. [PMID: 25301569 DOI: 10.1016/j.neulet.2014.09.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/17/2014] [Accepted: 09/29/2014] [Indexed: 01/30/2023]
Abstract
Flavoprotein autofluorescence signals attributed to neuronal metabolism have been used to assess synaptic function. Here, we characterized flavoprotein autofluorescence responses in the molecular layer of rat cerebellar slices. High frequency stimulation elicited a transient fluorescence increase (peak phase) that was followed by a longer-lasting fluorescence decrease (valley phase). The peak phase was restricted to the molecular layer, whereas the valley phase extended into the Purkinje cell layer and a portion of the granule cell layer. Responses were abolished by either the Na(+) channel antagonist, tetrodotoxin, or a combination of the AMPA receptor antagonists, NBQX and GIKI-53655, and were also reduced by a flavoprotein inhibitor (diphenyleneiodonium). These findings are consistent with responses being mediated by an increase in mitochondrial activity triggered by increased energy demands evoked by AMPA receptor-mediated synaptic transmission. The GABAA receptor antagonist picrotoxin did not significantly influence evoked responses. Likewise, exogenous application of ethanol, at concentrations known to increase GABAA receptor-mediated synaptic transmission at Purkinje cells, did not modify peak responses. These observations indicate that flavoprotein autofluorescence imaging could be useful to assess the coupling between glutamatergic synaptic transmission and neuronal metabolism in cerebellar slices.
Collapse
|
22
|
Chernov M, Roe AW. Infrared neural stimulation: a new stimulation tool for central nervous system applications. NEUROPHOTONICS 2014; 1:011011. [PMID: 26157967 PMCID: PMC4478761 DOI: 10.1117/1.nph.1.1.011011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/26/2014] [Accepted: 07/01/2014] [Indexed: 05/08/2023]
Abstract
The traditional approach to modulating brain function (in both clinical and basic science applications) is to tap into the neural circuitry using electrical currents applied via implanted electrodes. However, it suffers from a number of problems, including the risk of tissue trauma, poor spatial specificity, and the inability to selectively stimulate neuronal subtypes. About a decade ago, optical alternatives to electrical stimulation started to emerge in order to address the shortcomings of electrical stimulation. We describe the use of one optical stimulation technique, infrared neural stimulation (INS), during which short (of the order of a millisecond) pulses of infrared light are delivered to the neural tissue. Very focal stimulation is achieved via a thermal mechanism and stimulation location can be quickly adjusted by redirecting the light. After describing some of the work done in the peripheral nervous system, we focus on the use of INS in the central nervous system to investigate functional connectivity in the visual and somatosensory areas, target specific functional domains, and influence behavior of an awake nonhuman primate. We conclude with a positive outlook for INS as a tool for safe and precise targeted brain stimulation.
Collapse
Affiliation(s)
- Mykyta Chernov
- Vanderbilt University, Department of Psychology, 111 21st Avenue South, Nashville, Tennessee 37240, United States
| | - Anna Wang Roe
- Vanderbilt University, Department of Psychology, 111 21st Avenue South, Nashville, Tennessee 37240, United States
- Address all correspondence to: Anna Wang Roe, E-mail:
| |
Collapse
|
23
|
San Martín A, Sotelo-Hitschfeld T, Lerchundi R, Fernández-Moncada I, Ceballo S, Valdebenito R, Baeza-Lehnert F, Alegría K, Contreras-Baeza Y, Garrido-Gerter P, Romero-Gómez I, Barros LF. Single-cell imaging tools for brain energy metabolism: a review. NEUROPHOTONICS 2014; 1:011004. [PMID: 26157964 PMCID: PMC4478754 DOI: 10.1117/1.nph.1.1.011004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 05/03/2023]
Abstract
Neurophotonics comes to light at a time in which advances in microscopy and improved calcium reporters are paving the way toward high-resolution functional mapping of the brain. This review relates to a parallel revolution in metabolism. We argue that metabolism needs to be approached both in vitro and in vivo, and that it does not just exist as a low-level platform but is also a relevant player in information processing. In recent years, genetically encoded fluorescent nanosensors have been introduced to measure glucose, glutamate, ATP, NADH, lactate, and pyruvate in mammalian cells. Reporting relative metabolite levels, absolute concentrations, and metabolic fluxes, these sensors are instrumental for the discovery of new molecular mechanisms. Sensors continue to be developed, which together with a continued improvement in protein expression strategies and new imaging technologies, herald an exciting era of high-resolution characterization of metabolism in the brain and other organs.
Collapse
Affiliation(s)
- Alejandro San Martín
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Tamara Sotelo-Hitschfeld
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo Lerchundi
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Fernández-Moncada
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Sebastian Ceballo
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
| | - Rocío Valdebenito
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
| | | | - Karin Alegría
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
| | - Yasna Contreras-Baeza
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Pamela Garrido-Gerter
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Ignacio Romero-Gómez
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - L. Felipe Barros
- Centro de Estudios Científicos, Arturo Prat 514, Valdivia, 5110466, Chile
- Address all correspondence to: L. Felipe Barros, E-mail:
| |
Collapse
|
24
|
Pakan JMP, Graham DJ, Wylie DR. Climbing fiber projections in relation to zebrin stripes in the ventral uvula in pigeons. J Comp Neurol 2014; 522:3629-43. [PMID: 24825798 DOI: 10.1002/cne.23626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/09/2022]
Abstract
The cerebellum consists of sagittally oriented zones that are delineated by afferent input, Purkinje cell response properties, and the expression of molecular markers such as zebrin II (ZII). ZII is heterogeneously expressed in Purkinje cells such that there are parasagittal stripes of high expression (ZII+) interdigitated with stripes of little or no expression (ZII-). In pigeons, folium IXcd consists of seven pairs of ZII+/- stripes denoted P1+/- (medial) to P7+/- (lateral). In the present study we examined the climbing fiber input to the medial half of folium IXcd, the ventral uvula, which spans the medial two stripe pairs (P1+/- to P2+/-). Purkinje cells in the ventral uvula respond to patterns of optic flow resulting from self-motion through the environment along translational axes and their climbing fibers originate in the lateral half of the medial column in the inferior olive (mcIO). Using anterograde injections into this region of the mcIO, we found the following topographic relationship: climbing fibers from the caudal lateral mcIO were located in P1+ and medial P1- ZII stripes; climbing fibers from the rostral lateral mcIO were located in lateral P2+ and P2- ZII stripes, and climbing fibers from the middle lateral mcIO were located in lateral P1- and medial P2+ ZII stripes. These data complement our previous findings showing a topographic relationship between Purkinje cell responses to optic flow visual stimuli and ZII stripes. Taken together, we suggest that a ZII+/- stripe pair may represent a functional unit in the pigeon vestibulocerebellum.
Collapse
|
25
|
Bouzier-Sore AK, Pellerin L. Unraveling the complex metabolic nature of astrocytes. Front Cell Neurosci 2013; 7:179. [PMID: 24130515 PMCID: PMC3795301 DOI: 10.3389/fncel.2013.00179] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/23/2013] [Indexed: 12/12/2022] Open
Abstract
Since the initial description of astrocytes by neuroanatomists of the nineteenth century, a critical metabolic role for these cells has been suggested in the central nervous system. Nonetheless, it took several technological and conceptual advances over many years before we could start to understand how they fulfill such a role. One of the important and early recognized metabolic function of astrocytes concerns the reuptake and recycling of the neurotransmitter glutamate. But the description of this initial property will be followed by several others including an implication in the supply of energetic substrates to neurons. Indeed, despite the fact that like most eukaryotic non-proliferative cells, astrocytes rely on oxidative metabolism for energy production, they exhibit a prominent aerobic glycolysis capacity. Moreover, this unusual metabolic feature was found to be modulated by glutamatergic activity constituting the initial step of the neurometabolic coupling mechanism. Several approaches, including biochemical measurements in cultured cells, genetic screening, dynamic cell imaging, nuclear magnetic resonance spectroscopy and mathematical modeling, have provided further insights into the intrinsic characteristics giving rise to these key features of astrocytes. This review will provide an account of the different results obtained over several decades that contributed to unravel the complex metabolic nature of astrocytes that make this cell type unique.
Collapse
Affiliation(s)
- Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS/Université Bordeaux Segalen Bordeaux, France
| | | |
Collapse
|
26
|
Reevaluation of the beam and radial hypotheses of parallel fiber action in the cerebellar cortex. J Neurosci 2013; 33:11412-24. [PMID: 23843513 DOI: 10.1523/jneurosci.0711-13.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of parallel fibers (PFs) in cerebellar physiology remains controversial. Early studies inspired the "beam" hypothesis whereby granule cell (GC) activation results in PF-driven, postsynaptic excitation of beams of Purkinje cells (PCs). However, the "radial" hypothesis postulates that the ascending limb of the GC axon provides the dominant input to PCs and generates patch-like responses. Using optical imaging and single-cell recordings in the mouse cerebellar cortex in vivo, this study reexamines the beam versus radial controversy. Electrical stimulation of mossy fibers (MFs) as well as microinjection of NMDA in the granular layer generates beam-like responses with a centrally located patch-like response. Remarkably, ipsilateral forepaw stimulation evokes a beam-like response in Crus I. Discrete molecular layer lesions demonstrate that PFs contribute to the peripherally generated responses in Crus I. In contrast, vibrissal stimulation induces patch-like activation of Crus II and GABAA antagonists fail to convert this patch-like activity into a beam-like response, implying that molecular layer inhibition does not prevent beam-like responses. However, blocking excitatory amino acid transporters (EAATs) generates beam-like responses in Crus II. These beam-like responses are suppressed by focal inhibition of MF-GC synaptic transmission. Using EAAT4 reporter transgenic mice, we show that peripherally evoked patch-like responses in Crus II are aligned between parasagittal bands of EAAT4. This is the first study to demonstrate beam-like responses in the cerebellar cortex to peripheral, MF, and GC stimulation in vivo. Furthermore, the spatial pattern of the responses depends on extracellular glutamate and its local regulation by EAATs.
Collapse
|
27
|
Metabolic signaling by lactate in the brain. Trends Neurosci 2013; 36:396-404. [DOI: 10.1016/j.tins.2013.04.002] [Citation(s) in RCA: 220] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 01/27/2023]
|
28
|
Tsytsarev V, Bernardelli C, Maslov KI. Living Brain Optical Imaging: Technology, Methods and Applications. ACTA ACUST UNITED AC 2012; 1:180-192. [PMID: 28251038 DOI: 10.1166/jnsne.2012.1020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within the last few decades, optical imaging methods have yielded revolutionary results when applied to all parts of the central nervous system. The purpose of this review is to analyze research possibilities and limitations of several novel imaging techniques and show some of the most interesting achievements obtained by these methods. Here we covered intrinsic optical imaging, voltage-sensitive dye, photoacoustic, optical coherence tomography, near-infrared spectroscopy and some other techniques. All of them are mainly applicable for experimental neuroscience but some of them also suitable for the clinical studies.
Collapse
Affiliation(s)
- Vassiliy Tsytsarev
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Room S251, 20 Penn Street, Baltimore, MD 21201-1075, USA
| | - Chad Bernardelli
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, HSF II Room S251, 20 Penn Street, Baltimore, MD 21201-1075, USA
| | - Konstantin I Maslov
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| |
Collapse
|
29
|
Hiraishi T, Kitaura H, Oishi M, Fukuda M, Kameyama S, Takahashi H, Kakita A, Fujii Y. Significance of horizontal propagation of synchronized activities in human epileptic neocortex investigated by optical imaging and immunohistological study. Epilepsy Res 2012. [PMID: 23200433 DOI: 10.1016/j.eplepsyres.2012.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To characterize the physiological condition of human epileptic neocortex, we employed flavoprotein fluorescence imaging (FFI), an optical imaging method which detects intrinsic signals accompanying neural activation, and immunohistologically studied human cortical specimens. The experimented materials were cortical tissues surrounding various intracerebral lesions obtained from 5 patients with epilepsy (epileptic patients: EPs) and 5 without epilepsy (non-epileptic patients: NEPs). These tissues were immersed in oxygenated artificial cerebrospinal fluid immediately after removal in the operating room. Signal changes of FFI in the cortical layers subjected to electrical stimulation were observed under bicuculline methiodide perfusion. Immunohistological staining for parvalbumin (PV), calbindin, and calretinin were performed on the same specimens to evaluate expressions of calcium-binding protein positive cells. The FFI study showed the characteristic cortical propagation pattern of elicited activities horizontally along the cortical layers in EPs but not in NEPs. The propagated area with more than 0.5% signal changes was significantly larger in EPs than in NEPs (p=0.008). Only the expression of PV positive neurons was significantly lower in EPs than in NEPs (p=0.006). The propagated area on FFI and the decrease in PV positive neurons correlated significantly (R=-0.78, p=0.04). The present study visualized the unique horizontal propagation of signal changes on FFI and demonstrated a correlation of this propagation with immunohistological decreases in PV positive neurons in human epileptic cortex. Further investigations may elucidate the mechanism of hyper-excitability and hyper-synchronization in epileptic cortical tissue itself.
Collapse
Affiliation(s)
- Tetsuya Hiraishi
- Department of Neurosurgery, Brain Research Institute, University of Niigata, Niigata, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Llano DA, Turner J, Caspary DM. Diminished cortical inhibition in an aging mouse model of chronic tinnitus. J Neurosci 2012; 32:16141-8. [PMID: 23152598 PMCID: PMC3517907 DOI: 10.1523/jneurosci.2499-12.2012] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/21/2012] [Accepted: 09/11/2012] [Indexed: 01/02/2023] Open
Abstract
Flavoprotein autofluorescence imaging was used to examine auditory cortical synaptic responses in aged animals with behavioral evidence of tinnitus and hearing loss. Mice were exposed to noise trauma at 1-3 months of age and were assessed for behavioral evidence of tinnitus and hearing loss immediately after the noise trauma and again at ~24-30 months of age. Within 2 months of the final behavioral assessment, auditory cortical synaptic transmission was examined in brain slices using electrical stimulation of putative thalamocortical afferents, and flavoprotein autofluorescence imaging was used to measure cortical activation. Noise-exposed animals showed a 68% increase in amplitude of cortical activation compared with controls (p = 0.008), and these animals showed a diminished sensitivity to GABA(A)ergic blockade (p = 0.008, using bath-applied 200 nm SR 95531 [6-Imino-3-(4-methoxyphenyl)-1(6H)-p yridazinebutanoic acid hydrobromide]). The strength of cortical activation was significantly correlated to the degree of tinnitus behavior, assessed via a loss of gap detection in a startle paradigm. The decrease in GABA(A) sensitivity was greater in the regions of the cortex farther away from the stimulation site, potentially reflecting a greater sensitivity of corticocortical versus thalamocortical projections to the effects of noise trauma. Finally, there was no relationship between auditory cortical activation and activation of the somatosensory cortex in the same slices, suggesting that the increases in auditory cortical activation were not attributable to a generalized hyperexcitable state in noise-exposed animals. These data suggest that noise trauma can cause long-lasting changes in the auditory cortical physiology and may provide specific targets to ameliorate the effects of chronic tinnitus.
Collapse
Affiliation(s)
- Daniel A Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, USA.
| | | | | |
Collapse
|
31
|
Hedges VL, Ebner TJ, Meisel RL, Mermelstein PG. The cerebellum as a target for estrogen action. Front Neuroendocrinol 2012; 33:403-11. [PMID: 22975197 PMCID: PMC3496070 DOI: 10.1016/j.yfrne.2012.08.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/20/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022]
Abstract
This review focuses on the effects of estrogens upon the cerebellum, a brain region long ignored as a site of estrogen action. Highlighted are the diverse effects of estradiol within the cerebellum, emphasizing the importance of estradiol signaling in cerebellar development, modulation of synaptic neurotransmission in the adult, and the potential influence of estrogens on various health and disease states. We also provide new data, consistent with previous studies, in which locally synthesized estradiol modulates cerebellar glutamatergic neurotransmission, providing one underlying mechanism by which the actions of estradiol can affect this brain region.
Collapse
Affiliation(s)
- Valerie L Hedges
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | | | | | | |
Collapse
|
32
|
Ebner TJ, Wang X, Gao W, Cramer SW, Chen G. Parasagittal zones in the cerebellar cortex differ in excitability, information processing, and synaptic plasticity. THE CEREBELLUM 2012; 11:418-9. [PMID: 22249913 DOI: 10.1007/s12311-011-0347-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
At the molecular and circuitry levels, the cerebellum exhibits a striking parasagittal zonation as exemplified by the spatial distribution of molecules expressed on Purkinje cells and the topography of the afferent and efferent projections. The physiology and function of the zonation is less clear. Activity-dependent optical imaging has proven a useful tool to examine the physiological properties of the parasagittal zonation in the intact animal. Recent findings show that zebrin II-positive and zebrin II-negative zones differ markedly in their responses to parallel fiber inputs. These findings suggest that cerebellar cortical excitability, information processing, and synaptic plasticity depend on the intrinsic properties of different parasagittal zones.
Collapse
Affiliation(s)
- Timothy J Ebner
- Department of Neuroscience, University of Minnesota, 2001 Sixth Street SE, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
33
|
Activity-dependent increases in local oxygen consumption correlate with postsynaptic currents in the mouse cerebellum in vivo. J Neurosci 2012; 31:18327-37. [PMID: 22171036 DOI: 10.1523/jneurosci.4526-11.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF). Activity-dependent rises in CMRO(2) fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca(2+) stimulate oxidative metabolism via mitochondrial signaling, but whether this also occurs in the intact brain is unknown. Here we applied a pharmacological approach to dissect the effects of ionic currents and cytosolic Ca(2+) rises of neuronal origin on activity-dependent rises in CMRO(2). We used two-photon microscopy and current source density analysis to study real-time Ca(2+) dynamics and transmembrane ionic currents in relation to CMRO(2) in the mouse cerebellar cortex in vivo. We report a direct correlation between CMRO(2) and summed (i.e., the sum of excitatory, negative currents during the whole stimulation period) field EPSCs (∑fEPSCs) in Purkinje cells (PCs) in response to stimulation of the climbing fiber (CF) pathway. Blocking stimulus-evoked rises in cytosolic Ca(2+) in PCs with the P/Q-type channel blocker ω-agatoxin-IVA (ω-AGA), or the GABA(A) receptor agonist muscimol, did not lead to a time-locked reduction in CMRO(2), and excitatory synaptic or action potential currents. During stimulation, neither ω-AGA or (μ-oxo)-bis-(trans-formatotetramine-ruthenium) (Ru360), a mitochondrial Ca(2+) uniporter inhibitor, affected the ratio of CMRO(2) to fEPSCs or evoked local field potentials. However, baseline CBF and CMRO(2) decreased gradually with Ru360. Our data suggest that in vivo activity-dependent rises in CMRO(2) are correlated with synaptic currents and postsynaptic spiking in PCs. Our study did not reveal a unique role of neuronal cytosolic Ca(2+) signals in controlling CMRO(2) increases during CF stimulation.
Collapse
|