1
|
Kwiecinski J. Role of 18F-sodium fluoride positron emission tomography in imaging atherosclerosis. J Nucl Cardiol 2024; 35:101845. [PMID: 38479575 DOI: 10.1016/j.nuclcard.2024.101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/08/2024]
Abstract
Atherosclerosis involving vascular beds across the human body remains the leading cause of death worldwide. Coronary and peripheral artery disease, which are almost universally a result of atherosclerotic plaque, can manifest clinically as myocardial infarctions, ischemic stroke, or acute lower-limb ischemia. Beyond imaging myocardial perfusion and blood-flow, nuclear imaging has the potential to depict the activity of the processes that are directly implicated in the atherosclerotic plaque progression and rupture. Out of several tested tracers to date, the literature is most advanced for 18F-sodium fluoride positron emission tomography. In this review, we present the latest data in the field of atherosclerotic 18F-sodium fluoride positron emission tomography imaging, discuss the advantages and limitation of the techniques, and highlight the aspects that require further research in the future.
Collapse
Affiliation(s)
- Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland.
| |
Collapse
|
2
|
Krauz K, Kempiński M, Jańczak P, Momot K, Zarębiński M, Poprawa I, Wojciechowska M. The Role of Epicardial Adipose Tissue in Acute Coronary Syndromes, Post-Infarct Remodeling and Cardiac Regeneration. Int J Mol Sci 2024; 25:3583. [PMID: 38612394 PMCID: PMC11011833 DOI: 10.3390/ijms25073583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Epicardial adipose tissue (EAT) is a fat deposit surrounding the heart and located under the visceral layer of the pericardium. Due to its unique features, the contribution of EAT to the pathogenesis of cardiovascular and metabolic disorders is extensively studied. Especially, EAT can be associated with the onset and development of coronary artery disease, myocardial infarction and post-infarct heart failure which all are significant problems for public health. In this article, we focus on the mechanisms of how EAT impacts acute coronary syndromes. Particular emphasis was placed on the role of inflammation and adipokines secreted by EAT. Moreover, we present how EAT affects the remodeling of the heart following myocardial infarction. We further review the role of EAT as a source of stem cells for cardiac regeneration. In addition, we describe the imaging assessment of EAT, its prognostic value, and its correlation with the clinical characteristics of patients.
Collapse
Affiliation(s)
- Kamil Krauz
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Marcel Kempiński
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Paweł Jańczak
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Karol Momot
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| | - Maciej Zarębiński
- Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland; (M.Z.); (I.P.)
| | - Izabela Poprawa
- Department of Invasive Cardiology, Independent Public Specialist Western Hospital John Paul II, Lazarski University, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland; (M.Z.); (I.P.)
| | - Małgorzata Wojciechowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (K.K.); (M.K.); (P.J.); (K.M.)
| |
Collapse
|
3
|
Miller RJH, Shanbhag A, Killekar A, Lemley M, Bednarski B, Van Kriekinge SD, Kavanagh PB, Feher A, Miller EJ, Einstein AJ, Ruddy TD, Liang JX, Builoff V, Berman DS, Dey D, Slomka PJ. AI-derived epicardial fat measurements improve cardiovascular risk prediction from myocardial perfusion imaging. NPJ Digit Med 2024; 7:24. [PMID: 38310123 PMCID: PMC10838293 DOI: 10.1038/s41746-024-01020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/18/2024] [Indexed: 02/05/2024] Open
Abstract
Epicardial adipose tissue (EAT) volume and attenuation are associated with cardiovascular risk, but manual annotation is time-consuming. We evaluated whether automated deep learning-based EAT measurements from ungated computed tomography (CT) are associated with death or myocardial infarction (MI). We included 8781 patients from 4 sites without known coronary artery disease who underwent hybrid myocardial perfusion imaging. Of those, 500 patients from one site were used for model training and validation, with the remaining patients held out for testing (n = 3511 internal testing, n = 4770 external testing). We modified an existing deep learning model to first identify the cardiac silhouette, then automatically segment EAT based on attenuation thresholds. Deep learning EAT measurements were obtained in <2 s compared to 15 min for expert annotations. There was excellent agreement between EAT attenuation (Spearman correlation 0.90 internal, 0.82 external) and volume (Spearman correlation 0.90 internal, 0.91 external) by deep learning and expert segmentation in all 3 sites (Spearman correlation 0.90-0.98). During median follow-up of 2.7 years (IQR 1.6-4.9), 565 patients experienced death or MI. Elevated EAT volume and attenuation were independently associated with an increased risk of death or MI after adjustment for relevant confounders. Deep learning can automatically measure EAT volume and attenuation from low-dose, ungated CT with excellent correlation with expert annotations, but in a fraction of the time. EAT measurements offer additional prognostic insights within the context of hybrid perfusion imaging.
Collapse
Affiliation(s)
- Robert J H Miller
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada
| | - Aakash Shanbhag
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Signal and Image Processing Institute, Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Aditya Killekar
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Lemley
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bryan Bednarski
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Serge D Van Kriekinge
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Paul B Kavanagh
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Edward J Miller
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew J Einstein
- Division of Cardiology, Department of Medicine, and Department of Radiology, Columbia University Irving Medical Center and New York-Presbyterian Hospital, New York, NY, USA
| | - Terrence D Ruddy
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Joanna X Liang
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Valerie Builoff
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S Berman
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Damini Dey
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Piotr J Slomka
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Sciences Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Cinti F, Leccisotti L, Sorice GP, Capece U, D'Amario D, Lorusso M, Gugliandolo S, Morciano C, Guarneri A, Guzzardi MA, Mezza T, Capotosti A, Indovina L, Ferraro PM, Iozzo P, Crea F, Giordano A, Giaccari A. Dapagliflozin treatment is associated with a reduction of epicardial adipose tissue thickness and epicardial glucose uptake in human type 2 diabetes. Cardiovasc Diabetol 2023; 22:349. [PMID: 38115004 PMCID: PMC10731727 DOI: 10.1186/s12933-023-02091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
OBJECTIVE We recently demonstrated that treatment with sodium-glucose cotransporter-2 inhibitors (SGLT-2i) leads to an increase in myocardial flow reserve in patients with type 2 diabetes (T2D) with stable coronary artery disease (CAD). The mechanism by which this occurs is, however, unclear. One of the risk factors for cardiovascular disease is inflammation of epicardial adipose tissue (EAT). Since the latter is often increased in type 2 diabetes patients, it could play a role in coronary microvascular dysfunction. It is also well known that SGLT-2i modify adipose tissue metabolism. We aimed to investigate the effects of the SGLT-2i dapagliflozin on metabolism and visceral and subcutaneous adipose tissue thickness in T2D patients with stable coronary artery disease and to verify whether these changes could explain observed changes in myocardial flow. METHODS We performed a single-center, prospective, randomized, double-blind, controlled clinical trial with 14 T2D patients randomized 1:1 to SGLT-2i dapagliflozin (10 mg daily) or placebo. The thickness of visceral (epicardial, mediastinal, perirenal) and subcutaneous adipose tissue and glucose uptake were assessed at baseline and 4 weeks after treatment initiation by 2-deoxy-2-[18F]fluoro-D-glucose Positron Emission Tomography/Computed Tomography during hyperinsulinemic euglycemic clamp. RESULTS The two groups were well-matched for baseline characteristics (age, diabetes duration, HbA1c, BMI, renal and heart function). Dapagliflozin treatment significantly reduced EAT thickness by 19% (p = 0.03). There was a significant 21.6% reduction in EAT glucose uptake during euglycemic hyperinsulinemic clamp in the dapagliflozin group compared with the placebo group (p = 0.014). There were no significant effects on adipose tissue thickness/metabolism in the other depots explored. CONCLUSIONS SGLT-2 inhibition selectively reduces EAT thickness and EAT glucose uptake in T2D patients, suggesting a reduction of EAT inflammation. This could explain the observed increase in myocardial flow reserve, providing new insights into SGLT-2i cardiovascular benefits.
Collapse
Affiliation(s)
- Francesca Cinti
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucia Leccisotti
- UOC di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Pio Sorice
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy
- Sezione di Medicina Interna, Endocrinologia, Andrologia e Malattie Metaboliche, Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica - (DiMePRe-J), Università Degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Umberto Capece
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenico D'Amario
- Dipartimento di Scienze Cardiovascolari, UOC Di Cardiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, and Università Cattolica del Sacro Cuore, Rome, Italy
- Università del Piemonte Orientale , Dipartimento Medicina Translazionale, Novara, Italy
| | - Margherita Lorusso
- UOC di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy
| | - Shawn Gugliandolo
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Cassandra Morciano
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Scienze Cliniche e Sperimentali, Medicina Interna - Università degli Studi di Brescia, Brescia, BS, Italy
| | - Andrea Guarneri
- UOC di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Angela Guzzardi
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Teresa Mezza
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Amedeo Capotosti
- UOSD Fisica Medica e Radioprotezione, Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Radioterapia Oncologica ed Ematologia, Rome, Italy
| | - Luca Indovina
- UOSD Fisica Medica e Radioprotezione, Dipartimento di Diagnostica per Immagini, Fondazione Policlinico Universitario A. Gemelli IRCCS, Radioterapia Oncologica ed Ematologia, Rome, Italy
| | - Pietro Manuel Ferraro
- U.O.S. Terapia Conservativa della Malattia Renale Cronica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Patricia Iozzo
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy
| | - Filippo Crea
- Dipartimento di Scienze Cardiovascolari, UOC Di Cardiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, and Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Giordano
- UOC di Medicina Nucleare, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Andrea Giaccari
- Centro Malattie Endocrine e Metaboliche, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS and Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
5
|
Goldman SA, Requena-Ibanez JA, Devesa A, Santos-Gallego CG, Badimon JJ, Fuster V. Uncovering the Role of Epicardial Adipose Tissue in Heart Failure With Preserved Ejection Fraction. JACC. ADVANCES 2023; 2:100657. [PMID: 38938732 PMCID: PMC11198699 DOI: 10.1016/j.jacadv.2023.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 06/29/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the most common form of heart failure. Obesity is a modifiable risk factor of HFpEF; however, body mass index provides limited information on visceral adiposity and patients with similar anthropometrics can present variable cardiovascular risk. Epicardial adipose tissue (EAT) is the closest fat deposit to the heart and has been proposed as a biomarker of visceral adiposity. EAT may be particularly important for cardiac function, because of its location (under the pericardium) and because it acts as a metabolically active endocrine organ (which can produce both beneficial and detrimental cytokines). In this paper, the authors review the role of EAT in normal and pathologic conditions and discuss the noninvasive imaging modalities that allow its identification. This review highlights EAT implications in HFpEF and discuss new therapies that act on EAT and might also exert beneficial effects on the cardiovascular system.
Collapse
Affiliation(s)
- Sarah A. Goldman
- Department of Internal Medicine, Zucker School of Medicine at Hofstra Northwell, Lenox Hill Hospital New York, New York, New York, USA
| | - Juan Antonio Requena-Ibanez
- Atherothrombosis Research Unit, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai School of Medicine, New York, New York, USA
| | - Ana Devesa
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Carlos G. Santos-Gallego
- Atherothrombosis Research Unit, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai School of Medicine, New York, New York, USA
| | - Juan José Badimon
- Atherothrombosis Research Unit, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai School of Medicine, New York, New York, USA
| | - Valentin Fuster
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Antoniades C, Tousoulis D, Vavlukis M, Fleming I, Duncker DJ, Eringa E, Manfrini O, Antonopoulos AS, Oikonomou E, Padró T, Trifunovic-Zamaklar D, De Luca G, Guzik T, Cenko E, Djordjevic-Dikic A, Crea F. Perivascular adipose tissue as a source of therapeutic targets and clinical biomarkers. Eur Heart J 2023; 44:3827-3844. [PMID: 37599464 PMCID: PMC10568001 DOI: 10.1093/eurheartj/ehad484] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Obesity is a modifiable cardiovascular risk factor, but adipose tissue (AT) depots in humans are anatomically, histologically, and functionally heterogeneous. For example, visceral AT is a pro-atherogenic secretory AT depot, while subcutaneous AT represents a more classical energy storage depot. Perivascular adipose tissue (PVAT) regulates vascular biology via paracrine cross-talk signals. In this position paper, the state-of-the-art knowledge of various AT depots is reviewed providing a consensus definition of PVAT around the coronary arteries, as the AT surrounding the artery up to a distance from its outer wall equal to the luminal diameter of the artery. Special focus is given to the interactions between PVAT and the vascular wall that render PVAT a potential therapeutic target in cardiovascular diseases. This Clinical Consensus Statement also discusses the role of PVAT as a clinically relevant source of diagnostic and prognostic biomarkers of vascular function, which may guide precision medicine in atherosclerosis, hypertension, heart failure, and other cardiovascular diseases. In this article, its role as a 'biosensor' of vascular inflammation is highlighted with description of recent imaging technologies that visualize PVAT in clinical practice, allowing non-invasive quantification of coronary inflammation and the related residual cardiovascular inflammatory risk, guiding deployment of therapeutic interventions. Finally, the current and future clinical applicability of artificial intelligence and machine learning technologies is reviewed that integrate PVAT information into prognostic models to provide clinically meaningful information in primary and secondary prevention.
Collapse
Affiliation(s)
- Charalambos Antoniades
- Acute Multidisciplinary Imaging and Interventional Centre, RDM Division of Cardiovascular Medicine, University of Oxford, Headley Way, Headington, Oxford OX39DU, UK
| | - Dimitris Tousoulis
- 1st Cardiology Department, National and Kapodistrian University of Athens, Greece
| | - Marija Vavlukis
- Medical Faculty, University Clinic for Cardiology, University Ss’ Cyril and Methodius in Skopje, Skopje, North Macedonia
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre of Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Dirk J Duncker
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Etto Eringa
- Cardiovascular-Program ICCC, Research Institute—Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain
| | - Olivia Manfrini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alexios S Antonopoulos
- Acute Multidisciplinary Imaging and Interventional Centre, RDM Division of Cardiovascular Medicine, University of Oxford, Headley Way, Headington, Oxford OX39DU, UK
- 1st Cardiology Department, National and Kapodistrian University of Athens, Greece
| | - Evangelos Oikonomou
- 1st Cardiology Department, National and Kapodistrian University of Athens, Greece
| | - Teresa Padró
- Cardiovascular Program-ICCC, Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- CiberCV, Institute Carlos III, Madrid, Spain
| | | | - Giuseppe De Luca
- Division of Cardiology, AOU Policlinico G. Martino, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Cardiologia Ospedaliera, Nuovo Galeazzi-Sant’Ambrogio, Milan, Italy
| | - Tomasz Guzik
- Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, UK
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Edina Cenko
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Ana Djordjevic-Dikic
- Medical Faculty, Cardiology Clinic, University Clinical Center, University of Belgrade, Serbia
| | - Filippo Crea
- Department of Cardiology and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
7
|
Zhang W, Li P, Chen X, He L, Zhang Q, Yu J. The Association of Coronary Fat Attenuation Index Quantified by Automated Software on Coronary Computed Tomography Angiography with Adverse Events in Patients with Less than Moderate Coronary Artery Stenosis. Diagnostics (Basel) 2023; 13:2136. [PMID: 37443530 DOI: 10.3390/diagnostics13132136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
OBJECTIVE This study analyzed the relationship between the coronary FAI on CCTA and coronary adverse events in patients with moderate coronary artery disease based on machine learning. METHODS A total of 172 patients with coronary artery disease with moderate or lower coronary artery stenosis were included. According to whether the patients had coronary adverse events, the patients were divided into an adverse group and a non-adverse group. The coronary FAI of patients was quantified via machine learning, and significant differences between the two groups were analyzed via t-test. RESULTS The age difference between the two groups was statistically significant (p < 0.001). The group that had adverse reactions was older, and there was no statistically significant difference between the two groups in terms of sex and smoking status. There was no statistical significance in the blood biochemical indexes between the two groups (p > 0.05). There was a significant difference in the FAIs between the two groups (p < 0.05), with the FAI of the defective group being greater than that of the nonperforming group. Taking the age of patients as a covariate, an analysis of covariance showed that after excluding the influence of age, the FAIs between the two groups were still significantly different (p < 0.001).
Collapse
Affiliation(s)
- Wenzhao Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peiling Li
- Department of Critical Care Medicine, Chengdu Shangjinnanfu Hospital, Chengdu 611730, China
| | - Xinyue Chen
- CT Collaboration, Siemens Healthineers, Chengdu 610041, China
| | - Liyi He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jianqun Yu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Pugliese L, Ricci F, Sica G, Scaglione M, Masala S. Non-Contrast and Contrast-Enhanced Cardiac Computed Tomography Imaging in the Diagnostic and Prognostic Evaluation of Coronary Artery Disease. Diagnostics (Basel) 2023; 13:2074. [PMID: 37370969 DOI: 10.3390/diagnostics13122074] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
In recent decades, cardiac computed tomography (CT) has emerged as a powerful non-invasive tool for risk stratification, as well as the detection and characterization of coronary artery disease (CAD), which remains the main cause of morbidity and mortality in the world. Advances in technology have favored the increasing use of cardiac CT by allowing better performance with lower radiation doses. Coronary artery calcium, as assessed by non-contrast CT, is considered to be the best marker of subclinical atherosclerosis, and its use is recommended for the refinement of risk assessment in low-to-intermediate risk individuals. In addition, coronary CT angiography (CCTA) has become a gate-keeper to invasive coronary angiography (ICA) and revascularization in patients with acute chest pain by allowing the assessment not only of the extent of lumen stenosis, but also of its hemodynamic significance if combined with the measurement of fractional flow reserve or perfusion imaging. Moreover, CCTA provides a unique incremental value over functional testing and ICA by imaging the vessel wall, thus allowing the assessment of plaque burden, composition, and instability features, in addition to perivascular adipose tissue attenuation, which is a marker of vascular inflammation. There exists the potential to identify the non-obstructive lesions at high risk of progression to plaque rupture by combining all of these measures.
Collapse
Affiliation(s)
- Luca Pugliese
- Radiology Unit, Department of Medical-Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Francesca Ricci
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Giacomo Sica
- Radiology Unit, Monaldi Hospital, 80131 Napoli, Italy
| | - Mariano Scaglione
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Salvatore Masala
- Radiology Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
9
|
Toivonen S, Lehtinen M, Raivio P, Sinisalo J, Loimaala A, Uusitalo V. The Presence of Residual Vascular and Adipose Tissue Inflammation on 18F-FDG PET in Patients with Chronic Coronary Artery Disease. Nucl Med Mol Imaging 2023; 57:117-125. [PMID: 37181800 PMCID: PMC10172407 DOI: 10.1007/s13139-022-00785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022] Open
Abstract
Purpose We evaluated the residual vascular and adipose tissue inflammation in patients with chronic coronary artery disease (CAD) using positron emission tomography (PET). Methods Our study population consisted of 98 patients with known CAD and 94 control subjects who had undergone 18F-fluorodeoxyglucose (18F-FDG) PET due to non-cardiac reasons. Aortic root and vena cava superior 18F-FDG uptake were measured to obtain the aortic root target-to-background ratio (TBR). In addition, adipose tissue PET measurements were done in pericoronary, epicardial, subcutaneous, and thoracic adipose tissue. Adipose tissue TBR was calculated using the left atrium as a reference region. Data are presented as mean ± standard deviation or as median (interquartile range). Results The aortic root TBR was higher in CAD patients compared to control subjects, 1.68 (1.55-1.81) vs. 1.53 (1.43-1.64), p < 0.001. Subcutaneous adipose tissue uptake was elevated in CAD patients 0.30 (0.24-0.35) vs. 0.27 (0.23-0.31), p < 0.001. Metabolic activity of CAD patients and control subjects was comparable in the pericoronary (0.81 ± 0.18 vs. 0.80 ± 0.16, p = 0.59), epicardial (0.53 ± 0.21 vs. 0.51 ± 0.18, p = 0.38) and thoracic (0.31 ± 0.12 vs. 0.28 ± 0.12, p = 0.21) adipose tissue regions. Aortic root or adipose tissue 18F-FDG uptake was not associated with the common CAD risk factors, coronary calcium score, or aortic calcium score (p value > 0.05). Conclusion Patients with a chronic CAD had a higher aortic root and subcutaneous adipose tissue 18F-FDG uptake compared to control patients, which suggests residual inflammatory risk.
Collapse
Affiliation(s)
- Sini Toivonen
- Department of Cardiac Surgery, Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Clinical Physiology and Nuclear Medicine, Helsinki University Hospital and University of Helsinki, Paciuksenkatu 3, 00290 Helsinki, Finland
| | - Miia Lehtinen
- Department of Cardiac Surgery, Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Peter Raivio
- Department of Cardiac Surgery, Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Juha Sinisalo
- Department of Cardiology, Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Antti Loimaala
- Clinical Physiology and Nuclear Medicine, Helsinki University Hospital and University of Helsinki, Paciuksenkatu 3, 00290 Helsinki, Finland
- Faculty of Medicine, Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Valtteri Uusitalo
- Clinical Physiology and Nuclear Medicine, Helsinki University Hospital and University of Helsinki, Paciuksenkatu 3, 00290 Helsinki, Finland
| |
Collapse
|
10
|
Guaricci AI, Neglia D, Acampa W, Andreini D, Baggiano A, Bianco F, Carrabba N, Conte E, Gaudieri V, Mushtaq S, Napoli G, Pergola V, Pontone G, Pedrinelli R, Mercuro G, Indolfi C, Guglielmo M. Computed tomography and nuclear medicine for the assessment of coronary inflammation: clinical applications and perspectives. J Cardiovasc Med (Hagerstown) 2023; 24:e67-e76. [PMID: 37052223 DOI: 10.2459/jcm.0000000000001433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
There is increasing evidence that in patients with atherosclerotic cardiovascular disease (ASCVD) under optimal medical therapy, a persisting dysregulation of the lipid and glucose metabolism, associated with adipose tissue dysfunction and inflammation, predicts a substantial residual risk of disease progression and cardiovascular events. Despite the inflammatory nature of ASCVD, circulating biomarkers such as high-sensitivity C-reactive protein and interleukins may lack specificity for vascular inflammation. As known, dysfunctional epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT) produce pro-inflammatory mediators and promote cellular tissue infiltration triggering further pro-inflammatory mechanisms. The consequent tissue modifications determine the attenuation of PCAT as assessed and measured by coronary computed tomography angiography (CCTA). Recently, relevant studies have demonstrated a correlation between EAT and PCAT and obstructive coronary artery disease, inflammatory plaque status and coronary flow reserve (CFR). In parallel, CFR is well recognized as a marker of coronary vasomotor function that incorporates the haemodynamic effects of epicardial, diffuse and small-vessel disease on myocardial tissue perfusion. An inverse relationship between EAT volume and coronary vascular function and the association of PCAT attenuation and impaired CFR have already been reported. Moreover, many studies demonstrated that 18F-FDG PET is able to detect PCAT inflammation in patients with coronary atherosclerosis. Importantly, the perivascular FAI (fat attenuation index) showed incremental value for the prediction of adverse clinical events beyond traditional risk factors and CCTA indices by providing a quantitative measure of coronary inflammation. As an indicator of increased cardiac mortality, it could guide early targeted primary prevention in a wide spectrum of patients. In this review, we summarize the current evidence regarding the clinical applications and perspectives of EAT and PCAT assessment performed by CCTA and the prognostic information derived by nuclear medicine.
Collapse
Affiliation(s)
- Andrea Igoren Guaricci
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari
| | - Danilo Neglia
- Cardiovascular Department, Fondazione Toscana Gabriele Monasterio (FTGM), Pisa
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples
| | - Daniele Andreini
- Centro Cardiologico Monzino IRCCS
- Department of Clinical Sciences and Community Health, Cardiovascular Section, Milan
| | - Andrea Baggiano
- Centro Cardiologico Monzino IRCCS
- Department of Clinical Sciences and Community Health, Cardiovascular Section, Milan
| | - Francesco Bianco
- Cardiovascular Sciences Department - AOU 'Ospedali Riuniti', Ancona
| | - Nazario Carrabba
- Department of Cardiothoracovascular Medicine, Azienda Ospedaliero-Universitaria Careggi, Florence
| | - Edoardo Conte
- Centro Cardiologico Monzino IRCCS
- Department of Biomedical Sciences for Health, University of Milan, Milan
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Naples
| | | | - Gianluigi Napoli
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari
| | - Valeria Pergola
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova
| | | | | | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Xi XY, Liu Z, Wang LF, Yang MF. Prognostic value of cardiac inflammation in ST-segment elevation myocardial infarction: A 18F-fluorodeoxyglucose PET/CT study. J Nucl Cardiol 2022; 29:3018-3027. [PMID: 34773185 DOI: 10.1007/s12350-021-02858-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/24/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND 18F-fluorodeoxyglucose (FDG) imaging is used to detect cardiac inflammation and predict functional outcome in acute myocardial infarction (MI). However, data on the correlation of post-MI acute cardiac inflammation evaluated by 18F-FDG imaging and major adverse cardiac events (MACE) are limited. Therefore, we sought to explore the prognostic value of cardiac 18F-FDG imaging in patients with acute ST-segment elevation MI (STEMI). METHODS Thirty-six patients with STEMI underwent 18F-FDG positron emission tomography/computed tomography (PET/CT) 5 days after primary percutaneous coronary intervention. 18F-FDG activity in infarcted and remote regions, as well as peri-coronary adipose tissue (PCAT), were measured and expressed as the maximum standardized uptake value (SUVmax). Patients were followed to determine the occurrence of MACE. RESULTS The infarcted myocardium had a higher 18F-FDG intensity than the remote area. Moreover, the PCAT of culprit coronary arteries showed a higher 18F-FDG uptake than that of non-culprit arteries. Multivariate Cox regression analysis showed that increased SUVmax of PCAT [HR 5.198; 95% CI (1.058, 25.537), P = .042] was independently associated with a higher risk of MACE. CONCLUSIONS Enhanced PCAT activity after acute MI is related to the occurrence of MACE, and 18F-FDG PET/CT plays a promising role in providing prognostic information in patients with STEMI.
Collapse
Affiliation(s)
- Xiao-Ying Xi
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Ze Liu
- Department of Cardiology, Peking University Third Hospital Yanqing Hospital, Beijing, 102100, China
| | - Le-Feng Wang
- Center of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Min-Fu Yang
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
12
|
Ectopic Fat and Cardiac Health in People with HIV: Serious as a Heart Attack. Curr HIV/AIDS Rep 2022; 19:415-424. [PMID: 35962851 DOI: 10.1007/s11904-022-00620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW This study aims to summarize knowledge of alterations in adipose tissue distribution among people with HIV (PWH), with a focus on the cardiac depot and how this relates to the known higher risk of cardiovascular disease in this unique population. RECENT FINDINGS Similar to the general population, cardiac fat depots mirror visceral adipose tissue in PWH. However, altered fat distribution, altered fat quality, and higher prevalence of enlarged epicardial adipose tissue depots are associated with increased coronary artery disease among PWH. Adipose tissue disturbances present in PWH ultimately contribute to increased risk of cardiovascular disease beyond traditional risk factors. Future research should aim to understand how regulating adipose tissue quantity and quality can modify cardiovascular risk.
Collapse
|
13
|
Wang Q, Chi J, Wang C, Yang Y, Tian R, Chen X. Epicardial Adipose Tissue in Patients with Coronary Artery Disease: A Meta-Analysis. J Cardiovasc Dev Dis 2022; 9:jcdd9080253. [PMID: 36005417 PMCID: PMC9410067 DOI: 10.3390/jcdd9080253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022] Open
Abstract
Objective: The aim of this study is to assess the association between epicardial adipose tissue (EAT) and coronary artery disease (CAD) via meta−analysis. Methods: Specific searches of online databases from January 2000 to May 2022 were conducted. All observational studies evaluating the association between EAT and CAD in PubMed, Web of Science, and the Cochrane Library databases were screened. A meta-analysis was conducted following the Preferred Reporting Items for Systematic Reviews and Meta−Analyses guidelines (PRISMA). In total, 21 studies encompassing 4975 subjects met the inclusion criteria, including 2377 diagnosed and assigned as the CAD group, while the other 2598 were assigned as the non−CAD group. Subjects in the CAD group were further divided into the severe stenosis group (stenosis ≥ 50%, n = 846) and the mild/moderate stenosis group (stenosis < 50%, n = 577). Results: Both the volume and thickness of EAT in the CAD group were larger compared to the non−CAD group (p < 0.00001). In a subgroup analysis within the CAD group, the severe stenosis group had a larger volume and thickness with respect to EAT when compared to the mild/moderate group (p < 0.001). Conclusions: The enlargement of EAT presented in CAD patients with an association with CAD severity. Although limited by different CAD types and measuring methods for EAT, as well as a smaller sample size, our results suggest that EAT is a novel predictor and a potential therapeutic target for CAD.
Collapse
Affiliation(s)
- Qingpeng Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiangyang Chi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yun Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rui Tian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xinzhong Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
14
|
Munnur RK, Cheng K, Laggoune J, Talman A, Muthalaly R, Nerlekar N, Baey YW, Nogic J, Lin A, Cameron JD, Seneviratne S, Wong DTL. Quantitative plaque characterisation and association with acute coronary syndrome on medium to long term follow up: insights from computed tomography coronary angiography. Cardiovasc Diagn Ther 2022; 12:415-425. [PMID: 36033222 PMCID: PMC9412217 DOI: 10.21037/cdt-21-763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
Background Computed tomography coronary angiography (CTCA) is an established imaging modality widely used for diagnosing coronary artery stenosis with expanding potential for comprehensive assessment of coronary artery disease (CAD). Lesion-based analyses of high-risk plaques (HRP) on CTCA may aid further in prognostication presenting with stable chest pain. We conduct qualitative and quantitative assessments to identify HRPs that are associated with acute coronary syndrome (ACS) on a medium to long term follow-up. Methods Retrospective cohort study of patients who underwent CTCA for suspected CAD. Obstructive stenosis (OS) is defined as ≥50% and the presence of HRP and its constituents: positive-remodelling (PR), low-attenuation-plaque (LAP; <56 HU), very-low-attenuation-plaque (vLAP; <30 HU) and spotty-calcification (SC) were recorded. A cross-sectional quantitative analysis of HRP was performed at the site of minimum-luminal-area (MLA). The primary endpoint was fatal or non-fatal ACS on follow-up. Results A total of 1,257 patients were included (mean age 61±14 years old and 51% male) with a median follow-up of 7.24 years (interquartile range 5.5 to 7.7 years). The occurrence of ACS was significantly higher in HRP (+) patients compared to HRP (−) patients and patients with no plaques (20.5% vs. 1.6% vs. 0.4%, log-rank test P<0.001). ACS was more frequent in HRP (+)/OS (+) patients (20.7%) compared to HRP (+)/OS (−) patients (8.6%), HRP (−)/OS (+) patients (1.8%) and HRP (−)/OS (−) patients (1.0%). OS, cross-sectional plaque area (PA) and the presence of vLAP identified those HRP lesions that were more likely to cause future ACS. Cross-sectional LAP area (<56 HU) in HRP lesions added incremental prognostic value to OS in predicting ACS (P=0.008). Conclusions The presence of OS and the LAP area at the site of MLA identify the HRP lesions that have the greatest association with development of future ACS.
Collapse
Affiliation(s)
- Ravi K Munnur
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Kevin Cheng
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Jordan Laggoune
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Andrew Talman
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Rahul Muthalaly
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Nitesh Nerlekar
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Yi-Wei Baey
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Jason Nogic
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Andrew Lin
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - James D Cameron
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Sujith Seneviratne
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia
| | - Dennis T L Wong
- Monash Cardiovascular Research Centre, Department of Medicine (Monash Medical Centre) Monash University and Monash Heart, Monash Health, Clayton, VIC, Australia.,South Australian Health Medical Research Institute (SAHMRI), Adelaide, Australia
| |
Collapse
|
15
|
Krishnan A, Sharma H, Yuan D, Trollope AF, Chilton L. The Role of Epicardial Adipose Tissue in the Development of Atrial Fibrillation, Coronary Artery Disease and Chronic Heart Failure in the Context of Obesity and Type 2 Diabetes Mellitus: A Narrative Review. J Cardiovasc Dev Dis 2022; 9:jcdd9070217. [PMID: 35877579 PMCID: PMC9318726 DOI: 10.3390/jcdd9070217] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/07/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a significant burden globally and are especially prevalent in obese and/or diabetic populations. Epicardial adipose tissue (EAT) surrounding the heart has been implicated in the development of CVDs as EAT can shift from a protective to a maladaptive phenotype in diseased states. In diabetic and obese patients, an elevated EAT mass both secretes pro-fibrotic/pro-inflammatory adipokines and forms intramyocardial fibrofatty infiltrates. This narrative review considers the proposed pathophysiological roles of EAT in CVDs. Diabetes is associated with a disordered energy utilization in the heart, which promotes intramyocardial fat and structural remodeling. Fibrofatty infiltrates are associated with abnormal cardiomyocyte calcium handling and repolarization, increasing the probability of afterdepolarizations. The inflammatory phenotype also promotes lateralization of connexin (Cx) proteins, undermining unidirectional conduction. These changes are associated with conduction heterogeneity, together creating a substrate for atrial fibrillation (AF). EAT is also strongly implicated in coronary artery disease (CAD); inflammatory adipokines from peri-vascular fat can modulate intra-luminal homeostasis through an “outside-to-inside” mechanism. EAT is also a significant source of sympathetic neurotransmitters, which promote progressive diastolic dysfunction with eventual cardiac failure. Further investigations on the behavior of EAT in diabetic/obese patients with CVD could help elucidate the pathogenesis and uncover potential therapeutic targets.
Collapse
Affiliation(s)
- Anirudh Krishnan
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Harman Sharma
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Daniel Yuan
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia; (A.K.); (H.S.); (D.Y.)
| | - Alexandra F. Trollope
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| | - Lisa Chilton
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Correspondence:
| |
Collapse
|
16
|
Yuvaraj J, Isa M, Che ZC, Lim E, Nerlekar N, Nicholls SJ, Seneviratne S, Lin A, Dey D, Wong DTL. Atherogenic index of plasma is associated with epicardial adipose tissue volume assessed on coronary computed tomography angiography. Sci Rep 2022; 12:9626. [PMID: 35688850 PMCID: PMC9187675 DOI: 10.1038/s41598-022-13479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
The atherogenic index of plasma (AIP) is a novel biomarker of atherogenic dyslipidaemia (AD), but its relationship with cardiac adipose tissue depots is unknown. We aimed to assess the association of AD with cardiac adipose tissue parameters on coronary computed tomography angiography (CCTA). We studied 161 patients who underwent CCTA between 2008 and 2011 (age 59.0 ± 14.0 years). AD was defined as triglyceride (TG) > 1.7 mmol/L and HDL < 1.0 mmol/L (n = 34). AIP was defined as the base 10 logarithmic ratio of TG to HDL. Plaque burden was assessed using the CT-Leaman score (CT-LeSc). We studied volume and attenuation of epicardial adipose tissue (EAT-v and EAT-a) and pericoronary adipose tissue (PCAT-v and PCAT-a) on CCTA using semi-automated software. Patients with AD had higher PCAT-v (p = 0.042) and EAT-v (p = 0.041). AIP was associated with EAT-v (p = 0.006), type II diabetes (p = 0.009) and male sex (p < 0.001) and correlated with CT-LeSc (p = 0.040). On multivariable analysis, AIP was associated with EAT-v ≥ 52.3 cm3, age, male sex and type II diabetes when corrected for traditional risk factors and plaque burden. AIP is associated with increased EAT volume, but not PCAT-a, after multivariable adjustment. These findings indicate AIP is associated with adverse adipose tissue changes which may increase coronary risk.
Collapse
Affiliation(s)
- Jeremy Yuvaraj
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia.,School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Mourushi Isa
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Zhu Chung Che
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Egynne Lim
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Nitesh Nerlekar
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia.,School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Sujith Seneviratne
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia.,School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Andrew Lin
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia.,School of Clinical Sciences, Monash University, Clayton, VIC, Australia.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dennis T L Wong
- Monash Cardiovascular Research Centre, Victorian Heart Institute, MonashHeart and Monash University, Monash Health, 246 Clayton Road, Clayton, VIC, 3168, Australia. .,School of Clinical Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
17
|
Åkra S, Seljeflot I, Braathen B, Bratseth V, Hansen CH, Arnesen H, Tønnessen T, Solheim S. The NLRP3 inflammasome activation in subcutaneous, epicardial and pericardial adipose tissue in patients with coronary heart disease undergoing coronary by-pass surgery. ATHEROSCLEROSIS PLUS 2022; 48:47-54. [PMID: 36644557 PMCID: PMC9833236 DOI: 10.1016/j.athplu.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023]
Abstract
Background and aims Epicardial and pericardial adipose tissue (EAT and PAT) associate with atherosclerosis, however, discussed to have different inflammatory properties. We examined the NLRP3 inflammasome related pathway, playing a pivotal role in atherosclerosis, in EAT, PAT and subcutaneous AT (SAT), their relationship to cell types and anthropometric measures in patients undergoing coronary artery bypass grafting. Methods Biopsies from EAT, PAT and SAT were collected from 52 patients with coronary heart disease (CHD) (median body weight 85.0 kg) and 22 controls. RNA was extracted and expression of interleukin (IL)-1β, IL-18, NLRP3, Caspase-1, toll-like receptor 4 (TLR4), IL-6, IL-6 receptor and gp130 were analyzed by RT-PCR. Results Limited differences in any genes between CHD patients and controls. IL-18 and IL-6 were 4-fold higher expressed in EAT versus PAT (p < 0.01, both) and SAT (p < 0.001, both), whereas caspase-1, IL-6R and gp130 were higher expressed in SAT compared to the other compartments (all p = 0.06-<0.001). Significant correlations between SAT and PAT gene expressions (r = 0.358-0.579, all p ≤ 0.01). Especially NLRP3 and TLR4 associated with the expression of macrophages in all compartments (all p < 0.001). In EAT IL-18 correlated inversely with the expression of macrophages and T-cells. In SAT and PAT most of the mediators associated with body weight. Conclusions Higher expression of IL-18 and IL-6 was observed in EAT in our non-obese CHD patients, not related to inflammatory cells. The NLRP3 inflammasome activation in SAT that mirrored PAT, both related to anthropometrics, suggest that SAT samples, being easily available, to a certain degree, represent adipose tissue inflammation in general.
Collapse
Affiliation(s)
- Sissel Åkra
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway,Faculty of Medicine, University of Oslo, Oslo, Norway,Corresponding author. Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Ullevål, Pb 4954 Nydalen, N-0240, Oslo, Norway.
| | - Bjørn Braathen
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Vibeke Bratseth
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Charlotte Holst Hansen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Harald Arnesen
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Theis Tønnessen
- Faculty of Medicine, University of Oslo, Oslo, Norway,Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Svein Solheim
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| |
Collapse
|
18
|
Abstract
Interest in epicardial adipose tissue (EAT) is growing rapidly, and research in this area appeals to a broad, multidisciplinary audience. EAT is unique in its anatomy and unobstructed proximity to the heart and has a transcriptome and secretome very different from that of other fat depots. EAT has physiological and pathological properties that vary depending on its location. It can be highly protective for the adjacent myocardium through dynamic brown fat-like thermogenic function and harmful via paracrine or vasocrine secretion of pro-inflammatory and profibrotic cytokines. EAT is a modifiable risk factor that can be assessed with traditional and novel imaging techniques. Coronary and left atrial EAT are involved in the pathogenesis of coronary artery disease and atrial fibrillation, respectively, and it also contributes to the development and progression of heart failure. In addition, EAT might have a role in coronavirus disease 2019 (COVID-19)-related cardiac syndrome. EAT is a reliable potential therapeutic target for drugs with cardiovascular benefits such as glucagon-like peptide 1 receptor agonists and sodium–glucose co-transporter 2 inhibitors. This Review provides a comprehensive and up-to-date overview of the role of EAT in cardiovascular disease and highlights the translational nature of EAT research and its applications in contemporary cardiology. In this Review, Iacobellis provides a comprehensive overview of the role of epicardial adipose tissue (EAT) in cardiovascular disease, including coronary artery disease, heart failure and atrial fibrillation, discusses imaging techniques for EAT assessment and highlights the therapeutic potential of targeting EAT in cardiovascular disease. Epicardial adipose tissue (EAT) has anatomical and functional interactions with the heart owing to the shared circulation and the absence of muscle fascia separating the two organs. EAT can be clinically measured with cardiac imaging techniques that can help to predict and stratify cardiovascular risk. Regional distribution of EAT is important because pericoronary EAT and left atrial EAT differently affect the risk of coronary artery diseases and atrial fibrillation, respectively. EAT has a role in the development of several cardiovascular diseases through complex mechanisms, including gene expression profile, pro-inflammatory and profibrotic proteome, neuromodulation, and glucose and lipid metabolism. EAT could be a potential therapeutic target for novel cardiometabolic medications that modulate adipose tissue such as glucagon-like peptide 1 receptor agonists and sodium–glucose co-transporter 2 inhibitors. EAT might be a reservoir of severe acute respiratory syndrome coronavirus 2 and an amplifier of coronavirus disease 2019 (COVID-19)-related cardiac syndrome.
Collapse
Affiliation(s)
- Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
19
|
Canu M, Broisat A, Riou L, Vanzetto G, Fagret D, Ghezzi C, Djaileb L, Barone-Rochette G. Non-invasive Multimodality Imaging of Coronary Vulnerable Patient. Front Cardiovasc Med 2022; 9:836473. [PMID: 35282382 PMCID: PMC8907666 DOI: 10.3389/fcvm.2022.836473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/01/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerotic plaque rupture or erosion remain the primary mechanism responsible for myocardial infarction and the major challenge of cardiovascular researchers is to develop non-invasive methods of accurate risk prediction to identify vulnerable plaques before the event occurs. Multimodal imaging, by CT-TEP or CT-SPECT, provides both morphological and activity information about the plaque and cumulates the advantages of anatomic and molecular imaging to identify vulnerability features among coronary plaques. However, the rate of acute coronary syndromes remains low and the mechanisms leading to adverse events are clearly more complex than initially assumed. Indeed, recent studies suggest that the detection of a state of vulnerability in a patient is more important than the detection of individual sites of vulnerability as a target of focal treatment. Despite this evolution of concepts, multimodal imaging offers a strong potential to assess patient's vulnerability. Here we review the current state of multimodal imaging to identify vulnerable patients, and then focus on emerging imaging techniques and precision medicine.
Collapse
Affiliation(s)
- Marjorie Canu
- Department of Cardiology, University Hospital, Grenoble Alpes, Grenoble, France
| | - Alexis Broisat
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
| | - Laurent Riou
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
| | - Gerald Vanzetto
- Department of Cardiology, University Hospital, Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
- French Alliance Clinical Trial, French Clinical Research Infrastructure Network, Paris, France
| | - Daniel Fagret
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
- Department of Nuclear Medicine, University Hospital, Grenoble Alpes, Grenoble, France
| | - Catherine Ghezzi
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
| | - Loic Djaileb
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
- Department of Nuclear Medicine, University Hospital, Grenoble Alpes, Grenoble, France
| | - Gilles Barone-Rochette
- Department of Cardiology, University Hospital, Grenoble Alpes, Grenoble, France
- Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, LRB, Grenoble, France
- French Alliance Clinical Trial, French Clinical Research Infrastructure Network, Paris, France
- *Correspondence: Gilles Barone-Rochette
| |
Collapse
|
20
|
Konwerski M, Gąsecka A, Opolski G, Grabowski M, Mazurek T. Role of Epicardial Adipose Tissue in Cardiovascular Diseases: A Review. BIOLOGY 2022; 11:355. [PMID: 35336728 PMCID: PMC8945130 DOI: 10.3390/biology11030355] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death worldwide. Epicardial adipose tissue (EAT) is defined as a fat depot localized between the myocardial surface and the visceral layer of the pericardium and is a type of visceral fat. EAT is one of the most important risk factors for atherosclerosis and cardiovascular events and a promising new therapeutic target in CVDs. In health conditions, EAT has a protective function, including protection against hypothermia or mechanical stress, providing myocardial energy supply from free fatty acid and release of adiponectin. In patients with obesity, metabolic syndrome, or diabetes mellitus, EAT becomes a deleterious tissue promoting the development of CVDs. Previously, we showed an adverse modulation of gene expression in pericoronary adipose tissue in patients with coronary artery disease (CAD). Here, we summarize the currently available evidence regarding the role of EAT in the development of CVDs, including CAD, heart failure, and atrial fibrillation. Due to the rapid development of the COVID-19 pandemic, we also discuss data regarding the association between EAT and the course of COVID-19. Finally, we present the potential therapeutic possibilities aiming at modifying EAT's function. The development of novel therapies specifically targeting EAT could revolutionize the prognosis in CVDs.
Collapse
Affiliation(s)
| | | | | | | | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097 Warszawa, Poland; (M.K.); (A.G.); (G.O.); (M.G.)
| |
Collapse
|
21
|
Seitz A, Sechtem U. Pericoronary adipose tissue attenuation by computed tomography: A novel indicator for coronary microvascular dysfunction? Int J Cardiol 2021; 343:12-13. [PMID: 34481837 DOI: 10.1016/j.ijcard.2021.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Andreas Seitz
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany.
| | - Udo Sechtem
- Department of Cardiology and Angiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany; Cardiologicum Stuttgart, Stuttgart, Germany
| |
Collapse
|
22
|
Konwerski M, Gromadka A, Arendarczyk A, Koblowska M, Iwanicka-Nowicka R, Wilimski R, Czub P, Filipiak KJ, Hendzel P, Zielenkiewicz P, Opolski G, Gąsecka A, Mazurek T. Atherosclerosis Pathways are Activated in Pericoronary Adipose Tissue of Patients with Coronary Artery Disease. J Inflamm Res 2021; 14:5419-5431. [PMID: 34707383 PMCID: PMC8542577 DOI: 10.2147/jir.s326769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Perivascular release of inflammatory mediators may accelerate coronary lesion formation and contribute to plaque instability. Accordingly, we compared gene expression in pericoronary adipose tissue (PCAT) in patients with advanced coronary artery disease (CAD) and non-CAD controls. PATIENTS AND METHODS PCAT samples were collected during coronary bypass grafting from CAD patients (n = 21) and controls undergoing valve replacement surgery, with CAD excluded by coronary angiography (n = 19). Gene expression was measured by GeneChip™ Human Transcriptome Array 2.0. Obtained list of 1348 transcripts (2.0%) that passed the filter criteria was further analyzed by Ingenuity Pathway Analysis software, identifying 735 unique differentially expressed genes (DEGs). RESULTS Among the CAD patients, 416 (30.9%) transcripts were upregulated, and 932 (69.1%) were downregulated, compared to controls. The top upregulated genes were involved in inflammation and atherosclerosis (chemokines, interleukin-6, selectin E and low-density lipoprotein cholesterol (LDL-C) receptor), whereas the downregulated genes were involved in cardiac ischaemia and remodelling, platelet function and mitochondrial function (miR-3671, miR-4524a, multimerin, biglycan, tissue factor pathway inhibitor (TFPI), glucuronidases, miR-548, collagen type I, III, IV). Among the top upstream regulators, we identified molecules that have proinflammatory and atherosclerotic features (High Mobility Group Box 2 (HMGB2), platelet-derived growth platelet (PDGF) and evolutionarily conserved signaling intermediate in Toll pathways (ESCIT)). The activated pathway related to DEGs consisted of molecules with well-established role in the pathogenesis of atherosclerosis (TFPI, plasminogen activator, plasminogen activator, urokinase receptor (PLAUR), thrombomodulin). Moreover, we showed that 22 of the altered genes form a pro-atherogenic network. CONCLUSION Altered gene expression in PCAT of CAD patients, with genes upregulation and activation of pathway involved in inflammation and atherosclerosis, may be involved in CAD development and progression.
Collapse
Affiliation(s)
- Michał Konwerski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Gromadka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Arendarczyk
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Marta Koblowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Radosław Wilimski
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Czub
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Piotr Hendzel
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Opolski
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
23
|
Zhang S, Gu H, Yu X, Kang B, Yuan X, Wang X. Association Between Carotid Artery Perivascular Fat Density and Intraplaque Hemorrhage. Front Cardiovasc Med 2021; 8:735794. [PMID: 34616788 PMCID: PMC8488125 DOI: 10.3389/fcvm.2021.735794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/23/2021] [Indexed: 01/22/2023] Open
Abstract
Objectives: Perivascular adipose tissue plays a key role in atherosclerosis, but its effects on the composition of carotid atherosclerotic plaques are unknown. This study aimed to investigate the association between inflammatory carotid artery and intraplaque hemorrhage (IPH) in the carotid artery. Methods: This is a single-center retrospective study. Carotid inflammation was assessed by perivascular fat density (PFD) in 72 participants (mean age, 65.1 years; 56 men) who underwent both computed tomography angiography (CTA) and magnetic resonance imaging (MRI) within 2 weeks. The presence of IPH was assessed with MRI. Carotid stenosis, maximum plaque thickness, calcification, and ulceration were evaluated through CTA. The association between PFD and the occurrence of IPH was studied using generalized estimating equations analysis. Results: Of 156 plaques, 72 plaques (46.2%) had IPH. Plaques with IPH showed higher PFD than those without [−41.4 ± 3.9 vs. −55.8 ± 6.5 Hounsfield unit (HU); p < 0.001]. After age, calcification, degree of stenosis, maximum plaque thickness, and ulceration were adjusted for, PFD (OR, 1.96; 95% CI, 1.41–2.73; p < 0.001) was found to be strongly associated with the presence of IPH. Conclusions: A higher PFD is associated with the presence of IPH in the carotid artery. These findings may provide a novel marker to identify carotid IPH and risk stratification.
Collapse
Affiliation(s)
- Shuai Zhang
- School of Medicine, Shandong First Medical University, Jinan, China
| | - Hui Gu
- Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, China
| | - Xinxin Yu
- Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, China
| | - Bing Kang
- Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, China
| | - Xianshun Yuan
- Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, China
| | - Ximing Wang
- Shandong Provincial Hospital Affliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
24
|
Wall C, Huang Y, Le EPV, Ćorović A, Uy CP, Gopalan D, Ma C, Manavaki R, Fryer TD, Aloj L, Graves MJ, Tombetti E, Ariff B, Bambrough P, Hoole SP, Rusk RA, Jayne DR, Dweck MR, Newby D, Fayad ZA, Bennett MR, Peters JE, Slomka P, Dey D, Mason JC, Rudd JHF, Tarkin JM. Pericoronary and periaortic adipose tissue density are associated with inflammatory disease activity in Takayasu arteritis and atherosclerosis. EUROPEAN HEART JOURNAL OPEN 2021; 1:oeab019. [PMID: 34661196 PMCID: PMC8508012 DOI: 10.1093/ehjopen/oeab019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/26/2021] [Accepted: 08/04/2021] [Indexed: 12/20/2022]
Abstract
AIMS To examine pericoronary adipose tissue (PCAT) and periaortic adipose tissue (PAAT) density on coronary computed tomography angiography for assessing arterial inflammation in Takayasu arteritis (TAK) and atherosclerosis. METHODS AND RESULTS PCAT and PAAT density was measured in coronary (n = 1016) and aortic (n = 108) segments from 108 subjects [TAK + coronary artery disease (CAD), n = 36; TAK, n = 18; atherosclerotic CAD, n = 32; matched controls, n = 22]. Median PCAT and PAAT densities varied between groups (mPCAT: P < 0.0001; PAAT: P = 0.0002). PCAT density was 7.01 ± standard error of the mean (SEM) 1.78 Hounsfield Unit (HU) higher in coronary segments from TAK + CAD patients than stable CAD patients (P = 0.0002), and 8.20 ± SEM 2.04 HU higher in TAK patients without CAD than controls (P = 0.0001). mPCAT density was correlated with Indian Takayasu Clinical Activity Score (r = 0.43, P = 0.001) and C-reactive protein (r = 0.41, P < 0.0001) and was higher in active vs. inactive TAK (P = 0.002). mPCAT density above -74 HU had 100% sensitivity and 95% specificity for differentiating active TAK from controls [area under the curve = 0.99 (95% confidence interval 0.97-1)]. The association of PCAT density and coronary arterial inflammation measured by 68Ga-DOTATATE positron emission tomography (PET) equated to an increase of 2.44 ± SEM 0.77 HU in PCAT density for each unit increase in 68Ga-DOTATATE maximum tissue-to-blood ratio (P = 0.002). These findings remained in multivariable sensitivity analyses adjusted for potential confounders. CONCLUSIONS PCAT and PAAT density are higher in TAK than atherosclerotic CAD or controls and are associated with clinical, biochemical, and PET markers of inflammation. Owing to excellent diagnostic accuracy, PCAT density could be useful as a clinical adjunct for assessing disease activity in TAK.
Collapse
Affiliation(s)
- Christopher Wall
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Yuan Huang
- EPSRC Centre for Mathematical Imaging in Healthcare, University of Cambridge, Cambridge, UK
| | - Elizabeth P V Le
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Andrej Ćorović
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Christopher P Uy
- Vascular Sciences, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| | - Deepa Gopalan
- Department of Radiology, Cambridge University Hospitals NHS Trust, Hills Road, Cambridge, CB2 2QQ, UK
- Department of Radiology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, W12 0HS, UK
| | - Chuoxin Ma
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Roido Manavaki
- Department of Radiology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Luigi Aloj
- Department of Radiology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Martin J Graves
- Department of Radiology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Enrico Tombetti
- Department of biomedical Sciences L. Sacco, Università degli Studi di Milano, Milan, Italy
| | - Ben Ariff
- Department of Radiology, Imperial College Healthcare NHS Trust, Hammersmith Hospital, London, W12 0HS, UK
| | - Paul Bambrough
- Department of Cardiology, Royal Papworth Hospital, Cambridge, UK CB2 0AY, UK
| | - Stephen P Hoole
- Department of Cardiology, Royal Papworth Hospital, Cambridge, UK CB2 0AY, UK
| | - Rosemary A Rusk
- Department of Cardiology, Cambridge University Hospitals NHS Trust, Hills Road, Cambridge, CB2 2QQ, UK
| | - David R Jayne
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Marc R Dweck
- Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - David Newby
- Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Zahi A Fayad
- BioMedical Engineering & Imaging Institute, Icahn School of Medicine at Mt Sinai, Gustave L. Levy Place, New York, NY 10029-5674, USA
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - James E Peters
- Centre for Inflammatory Diseases, Imperial College London, London, UK
| | - Piotr Slomka
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 116 N Robertson Blvd, Los Angeles, CA, 90048, USA
| | - Justin C Mason
- Vascular Sciences, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| | - James H F Rudd
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Jason M Tarkin
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 2QQ, UK
- Vascular Sciences, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Campus, DuCane Road, London, W12 0HS, UK
| |
Collapse
|
25
|
Yuvaraj J, Cheng K, Lin A, Psaltis PJ, Nicholls SJ, Wong DTL. The Emerging Role of CT-Based Imaging in Adipose Tissue and Coronary Inflammation. Cells 2021; 10:1196. [PMID: 34068406 PMCID: PMC8153638 DOI: 10.3390/cells10051196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
A large body of evidence arising from recent randomized clinical trials demonstrate the association of vascular inflammatory mediators with coronary artery disease (CAD). Vascular inflammation localized in the coronary arteries leads to an increased risk of CAD-related events, and produces unique biological alterations to local cardiac adipose tissue depots. Coronary computed tomography angiography (CTA) provides a means of mapping inflammatory changes to both epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT) as independent markers of coronary risk. Radiodensity or attenuation of PCAT on coronary CTA, notably, provides indirect quantification of coronary inflammation and is emerging as a promising non-invasive imaging implement. An increasing number of observational studies have shown robust associations between PCAT attenuation and major coronary events, including acute coronary syndrome, and 'vulnerable' atherosclerotic plaque phenotypes that are associated with an increased risk of the said events. This review outlines the biological characteristics of both EAT and PCAT and provides an overview of the current literature on PCAT attenuation as a surrogate marker of coronary inflammation.
Collapse
Affiliation(s)
- Jeremy Yuvaraj
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University and Monash Heart, Monash Health, Clayton, VIC 3168, Australia; (J.Y.); (K.C.); (S.J.N.)
| | - Kevin Cheng
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University and Monash Heart, Monash Health, Clayton, VIC 3168, Australia; (J.Y.); (K.C.); (S.J.N.)
| | - Andrew Lin
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA 90048, USA;
| | - Peter J. Psaltis
- Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia;
- South Australian Health Medical Research Institute, Adelaide, SA 5000, Australia
| | - Stephen J. Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University and Monash Heart, Monash Health, Clayton, VIC 3168, Australia; (J.Y.); (K.C.); (S.J.N.)
| | - Dennis T. L. Wong
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University and Monash Heart, Monash Health, Clayton, VIC 3168, Australia; (J.Y.); (K.C.); (S.J.N.)
| |
Collapse
|
26
|
Goeller M, Achenbach S, Duncker H, Dey D, Marwan M. Imaging of the Pericoronary Adipose Tissue (PCAT) Using Cardiac Computed Tomography: Modern Clinical Implications. J Thorac Imaging 2021; 36:149-161. [PMID: 33875629 DOI: 10.1097/rti.0000000000000583] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Modern coronary computed tomography angiography (CTA) is the gold standard to visualize the epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT). The EAT is a metabolic active fat depot enclosed by the visceral pericardium and surrounds the coronary arteries. In disease states with increased EAT volume and dysfunctional adipocytes, EAT secretes an increased amount of adipocytokines and the resulting imbalance of proinflammatory and anti-inflammatory mediators potentially causes atherogenic effects on the coronary vessel wall in a paracrine way ("outside-to-inside" signaling). These EAT-induced atherogenic effects are reported to increase the risk for the development of coronary artery disease, myocardial ischemia, high-risk plaque features, and future major adverse cardiac events. Coronary inflammation plays a key role in the development and progression of coronary artery disease; however, its noninvasive detection remains challenging. In future, this clinical dilemma might be changed by the CTA-derived analysis of the PCAT. On the basis of the concept of an "inside-to-outside" signaling between the inflamed coronary vessel wall and the surrounding PCAT recent evidence demonstrates that PCAT computed tomography attenuation especially around the right coronary artery derived from routine CTA is a promising imaging biomarker and "sensor" to noninvasively detect coronary inflammation. This review summarizes the biological and technical principles of CTA-derived PCAT analysis and highlights its clinical implications to improve modern cardiovascular prevention strategies.
Collapse
Affiliation(s)
- Markus Goeller
- Department of Cardiology, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Stephan Achenbach
- Department of Cardiology, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Hendrik Duncker
- Department of Cardiology, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nuernberg (FAU), Erlangen, Germany
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mohamed Marwan
- Department of Cardiology, Faculty of Medicine, Friedrich-Alexander-University Erlangen-Nuernberg (FAU), Erlangen, Germany
| |
Collapse
|
27
|
Guglielmo M, Lin A, Dey D, Baggiano A, Fusini L, Muscogiuri G, Pontone G. Epicardial fat and coronary artery disease: Role of cardiac imaging. Atherosclerosis 2021; 321:30-38. [PMID: 33636676 DOI: 10.1016/j.atherosclerosis.2021.02.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
Epicardial adipose tissue (EAT) represents the fat depot located between the myocardium and the visceral pericardial layer. Far from being an inert tissue, EAT has been recognized as secreting a large amount of bioactive molecules called adipokines, which have numerous exocrine and paracrine effects. Recent evidence demonstrates that pericoronary adipose tissue (PCAT) - the EAT directly surrounding the coronary arteries - has a complex bidirectional interaction with the underlying vascular wall. While in normal conditions this mutual cross-talk helps maintain the homeostasis of the vascular wall, dysfunctional PCAT produces deleterious pro-inflammatory adipokines involved in atherogenesis. Importantly, PCAT inflammation has been associated with coronary artery disease (CAD) and major cardiovascular events. This review aims to provide an overview of the imaging techniques used to assess EAT, with a specific focus on cardiac computed tomography (CCT), which has become the key modality in this field. In contrast to echocardiography and cardiac magnetic resonance (CMR), CCT is not only able to visualize and precisely quantify EAT, but also to assess the coronary arteries and the PCAT simultaneously. In recent years, several papers have shown the utility of using CCT-derived PCAT attenuation as a surrogate measure of coronary inflammation. This noninvasive imaging biomarker may potentially be used to monitor patient responses to new antinflammatory drugs for the treatment of CAD.
Collapse
Affiliation(s)
- Marco Guglielmo
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Andrew Lin
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, United States
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, United States
| | - Andrea Baggiano
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Laura Fusini
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Giuseppe Muscogiuri
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Gianluca Pontone
- Department of Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, Milan, Italy.
| |
Collapse
|
28
|
Jones MA, MacCuaig WM, Frickenstein AN, Camalan S, Gurcan MN, Holter-Chakrabarty J, Morris KT, McNally MW, Booth KK, Carter S, Grizzle WE, McNally LR. Molecular Imaging of Inflammatory Disease. Biomedicines 2021; 9:152. [PMID: 33557374 PMCID: PMC7914540 DOI: 10.3390/biomedicines9020152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory diseases include a wide variety of highly prevalent conditions with high mortality rates in severe cases ranging from cardiovascular disease, to rheumatoid arthritis, to chronic obstructive pulmonary disease, to graft vs. host disease, to a number of gastrointestinal disorders. Many diseases that are not considered inflammatory per se are associated with varying levels of inflammation. Imaging of the immune system and inflammatory response is of interest as it can give insight into disease progression and severity. Clinical imaging technologies such as computed tomography (CT) and magnetic resonance imaging (MRI) are traditionally limited to the visualization of anatomical information; then, the presence or absence of an inflammatory state must be inferred from the structural abnormalities. Improvement in available contrast agents has made it possible to obtain functional information as well as anatomical. In vivo imaging of inflammation ultimately facilitates an improved accuracy of diagnostics and monitoring of patients to allow for better patient care. Highly specific molecular imaging of inflammatory biomarkers allows for earlier diagnosis to prevent irreversible damage. Advancements in imaging instruments, targeted tracers, and contrast agents represent a rapidly growing area of preclinical research with the hopes of quick translation to the clinic.
Collapse
Affiliation(s)
- Meredith A. Jones
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - William M. MacCuaig
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.A.J.); (W.M.M.); (A.N.F.)
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Seda Camalan
- Department of Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA; (S.C.); (M.N.G.)
| | - Metin N. Gurcan
- Department of Internal Medicine, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA; (S.C.); (M.N.G.)
| | - Jennifer Holter-Chakrabarty
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Katherine T. Morris
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Molly W. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
| | - Kristina K. Booth
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Steven Carter
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Lacey R. McNally
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA; (J.H.-C.); (K.T.M.); (M.W.M.); (K.K.B.); (S.C.)
- Department of Surgery, University of Oklahoma, Oklahoma City, OK 73104, USA
| |
Collapse
|
29
|
Saba L, Zucca S, Gupta A, Micheletti G, Suri JS, Balestrieri A, Porcu M, Crivelli P, Lanzino G, Qi Y, Nardi V, Faa G, Montisci R. Perivascular Fat Density and Contrast Plaque Enhancement: Does a Correlation Exist? AJNR Am J Neuroradiol 2020; 41:1460-1465. [PMID: 32732275 DOI: 10.3174/ajnr.a6710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Inflammatory changes in the fat tissue surrounding the coronary arteries have been associated with coronary artery disease and high-risk vulnerable plaques. Our aim was to investigate possible correlations between the presence and degree of perivascular fat density and a marker of vulnerable carotid plaque, namely contrast plaque enhancement on CTA. MATERIALS AND METHODS One-hundred patients (76 men, 24 women; mean age, 69 years) who underwent CT angiography for investigation of carotid artery stenosis were retrospectively analyzed. Contrast plaque enhancement and perivascular fat density were measured in 100 carotid arteries, and values were stratified according to symptomatic (ipsilateral-to-cerebrovascular symptoms)/asymptomatic status (carotid artery with the most severe degree of stenosis). Correlation coefficients (Pearson ρ product moment) were calculated between the contrast plaque enhancement and perivascular fat density. The differences among the correlation ρ values were calculated using the Fisher r-to-z transformation. Mann-Whitney analysis was also calculated to test differences between the groups. RESULTS There was a statistically significant positive correlation between contrast plaque enhancement and perivascular fat density (ρ value = 0.6582, P value = .001). The correlation was stronger for symptomatic rather than asymptomatic patients (ρ value = 0.7052, P value = .001 versus ρ value = 0.4092, P value = .001). CONCLUSIONS There was a positive association between perivascular fat density and contrast plaque enhancement on CTA. This correlation was stronger for symptomatic rather than asymptomatic patients. Our results suggest that perivascular fat density could be used as an indirect marker of plaque instability.
Collapse
Affiliation(s)
- L Saba
- From the Departments of Radiology (L.S., S.Z., G.M., A.B., M.P.), Pathology (G.F.), and Vascular Surgery (R.M.), Azienda Ospedaliero Universitaria, Monserrato (Cagliari), Italy; Department of Radiology (A.G.), Weill Cornell Medicine, New York, New York
| | - S Zucca
- From the Departments of Radiology (L.S., S.Z., G.M., A.B., M.P.), Pathology (G.F.), and Vascular Surgery (R.M.), Azienda Ospedaliero Universitaria, Monserrato (Cagliari), Italy; Department of Radiology (A.G.), Weill Cornell Medicine, New York, New York
| | - A Gupta
- Stroke Diagnosis and Monitoring Division (J.S.S.), AtheroPoint (TM), Roseville, California
| | - G Micheletti
- From the Departments of Radiology (L.S., S.Z., G.M., A.B., M.P.), Pathology (G.F.), and Vascular Surgery (R.M.), Azienda Ospedaliero Universitaria, Monserrato (Cagliari), Italy; Department of Radiology (A.G.), Weill Cornell Medicine, New York, New York
| | - J S Suri
- Stroke Diagnosis and Monitoring Division (J.S.S.), AtheroPoint (TM), Roseville, California
| | - A Balestrieri
- From the Departments of Radiology (L.S., S.Z., G.M., A.B., M.P.), Pathology (G.F.), and Vascular Surgery (R.M.), Azienda Ospedaliero Universitaria, Monserrato (Cagliari), Italy; Department of Radiology (A.G.), Weill Cornell Medicine, New York, New York
| | - M Porcu
- From the Departments of Radiology (L.S., S.Z., G.M., A.B., M.P.), Pathology (G.F.), and Vascular Surgery (R.M.), Azienda Ospedaliero Universitaria, Monserrato (Cagliari), Italy; Department of Radiology (A.G.), Weill Cornell Medicine, New York, New York
| | - P Crivelli
- Department of Radiology (P.C.), Azienda Ospedaliero Universitaria, Sassari, Italy
| | - G Lanzino
- Department of Neurologic Surgery (G.L., V.N.), Mayo Clinic, Rochester, Minnesota
| | - Y Qi
- Xuanwu Hospital (Y.Q.), Capital Medical University Beijing, China
| | - V Nardi
- Department of Neurologic Surgery (G.L., V.N.), Mayo Clinic, Rochester, Minnesota
| | - G Faa
- From the Departments of Radiology (L.S., S.Z., G.M., A.B., M.P.), Pathology (G.F.), and Vascular Surgery (R.M.), Azienda Ospedaliero Universitaria, Monserrato (Cagliari), Italy; Department of Radiology (A.G.), Weill Cornell Medicine, New York, New York
| | - R Montisci
- From the Departments of Radiology (L.S., S.Z., G.M., A.B., M.P.), Pathology (G.F.), and Vascular Surgery (R.M.), Azienda Ospedaliero Universitaria, Monserrato (Cagliari), Italy; Department of Radiology (A.G.), Weill Cornell Medicine, New York, New York
| |
Collapse
|
30
|
Perivascular adipose tissue in age-related vascular disease. Ageing Res Rev 2020; 59:101040. [PMID: 32112889 DOI: 10.1016/j.arr.2020.101040] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/31/2020] [Accepted: 02/23/2020] [Indexed: 12/16/2022]
Abstract
Perivascular adipose tissue (PVAT), a crucial regulator of vascular homeostasis, is actively involved in vascular dysfunction during aging. PVAT releases various adipocytokines, chemokines and growth factors. In an endocrine and paracrine manner PVAT-derived factors regulate vascular signalling and inflammation modulating functions of adjacent layers of the vasculature. Pathophysiological conditions such as obesity, type 2 diabetes, vascular injury and aging can cause PVAT dysfunction, leading to vascular endothelial and smooth muscle cell dysfunctions. We and others have suggested that PVAT is involved in the inflammatory response of the vascular wall in diet induced obesity animal models leading to vascular dysfunction due to disappearance of the physiological anticontractile effect. Previous studies confirm a crucial role for pinpointed PVAT inflammation in promoting vascular oxidative stress and inflammation in aging, enhancing the risk for development of cardiovascular disease. In this review, we discuss several studies and mechanisms linking PVAT to age-related vascular diseases. An overview of the suggested roles played by PVAT in different disorders associated with the vasculature such as endothelial dysfunction, neointimal formation, aneurysm, vascular contractility and stiffness will be performed. PVAT may be considered a potential target for therapeutic intervention in age-related vascular disease.
Collapse
|
31
|
Abstract
Accumulating knowledge on the biology and function of the adipose tissue has led to a major shift in our understanding of its role in health and disease. The adipose tissue is now recognized as a crucial regulator of cardiovascular health, mediated by the secretion of several bioactive products, including adipocytokines, microvesicles and gaseous messengers, with a wide range of endocrine and paracrine effects on the cardiovascular system. The adipose tissue function and secretome are tightly controlled by complex homeostatic mechanisms and local cell-cell interactions, which can become dysregulated in obesity. Systemic or local inflammation and insulin resistance lead to a shift in the adipose tissue secretome from anti-inflammatory and anti-atherogenic towards a pro-inflammatory and pro-atherogenic profile. Moreover, the interplay between the adipose tissue and the cardiovascular system is bidirectional, with vascular-derived and heart-derived signals directly affecting adipose tissue biology. In this Review, we summarize the current knowledge of the biology and regional variability of adipose tissue in humans, deciphering the complex molecular mechanisms controlling the crosstalk between the adipose tissue and the cardiovascular system, and their possible clinical translation. In addition, we highlight the latest developments in adipose tissue imaging for cardiovascular risk stratification and discuss how therapeutic targeting of the adipose tissue can improve prevention and treatment of cardiovascular disease.
Collapse
|
32
|
Niedziela M, Wojciechowska M, Zarębiński M, Cudnoch-Jędrzejewska A, Mazurek T. Adiponectin promotes ischemic heart preconditioning- PRO and CON. Cytokine 2020; 127:154981. [PMID: 31911263 DOI: 10.1016/j.cyto.2019.154981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/07/2019] [Accepted: 12/27/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Magdalena Niedziela
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Wojciechowska
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Independent Public Specialist Western Hospital John Paul II in Grodzisk Mazowiecki, Poland.
| | - Maciej Zarębiński
- Independent Public Specialist Western Hospital John Paul II in Grodzisk Mazowiecki, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Poland
| |
Collapse
|
33
|
|
34
|
Monti CB, Codari M, De Cecco CN, Secchi F, Sardanelli F, Stillman AE. Novel imaging biomarkers: epicardial adipose tissue evaluation. Br J Radiol 2019; 93:20190770. [PMID: 31782934 DOI: 10.1259/bjr.20190770] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epicardial adipose tissue (EAT) is a metabolically activated beige adipose tissue, non-homogeneously surrounding the myocardium. Physiologically, EAT regulates toxic fatty acids, protects the coronary arteries against mechanical strain, regulates proinflammatory cytokines, stimulates the production of nitric oxide, reduces oxidative stress, and works as a thermogenic source against hypothermia. Conversely, EAT has pathologic paracrine interactions with the surrounded vessels, and might favour the onset of atrial fibrillation. In addition, initial atherosclerotic lesions can promote inflammation and trigger the EAT production of cytokines increasing vascular inflammation, which, in turn, may help the development of collateral vessels but also of self-stimulating, dysregulated inflammatory process, increasing coronary artery disease severity. Variations in EAT were also linked to metabolic syndrome. Echocardiography first estimated EAT measuring its thickness on the free wall of the right ventricle but does not allow accurate volumetric EAT estimates. Cardiac CT (CCT) and cardiac MR (CMR) allow for three-dimensional EAT estimates, the former showing higher spatial resolution and reproducibility but being limited by radiation exposure and long segmentation times, the latter being radiation-free but limited by lower spatial resolution and reproducibility, higher cost, and difficulties for obese patients. EAT radiodensity at CCT could to be related to underlying metabolic processes. The correlation between EAT and response to certain pharmacological therapies has also been investigated, showing promising results. In the future, semi-automatic or fully automatic techniques, machine/deep-learning methods, if validated, will facilitate research for various EAT measures and may find a place in CCT/CMR reporting.
Collapse
Affiliation(s)
- Caterina B Monti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - Marina Codari
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Carlo Nicola De Cecco
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, GA, USA
| | - Francesco Secchi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.,Department of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milano, Italy
| | - Francesco Sardanelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.,Department of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Milano, Italy
| | - Arthur E Stillman
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, GA, USA
| |
Collapse
|
35
|
Farias‐Itao DS, Pasqualucci CA, Nishizawa A, da Silva LFF, Campos FM, Bittencourt MS, da Silva KCS, Leite REP, Grinberg LT, Ferretti‐Rebustini REDL, Jacob‐Filho W, Suemoto CK. B Lymphocytes and Macrophages in the Perivascular Adipose Tissue Are Associated With Coronary Atherosclerosis: An Autopsy Study. J Am Heart Assoc 2019; 8:e013793. [PMID: 31818216 PMCID: PMC6951066 DOI: 10.1161/jaha.119.013793] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Macrophages and T lymphocytes in the perivascular adipose tissue (PvAT) were previously linked to coronary artery disease. However, the role of these cells and B lymphocytes in the human PvAT adjacent to unstable atherosclerotic plaques has not been investigated. Moreover, previous studies were inconclusive on whether PvAT inflammation was restricted to the surroundings of the atheroma plaque. Methods and Results Coronary arteries were freshly dissected with the surrounding PvAT. Atherosclerotic plaques were classified according to the internationally accepted anatomopathological criteria. Immune cells in the PvAT were detected using immunohistochemistry and then quantified. We used linear and logistic regressions with robust standard errors, adjusted for possible confounding factors. In 246 atherosclerotic plaques (205 stable and 41 unstable plaques) from 82 participants (mean age=69.0±14.4 years; 50% men), the percentage of arterial obstruction was positively correlated with the densities of CD68+ macrophages (P=0.003) and CD20+ B lymphocytes (P=0.03) in the periplaque PvAT. The number of cells was greater in the periplaque PvAT than in the distal PvAT (macrophages, P<0.001; B lymphocytes, P=0.04). In addition, the density of macrophages in the periplaque PvAT was greater in the presence of unstable plaques (P=0.03) and was also greater near unstable plaques than in the distal PvAT (P=0.001). CD3+ T lymphocytes were not associated with percentage of obstruction and stable/unstable plaque composition. Conclusions The density of CD20+ B lymphocytes and CD68+ macrophages in periplaque PvAT was increased with plaque size, and the CD68+ macrophages were greater near unstable atherosclerotic plaques than near stable lesions. This inflammation was more intense in the periplaque PvAT than in the PvAT distal to the atherosclerotic plaques.
Collapse
Affiliation(s)
| | | | - Aline Nishizawa
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
| | | | | | - Márcio Sommer Bittencourt
- Center for Clinical and Epidemiological Research and Division of Internal MedicineUniversity HospitalUniversity of São PauloBrazil
- Preventive Medicine Center and Cardiology ProgramHospital Israelita Albert EinsteinSão PauloBrazil
| | | | - Renata Elaine Paraízo Leite
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
- Discipline of GeriatricsUniversity of São Paulo Medical SchoolSão PauloBrazil
| | - Lea Tenenholz Grinberg
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
- Department of Neurology, Memory and Aging CenterUniversity of CaliforniaSan FranciscoSan Francisco, CA
| | - Renata Eloah de Lucena Ferretti‐Rebustini
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
- Medical‐Surgical Nursing DepartmentUniversity of São Paulo School of NursingSão PauloBrazil
| | - Wilson Jacob‐Filho
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
- Discipline of GeriatricsUniversity of São Paulo Medical SchoolSão PauloBrazil
| | - Claudia Kimie Suemoto
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
- Discipline of GeriatricsUniversity of São Paulo Medical SchoolSão PauloBrazil
| |
Collapse
|
36
|
Perivascular Adipose Tissue and Coronary Atherosclerosis: from Biology to Imaging Phenotyping. Curr Atheroscler Rep 2019; 21:47. [PMID: 31741080 DOI: 10.1007/s11883-019-0817-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Perivascular adipose tissue (PVAT) has a complex, bidirectional relationship with the vascular wall. In disease states, PVAT secretes pro-inflammatory adipocytokines which may contribute to atherosclerosis. Recent evidence demonstrates that pericoronary adipose tissue (PCAT) may also function as a sensor of coronary inflammation. This review details PVAT biology and its clinical translation to current imaging phenotyping. RECENT FINDINGS PCAT attenuation derived from routine coronary computed tomography (CT) angiography is a novel noninvasive imaging biomarker of coronary inflammation. Pro-inflammatory cytokines released from the arterial wall diffuse directly into the surrounding PCAT and inhibit adipocyte lipid accumulation in a paracrine manner. This can be detected as an increased PCAT CT attenuation, a metric which associates with high-risk plaque features and independently predicts cardiac mortality. There is also evidence that PCAT attenuation relates to coronary plaque progression and is modified by systemic anti-inflammatory therapies. Due to its proximity to the coronary arteries, PCAT has emerged as an important fat depot in cardiovascular research. PCAT CT attenuation has the potential to improve cardiovascular risk stratification, and future clinical studies should examine its role in guiding targeted medical therapy.
Collapse
|
37
|
Ohyama K, Matsumoto Y, Shimokawa H. Coronary Artery Spasm and Perivascular Adipose Tissue Inflammation: Insights From Translational Imaging Research. Eur Cardiol 2019; 14:6-9. [PMID: 31131030 PMCID: PMC6523051 DOI: 10.15420/ecr.2019.3.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Perivascular adipose tissue, which constitutes perivascular components along with the adventitial vasa vasorum, plays an important role as a source of various inflammatory mediators in cardiovascular disease. Inflammatory changes in the coronary adventitia are thought to be involved in the pathogenesis of coronary artery spasm and vasospastic angina. Recent advances in translational research using non-invasive imaging modalities, including 18F-fluorodeoxyglucose PET and cardiac CT, have enabled us to visualise perivascular inflammation in the pathogenesis of coronary artery spasm. These modality approaches appear to be clinically useful as a non-invasive tool for examining the presence and severity of vasospastic angina.
Collapse
Affiliation(s)
- Kazuma Ohyama
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Yasuharu Matsumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| |
Collapse
|
38
|
Le Jemtel TH, Samson R, Ayinapudi K, Singh T, Oparil S. Epicardial Adipose Tissue and Cardiovascular Disease. Curr Hypertens Rep 2019; 21:36. [PMID: 30953236 DOI: 10.1007/s11906-019-0939-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Epicardial adipose tissue has been associated with the development/progression of cardiovascular disease. We appraise the strength of the association between epicardial adipose tissue and development/progression of cardiovascular diseases like coronary artery disease, atrial fibrillation, and heart failure with preserved ejection fraction. RECENT FINDINGS Cross-sectional clinical and translational correlative studies have established an association between epicardial adipose tissue and progression of coronary artery disease. Recent studies question this association and underline the need for longitudinal studies. Epicardial adipose tissue also plays a definite role in the pathobiology of atrial fibrillation and its recurrence after ablation. In contrast to an early paradigm, epicardial adipose tissue does not appear to play a key role in the pathogenesis of heart failure with preserved ejection fraction in obese patients. The association of epicardial adipose tissue with atrial fibrillation is robust. In contrast, the association of epicardial adipose tissue with coronary artery disease and heart failure with preserved ejection fraction is tenuous. Additional research, including longitudinal studies, is needed to confirm or refute these proposed associations.
Collapse
Affiliation(s)
- Thierry H Le Jemtel
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine; Tulane University Heart and Vascular Institute, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA.
| | - Rohan Samson
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine; Tulane University Heart and Vascular Institute, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Karnika Ayinapudi
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine; Tulane University Heart and Vascular Institute, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Twinkle Singh
- Section of Cardiology, Department of Medicine, Tulane University School of Medicine; Tulane University Heart and Vascular Institute, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Suzanne Oparil
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
39
|
Haberka M, Skilton M, Biedroń M, Szóstak-Janiak K, Partyka M, Matla M, Gąsior Z. Obesity, visceral adiposity and carotid atherosclerosis. J Diabetes Complications 2019; 33:302-306. [PMID: 30770289 DOI: 10.1016/j.jdiacomp.2019.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/11/2018] [Accepted: 01/12/2019] [Indexed: 12/30/2022]
Abstract
UNLABELLED Carotid artery atherosclerosis is a complex and multifactorial chronic disease. Our aim was to assess the associations between obesity, fat depots and carotid artery stenosis (CAS) in patients with high cardiovascular (CV) risk. METHODS The study group included 391 patients (F/M: 136/255 pts.; age: 61.8 ± 8 years) scheduled for elective coronary angiography. A comprehensive clinical assessment included a carotid artery and abdominal ultrasound involving the following fat depots: (1) carotid extra-media thickness (EMT) indexed to the body mass index (perivascular adipose tissue [PVAT]), and (2) abdominal visceral and subcutaneous fat. RESULTS Patients with a ≥50% stenosis of internal carotid artery (ICA) were older (65.9 ± 7 vs 60.3 ± 7 years, p < 0.0001) and had increased PVAT (836 ± 120 vs 779 ± 127 μm, p < 0.01) compared to individuals with <50% internal carotid artery stenosis. None of the CAS parameters were associated with any measures of obesity. Multivariable regression model showed that age (p < 0.0001), PVAT (p < 0.0001) and smoking (p = 0.04) were independently associated with the severity of ICA stenosis. CONCLUSIONS Our study showed that carotid extra-media thickness, an index measure of PVAT, is associated with CAS severity. It is a strong and independent predictor of significant ICA stenosis. None of the obesity measurements revealed associations with carotid atherosclerosis.
Collapse
Affiliation(s)
- Maciej Haberka
- Department of Cardiology, School of Health Sciences, Medical University of Silesia, Katowice, Poland.
| | - Michael Skilton
- Boden Institute of Obesity, Nutrition, Exercise and Eating Disorders, Sydney Medical School, University of Sydney, Australia
| | - Małgorzata Biedroń
- Department of Cardiology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
| | - Karolina Szóstak-Janiak
- Department of Cardiology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
| | | | - Monika Matla
- Department of Cardiology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
| | - Zbigniew Gąsior
- Department of Cardiology, School of Health Sciences, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
40
|
Antoniades C, Kotanidis CP, Berman DS. State-of-the-art review article. Atherosclerosis affecting fat: What can we learn by imaging perivascular adipose tissue? J Cardiovasc Comput Tomogr 2019; 13:288-296. [PMID: 30952610 PMCID: PMC6928589 DOI: 10.1016/j.jcct.2019.03.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 01/05/2023]
Abstract
Perivascular adipose tissue (PVAT) surrounding the human coronary arteries, secretes a wide range of adipocytokines affecting the biology of the adjacent vascular wall in a paracrine way. However, we have recently found that PVAT also behaves as a sensor of signals coming from the vascular wall, to which it reacts by changing its morphology and secretory profile. Indeed, vascular inflammation, a key feature of vascular disease pathogenesis, leads to the release of inflammatory signals that disseminate into local fat, inducing local lipolysis and inhibiting adipogenesis. This ability of PVAT to sense inflammatory signals from the vascular wall, can be used as a "thermometer" of the vascular wall, allowing for non-invasive detection of coronary inflammation. Vascular inflammation induces a shift of PVAT's composition from lipid to aqueous phase, resulting into increased computed tomography (CT) attenuation around the inflamed artery, forming a gradient with increasing attenuation closer to the inflamed coronary artery wall. These spatial changes in PVAT's attenuation are easily detected around culprit lesions during acute coronary syndromes. A new biomarker designed to captured these spatial changes in PVAT's attenuation around the human coronary arteries, the Fat Attenuation Index (FAI), has additional predictive value in stable patients for cardiac mortality and non-fatal heart attacks, above the prediction provided by the current state of the art that includes risk factors, calcium score and presence of high risk plaque features. The use of perivascular FAI in clinical practice may change the way we interpret cardiovascular CT angiography, as it is applicable to any coronary CT angiogram, and it offers dynamic information about the inflammatory burden of the coronary arteries, providing potential guidance for preventive measures and invasive treatments.
Collapse
Affiliation(s)
- Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Christos P Kotanidis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel S Berman
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
41
|
Madonna R, Massaro M, Scoditti E, Pescetelli I, De Caterina R. The epicardial adipose tissue and the coronary arteries: dangerous liaisons. Cardiovasc Res 2019; 115:1013-1025. [DOI: 10.1093/cvr/cvz062] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/23/2019] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Rosalinda Madonna
- Center of Excellence on Aging (CeSI-Met), Institute of Cardiology, ‘G. d’Annunzio’ University, Via L. Polacchi, Chieti Scalo (Chieti), Italy
| | - Marika Massaro
- National Research Council (CNR), Department of Biomedical sciences, Institute of Clinical Physiology, Via Monteroni, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR), Department of Biomedical sciences, Institute of Clinical Physiology, Via Monteroni, Lecce, Italy
| | - Irene Pescetelli
- Center of Excellence on Aging (CeSI-Met), Institute of Cardiology, ‘G. d’Annunzio’ University, Via L. Polacchi, Chieti Scalo (Chieti), Italy
| | - Raffaele De Caterina
- Institute of Cardiology, University of Pisa, C/o Ospedale di Cisanello, Via Paradisa, 2, Pisa, Italy
| |
Collapse
|
42
|
Mancio J, Oikonomou EK, Antoniades C. Perivascular adipose tissue and coronary atherosclerosis. Heart 2018; 104:1654-1662. [PMID: 29853488 DOI: 10.1136/heartjnl-2017-312324] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 12/25/2022] Open
Abstract
Adipose tissue (AT) is no longer viewed as a passive, energy-storing depot, and a growing body of evidence supports the concept that both quantitative and qualitative aspects of AT are critical in determining an individual's cardiometabolic risk profile. Among all AT sites, perivascular AT (PVAT) has emerged as a depot with a distinctive biological significance in cardiovascular disease given its close anatomical proximity to the vasculature. Recent studies have suggested the presence of complex, bidirectional paracrine and vasocrine signalling pathways between the vascular wall and its PVAT, with far-reaching implications in cardiovascular diagnostics and therapeutics. In this review, we first discuss the biological role of PVAT in both cardiovascular health and disease, highlighting its dual pro-atherogenic and anti-atherogenic roles, as well as potential therapeutic targets in cardiovascular disease. We then review current evidence and promising new modalities on the non-invasive imaging of epicardial AT and PVAT. Specifically, we present how our expanding knowledge on the bidirectional interplay between the vascular wall and its PVAT can be translated into novel clinical diagnostics tools to assess coronary inflammation. To this end, we present the example of a new CT-based method that tracks spatial changes in PVAT phenotype to extract information about the inflammatory status of the adjacent vasculature, highlighting the numerous diagnostic and therapeutic opportunities that arise from our increased understanding of PVAT biology.
Collapse
Affiliation(s)
- Jennifer Mancio
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Evangelos K Oikonomou
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2017. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2018; 25:320-330. [PMID: 29119374 DOI: 10.1007/s12350-017-1120-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Several original articles and editorials have been published in the Journal of Nuclear Cardiology in 2017. It has become a tradition at the beginning of each year to summarize some of these key articles in 2 sister reviews. In this first part one, we will discuss some of the progress made in the field of heart failure (cardio-oncology, myocardial blood flow, viability, dyssynchrony, and risk stratification), inflammation, molecular and hybrid imaging using advancement in positron emission tomography, computed tomography, and magnetic resonance imaging.
Collapse
Affiliation(s)
- Wael A AlJaroudi
- Division of Cardiovascular Medicine, Clemenceau Medical Center, Beirut, Lebanon
| | - Fadi G Hage
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, 306 Lyons-Harrison Research Building, 701 19th Street South, Birmingham, AL, 35294-0007, USA.
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
44
|
Ohyama K, Matsumoto Y, Amamizu H, Uzuka H, Nishimiya K, Morosawa S, Hirano M, Watabe H, Funaki Y, Miyata S, Takahashi J, Ito K, Shimokawa H. Association of Coronary Perivascular Adipose Tissue Inflammation and Drug-Eluting Stent–Induced Coronary Hyperconstricting Responses in Pigs. Arterioscler Thromb Vasc Biol 2017; 37:1757-1764. [DOI: 10.1161/atvbaha.117.309843] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Kazuma Ohyama
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.O., Y.M., H.A., H.U., K.N., S. Morosawa, M.H., S. Miyata, J.T., K.I., H.S.); and Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan (H.W., Y.F.)
| | - Yasuharu Matsumoto
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.O., Y.M., H.A., H.U., K.N., S. Morosawa, M.H., S. Miyata, J.T., K.I., H.S.); and Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan (H.W., Y.F.)
| | - Hirokazu Amamizu
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.O., Y.M., H.A., H.U., K.N., S. Morosawa, M.H., S. Miyata, J.T., K.I., H.S.); and Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan (H.W., Y.F.)
| | - Hironori Uzuka
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.O., Y.M., H.A., H.U., K.N., S. Morosawa, M.H., S. Miyata, J.T., K.I., H.S.); and Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan (H.W., Y.F.)
| | - Kensuke Nishimiya
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.O., Y.M., H.A., H.U., K.N., S. Morosawa, M.H., S. Miyata, J.T., K.I., H.S.); and Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan (H.W., Y.F.)
| | - Susumu Morosawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.O., Y.M., H.A., H.U., K.N., S. Morosawa, M.H., S. Miyata, J.T., K.I., H.S.); and Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan (H.W., Y.F.)
| | - Michinori Hirano
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.O., Y.M., H.A., H.U., K.N., S. Morosawa, M.H., S. Miyata, J.T., K.I., H.S.); and Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan (H.W., Y.F.)
| | - Hiroshi Watabe
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.O., Y.M., H.A., H.U., K.N., S. Morosawa, M.H., S. Miyata, J.T., K.I., H.S.); and Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan (H.W., Y.F.)
| | - Yoshihito Funaki
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.O., Y.M., H.A., H.U., K.N., S. Morosawa, M.H., S. Miyata, J.T., K.I., H.S.); and Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan (H.W., Y.F.)
| | - Satoshi Miyata
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.O., Y.M., H.A., H.U., K.N., S. Morosawa, M.H., S. Miyata, J.T., K.I., H.S.); and Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan (H.W., Y.F.)
| | - Jun Takahashi
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.O., Y.M., H.A., H.U., K.N., S. Morosawa, M.H., S. Miyata, J.T., K.I., H.S.); and Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan (H.W., Y.F.)
| | - Kenta Ito
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.O., Y.M., H.A., H.U., K.N., S. Morosawa, M.H., S. Miyata, J.T., K.I., H.S.); and Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan (H.W., Y.F.)
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (K.O., Y.M., H.A., H.U., K.N., S. Morosawa, M.H., S. Miyata, J.T., K.I., H.S.); and Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan (H.W., Y.F.)
| |
Collapse
|
45
|
Antonopoulos AS, Antoniades C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J Physiol 2017; 595:3907-3917. [PMID: 28191635 DOI: 10.1113/jp273049] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/05/2017] [Indexed: 12/22/2022] Open
Abstract
Classic concepts about the role of epicardial adipose tissue (EpAT) in heart physiology include its role in cardiac metabolism, mechanical protection of coronaries, innervation and possibly cryoprotection of the heart too. Nevertheless, recent evidence has revealed that epicardial adipose tissue regulates multiple aspects of cardiac biology including myocardial redox state, intracellular Ca2+ cycling, the electrophysiological and contractile properties of cardiomyocytes, cardiac fibrosis as well as coronary atherosclerosis progression. Moreover, it is now understood that the communication between EpAT and the heart is regulated by complex bidirectional pathways, since not only do adipokines regulate cardiac function, but also the heart affects EpAT biology via paracrine 'reverse' signalling. Such complex interactions as well as epicardial fat accumulation as a consequence of cardiac disease and epicardium to adipocyte differentiation should be taken into account by the clinical studies investigating EpAT as a risk marker and its potential as a therapeutic target against cardiovascular disease. Further in-depth exploration of the molecular mechanisms regulating the cross-talk between the heart and EpAT is expected to enhance our understanding regarding the role of the latter in cardiac physiology and relevant disease mechanisms.
Collapse
|
46
|
Farias-Itao DS, Pasqualucci CA, Nishizawa A, Silva LFF, Campos FM, Silva KCSD, Leite REP, Grinberg LT, Ferretti-Rebustini REL, Jacob Filho W, Suemoto CK. Perivascular Adipose Tissue Inflammation and Coronary Artery Disease: An Autopsy Study Protocol. JMIR Res Protoc 2016; 5:e211. [PMID: 27864166 PMCID: PMC5135732 DOI: 10.2196/resprot.6340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/11/2016] [Accepted: 09/14/2016] [Indexed: 01/02/2023] Open
Abstract
Background Perivascular adipose tissue (PAT) inflammation may have a role in coronary artery disease (CAD) pathophysiology. However, most evidence has come from samples obtained during surgical procedures that may imply in some limitations. Moreover, the role of B lymphocytes and inflammation in PAT that is adjacent to unstable atheroma plaques has not been investigated in humans using morphometric measurements. Objective The objective of this study is to investigate the inflammation in PAT, subcutaneous, and perirenal adipose tissues (SAT and PrAT) among chronic CAD, acute CAD, and control groups in an autopsy study. Methods Heart, SAT, and PrAT samples are collected from autopsied subjects in a general autopsy service, with the written informed consent of the next-of-kin (NOK). Sociodemographic and clinical data are obtained from a semistructure interview with the NOK. Coronary arteries are dissected and PAT are removed. Sections with the greatest arterial obstruction or unstable plaques, and the local with absence of atherosclerosis in all coronary arteries are sampled. PAT are represented adjacent to these fragments. Adipose tissues are fixed in 4% buffered paraformaldehyde solution and analyzed immunohistochemically for macrophages (CD68), macrophage polarization (CD11c for proinflammatory and CD206 for anti-inflammatory), B lymphocytes (CD20), and T lymphocytes (CD3). Slides will be scanned, and inflammatory cells will be quantified in 20 random fields. Participants will be categorized in CAD groups, after morphometric measurement of arterial obstruction and plaque composition analysis in accordance with American Heart Association classification. Three study groups will be investigated: acute CAD (at least one unstable plaque); chronic CAD (≥50% arterial obstruction); and controls (<50% arterial obstruction). Inflammatory cells in PAT, SAT, and PrAT will be counted and compared between groups using multivariate linear regression, adjusted for age, body mass index, hypertension, diabetes, alcohol use, and smoking. Results We present the methods of our study that was developed from 2 pilots. Currently, data collection and tissue processing are ongoing. Data collection, histology and immunochemistry procedures, and quantification of all inflammatory cells are expected to be concluded within 1 year. Conclusions This study will contribute for the understanding of the mechanisms of CAD pathophysiology because it will help to clarify the role of inflammation both in chronic and acute CAD.
Collapse
Affiliation(s)
- Daniela Souza Farias-Itao
- Laboratory of Cardiovascular Pathology, Department of Pathology - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Physiopathology in Aging Lab/Brazilian Aging Brain Study Group - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Carlos Augusto Pasqualucci
- Laboratory of Cardiovascular Pathology, Department of Pathology - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Physiopathology in Aging Lab/Brazilian Aging Brain Study Group - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Aline Nishizawa
- Laboratory of Cardiovascular Pathology, Department of Pathology - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Physiopathology in Aging Lab/Brazilian Aging Brain Study Group - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | | | - Fernanda Marinho Campos
- Laboratory of Cardiovascular Pathology, Department of Pathology - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Karen Cristina Souza da Silva
- Laboratory of Cardiovascular Pathology, Department of Pathology - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Physiopathology in Aging Lab/Brazilian Aging Brain Study Group - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Renata Elaine Paraizo Leite
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Discipline of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Lea Tenenholz Grinberg
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, United States
| | - Renata Eloah Lucena Ferretti-Rebustini
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Medical-Surgical Nursing Department, University of Sao Paulo School of Nursing, Sao Paulo, Brazil
| | - Wilson Jacob Filho
- Physiopathology in Aging Lab/Brazilian Aging Brain Study Group - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Discipline of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Claudia Kimie Suemoto
- Laboratory of Cardiovascular Pathology, Department of Pathology - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Physiopathology in Aging Lab/Brazilian Aging Brain Study Group - LIM22, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Discipline of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
47
|
Mandic L, Traxler D, Gugerell A, Zlabinger K, Lukovic D, Pavo N, Goliasch G, Spannbauer A, Winkler J, Gyöngyösi M. Molecular Imaging of Angiogenesis in Cardiac Regeneration. CURRENT CARDIOVASCULAR IMAGING REPORTS 2016; 9:27. [PMID: 27683600 PMCID: PMC5018257 DOI: 10.1007/s12410-016-9389-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Myocardial infarction (MI) leading to heart failure displays an important cause of death worldwide. Adequate restoration of blood flow to prevent this transition is a crucial factor to improve long-term morbidity and mortality. Novel regenerative therapies have been thoroughly investigated within the past decades. RECENT FINDINGS Increased angiogenesis in infarcted myocardium has shown beneficial effects on the prognosis of MI; therefore, the proangiogenic capacity of currently tested treatments is of specific interest. Molecular imaging to visualize formation of new blood vessels in vivo displays a promising option to monitor proangiogenic effects of regenerative substances. SUMMARY Based on encouraging results in preclinical models, molecular angiogenesis imaging has recently been applied in a small set of patients. This article reviews recent literature on noninvasive in vivo molecular imaging of angiogenesis after MI as an integral part of cardiac regeneration.
Collapse
Affiliation(s)
- Ljubica Mandic
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Denise Traxler
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Alfred Gugerell
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Katrin Zlabinger
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Dominika Lukovic
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Noemi Pavo
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Georg Goliasch
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Andreas Spannbauer
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Johannes Winkler
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|