1
|
Vicens-Sans A, Marín S, Sanchis V, Ramos AJ, Molino F. Transfer of deoxynivalenol and fumonisins B 1 and B 2 from maize flour to maize/wheat-based bread. Int J Food Microbiol 2025; 432:111092. [PMID: 39922037 DOI: 10.1016/j.ijfoodmicro.2025.111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/21/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
Deoxynivalenol (DON) and fumonisins B-type (FBs), mycotoxins synthesized by Fusarium spp., cause serious health problems after their intake. These compounds are frequently found in maize and wheat, the most consumed cereals worldwide and main hosts of Fusarium, making them a food safety problem. This work studies the effect of the maize/wheat-based breadmaking process on the concentrations of DON and FBs. Breads were made using contaminated maize flour (40 %) mixed with uncontaminated wheat flour (60 %). Three factors were analyzed: mycotoxin contamination level (DON: 1.20 or 0.8 mg/kg; FBs: 1.28 or 0.61 mg/kg), sourdough use (absence, artisan or commercial) and fermentation time (2 or 12 h). Doughs were baked at 200 °C for 40 min. DON and FBs were determined by HPLC-DAD and HPLC-FLD, respectively. Additionally, sourdough microbiota was identified. The only isolated yeast was Saccharomyces cerevisiae, while lactic acid bacteria showed great variability, being Lactobacillus plantarum the most common. FBs concentration remained stable during fermentation; while for DON, the highest change was observed in the loaves with an initial concentration of 1.20 mg/kg, commercial sourdough use and 12 h fermented, showing a 28 % increase in its concentration. After baking, mycotoxin reduction was observed under all conditions, except in the aforementioned one that still showed a 16 % of DON increase. Results indicate that the reduction of DON during breadmaking may not be enough to ensure food safety from borderline contaminated flour to meet legal limits. However, bread with FBs levels below the maximum limits can be produced, even when using contaminated flour.
Collapse
Affiliation(s)
- Alexandre Vicens-Sans
- Applied Mycology Unit, Food Technology, Engineering and Science Department, University of Lleida, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Sonia Marín
- Applied Mycology Unit, Food Technology, Engineering and Science Department, University of Lleida, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain.
| | - Vicente Sanchis
- Applied Mycology Unit, Food Technology, Engineering and Science Department, University of Lleida, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Antonio J Ramos
- Applied Mycology Unit, Food Technology, Engineering and Science Department, University of Lleida, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain
| | - Francisco Molino
- Applied Mycology Unit, Food Technology, Engineering and Science Department, University of Lleida, AGROTECNIO-CERCA Centre, Av. Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
2
|
Biehl EM, Schneidemann-Bostelmann S, Hoheneder F, Asam S, Hückelhoven R, Rychlik M. Monitoring Fusarium toxins from barley to malt: Targeted inoculation with Fusarium culmorum. Mycotoxin Res 2025; 41:215-237. [PMID: 39702815 PMCID: PMC11757896 DOI: 10.1007/s12550-024-00573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024]
Abstract
Molds of the genus Fusarium infect nearly all types of grain, causing significant yield and quality losses. Many species of this genus produce mycotoxins, which pose significant risks to human and animal health. In beer production, the complex interaction between primary fungal metabolites and secondarily modified mycotoxins in barley, malt, and beer complicates the situation, highlighting the need for effective analytical methods to quickly and accurately monitor these toxins. We developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to simultaneously analyze 14 Fusarium toxins, including modified forms (deoxynivalenol (DON), DON-3-glucoside, 3-acetyl-DON, 15-acetyl-DON, nivalenol, fusarenone X, HT-2 toxin, T-2 toxin, the enniatins A, A1, B, B1, beauvericin, and zearalenone) in barley and throughout the malting process. Stable isotope dilution assays (SIDAs) and matrix-matched calibration were used for quantification. A micro-malting setup was established to produce Fusarium-contaminated barley malt under reproducible conditions using targeted inoculation with F. culmorum. Mycotoxins were quantified throughout the malting process and compared to the content of fungal DNA. Further, the impact of various malting parameters was investigated, thus revealing that different malting scenarios exhibited different toxin enrichment patterns. We demonstrated that mycotoxin concentration and the ratio of DON to DON-3-glucoside changed throughout the malting processes, depending on fungal spore concentrations, germination temperature, and malting temperature. The study highlights the complexity of mycotoxin dynamics in malt production and the importance of optimized processing conditions to minimize toxin levels in final malt products.
Collapse
Affiliation(s)
- Eva Maria Biehl
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Felix Hoheneder
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Stefan Asam
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
3
|
Boško R, Pluháčková H, Martiník J, Benešová K, Svoboda Z, Běláková S, Pernica M. Occurrence of mycotoxins in milk thistle: to be included in legislation or not? Mycotoxin Res 2025; 41:199-206. [PMID: 39656435 DOI: 10.1007/s12550-024-00577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 01/24/2025]
Abstract
The silymarin complex extracted from milk thistle provides significant health benefits, particularly due to its antioxidant and hepatoprotective properties. However, plant substances can be contaminated by a number of fungi types and their secondary metabolites-mycotoxins. This work deals with the determination of aflatoxins and zearalenone and its metabolites in 39 different samples grown in 2020 and 2021. Analysis of mycotoxins was performed by UHPLC-MS/MS after immunoaffinity column AFLAPREP® and EASI-EXTRACT® ZEARALENONE clean-up. The presence of aflatoxins was not confirmed in the monitored samples, but 1/3 of the samples were contaminated with zearalenone in the range of 2.8-378.9 µg/kg. Metabolites of zearalenone such as α-zearalenol, α-zearalanol, and β-zearalanol were not detected in any of the samples. β-Zearalenol was found in two samples (2.6 µg/kg and 29.8 µg/kg).
Collapse
Affiliation(s)
- Rastislav Boško
- Research Institute of Brewing and Malting, Mostecká 7, 614 00, Brno, Czech Republic
| | - Helena Pluháčková
- Faculty of AgriSciences, Department of Crop Science, Breeding and Plant Medicine, Mendel University in Brno, Zemědělská 1, 613 00, Brno, Czech Republic
| | - Jan Martiník
- Research Institute of Brewing and Malting, Mostecká 7, 614 00, Brno, Czech Republic
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 160 00, Prague 6, Prague, Czech Republic
| | - Karolína Benešová
- Research Institute of Brewing and Malting, Mostecká 7, 614 00, Brno, Czech Republic
| | - Zdeněk Svoboda
- Research Institute of Brewing and Malting, Mostecká 7, 614 00, Brno, Czech Republic
- Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00, Brno, Czech Republic
| | - Sylvie Běláková
- Research Institute of Brewing and Malting, Mostecká 7, 614 00, Brno, Czech Republic
| | - Marek Pernica
- Research Institute of Brewing and Malting, Mostecká 7, 614 00, Brno, Czech Republic.
| |
Collapse
|
4
|
Arghavan B, Kordkatuli K, Mardani H, Jafari A. A Comprehensive Systematic Review and Meta-Analysis on the Prevalence of Aflatoxin M1 in Dairy Products in Selected Middle East Countries. Vet Med Sci 2025; 11:e70204. [PMID: 39840829 PMCID: PMC11752159 DOI: 10.1002/vms3.70204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Human consumption of dairy products contaminated with aflatoxin (AF) M1 can lead to severe health issues. This AF's significance and impact on health necessitate a thorough investigation of its prevalence in dairy products. OBJECTIVES This study aims to determine the prevalence of AFM1 in dairy products through a systematic review and meta-analysis, focusing on data from Middle Eastern countries. METHODS We identified relevant studies through electronic database searches (PubMed, Scopus and Web of Science) up to August 2023. We employed a random-effects model to derive an overall estimate and used 95% confidence intervals to determine pooled prevalence rates. RESULTS The meta-analysis included 193 studies encompassing 297,530 samples of dairy products. The results showed that AFM1 contaminated 87% of dairy products. The following is a ranking of countries based on the prevalence of AFM1 in their dairy products: Iran > Jordan > Turkey > Kuwait > Lebanon > Syria > Egypt > Cyprus > the United Arab Emirates. The current meta-analysis indicated that Middle Eastern countries exhibited a high prevalence of AFM1 in dairy products. The prevalence rates for AFM1 in various dairy products were as follows: milk (87%), yogurt (68.9%), cheese (63.6%), kashk (62.9%), doogh (55.6%) and ice cream (54%). Pasteurized milk (99.5%), ultra-high temperature (91.3%), raw milk (73%) and traditional milk (51%), among other milk types, had the highest contamination rates. CONCLUSION The study reveals a high prevalence of AFM1 in dairy products, particularly in Middle Eastern countries. Given the critical importance of milk and dairy products in the diet, special measures are needed to safeguard their quality and protect consumers from AF contamination.
Collapse
Affiliation(s)
- Bahareh Arghavan
- Department of Basic Medical SciencesSchool of MedicineAbadan University of Medical SciencesAbadanIran
| | - Kosar Kordkatuli
- Student Research CommitteeDepartment of Surgical TechnologySchool of Paramedical SciencesGolestan University of Medical SciencesGorganIran
| | - Helia Mardani
- Student Research CommitteeDepartment of NutritionSchool of Nutritional Sciences and DieteticsTehran University of Medical Sciences (TUMS)TehranIran
| | - Ali Jafari
- Student Research CommitteeDepartment of Community NutritionFaculty of Nutrition Sciences and Food TechnologyNational Nutrition and Food Technology Research InstituteShahid Beheshti University of Medical SciencesTehranIran
- Systematic Review and Meta‐analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran
| |
Collapse
|
5
|
Oluwakayode A, Sulyok M, Krska R, Medina A. The effect of the interactions of water activity, and temperature on OTA, OTB, and OTα produced by Penicillium verrucosum in a mini silo of natural and inoculated wheat using CO 2 production as fungal activity sentinel. Food Chem 2024; 460:140590. [PMID: 39067424 DOI: 10.1016/j.foodchem.2024.140590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Ochratoxin A (OTA) is a nephrotoxin that contaminates grains in storage. Moisture and temperature sensors give delayed responses due to their slow kinetic movement within the silo. This study examines if CO2 production could predict OTA contamination and identify storage conditions exceeding the maximum limit (5 μg/kg). The impact of water activity levels (0.70-0.90 aw), temperatures (15 and 20 °C), and storage duration on (a)Penicillium verrucosum population, (b)CO2 respiration rates (RR), and (c)ochratoxins concentrations in stored wheat was investigated. 96 samples were analysed for ochratoxins with LCMS-MS. RR was >7 times higher at wetter conditions than at drier aw levels. A positive correlation between CO2, OTA, OTB, and OTα was observed at the wettest conditions. OTA exceeded the limit at >0.80 aw (16% moisture content) with RR > 0.01 mg CO2 kg-1 h-1. The knowledge of the RR of stored grain would alert grain farmers/managers to improve grain storage management.
Collapse
Affiliation(s)
- Abimbola Oluwakayode
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, College Rd. Wharley End, Bedford MK43 0AL, UK.
| | - Michael Sulyok
- University of Natural Resources and Life Sciences Vienna, Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Austria.
| | - Rudolf Krska
- University of Natural Resources and Life Sciences Vienna, Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, Austria; Institute for Global Food Security, National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK.
| | - Angel Medina
- Applied Mycology Group, Environment and AgriFood Theme, Cranfield University, College Rd. Wharley End, Bedford MK43 0AL, UK.
| |
Collapse
|
6
|
Böswald LF, Gottschalk C, Kaltner F, Merk J, Schwaiger K, Kienzle E. Feed-induced hypersalivation in horses from Austria, Germany and Switzerland. Equine Vet J 2024. [PMID: 39548687 DOI: 10.1111/evj.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/14/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND While previous reports come mostly from the southern Americas, several outbreaks of hypersalivation in horses were observed in Middle Europe from 2016 to 2018. OBJECTIVE To describe feed-induced hypersalivation in European horses. STUDY DESIGN Analysis of feedstuffs. METHODS Veterinarians and horse or stable owners were encouraged to submit feedstuffs from case outbreaks of hypersalivation in which, infectious diseases or other systemic causes of the syndrome were ruled out and intoxication was suspected. Feedstuff analysis was performed, including gross examination, microscopic analysis of fine particles, and for hay and forage mycological culturing and mycotoxin testing. RESULTS Eleven case outbreaks were investigated. Typical clinical findings in the horses were either foamy saliva around the mouth or serous salivation with puddles forming on the ground. Some horses also showed lesions of the gingival mucosa and/or the tongue. Foamy hypersalivation, sometimes combined with lesions of tongue and/or gingiva, was associated with finding of ergot sclerotia and ergot alkaloids in hay or pasture plants (ergocornin and ergocorninin having the highest concentrations). Serous hypersalivation with massive loss of fluid was associated with the fungus Rhizoctonia spp. As indicated by the detection of traces of swainsonine, mycotoxin production on the forage was seen as likely cause. The cessation of clinical signs took days to weeks after diet change, probably depending on the duration, type and amount of toxin intake. MAIN LIMITATIONS Small number of case outbreaks, records of clinical findings and horses' management were incomplete and were reported by horse owners. CONCLUSION Hypersalivation due to mycotoxins in the feed has become an emerging problem for horses in middle Europe.
Collapse
Affiliation(s)
- Linda Franziska Böswald
- Lehrstuhl für Tierernährung und Diätetik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph Gottschalk
- Lehrstuhl für Lebensmittelsicherheit, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Kaltner
- Lehrstuhl für Lebensmittelsicherheit, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joana Merk
- Lehrstuhl für Tierernährung und Diätetik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karin Schwaiger
- Lehrstuhl für Lebensmittelsicherheit, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ellen Kienzle
- Lehrstuhl für Tierernährung und Diätetik, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
7
|
Demonte LD, Cendoya E, Nichea MJ, Romero Donato CJ, Ramirez ML, Repetti MR. Occurrence of modified mycotoxins in Latin America: an up-to-date review. Mycotoxin Res 2024; 40:467-481. [PMID: 39096468 DOI: 10.1007/s12550-024-00548-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 07/17/2024] [Indexed: 08/05/2024]
Abstract
The Latin America region has a considerable extent of varied climate conditions: from tropical, subtropical, and warm temperate to temperate. Among the surface territory, different agricultural products are produced, making them an important food source for human consumption. Fungal species commonly colonize those important agricultural products and often contaminate them with mycotoxins that have a major impact on health, welfare, and productivity. Nowadays, special attention is paid to modified mycotoxins, which are those that cannot be detected by conventional analytical methods. However, little data about their natural occurrence in food and feed is available, especially in Latin American countries, where, among all the countries in this region, only a few of them are working on this subject. Thus, the present review summarizes the published information available in order to determine the possible human exposure risk to these toxins.
Collapse
Affiliation(s)
- Luisina D Demonte
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eugenia Cendoya
- Instituto de Investigación en Micología y Micotoxicología, IMICO, CONICET-UNRC, Ruta 36 Km 6015800) Río Cuarto, Córdoba, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - María J Nichea
- Instituto de Investigación en Micología y Micotoxicología, IMICO, CONICET-UNRC, Ruta 36 Km 6015800) Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cindy J Romero Donato
- Instituto de Investigación en Micología y Micotoxicología, IMICO, CONICET-UNRC, Ruta 36 Km 6015800) Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María L Ramirez
- Instituto de Investigación en Micología y Micotoxicología, IMICO, CONICET-UNRC, Ruta 36 Km 6015800) Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos (PRINARC), Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santiago del Estero 2654, 3000, Santa Fe, Argentina
| |
Collapse
|
8
|
Dick F, Dietz A, Asam S, Rychlik M. Development of a high-throughput UHPLC-MS/MS method for the analysis of Fusarium and Alternaria toxins in cereals and cereal-based food. Anal Bioanal Chem 2024; 416:5619-5637. [PMID: 39222085 PMCID: PMC11493838 DOI: 10.1007/s00216-024-05486-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
A QuEChERS (quick, easy, cheap, effective, rugged, and safe)-based multi-mycotoxin method was developed, analyzing 24 (17 free and 7 modified) Alternaria and Fusarium toxins in cereals via ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). A modified QuEChERS approach was optimized for sample preparation. Quantification was conducted using a combination of stable isotope dilution analysis (SIDA) for nine toxins and matrix-matched calibration for ten toxins. Quantification via a structurally similar internal standard was conducted for four analytes. Alternariol-9-sulfate (AOH-9-S) was measured qualitatively. Limits of detection (LODs) were between 0.004 µg/kg for enniatin A1 (ENN A1) and 3.16 µg/kg for nivalenol (NIV), while the limits of quantification were between 0.013 and 11.8 µg/kg, respectively. The method was successfully applied to analyze 136 cereals and cereal-based foods, including 28 cereal-based infant food products. The analyzed samples were frequently contaminated with Alternaria toxins, proving their ubiquitous occurrence. Interestingly, in many of those samples, some modified Alternaria toxins occurred, mainly alternariol-3-sulfate (AOH-3-S) and alternariol monomethyl ether-3-sulfate (AME-3-S), thus highlighting the importance of including modified mycotoxins in the routine analysis as they may significantly add to the total exposure of their parent toxins. Over 95% of the analyzed samples were contaminated with at least one toxin. Despite the general contamination, no maximum or indicative levels were exceeded.
Collapse
Affiliation(s)
- Fabian Dick
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany
| | - Alena Dietz
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany
| | - Stefan Asam
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany.
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, Maximus-Von-Imhof Forum 2, 85354, Freising, Germany
| |
Collapse
|
9
|
Brückner L, Cramer B, Humpf HU. Reactions of citrinin with amino compounds modelling thermal food processing. Mycotoxin Res 2024; 40:709-720. [PMID: 39298071 PMCID: PMC11480111 DOI: 10.1007/s12550-024-00557-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
Citrinin (CIT) is a nephrotoxic mycotoxin, produced by several species of Penicillium, Aspergillus, and Monascus. The foodstuffs most frequently contaminated with CIT include cereals, cereal products, and red yeast rice. Studies on the occurrence of CIT in food have shown that the CIT concentrations in processed cereal-based products are generally lower than in unprocessed industry cereal samples. One possible explanation is the reaction of CIT with major food components such as carbohydrates or proteins to form modified CIT. Such modified forms of CIT are then hidden from conventional analyses, but it is possible that they are converted back into the parent mycotoxin during digestion. The aim of this study is therefore to investigate reactions of CIT with food matrix during thermal processes and to gain a deeper understanding of the degradation of CIT during food processing. In this study, we could demonstrate that CIT reacts with amino compounds such as proteins, under typical food processing conditions, leading to modified forms of CIT.
Collapse
Affiliation(s)
- Lea Brückner
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Benedikt Cramer
- Institute of Food Chemistry, University of Münster, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Münster, Germany.
| |
Collapse
|
10
|
Ji X, He Y, Xiao Y, Liang Y, Yang W, Xiong L, Guo C, Zhang J, Wang X, Yang H. Distribution and safety evaluation of deoxynivalenol and its derivatives throughout the wheat product processing chain. Food Res Int 2024; 192:114784. [PMID: 39147488 DOI: 10.1016/j.foodres.2024.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
The distribution of deoxynivalenol (DON) and its derivatives 3-acetyldeoxynivalenol (3-Ac-DON) and 15-acetyldeoxynivalenol (15-Ac-DON) throughout the wheat processing chain were systemically evaluated by one-to-one corresponding studies of the whole processing chain. DON and its derivatives were determined by liquid chromatography-mass spectrometry (LC-MS/MS) in wheat grains and corresponding wheat bran, wheat flour, and semi-finished and finished wheat flour-based products. This investigation showed that wheat grain processing to wheat flour significantly decreased the levels of DON by approximately 52.7%-68.2%. Wheat flour processing of wheat flour-based products decreased the DON concentration by approximately 7.0%-70.6%. Among the processing methods, biscuit making showed the largest reduction (70.6%). The co-occurrence frequency of DON with low levels of 3-Ac-DON and 15-Ac-DON was significantly greater in wheat grains and wheat bran than in wheat flour. For wheat flour-based products, only the distribution pattern of 3-Ac-DON was observable in processed wheat flour products prepared using grains heavily contaminated with DON. In China, to the best of our knowledge, the processing factors (PFs) of DON in wheat flour and wheat flour-based products were systematically evaluated for the first time. The average PF of DON was 0.35 for wheat flour and the average PFs were 0.37-0.84 for wheat flour-based products, with biscuits having the smallest PF (0.37), indicating DON significantly decreasing in biscuit making. Furthermore, dietary exposure assessment of DON indicated an acceptable overall health risk in Chinese consumers, with the highest exposure being observed in infants and young children. This study provides important references for classified management of DON limits in wheat and its various products in China.
Collapse
Affiliation(s)
- Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yeyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ying Liang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Science, Nanjing 210014, Jiangsu, China
| | - Weikang Yang
- Yangzhou Fangguang Food Co., Ltd, Yangzhou, 225100, China
| | - Lina Xiong
- Beingmate (Hangzhou) Food Research Institute Co., Ltd., Hangzhou 310057, Zhejiang, China
| | - Cheng Guo
- Yangzhou Fangguang Food Co., Ltd, Yangzhou, 225100, China
| | - Jiahong Zhang
- Beingmate (Hangzhou) Food Research Institute Co., Ltd., Hangzhou 310057, Zhejiang, China
| | - Xiaodan Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China.
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
11
|
Gallo A, Catellani A, Ghilardelli F, Lapris M, Mastroeni C. Review: Strategies and technologies in preventing regulated and emerging mycotoxin co-contamination in forage for safeguarding ruminant health. Animal 2024; 18 Suppl 2:101280. [PMID: 39129068 DOI: 10.1016/j.animal.2024.101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Ruminants are often considered less susceptible to mycotoxins than monogastrics, owing to rumen microflora converting mycotoxins to less toxic compounds or several compounds present in the rumen-reticulum compartment, being able to bind the mycotoxin "mother" molecule that make them unavailable for absorption process in the gastro-intestinal tract of host animals. However, if ruminants consume feed contaminated by mycotoxins for long periods, their growth, development, and fertility can be compromised. Among regulated mycotoxins, the most studied and known for their effects are aflatoxins (AFs) AFB1, AFB2, AFG1 and AFG2, as well as the AFM1 for its high importance in dairy sector, deoxynivalenol (DON) and its metabolites 3/15 acetyl-DON and 3-glucoside DON, T-2 and HT-2 toxins, zearalenone, fumonisins, in particular that belong to the B class, and ochratoxin A. Furthermore, because of the emergence of multiple emerging mycotoxins that are detectable in feed utilised in ruminant diets, such as ensiled forage, there is now a growing focus on investigating these compounds by the scientific community to deepen their toxicity for animal health. Despite the enhancement of research, it is remarkable that there is a paucity of in vivo trials, as well as limited studies on nutrient digestibility and the impact of these molecules on rumen and intestinal functions or milk yield and quality. In this review, recent findings regarding the occurrence of regulated and emerging mycotoxins in forage and their possible adverse effects on dairy cattle are described, with special emphasis on animal performance and on rumen functionality.
Collapse
Affiliation(s)
- A Gallo
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy.
| | - A Catellani
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - F Ghilardelli
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - M Lapris
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| | - C Mastroeni
- Department of Animal Science, Food and Nutrition DIANA, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza, Italy
| |
Collapse
|
12
|
Wang Y, Su B, Yan X, Geng C, Lian T, Li X, Xu Y, Li Y. Studies of Mycotoxins in Medicinal Plants Conducted Worldwide over the Last Decade: A Systematic Review, Meta-Analysis, and Exposure Risk Assessment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155367. [PMID: 38493720 DOI: 10.1016/j.phymed.2024.155367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Mycotoxins have been reported to be present in medicinal plants. With the growing usage of medicinal plants, contamination of mycotoxins has emerged as one of the biggest threats to global food hygiene and ecological environment, posing a severe threat to human health. PURPOSE This study aimed to determine the mycotoxin prevalence and levels in medicinal plants and conduct a risk assessment by conducting a systematic review and meta-analysis. METHODS A thorough search on Web of Science and PubMed was conducted for the last decade, resulting in 54 studies (meeting the inclusion criteria) with 2829 data items that were included in the meta-analysis. RESULTS The combined prevalence of mycotoxins in medicinal plants was 1.7% (95% confidence interval, CI = 1.1% - 2.4%), with a mean mycotoxin concentration in medicinal plants of 3.551 µg/kg (95% CI = 3.461 - 3.641 µg/kg). Risk assessment results indicated that aflatoxins and ochratoxin A found in several medicinal plants posed a health risk to humans; additionally, emerging enniatins exhibited possible health risks. CONCLUSION Therefore, the study underlines the need for establishing stringent control measures to reduce the severity of mycotoxin contamination in medicinal plants.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Buda Su
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingxu Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chenlei Geng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tingting Lian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaomeng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanyan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yubo Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
13
|
Vörösházi J, Neogrády Z, Mátis G, Mackei M. Pathological consequences, metabolism and toxic effects of trichothecene T-2 toxin in poultry. Poult Sci 2024; 103:103471. [PMID: 38295499 PMCID: PMC10846437 DOI: 10.1016/j.psj.2024.103471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Contamination of feed with mycotoxins has become a severe issue worldwide. Among the most prevalent trichothecene mycotoxins, T-2 toxin is of particular importance for livestock production, including poultry posing a significant threat to animal health and productivity. This review article aims to comprehensively analyze the pathological consequences, metabolism, and toxic effects of T-2 toxin in poultry. Trichothecene mycotoxins, primarily produced by Fusarium species, are notorious for their potent toxicity. T-2 toxin exhibits a broad spectrum of negative effects on poultry species, leading to substantial economic losses as well as concerns about animal welfare and food safety in modern agriculture. T-2 toxin exposure easily results in negative pathological consequences in the gastrointestinal tract, as well as in parenchymal tissues like the liver (as the key organ for its metabolism), kidneys, or reproductive organs. In addition, it also intensely damages immune system-related tissues such as the spleen, the bursa of Fabricius, or the thymus causing immunosuppression and increasing the susceptibility of the animals to infectious diseases, as well as making immunization programs less effective. The toxin also damages cellular processes on the transcriptional and translational levels and induces apoptosis through the activation of numerous cellular signaling cascades. Furthermore, according to recent studies, besides the direct effects on the abovementioned processes, T-2 toxin induces the production of reactive molecules and free radicals resulting in oxidative distress and concomitantly occurring cellular damage. In conclusion, this review article provides a complex and detailed overview of the metabolism, pathological consequences, mechanism of action as well as the immunomodulatory and oxidative stress-related effects of T-2 toxin. Understanding these effects in poultry is crucial for developing strategies to mitigate the impact of the T-2 toxin on avian health and food safety in the future.
Collapse
Affiliation(s)
- Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, H-1078, Hungary; National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, H-1078, Hungary.
| |
Collapse
|
14
|
Dib AA, Assaf JC, Debs E, Khatib SE, Louka N, Khoury AE. A comparative review on methods of detection and quantification of mycotoxins in solid food and feed: a focus on cereals and nuts. Mycotoxin Res 2023; 39:319-345. [PMID: 37523055 DOI: 10.1007/s12550-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Many emerging factors and circumstances urge the need to develop and optimize the detection and quantification techniques of mycotoxins in solid food and feed. The diversity of mycotoxins, which have different properties and affinities, makes the standardization of the analytical procedures and the adoption of a single protocol that covers the attributes of all mycotoxins a tedious or even an impossible mission. Several modifications and improvements have been undergone in order to optimize the performance of these methods including the extraction solvents, the extraction methods, the clean-up procedures, and the analytical techniques. The techniques range from the rapid screening methods, which lack sensitivity and specificity such as TLC, to a spectrum of more advanced protocols, namely, ELISA, HPLC, and GC-MS and LC-MS/MS. This review aims at assessing the current studies related to these analytical techniques of mycotoxins in solid food and feed. It discusses and evaluates, through a critical approach, various sample treatment techniques, and provides an in-depth examination of different mycotoxin detection methods. Furthermore, it includes a comparison of their actual accuracy and a thorough analysis of the observed benefits and drawbacks.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon
| | - Sami El Khatib
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Nicolas Louka
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
| | - André El Khoury
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon.
| |
Collapse
|
15
|
Zhang Y, Chen T, Chen D, Liang W, Lu X, Zhao C, Xu G. Suspect and nontarget screening of mycotoxins and their modified forms in wheat products based on ultrahigh-performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2023; 1708:464370. [PMID: 37717452 DOI: 10.1016/j.chroma.2023.464370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Various forms of mycotoxins commonly exist in food and pose a significant risk to human health. Here a comprehensive suspect and nontarget screening strategy for both parent and modified mycotoxins was developed using ultrahigh-performance liquid chromatography-high resolution mass spectrometry (UHPLCHRMS). We constructed an in-house MS/MS database containing 82 mycotoxins in 8 categories. Then fragmentation characteristics of different classes of mycotoxins were rapidly extracted by a Python program "Fragmentation pattern screener (FPScreener)" and nontarget screening rules were determined by analyzing the frequencies and average intensities of fragmentation characteristics. Using the suspect and nontarget screening strategy, we successfully identified six parent mycotoxins and eight modified mycotoxins with different confidence levels in contaminated wheat and flour samples. This strategy enables screening of unknown parents and modified mycotoxins in food matrices with corresponding fragmentation characteristics.
Collapse
Affiliation(s)
- Yujie Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Chen
- Food Safety Research Unit of Chinese Academy of Medical Science (2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Wenying Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China.
| |
Collapse
|
16
|
Macri AM, Nagy AL, Daina S, Toma D, Pop ID, Nadăș GC, Cătoi AF. Occurrence of Types A and B Trichothecenes in Cereal Products Sold in Romanian Markets. Toxins (Basel) 2023; 15:466. [PMID: 37505735 PMCID: PMC10467109 DOI: 10.3390/toxins15070466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
In view of the frequent occurrences of mycotoxins in cereals, this study assessed the presence of trichothecenes in 121 samples from Romanian markets. These samples were divided into five groups based on product type: (1) bread and bakery products containing white flour, (2) half-brown bread with whole wheat flour, (3) brown bread containing rye flour, (4) pasta, and (5) raw wheat. Gas Chromatography-Mass Spectrometry was used to detect 13 different mycotoxins, which included the Type A compounds HT-2 toxin and T-2 toxin, as well as the Type B compounds deoxynivalenol and nivalenol. Results indicated trichothecene contamination in 90.08% of our samples, with deoxynivalenol predominating by at least 78% in each examined group. Co-occurrence of three or four trichothecenes were found in 23.85% of our samples. Our study underscores the necessity of consistent monitoring of staple foods to prevent the intake of harmful trichothecenes by consumers.
Collapse
Affiliation(s)
- Adrian Maximilian Macri
- Department of Animal Nutrition, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Andras-Laszlo Nagy
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis;
- Department of Veterinary Toxicology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Sorana Daina
- Department of Animal Nutrition, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Diana Toma
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Ioana Delia Pop
- Department of Land Measurements and Exact Sciences, Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - George Cosmin Nadăș
- Department of Microbiology, Immunology and Epidemiology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Adriana Florinela Cătoi
- Department of Pathophysiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
17
|
Pfleger F, Schwake-Anduschus C. Relevance of Zearalenone and its modified forms in bakery products. Mycotoxin Res 2023:10.1007/s12550-023-00493-3. [PMID: 37322296 PMCID: PMC10393900 DOI: 10.1007/s12550-023-00493-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Zearalenone is a frequently occurring and well-known mycotoxin developed in cereals before and during the harvest period by Fusarium spp. mainly in maize and wheat. In addition to the main form, various modified forms (phase I and II metabolites) were detected, in some cases in high amounts. These modified forms can be harmful for human health due to their different toxicity, which can be much higher compared to the parent toxin. In addition, the parent toxin can be cleaved from the phase I and II metabolites during digestion. A risk of correlated and additive adverse effects of the metabolites of ZEN phase I and II in humans and animals is evident. ZEN is considered in many studies on its occurrence in grain-based foods and some studies are dedicated to the behavior of ZEN during food processing. This is not the case for the ZEN phase I and II metabolites, which are only included in a few occurrence reports. Their effects during food processing is also only sporadically addressed in studies to date. In addition to the massive lack of data on the occurrence and behavior of ZEN modified forms, there is also a lack of comprehensive clarification of the toxicity of the numerous different ZEN metabolites detected to date. Finally, studies on the fate during digestion of the relevant ZEN metabolites will be important in the future to further clarify their relevance in processed foods such as bakery products.
Collapse
Affiliation(s)
- Franz Pfleger
- Association for Cereal Research e.V., Detmold, Germany
| | - Christine Schwake-Anduschus
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Detmold, Germany.
| |
Collapse
|
18
|
Luo K, Guo J, He D, Li G, Ouellet T. Deoxynivalenol accumulation and detoxification in cereals and its potential role in wheat- Fusarium graminearum interactions. ABIOTECH 2023; 4:155-171. [PMID: 37581023 PMCID: PMC10423186 DOI: 10.1007/s42994-023-00096-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/27/2023] [Indexed: 08/16/2023]
Abstract
Deoxynivalenol (DON) is a prominent mycotoxin showing significant accumulation in cereal plants during infection by the phytopathogen Fusarium graminearum. It is a virulence factor that is important in the spread of F. graminearum within cereal heads, and it causes serious yield losses and significant contamination of cereal grains. In recent decades, genetic and genomic studies have facilitated the characterization of the molecular pathways of DON biosynthesis in F. graminearum and the environmental factors that influence DON accumulation. In addition, diverse scab resistance traits related to the repression of DON accumulation in plants have been identified, and experimental studies of wheat-pathogen interactions have contributed to understanding detoxification mechanisms in host plants. The present review illustrates and summarizes the molecular networks of DON mycotoxin production in F. graminearum and the methods of DON detoxification in plants based on the current literature, which provides molecular targets for crop improvement programs. This review also comprehensively discusses recent advances and challenges related to genetic engineering-mediated cultivar improvements to strengthen scab resistance. Furthermore, ongoing advancements in genetic engineering will enable the application of these molecular targets to develop more scab-resistant wheat cultivars with DON detoxification traits.
Collapse
Affiliation(s)
- Kun Luo
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, 716000 China
| | - Jiao Guo
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, 716000 China
| | - Dejia He
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, 716000 China
| | - Guangwei Li
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Science, Yan’an University, Yan’an, 716000 China
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON K1A 0C6 Canada
| |
Collapse
|
19
|
Mader A, Riede O, Pabel U, Dietrich J, Sommerkorn K, Pieper R. [The One Health approach in the context of global commodity chains, crises, and food and feed safety]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:644-651. [PMID: 37256408 PMCID: PMC10230465 DOI: 10.1007/s00103-023-03714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023]
Abstract
The holistic view of food and feed safety, including animal health and environmental conditions, is an important pillar of the One Health approach. The terminology thus clearly goes beyond the prevention of spreading microbiological diseases, in which context it is often understood, and highlights that humans, animals, and the environment as well as their interaction should be considered in a transdisciplinary context.In terms of One Health, this discussion paper focuses less on microbiological risks, but rather on the connection to chemical risks in the food chain. This is illustrated by concrete examples of chemical contaminants (metals, persistent organic contaminants, natural toxins). The mechanisms of input and transfer along the food chain are presented.Minimizing the presence of contaminants and thus exposure requires international and interdisciplinary cooperation in the spirit of the One Health approach. Climate change, pandemics, shortages of raw materials, energy deficiencies, political crises, and environmental disasters can affect the entire food chain from primary production of plant and animal foods to further processing and provision of products to consumers. In addition to changing availability, this can also have an impact on the composition, quality, and safety of food and feed. Based on the effect on global commodity chains, vulnerable and resilient areas along the food chain become visible. In terms of the One Health approach, the aim is to increase safety and resilience along the food chain and to minimize its vulnerability.
Collapse
Affiliation(s)
- Anneluise Mader
- Abteilung Sicherheit in der Nahrungskette, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland
| | - Oliver Riede
- Abteilung Sicherheit in der Nahrungskette, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland
| | - Ulrike Pabel
- Abteilung Sicherheit in der Nahrungskette, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland
| | - Jessica Dietrich
- Abteilung Sicherheit in der Nahrungskette, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland
| | - Katharina Sommerkorn
- Abteilung Sicherheit in der Nahrungskette, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland
| | - Robert Pieper
- Abteilung Sicherheit in der Nahrungskette, Bundesinstitut für Risikobewertung (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Deutschland.
| |
Collapse
|
20
|
Alisaac E, Mahlein AK. Fusarium Head Blight on Wheat: Biology, Modern Detection and Diagnosis and Integrated Disease Management. Toxins (Basel) 2023; 15:192. [PMID: 36977083 PMCID: PMC10053988 DOI: 10.3390/toxins15030192] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Fusarium head blight (FHB) is a major threat for wheat production worldwide. Most reviews focus on Fusarium graminearum as a main causal agent of FHB. However, different Fusarium species are involved in this disease complex. These species differ in their geographic adaptation and mycotoxin profile. The incidence of FHB epidemics is highly correlated with weather conditions, especially rainy days with warm temperatures at anthesis and an abundance of primary inoculum. Yield losses due to the disease can reach up to 80% of the crop. This review summarizes the Fusarium species involved in the FHB disease complex with the corresponding mycotoxin profiles, disease cycle, diagnostic methods, the history of FHB epidemics, and the management strategy of the disease. In addition, it discusses the role of remote sensing technology in the integrated management of the disease. This technology can accelerate the phenotyping process in the breeding programs aiming at FHB-resistant varieties. Moreover, it can support the decision-making strategies to apply fungicides via monitoring and early detection of the diseases under field conditions. It can also be used for selective harvest to avoid mycotoxin-contaminated plots in the field.
Collapse
Affiliation(s)
- Elias Alisaac
- Institute of Crop Science and Resource Conservation (INRES), Plant Diseases and Plant Protection, University of Bonn, 53115 Bonn, Germany
- Institute for Grapevine Breeding, Julius Kühn-Institut, 76833 Siebeldingen, Germany
| | | |
Collapse
|
21
|
Li Y, Shao Y, Zhu Y, Chen A, Qu J, Gao Y, Lu S, Luo P, Mao X. Temperature-dependent mycotoxins production investigation in Alternaria infected cherry by ultra-high performance liquid chromatography and Orbitrap high resolution mass spectrometry. Int J Food Microbiol 2023; 388:110070. [PMID: 36610234 DOI: 10.1016/j.ijfoodmicro.2022.110070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
For temperature-dependent Alternaria mycotoxins production analysis, cherry samples were inoculated with Alternaria sp. and incubated at two different temperatures (4 °C and 25 °C). Six Alternaria mycotoxins, including altenuene (ALT), alternariol monomethyl ether (AME), alternariol (AOH), altertoxin-I (ATX-I), tenuazonic acid (TeA), and tentoxin (TEN), in cherries were detected with integrated visible data-processing tools. Maximum concentration of these mycotoxins reached 71,862.2 μg/kg at 25 °C. Notably, considerable amount of TeA (290.4 μg/kg) was detected at 4 °C, which indicated that low temperature is not a safe storage condition for fruits. A total of 102 compounds were detected with a neutral loss of 162.0528 Da, and TeA-glucose was identified in this work. Based on MS/MS cosine similarity, products were verified and annotated with feature based molecular networking (FBMN) in global natural products social networking (GNPS). The results showed Alternaria mycotoxins in cherry samples were mainly demethylation, hydrogenation, and dehydration. This work revealed the production of Alternaria mycotoxins in cherries under different storage temperature, which will provide theoretical basis for the control of mycotoxin contamination in food commodities.
Collapse
Affiliation(s)
- Yanshen Li
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Ying Shao
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Ya'ning Zhu
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Anqi Chen
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Jingyao Qu
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Yonglin Gao
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Sunan Lu
- Yantai University, Yantai, Shandong Province 264005, PR China
| | - Pengjie Luo
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, PR China
| | - Xin Mao
- Yantai University, Yantai, Shandong Province 264005, PR China.
| |
Collapse
|
22
|
Nomura M, Shidara K, Yasuda I. Inter-laboratory study on simultaneous quantification of ten trichothecenes in feed. Mycotoxin Res 2023; 39:95-108. [PMID: 36853556 DOI: 10.1007/s12550-023-00476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 03/01/2023]
Abstract
An inter-laboratory study was performed in eight laboratories to evaluate the simultaneous quantification method for HT-2 toxin (HT-2), T-2 toxin (T-2), diacetoxyscirpenol (DAS), neosolaniol (NES), 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON), deoxynivalenol (DON), deoxynivalenol-3-glucoside (D3G), nivalenol (NIV), and fusarenon-X (FUS-X) in feed. The mycotoxins in the samples were extracted with hydrous acetonitrile, purified using a multifunctional column (InertSep® VRA-3) and a phospholipid removal column (Hybrid SPE®-Phospholipid), and then quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with atmospheric pressure chemical ionisation mode. The mean recovery, repeatability, reproducibility, and Horwitz ratio from the inter-laboratory validation study were 99.8-109%, 3.1-9.8%, 4.3-9.8%, and 0.19-0.45, respectively, for type A trichothecenes (HT-2, T-2, DAS, and NES). Those values for type B trichothecenes (3-AcDON, 15-AcDON, DON, NIV, and FUS-X) were 89.9-116%, 3.4-9.1%, 5.6-14%, and 0.25-0.70, and the values for modified mycotoxin (D3G) were 78.2-96.7%, 3.5-6.4%, and 13-22%, respectively.
Collapse
Affiliation(s)
- Masayo Nomura
- Food and Agricultural Materials Inspection Center, Fertilizer and Feed Inspection Department, Saitama Shintoshin National Government Building, Kensato Building, Shintoshin 2-1, Chuo-ku, Saitama-shi, 330-9731, Saitama, Japan.
| | - Kenji Shidara
- Food and Agricultural Materials Inspection Center, Fertilizer and Feed Inspection Department, Saitama Shintoshin National Government Building, Kensato Building, Shintoshin 2-1, Chuo-ku, Saitama-shi, 330-9731, Saitama, Japan
| | - Iyo Yasuda
- Food and Agricultural Materials Inspection Center, Fertilizer and Feed Inspection Department, Saitama Shintoshin National Government Building, Kensato Building, Shintoshin 2-1, Chuo-ku, Saitama-shi, 330-9731, Saitama, Japan
| |
Collapse
|
23
|
Khairullina A, Micic N, Jørgensen HJL, Bjarnholt N, Bülow L, Collinge DB, Jensen B. Biocontrol Effect of Clonostachys rosea on Fusarium graminearum Infection and Mycotoxin Detoxification in Oat ( Avena sativa). PLANTS (BASEL, SWITZERLAND) 2023; 12:500. [PMID: 36771583 PMCID: PMC9918947 DOI: 10.3390/plants12030500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 06/01/2023]
Abstract
Oat (Avena sativa) is susceptible to Fusarium head blight (FHB). The quality of oat grain is threatened by the accumulation of mycotoxins, particularly the trichothecene deoxynivalenol (DON), which also acts as a virulence factor for the main pathogen Fusarium graminearum. The plant can defend itself, e.g., by DON detoxification by UGT-glycosyltransferases (UTGs) and accumulation of PR-proteins, even though these mechanisms do not deliver effective levels of resistance. We studied the ability of the fungal biocontrol agent (BCA) Clonostachys rosea to reduce FHB and mycotoxin accumulation. Greenhouse trials showed that C. rosea-inoculation of oat spikelets at anthesis 3 days prior to F. graminearum inoculation reduced both the amount of Fusarium DNA (79%) and DON level (80%) in mature oat kernels substantially. DON applied to C. rosea-treated spikelets resulted in higher conversion of DON to DON-3-Glc than in mock treated plants. Moreover, there was a significant enhancement of expression of two oat UGT-glycosyltransferase genes in C. rosea-treated oat. In addition, C. rosea treatment activated expression of genes encoding four PR-proteins and a WRKY23-like transcription factor, suggesting that C. rosea may induce resistance in oat. Thus, C. rosea IK726 has strong potential to be used as a BCA against FHB in oat as it inhibits F. graminearum infection effectively, whilst detoxifying DON mycotoxin rapidly.
Collapse
Affiliation(s)
- Alfia Khairullina
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Nikola Micic
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Hans J. Lyngs Jørgensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Nanna Bjarnholt
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden
| | - David B. Collinge
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Birgit Jensen
- Department of Plant and Environmental Sciences and Copenhagen Plant Science Centre, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
24
|
Conjugated type A trichothecenes in oat-based products: Occurrence data and estimation of the related risk. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Comprehensive Review of Aflatoxin Contamination, Impact on Health and Food Security, and Management Strategies in Pakistan. Toxins (Basel) 2022; 14:toxins14120845. [PMID: 36548742 PMCID: PMC9781569 DOI: 10.3390/toxins14120845] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Aflatoxins (AFs) are the most important toxic, mutagenic, and carcinogenic fungal toxins that routinely contaminate food and feed. While more than 20 AFs have been identified to date, aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1), G2 (AFG2), and M1 (AFM1) are the most common. Over 25 species of Aspergillus have been shown to produce AFs, with Aspergillus flavus, Aspergillus parasiticus, and Aspergillus nomius being the most important and well-known AF-producing fungi. These ubiquitous molds can propagate on agricultural commodities to produce AFs in fields and during harvesting, processing, transportation, and storage. Countries with warmer climates and that produce foods susceptible to AF contamination shoulder a substantial portion of the global AF burden. Pakistan's warm climate promotes the growth of toxigenic fungi, resulting in frequent AF contamination of human foods and animal feeds. The potential for contamination in Pakistan is exacerbated by improper storage conditions and a lack of regulatory limits and enforcement mechanisms. High levels of AFs in common commodities produced in Pakistan are a major food safety problem, posing serious health risks to the population. Furthermore, aflatoxin contamination contributes to economic losses by limiting exports of these commodities. In this review, recent information regarding the fungal producers of AFs, prevalence of AF contamination of foods and feed, current regulations, and AF prevention and removal strategies are summarized, with a major focus on Pakistan.
Collapse
|
26
|
The Potential of Alternaria Toxins Production by A. alternata in Processing Tomatoes. Toxins (Basel) 2022; 14:toxins14120827. [PMID: 36548724 PMCID: PMC9781988 DOI: 10.3390/toxins14120827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
As a filamentous and spoilage fungus, Alternaria spp. can not only infect processing tomatoes, but also produce a variety of mycotoxins which harm the health of human beings. To explore the production of Alternaria toxins in processing tomatoes during growth and storage, four main Alternaria toxins and four conjugated toxins were detected by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and ultra-performance liquid chromatography-ion mobility quadrupole time-of-flight mass spectrometry (UPLC-IMS QToF MS) in processing tomatoes on different days after being inoculated with A. alternata. The results show that the content of Alternaria toxins in an in vivo assay is higher than that under field conditions. Tenuazonic acid (TeA) is the predominant toxin detected in the field (205.86~41,389.19 μg/kg) and in vivo (7.64~526,986.37 μg/kg) experiments, and the second-most abundant toxin is alternariol (AOH). In addition, a small quantity of conjugated toxins, AOH-9-glucoside (AOH-9-Glc) and alternariol monomethyl ether-3-glucoside (AME-3-Glc), were screened in the in vivo experiment. This is the first time the potential of Alternaria toxins produced in tomatoes during the harvest period has been studied in order to provide data for the prevention and control of Alternaria toxins.
Collapse
|
27
|
Modified Mycotoxins, a Still Unresolved Issue. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by filamentous microfungi on almost every agricultural commodity worldwide. After the infection of crop plants, mycotoxins are modified by plant enzymes or other fungi and often conjugated to more polar substances, like sugars. The formed—often less toxic—metabolites are stored in the vacuole in soluble form or bound to macromolecules. As these substances are usually not detected during routine analysis and no maximum limits are in force, they are called modified mycotoxins. While, in most cases, modified mycotoxins have lower intrinsic toxicity, they might be reactivated during mammalian metabolism. In particular, the polar group might be cleaved off (e.g., by intestinal bacteria), releasing the native mycotoxin. This review aims to provide an overview of the critical issues related to modified mycotoxins. The main conclusion is that analytical aspects, toxicological evaluation, and exposure assessment merit more investigation.
Collapse
|
28
|
Bryła M, Pierzgalski A, Zapaśnik A, Uwineza PA, Ksieniewicz-Woźniak E, Modrzewska M, Waśkiewicz A. Recent Research on Fusarium Mycotoxins in Maize-A Review. Foods 2022; 11:3465. [PMID: 36360078 PMCID: PMC9659149 DOI: 10.3390/foods11213465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Maize (Zea mays L.) is one of the most susceptible crops to pathogenic fungal infections, and in particular to the Fusarium species. Secondary metabolites of Fusarium spp.-mycotoxins are not only phytotoxic, but also harmful to humans and animals. They can cause acute or chronic diseases with various toxic effects. The European Union member states apply standards and legal regulations on the permissible levels of mycotoxins in food and feed. This review summarises the most recent knowledge on the occurrence of toxic secondary metabolites of Fusarium in maize, taking into account modified forms of mycotoxins, the progress in research related to the health effects of consuming food or feed contaminated with mycotoxins, and also the development of biological methods for limiting and/or eliminating the presence of the same in the food chain and in compound feed.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Zapaśnik
- Department of Microbiology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| |
Collapse
|
29
|
Garg K, Villavicencio-Aguilar F, Solano-Rivera F, Gilbert L. Analytical Validation of a Direct Competitive ELISA for Multiple Mycotoxin Detection in Human Serum. Toxins (Basel) 2022; 14:toxins14110727. [PMID: 36355977 PMCID: PMC9694295 DOI: 10.3390/toxins14110727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 01/26/2023] Open
Abstract
Mycotoxin exposure in humans is primarily assessed through its occurrence in external sources, such as food commodities. Herein, we have developed a direct competitive ELISA to facilitate the detection of aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisin (FUM B1/B2), ochratoxin A (OTA), and zearalenone (ZEA) in human serum. The analytical validation of the assay followed practices endorsed by the international research community and the EU directive 96/23/EC in order to examine detection capability, recovery, and cross-reactivity. The assay demonstrated a lower limit of quantitation (LLOQ) for AFB1 [0.61 ng/mL (hereon ng/mL = ppb)], DON (19.53 ppb), FUM (4.88 ppb), OTA (19.53 ppb), and ZEA (0.15 ppb). Recovery from human serum for all mycotoxins spanned from 73% to 106%. Likewise, the specificity for monoclonal antibodies against cross-reactant mycotoxins ranged from 2% to 11%. This study compares the LLOQ and recovery values with commercial and emerging immuno-based methods for detecting mycotoxins in foodstuffs. The LLOQ values from the present study were among the lowest in commercial or emerging methods. Despite the differences in the extraction protocols and matrices, the recovery range in this study, commercial tests, and other procedures were similar for all mycotoxins. Overall, the assay detected AFB1, DON, FUM, OTA, and ZEA in human serum with excellent accuracy, precision, and specificity.
Collapse
Affiliation(s)
- Kunal Garg
- Tezted Ltd., Mattilaniemi 6-8, 40100 Jyväskylä, Finland
- Correspondence: (K.G.); (L.G.)
| | - Fausto Villavicencio-Aguilar
- Sanoviv Medical Institute, KM 39 Carretera Libre Tijuana-Ensenada s/n Interior 6, Playas de Rosarito, Baja 11 California, Rosarito 22710, Mexico
| | - Flora Solano-Rivera
- Sanoviv Medical Institute, KM 39 Carretera Libre Tijuana-Ensenada s/n Interior 6, Playas de Rosarito, Baja 11 California, Rosarito 22710, Mexico
| | - Leona Gilbert
- Tezted Ltd., Mattilaniemi 6-8, 40100 Jyväskylä, Finland
- Correspondence: (K.G.); (L.G.)
| |
Collapse
|
30
|
Tan H, Zhou H, Guo T, Zhou Y, Wang S, Liu X, Zhang Y, Ma L. Matrix-associated mycotoxins in foods, cereals and feedstuffs: A review on occurrence, detection, transformation and future challenges. Crit Rev Food Sci Nutr 2022; 64:3206-3219. [PMID: 36205056 DOI: 10.1080/10408398.2022.2131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Matrix-associated mycotoxins that bind with macromolecular components through covalent or non-covalent interactions easily occur in various cereals, cereal-based products, and cereal-based feedstuff. They are "masked" by macro-components, causing the underestimation of total exposure risk of mycotoxins. Most of the current reports focus on the free and modified mycotoxins, while the matrix-associated forms are ignored but still can exert toxic effects after ingestion. In this paper, current researches and future prospects of matrix-associated mycotoxins are reviewed. Especially, a focus is set on the transformation of matrix-associated mycotoxins with their free forms during metabolism and food processing. Enzymes, temperature and pH levels during food processing can induce the interconversion of matrix-associated mycotoxins with free mycotoxins. Furthermore, the analytical methods targeted on matrix-associated mycotoxins are discussed. Due to the lack of efficient methods releasing the mycotoxins from matrix, the standard analytical methods has not developed so far. Also, we further analyzed the challenges of matrix-associated mycotoxins about variety, occurrence, toxicity and transformation, exposure assessment, which contributes to establish preventive measures to control their hazards for consumers. Overall, this overview is significant for perfecting risk assessment, as well as developing effective prevention and control actions to matrix-associated mycotoxins.
Collapse
Affiliation(s)
- Hongxia Tan
- College of Food Science, Southwest University, Chongqing, P.R. China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, P.R. China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, P.R. China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, P.R. China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, P.R. China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing, P.R. China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, P.R. China
| | - Shuo Wang
- College of Food Science, Southwest University, Chongqing, P.R. China
- School of Medicine, Tianjin Key Lab Food Science and Health, Nankai University, Tianjin, P.R. China
| | - Xiaozhu Liu
- Foshan Micro Wonders Biotechnology Co., Ltd, Guangdong, P.R. China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, P.R. China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, P.R. China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, P.R. China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, P.R. China
| |
Collapse
|
31
|
Kumar P, Gupta A, Mahato DK, Pandhi S, Pandey AK, Kargwal R, Mishra S, Suhag R, Sharma N, Saurabh V, Paul V, Kumar M, Selvakumar R, Gamlath S, Kamle M, Enshasy HAE, Mokhtar JA, Harakeh S. Aflatoxins in Cereals and Cereal-Based Products: Occurrence, Toxicity, Impact on Human Health, and Their Detoxification and Management Strategies. Toxins (Basel) 2022; 14:toxins14100687. [PMID: 36287956 PMCID: PMC9609140 DOI: 10.3390/toxins14100687] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
Cereals and cereal-based products are primary sources of nutrition across the world. However, contamination of these foods with aflatoxins (AFs), secondary metabolites produced by several fungal species, has raised serious concerns. AF generation in innate substrates is influenced by several parameters, including the substrate type, fungus species, moisture content, minerals, humidity, temperature, and physical injury to the kernels. Consumption of AF-contaminated cereals and cereal-based products can lead to both acute and chronic health issues related to physical and mental maturity, reproduction, and the nervous system. Therefore, the precise detection methods, detoxification, and management strategies of AFs in cereal and cereal-based products are crucial for food safety as well as consumer health. Hence, this review provides a brief overview of the occurrence, chemical characteristics, biosynthetic processes, health hazards, and detection techniques of AFs, along with a focus on detoxification and management strategies that could be implemented for food safety and security.
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow 226007, India
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India
- Correspondence: (P.K.); (D.K.M.)
| | - Akansha Gupta
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
- Correspondence: (P.K.); (D.K.M.)
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Arun Kumar Pandey
- MMICT&BM(HM), Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Raveena Kargwal
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, India
| | - Rajat Suhag
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | - Nitya Sharma
- Food and Bioprocess Engineering Laboratory, Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Vivek Saurabh
- Division of Food Science and Postharvest Technology, ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | - Veena Paul
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Raman Selvakumar
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Shirani Gamlath
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Madhu Kamle
- Applied Microbiology Laboratory, Department of Forestry, North Eastern Regional Institute of Science and Technology, Nirjuli 791109, India
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai 81310, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria 21934, Egypt
| | - Jawahir A. Mokhtar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Yousef Abdul Latif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine (FM), King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
32
|
Recent advances on formation, transformation, occurrence, and analytical strategy of modified mycotoxins in cereals and their products. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Penagos-Tabares F, Khiaosa-ard R, Schmidt M, Bartl EM, Kehrer J, Nagl V, Faas J, Sulyok M, Krska R, Zebeli Q. Cocktails of Mycotoxins, Phytoestrogens, and Other Secondary Metabolites in Diets of Dairy Cows in Austria: Inferences from Diet Composition and Geo-Climatic Factors. Toxins (Basel) 2022; 14:toxins14070493. [PMID: 35878231 PMCID: PMC9318294 DOI: 10.3390/toxins14070493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 12/11/2022] Open
Abstract
Dairy production is a pivotal economic sector of Austrian and European agriculture. Dietary toxins and endocrine disruptors of natural origin such as mycotoxins and phytoestrogens can affect animal health, reproduction, and productivity. This study characterized the profile of a wide spectrum of fungal, plant, and unspecific secondary metabolites, including regulated, emerging, and modified mycotoxins, phytoestrogens, and cyanogenic glucosides, in complete diets of lactating cows from 100 Austrian dairy farms. To achieve this, a validated multi-metabolite liquid chromatography/electrospray ionization−tandem mass spectrometric (LC/ESI−MS/MS) method was employed, detecting 155 of >800 tested metabolites. Additionally, the most influential dietary and geo-climatic factors related to the dietary mycotoxin contamination of Austrian dairy cattle were recognized. We evidenced that the diets of Austrian dairy cows presented ubiquitous contamination with mixtures of mycotoxins and phytoestrogens. Metabolites derived from Fusarium spp. presented the highest concentrations, were the most recurrent, and had the highest diversity among the detected fungal compounds. Zearalenone, deoxynivalenol, and fumonisin B1 were the most frequently occurring mycotoxins considered in the EU legislation, with detection frequencies >70%. Among the investigated dietary factors, inclusion of maize silage (MS) and straw in the diets was the most influential factor in contamination with Fusarium-derived and other fungal toxins and metabolites, and temperature was the most influential among the geo-climatic factors.
Collapse
Affiliation(s)
- Felipe Penagos-Tabares
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
| | - Ratchaneewan Khiaosa-ard
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
- Correspondence:
| | - Marlene Schmidt
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
| | - Eva-Maria Bartl
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
| | - Johanna Kehrer
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
| | - Veronika Nagl
- DSM—BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (V.N.); (J.F.)
| | - Johannes Faas
- DSM—BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria; (V.N.); (J.F.)
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz-Strasse 20, 3430 Tulln, Austria; (M.S.); (R.K.)
| | - Rudolf Krska
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna, Konrad Lorenz-Strasse 20, 3430 Tulln, Austria; (M.S.); (R.K.)
- Institute for Global Food Security, School of Biological Sciences, University Road, Belfast BT7 1NN, UK
| | - Qendrim Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria; (F.P.-T.); (M.S.); (E.-M.B.); (J.K.); (Q.Z.)
- Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
34
|
Kyei NNA, Cramer B, Humpf HU, Degen GH, Ali N, Gabrysch S. Assessment of multiple mycotoxin exposure and its association with food consumption: a human biomonitoring study in a pregnant cohort in rural Bangladesh. Arch Toxicol 2022; 96:2123-2138. [PMID: 35441239 PMCID: PMC9151532 DOI: 10.1007/s00204-022-03288-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 01/01/2023]
Abstract
Aflatoxins (AFs), ochratoxin A (OTA), citrinin (CIT), fumonisin B1 (FB1), zearalenone (ZEN), and deoxynivalenol (DON) are mycotoxins that may contaminate diets, especially in low-income settings, with potentially severe health consequences. This study investigates the exposure of 439 pregnant women in rural Bangladesh to 35 mycotoxins and their corresponding health risks and links their exposure to certain foods and local stimulants. Overall, 447 first-morning urine samples were collected from pregnant women between July 2018 and November 2019. Mycotoxin biomarkers were quantified by DaS-HPLC-MS/MS. Urinary concentration of frequently occurring mycotoxins was used to estimate dietary mycotoxin exposure. Median regression analyses were performed to investigate the association between the consumption of certain foods and local stimulants, and urinary concentration of frequently occurring mycotoxins. Only in 17 of 447 urine samples (4%) were none of the investigated mycotoxins detected. Biomarkers for six major mycotoxins (AFs, CIT, DON, FB1, OTA, and ZEN) were detected in the urine samples. OTA (95%), CIT (61%), and DON (6%) were most frequently detected, with multiple mycotoxins co-occurring in 281/447 (63%) of urine samples. Under the lowest exposure scenario, dietary exposure to OTA, CIT, and DON was of public health concern in 95%, 16%, and 1% of the pregnant women, respectively. Consumption of specific foods and local stimulants-betel nut, betel leaf, and chewing tobacco-were associated with OTA, CIT, and DON urine levels. In conclusion, exposure to multiple mycotoxins during early pregnancy is widespread in this rural community and represents a potential health risk for mothers and their offspring.
Collapse
Affiliation(s)
- Nicholas N A Kyei
- Institute of Public Health, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Heidelberg Institute of Global Health, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
- Research Department 2, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P. O. Box 60 12 03, 14412, Potsdam, Germany.
| | - Benedikt Cramer
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstr. 45, 48149, Münster, Germany
| | - Gisela H Degen
- Leibniz-Research Centre for Working Environment and Human Factors (IfADo) at the TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Nurshad Ali
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sabine Gabrysch
- Institute of Public Health, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Heidelberg Institute of Global Health, Heidelberg University, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
- Research Department 2, Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P. O. Box 60 12 03, 14412, Potsdam, Germany
| |
Collapse
|
35
|
Deoxynivalenol: An Overview on Occurrence, Chemistry, Biosynthesis, Health Effects and Its Detection, Management, and Control Strategies in Food and Feed. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mycotoxins are fungi-produced secondary metabolites that can contaminate many foods eaten by humans and animals. Deoxynivalenol (DON), which is formed by Fusarium, is one of the most common occurring predominantly in cereal grains and thus poses a significant health risk. When DON is ingested, it can cause both acute and chronic toxicity. Acute signs include abdominal pain, anorexia, diarrhea, increased salivation, vomiting, and malaise. The most common effects of chronic DON exposure include changes in dietary efficacy, weight loss, and anorexia. This review provides a succinct overview of various sources, biosynthetic mechanisms, and genes governing DON production, along with its consequences on human and animal health. It also covers the effect of environmental factors on its production with potential detection, management, and control strategies.
Collapse
|
36
|
Kumar P, Mahato DK, Gupta A, Pandhi S, Mishra S, Barua S, Tyagi V, Kumar A, Kumar M, Kamle M. Use of essential oils and phytochemicals against the mycotoxins producing fungi for shelf‐life enhancement and food preservation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Lab Department of Forestry North Eastern Regional Institute of Science and Technology Nirjuli 791109 India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre School of Exercise and Nutrition Sciences Deakin University Burwood VIC 3125 Australia
| | - Akansha Gupta
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
- Faculty of Agricultural Sciences GLA University Mathura 281406 India
| | - Sreejani Barua
- Department of Agricultural and Food Engineering Indian Institute of Technology Kharagpur‐721302 India
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Vidhi Tyagi
- University School of Biotechnology Guru Gobind Singh Indraprastha University Sector 16C Dwarka New Delhi 110078 India
| | - Arvind Kumar
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR—Central Institute for Research on Cotton Technology Mumbai 400019 India
| | - Madhu Kamle
- Applied Microbiology Lab Department of Forestry North Eastern Regional Institute of Science and Technology Nirjuli 791109 India
| |
Collapse
|
37
|
High-Throughput Determination of Major Mycotoxins with Human Health Concerns in Urine by LC-Q TOF MS and Its Application to an Exposure Study. Toxins (Basel) 2022; 14:toxins14010042. [PMID: 35051019 PMCID: PMC8780005 DOI: 10.3390/toxins14010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/01/2022] [Accepted: 01/02/2022] [Indexed: 01/10/2023] Open
Abstract
Human biomonitoring constitutes a suitable tool to assess exposure to toxins overcoming the disadvantages of traditional methods. Urine constitutes an accessible biological matrix in biomonitoring studies. Mycotoxins are secondary metabolites produced naturally by filamentous fungi that produce a wide range of adverse health effects. Thus, the determination of urinary mycotoxin levels is a useful tool for assessing the individual exposure to these food contaminants. In this study, a suitable methodology has been developed to evaluate the presence of aflatoxin B2 (AFB2), aflatoxin (AFG2), ochratoxin A (OTA), ochratoxin B (OTB), zearalenone (ZEA), and α-zearalenol (α-ZOL) in urine samples as exposure biomarkers. For this purpose, different extraction procedures, namely, the Solid Phase Extraction (SPE); Dispersive Liquid–Liquid Microextraction (DLLME); and Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods were assessed, followed by Liquid Chromatography coupled to Quadrupole Time of Flight Mass Spectrometry with Electrospray Ionization (LC-ESI-QTOF-MS) determination. Then, the proposed methodology was applied to determine mycotoxin concentrations in 56 human urine samples from volunteers and to estimate the potential risk of exposure. The results obtained revealed that 55% of human urine samples analyzed resulted positive for at least one mycotoxin. Among all studied mycotoxins, only AFB2, AFG2, and OTB were detected with incidences of 32, 41, and 9%, respectively, and levels in the range from <LOQ to 69.42 µg/L. Risk assessment revealed a potential health risk, obtaining MoE values < 10,000. However, it should be highlighted that few samples were contaminated, and that more data about mycotoxin excretion rates and their BMDL10 values are needed for a more accurate risk assessment.
Collapse
|
38
|
Živančev J, Antić I, Buljovčić M, Bulut S, Kocić-Tanackov S. Review of occurrence of mycotoxins in Serbian food items in the period from 2005 to 2022. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr49-39145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This paper aimed to review the publications on mycotoxins' presence in cereals and foodstuffs originated from the Serbian market covering the period from 2005 to 2022. The review covers all the important steps in mycotoxins analysis including sampling, sample preparation, instrumental analysis, and concentration ranges in which the mycotoxins were found. Also, the results were interpreted from the European Union regulation point of view. The review emphasizes the importance of multi-mycotoxins analysis for determining the simultaneous presence of mycotoxins that can negatively affect the Serbian human population. The most frequently used instrumental technique in the mycotoxin analysis of Serbian products was the Enzyme-Linked Immunosorbent Assay followed by the Ultra-High Performance Liquid Chromatography coupled with triple quadrupole mass spectrometry. Most of the studies undertaken in Serbia until now investigated a few groups of matrices such as wheat, maize, milk, and dairy products. Only a few studies involved specific matrices such as nuts, dried fruits, biscuits, cookies, and spices. The review showed that contamination of milk and dairy products with aflatoxin M1 (AFM1), occurred at the very beginning of 2013, was the major health issue related to the population health. The contamination of milk and dairy products with the AFM1 was a consequence of maize contamination with aflatoxins which occurred in the year 2012, characterized by drought conditions. The studies dealing with the analysis of masked and emerging mycotoxins are rare and more attention should be paid to monitoring the presence of these types of mycotoxins in foodstuffs from Serbia.
Collapse
|
39
|
Živančev J, Antić I, Buljovčić M, Bulut S, Kocić-Tanackov S. Review of occurrence of mycotoxins in Serbian food items in the period from 2005 to 2022. FOOD AND FEED RESEARCH 2022. [DOI: 10.5937/ffr0-39145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
This paper aimed to review the publications on mycotoxins' presence in cereals and foodstuffs originated from the Serbian market covering the period from 2005 to 2022. The review covers all the important steps in mycotoxins analysis including sampling, sample preparation, instrumental analysis, and concentration ranges in which the mycotoxins were found. Also, the results were interpreted from the European Union regulation point of view. The review emphasizes the importance of multi-mycotoxins analysis for determining the simultaneous presence of mycotoxins that can negatively affect the Serbian human population. The most frequently used instrumental technique in the mycotoxin analysis of Serbian products was the Enzyme-Linked Immunosorbent Assay followed by the Ultra-High Performance Liquid Chromatography coupled with triple quadrupole mass spectrometry. Most of the studies undertaken in Serbia until now investigated a few groups of matrices such as wheat, maize, milk, and dairy products. Only a few studies involved specific matrices such as nuts, dried fruits, biscuits, cookies, and spices. The review showed that contamination of milk and dairy products with aflatoxin M1 (AFM1), occurred at the very beginning of 2013, was the major health issue related to the population health. The contamination of milk and dairy products with the AFM1 was a consequence of maize contamination with aflatoxins which occurred in the year 2012, characterized by drought conditions. The studies dealing with the analysis of masked and emerging mycotoxins are rare and more attention should be paid to monitoring the presence of these types of mycotoxins in foodstuffs from Serbia.
Collapse
|
40
|
Transformation of Selected Fusarium Toxins and Their Masked Forms during Malting of Various Cultivars of Wheat. Toxins (Basel) 2021; 13:toxins13120866. [PMID: 34941704 PMCID: PMC8707366 DOI: 10.3390/toxins13120866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
This study investigated the impact of malting of six wheat cultivars inoculated with Fusarium culmorum on the dynamics of content changes of selected Fusarium toxins. The grains of all the tested cultivars showed a high content of deoxynivalenol (DON), zearalenone (ZEN), and their derivatives, whereas nivalenol (NIV) and its glucoside were found only in the Legenda cultivar. Our experiments confirmed that the malting process of wheat grain enables the secondary growth of Fusarium, and mycotoxin biosynthesis. The levels of toxins in malt were few-fold higher than those in grain; an especially high increase was noted in the case of ZEN and its sulfate as the optimal temperature and pH conditions for the biosynthesis of these toxins by the pathogen are similar to those used in the grain malting process. This is the first paper reporting that during the malting process, biosynthesis of ZEN sulfate occurs, instead of glycosylation, which is a typical modification of mycotoxins by plant detoxication enzymes.
Collapse
|
41
|
Kępińska-Pacelik J, Biel W. Alimentary Risk of Mycotoxins for Humans and Animals. Toxins (Basel) 2021; 13:822. [PMID: 34822606 PMCID: PMC8622594 DOI: 10.3390/toxins13110822] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 01/20/2023] Open
Abstract
Mycotoxins can be found in many foods consumed by humans and animals. These substances are secondary metabolites of some fungi species and are resistant to technological processes (cooking, frying, baking, distillation, fermentation). They most often contaminate products of animal (beef, pork, poultry, lamb, fish, game meat, milk) and plant origin (cereals, processed cereals, vegetables, nuts). It is estimated that about 25% of the world's harvest may be contaminated with mycotoxins. These substances damage crops and may cause mycotoxicosis. Many mycotoxins can be present in food, together with mold fungi, increasing the exposure of humans and animals to them. In this review we characterized the health risks caused by mycotoxins found in food, pet food and feed. The most important groups of mycotoxins are presented in terms of their toxicity and occurrence.
Collapse
Affiliation(s)
| | - Wioletta Biel
- Department of Monogastric Animal Sciences, Division of Animal Nutrition and Food, West Pomeranian University of Technology in Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland;
| |
Collapse
|
42
|
Pierzgalski A, Bryła M, Kanabus J, Modrzewska M, Podolska G. Updated Review of the Toxicity of Selected Fusarium Toxins and Their Modified Forms. Toxins (Basel) 2021; 13:768. [PMID: 34822552 PMCID: PMC8619142 DOI: 10.3390/toxins13110768] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Mycotoxins are one of the most dangerous food and feed contaminants, hence they have significant influence on human and animal health. This study reviews the information reported over the last few years on the toxic effects of the most relevant and studied Fusarium toxins and their modified forms. Deoxynivalenol (DON) and its metabolites can induce intracellular oxidative stress, resulting in DNA damage. Recent studies have also revealed the capability of DON and its metabolites to disturb the cell cycle and alter amino acid expression. Several studies have attempted to explore the mechanism of action of T-2 and HT-2 toxins in anorexia induction. Among other findings, two neurotransmitters associated with this process have been identified, namely substance P and serotonin (5-hydroxytryptamine). For zearalenone (ZEN) and its metabolites, the literature points out that, in addition to their generally acknowledged estrogenic and oxidative potentials, they can also modify DNA by altering methylation patterns and histone acetylation. The ability of the compounds to induce alterations in the expression of major metabolic genes suggests that these compounds can contribute to the development of numerous metabolic diseases, including type 2 diabetes.
Collapse
Affiliation(s)
- Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Joanna Kanabus
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (J.K.); (M.M.)
| | - Grażyna Podolska
- Department of Cereal Crop Production, Institute of Soil Science and Plant Cultivation–State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| |
Collapse
|
43
|
Leslie JF, Moretti A, Mesterházy Á, Ameye M, Audenaert K, Singh PK, Richard-Forget F, Chulze SN, Ponte EMD, Chala A, Battilani P, Logrieco AF. Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains. Toxins (Basel) 2021; 13:725. [PMID: 34679018 PMCID: PMC8541216 DOI: 10.3390/toxins13100725] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 01/23/2023] Open
Abstract
Mycotoxins in small grains are a significant and long-standing problem. These contaminants may be produced by members of several fungal genera, including Alternaria, Aspergillus, Fusarium, Claviceps, and Penicillium. Interventions that limit contamination can be made both pre-harvest and post-harvest. Many problems and strategies to control them and the toxins they produce are similar regardless of the location at which they are employed, while others are more common in some areas than in others. Increased knowledge of host-plant resistance, better agronomic methods, improved fungicide management, and better storage strategies all have application on a global basis. We summarize the major pre- and post-harvest control strategies currently in use. In the area of pre-harvest, these include resistant host lines, fungicides and their application guided by epidemiological models, and multiple cultural practices. In the area of post-harvest, drying, storage, cleaning and sorting, and some end-product processes were the most important at the global level. We also employed the Nominal Group discussion technique to identify and prioritize potential steps forward and to reduce problems associated with human and animal consumption of these grains. Identifying existing and potentially novel mechanisms to effectively manage mycotoxin problems in these grains is essential to ensure the safety of humans and domesticated animals that consume these grains.
Collapse
Affiliation(s)
- John F. Leslie
- Throckmorton Plant Sciences Center, Department of Plant Pathology, 1712 Claflin Avenue, Kansas State University, Manhattan, KS 66506, USA;
| | - Antonio Moretti
- Institute of the Science of Food Production, National Research Council (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy;
| | - Ákos Mesterházy
- Cereal Research Non-Profit Ltd., Alsókikötő sor 9, H-6726 Szeged, Hungary;
| | - Maarten Ameye
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.A.); (K.A.)
| | - Kris Audenaert
- Department of Plant and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium; (M.A.); (K.A.)
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico 06600, DF, Mexico;
| | | | - Sofía N. Chulze
- Research Institute on Mycology and Mycotoxicology (IMICO), National Scientific and Technical Research Council-National University of Río Cuarto (CONICET-UNRC), 5800 Río Cuarto, Córdoba, Argentina;
| | - Emerson M. Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil;
| | - Alemayehu Chala
- College of Agriculture, Hawassa University, P.O. Box 5, Hawassa 1000, Ethiopia;
| | - Paola Battilani
- Department of Sustainable Crop Production, Faculty of Agriculture, Food and Environmental Sciences, Universitá Cattolica del Sacro Cuore, via E. Parmense, 84-29122 Piacenza, Italy;
| | - Antonio F. Logrieco
- Institute of the Science of Food Production, National Research Council (CNR-ISPA), Via Amendola 122/O, 70126 Bari, Italy;
| |
Collapse
|
44
|
Mycotoxin bioaccessibility in baby food through in vitro digestion: an overview focusing on risk assessment. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Modelling the Renal Excretion of the Mycotoxin Deoxynivalenol in Humans in an Everyday Situation. Toxins (Basel) 2021; 13:toxins13100675. [PMID: 34678968 PMCID: PMC8540402 DOI: 10.3390/toxins13100675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
The dietary exposure to the mycotoxin deoxynivalenol (DON) can be assessed by human biomonitoring (HBM). Here, we assessed the relation between dietary DON intake and the excretion of its major metabolite DON-15-glucuronide (DON15GlcA) through time, in an everyday situation. For 49 volunteers from the EuroMix biomonitoring study, the intake of DON from each meal was calculated and the excretion of DON and its metabolites was analyzed for each urine void collected separately throughout a 24-h period. The relation between DON and DON15GlcA was analyzed with a statistical model to assess the residence time and the excreted fraction of ingested DON as DON15GlcA (fabs_excr). Fabs_excr was treated as a random effect variable to address its heterogeneity in the population. The estimated time in which 97.5% of the ingested DON was excreted as DON15GlcA was 12.1 h, the elimination half-life was 4.0 h. Based on the estimated fabs_excr, the mean reversed dosimetry factor (RDF) of DON15GlcA was 2.28. This RDF can be used to calculate the amount of total DON intake in an everyday situation, based on the excreted amount of DON15GlcA. We show that urine samples collected over 24 h are the optimal design to study DON exposure by HBM.
Collapse
|
46
|
Development and Validation of an LC-MS/MS Based Method for the Determination of Deoxynivalenol and Its Modified Forms in Maize. Toxins (Basel) 2021; 13:toxins13090600. [PMID: 34564604 PMCID: PMC8470870 DOI: 10.3390/toxins13090600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
The Fusarium mycotoxin deoxynivalenol (DON) is a common contaminant of cereals and is often co-occurring with its modified forms DON-3-glucoside (D3G), 3-acetyl-DON (3ADON) or 15-acetyl-DON (15ADON). A stable-isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) based method for their determination in cereals was developed and validated for maize. Therefore, 13C-labelled D3G was enzymatically produced using 13C-DON and [13C6Glc]-sucrose and used as an internal standard (IS) for D3G, while uniformly 13C labelled IS was used for the other mycotoxins. Baseline separation was achieved for the critical peak pair DON/D3G, while 3ADON/15ADON could not be fully baseline separated after testing various reversed phase, fluorinated phase and chiral LC columns. After grinding, weighing and extracting the cereal samples, the raw extract was centrifuged and a mixture of the four 13C-labelled ISs was added directly in a microinsert vial. The subsequent analytical run took 7 min, followed by negative electrospray ionization and selected reaction monitoring on a triple quadrupole MS. Maize was used as a complex cereal model matrix for validation. The use of the IS corrected the occurring matrix effects efficiently from 76 to 98% for D3G, from 86 to 103% for DON, from 68 to 100% for 15ADON and from 63 to 96% for 3ADON.
Collapse
|
47
|
Fumagalli F, Ottoboni M, Pinotti L, Cheli F. Integrated Mycotoxin Management System in the Feed Supply Chain: Innovative Approaches. Toxins (Basel) 2021; 13:572. [PMID: 34437443 PMCID: PMC8402322 DOI: 10.3390/toxins13080572] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Exposure to mycotoxins is a worldwide concern as their occurrence is unavoidable and varies among geographical regions. Mycotoxins can affect the performance and quality of livestock production and act as carriers putting human health at risk. Feed can be contaminated by various fungal species, and mycotoxins co-occurrence, and modified and emerging mycotoxins are at the centre of modern mycotoxin research. Preventing mould and mycotoxin contamination is almost impossible; it is necessary for producers to implement a comprehensive mycotoxin management program to moderate these risks along the animal feed supply chain in an HACCP perspective. The objective of this paper is to suggest an innovative integrated system for handling mycotoxins in the feed chain, with an emphasis on novel strategies for mycotoxin control. Specific and selected technologies, such as nanotechnologies, and management protocols are reported as promising and sustainable options for implementing mycotoxins control, prevention, and management. Further research should be concentrated on methods to determine multi-contaminated samples, and emerging and modified mycotoxins.
Collapse
Affiliation(s)
- Francesca Fumagalli
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
| | - Matteo Ottoboni
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| | - Federica Cheli
- Department of Health, Animal Science and Food Safety, “Carlo Cantoni” University of Milan, 20134 Milan, Italy; (M.O.); (L.P.); (F.C.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| |
Collapse
|
48
|
Contamination of Acorns of Pedunculate Oak (Quercus robur L.), as Feed Material, by Moulds and Mycotoxins. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
In the past, pigs were commonly fed with acorns, and this was of remarkable economic importance. Currently this habit is continued in some areas, especially for production of prime-quality Iberian ham. Mature acorns, after shedding and during storage in unsuitable conditions, can be quickly infected with spores of many moulds, which cause mummification, blackening, dehydration, and nutrient loss. This study aimed to evaluate the quality of acorns of pedunculate oak (Quercus robur L.). The samples were collected in 2017 in southern Wielkopolska (central part of Poland), as feed material. In mouldy acorns a very high number of fungi was found (2.6 × 106 cfu/g), and 97% of them represented pathogenic Penicillium spp. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed in mouldy acorns high concentrations of mycophenolic acid (14580 μg/kg) and patulin (50 μg/kg). The dominant mould species, Penicillium expansum, showed a high cytotoxicity of swine kidney cells using assay based on the conversion of the tetrazolium salt, 3-(4,5, dimethylthiazol-2-yl)-2-5 diphenyltetrazolium (MTT). This raises the question if the pathogenic metabolites of moulds present in acorns can be dangerous for livestock, especially pigs, and people, as acorns are beginning to be seen as an interesting and functional part of their diet.
Collapse
|
49
|
Aichinger G, Del Favero G, Warth B, Marko D. Alternaria toxins-Still emerging? Compr Rev Food Sci Food Saf 2021; 20:4390-4406. [PMID: 34323368 DOI: 10.1111/1541-4337.12803] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/13/2022]
Abstract
Alternaria molds are known to cause the contamination of food with their secondary metabolites, a chemically very heterogeneous group of compounds. Yet, after decades of research on the occurrence and the toxicity of Alternaria toxins in academia, no regulation has been implemented yet, thus leaving these potential food contaminants in the status of so-called "emerging mycotoxins". However, research on this topic has been far from static, leading to the European Food Safety Authority repeatedly calling for more data on the occurrence and toxicity of genotoxic metabolites such as alternariol (AOH) and its monomethyl ether (AME). To give an overview on recent developments in the field, this comprehensive review summarizes published data and addresses current challenges arising from the chemical complexity of Alternaria's metabolome, mixture effects and the emergence of novel biological targets like cell membranes or the interaction with different receptors. Besides toxicodynamics, we review recent research on toxicokinetics, including the first in vivo studies which incorporated the rarely investigated-but highly genotoxic-perylene quinones. Furthermore, a particular focus lies on the advances of liquid chromatography/tandem mass spectrometry (LC-MS/MS)-based analytical tools for determining a broader spectrum of Alternaria toxins including modified/masked forms and assessing exposure via human biomonitoring (HBM).
Collapse
Affiliation(s)
- Georg Aichinger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Wien, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Wien, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Wien, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Wien, Austria
| |
Collapse
|
50
|
Chen A, Mao X, Sun Q, Wei Z, Li J, You Y, Zhao J, Jiang G, Wu Y, Wang L, Li Y. Alternaria Mycotoxins: An Overview of Toxicity, Metabolism, and Analysis in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7817-7830. [PMID: 34250809 DOI: 10.1021/acs.jafc.1c03007] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The genus Alternaria is widely distributed in the environment. Numerous species of the genus Alternaria can produce a variety of toxic secondary metabolites, called Alternaria mycotoxins. In this review, natural occurrence, toxicity, metabolism, and analytical methods are introduced. The contamination of these toxins in foodstuffs is ubiquitous, and most of these metabolites present genotoxic and cytotoxic effects. Moreover, Alternaria toxins are mainly hydroxylated to catechol metabolites and combined with sulfate and glucuronic acid in in vitro arrays. A more detailed summary of the metabolism of Alternaria toxins is presented in this work. To effectively detect and determine the mycotoxins in food, analytical methods with high sensitivity and good accuracy are also reviewed. This review will guide the formulation of maximum residue limit standards in the future, covering both toxicity and metabolic mechanism of Alternaria toxins.
Collapse
Affiliation(s)
- Anqi Chen
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Xin Mao
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Qinghui Sun
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Zixuan Wei
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Juan Li
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Yanli You
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Jiqiang Zhao
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Chinese Academy of Medical Science Research Unit (2019RU014), China National Center for Food Safety Risk Assessment, Beijing 100017, People's Republic of China
| | - Liping Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yanshen Li
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| |
Collapse
|