1
|
Lista S, Imbimbo BP, Grasso M, Fidilio A, Emanuele E, Minoretti P, López-Ortiz S, Martín-Hernández J, Gabelle A, Caruso G, Malaguti M, Melchiorri D, Santos-Lozano A, Imbimbo C, Heneka MT, Caraci F. Tracking neuroinflammatory biomarkers in Alzheimer's disease: a strategy for individualized therapeutic approaches? J Neuroinflammation 2024; 21:187. [PMID: 39080712 PMCID: PMC11289964 DOI: 10.1186/s12974-024-03163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Recent trials of anti-amyloid-β (Aβ) monoclonal antibodies, including lecanemab and donanemab, in early Alzheimer disease (AD) showed that these drugs have limited clinical benefits and their use comes with a significant risk of serious adverse events. Thus, it seems crucial to explore complementary therapeutic approaches. Genome-wide association studies identified robust associations between AD and several AD risk genes related to immune response, including but not restricted to CD33 and TREM2. Here, we critically reviewed the current knowledge on candidate neuroinflammatory biomarkers and their role in characterizing the pathophysiology of AD. MAIN BODY Neuroinflammation is recognized to be a crucial and contributing component of AD pathogenesis. The fact that neuroinflammation is most likely present from earliest pre-stages of AD and co-occurs with the deposition of Aβ reinforces the need to precisely define the sequence and nature of neuroinflammatory events. Numerous clinical trials involving anti-inflammatory drugs previously yielded unfavorable outcomes in early and mild-to-moderate AD. Although the reasons behind these failures remain unclear, these may include the time and the target selected for intervention. Indeed, in our review, we observed a stage-dependent neuroinflammatory process in the AD brain. While the initial activation of glial cells counteracts early brain Aβ deposition, the downregulation in the functional state of microglia occurs at more advanced disease stages. To address this issue, personalized neuroinflammatory modulation therapy is required. The emergence of reliable blood-based neuroinflammatory biomarkers, particularly glial fibrillary acidic protein, a marker of reactive astrocytes, may facilitate the classification of AD patients based on the ATI(N) biomarker framework. This expands upon the traditional classification of Aβ ("A"), tau ("T"), and neurodegeneration ("N"), by incorporating a novel inflammatory component ("I"). CONCLUSIONS The present review outlines the current knowledge on potential neuroinflammatory biomarkers and, importantly, emphasizes the role of longitudinal analyses, which are needed to accurately monitor the dynamics of cerebral inflammation. Such a precise information on time and place will be required before anti-inflammatory therapeutic interventions can be considered for clinical evaluation. We propose that an effective anti-neuroinflammatory therapy should specifically target microglia and astrocytes, while considering the individual ATI(N) status of patients.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, 43122, Parma, Italy
| | | | | | | | | | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
| | - Audrey Gabelle
- CMRR, Memory Resources and Research Center, Montpellier University of Excellence i-site, 34295, Montpellier, France
| | - Giuseppe Caruso
- Oasi Research Institute-IRCCS, 94018, Troina, Italy
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126, Bologna, Italy
| | - Daniela Melchiorri
- Department of Physiology and Pharmacology, Sapienza University, 00185, Rome, Italy
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
- Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital, 12 de Octubre ('imas12'), 28041, Madrid, Spain
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 4367, Esch-Belval, Luxembourg.
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018, Troina, Italy.
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy.
| |
Collapse
|
2
|
Balgoon MJ. Garden Cress ( Lepidium sativum) Seeds Ameliorated Aluminum-Induced Alzheimer Disease in Rats Through Antioxidant, Anti-Inflammatory, and Antiapoptotic Effects. Neuropsychiatr Dis Treat 2023; 19:865-878. [PMID: 37077707 PMCID: PMC10106954 DOI: 10.2147/ndt.s401740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/22/2023] [Indexed: 04/21/2023] Open
Abstract
Background Bioaccumulation of aluminum in the brain is associated with adverse neuroinflammatory and neurodegenerative changes, such as those seen in Alzheimer's disease (AD). Objective This study aimed to assess the impact of the administration of Lepidium sativum (LS) extract on behavioral, biochemical, and cerebral histopathological changes in rats with AlCl3-induced AD and explore the mechanism behind this effect. Materials and Methods This study was conducted on 40 male albino rats divided into four groups (n=10): LS (control, 20 mg/kg body weight for 8 weeks), AD (AlCl3, 10 mg/kg body weight), and an LS-treated AD group. Behavioral assessment included radial armed maze and active avoidance training tests. Proinflammatory cytokines, oxidant/antioxidant markers, Aβ, AchE, tau protein, TGFβ1, homocysteine, folic acid, and vitamin B12 were biochemically assessed in the serum. The cerebral cortex was histopathologically examined. Results AlCl3 administration significantly impaired rats' memory, indicating AD-like behavioral changes, significantly increased (P<0.001) oxidative stress markers, enhanced proinflammatory cytokines, and significantly increased AChE (P<0.001) adding to cytotoxic effects and neuronal loss in the cerebral cortex. LS administration significantly improved the antioxidant parameters, reduced proinflammatory cytokines, and alleviated AD-associated histopathological changes. Conclusion LS ameliorated AlCl3-induced changes through its antioxidant, anti-inflammatory, and antiapoptotic effects, suggesting that it has a neuroprotective effect.
Collapse
Affiliation(s)
- Maha J Balgoon
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Correspondence: Maha J Balgoon, Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, Tel +966555762237, Email
| |
Collapse
|
3
|
Varela L, Garcia-Rendueles MER. Oncogenic Pathways in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23063223. [PMID: 35328644 PMCID: PMC8952192 DOI: 10.3390/ijms23063223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer and neurodegenerative diseases are two of the leading causes of premature death in modern societies. Their incidence continues to increase, and in the near future, it is believed that cancer will kill more than 20 million people per year, and neurodegenerative diseases, due to the aging of the world population, will double their prevalence. The onset and the progression of both diseases are defined by dysregulation of the same molecular signaling pathways. However, whereas in cancer, these alterations lead to cell survival and proliferation, neurodegenerative diseases trigger cell death and apoptosis. The study of the mechanisms underlying these opposite final responses to the same molecular trigger is key to providing a better understanding of the diseases and finding more accurate treatments. Here, we review the ten most common signaling pathways altered in cancer and analyze them in the context of different neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases.
Collapse
Affiliation(s)
- Luis Varela
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, School of Medicine, Yale University, 310 Cedar St. BML 330, New Haven, CT 06520, USA
- Correspondence: (L.V.); (M.E.R.G.-R.)
| | - Maria E. R. Garcia-Rendueles
- Precision Nutrition and Cancer Program, IMDEA Food Institute, Campus Excelencia Internacional UAM+CSIC, 28049 Madrid, Spain
- Correspondence: (L.V.); (M.E.R.G.-R.)
| |
Collapse
|
4
|
Metformin in Alzheimer’s disease: An overview of potential mechanisms, preclinical and clinical findings. Biochem Pharmacol 2022; 197:114945. [DOI: 10.1016/j.bcp.2022.114945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022]
|
5
|
Soluble Endoglin Stimulates Inflammatory and Angiogenic Responses in Microglia That Are Associated with Endothelial Dysfunction. Int J Mol Sci 2022; 23:ijms23031225. [PMID: 35163148 PMCID: PMC8835690 DOI: 10.3390/ijms23031225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Increased soluble endoglin (sENG) has been observed in human brain arteriovenous malformations (bAVMs). In addition, the overexpression of sENG in concurrence with vascular endothelial growth factor (VEGF)-A has been shown to induce dysplastic vessel formation in mouse brains. However, the underlying mechanism of sENG-induced vascular malformations is not clear. The evidence suggests the role of sENG as a pro-inflammatory modulator, and increased microglial accumulation and inflammation have been observed in bAVMs. Therefore, we hypothesized that microglia mediate sENG-induced inflammation and endothelial cell (EC) dysfunction in bAVMs. In this study, we confirmed that the presence of sENG along with VEGF-A overexpression induced dysplastic vessel formation. Remarkably, we observed increased microglial activation around dysplastic vessels with the expression of NLRP3, an inflammasome marker. We found that sENG increased the gene expression of VEGF-A, pro-inflammatory cytokines/inflammasome mediators (TNF-α, IL-6, NLRP3, ASC, Caspase-1, and IL-1β), and proteolytic enzyme (MMP-9) in BV2 microglia. The conditioned media from sENG-treated BV2 (BV2-sENG-CM) significantly increased levels of angiogenic factors (Notch-1 and TGFβ) and pERK1/2 in ECs but it decreased the level of IL-17RD, an anti-angiogenic mediator. Finally, the BV2-sENG-CM significantly increased EC migration and tube formation. Together, our study demonstrates that sENG provokes microglia to express angiogenic/inflammatory molecules which may be involved in EC dysfunction. Our study corroborates the contribution of microglia to the pathology of sENG-associated vascular malformations.
Collapse
|
6
|
Uddin MS, Kabir MT, Jalouli M, Rahman MA, Jeandet P, Behl T, Alexiou A, Albadrani GM, Abdel-Daim MM, Perveen A, Ashraf GM. Neuroinflammatory Signaling in the Pathogenesis of Alzheimer's Disease. Curr Neuropharmacol 2021; 20:126-146. [PMID: 34525932 PMCID: PMC9199559 DOI: 10.2174/1570159x19666210826130210] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 04/16/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the formation of intracellular neurofibrillary tangles (NFTs) and extracellular amyloid plaques. Growing evidence has suggested that AD pathogenesis is not only limited to the neuronal compartment but also strongly interacts with immunological processes in the brain. On the other hand, aggregated and misfolded proteins can bind with pattern recognition receptors located on astroglia and microglia and can, in turn, induce an innate immune response, characterized by the release of inflammatory mediators, ultimately playing a role in both the severity and the progression of the disease. It has been reported by genome-wide analysis that several genes which elevate the risk for sporadic AD encode for factors controlling the inflammatory response and glial clearance of misfolded proteins. Obesity and systemic inflammation are examples of external factors which may interfere with the immunological mechanisms of the brain and can induce disease progression. In this review, we discussed the mechanisms and essential role of inflammatory signaling pathways in AD pathogenesis. Indeed, interfering with immune processes and modulation of risk factors may lead to future therapeutic or preventive AD approaches.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Bangladesh
| | | | - Maroua Jalouli
- College of Science, King Saud University, P.O. Box 2455, Riyadh 11451. Saudi Arabia
| | - Md Ataur Rahman
- Center for Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul. Korea
| | - Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2. France
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, 2770 Hebersham. Australia
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474. Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522. Egypt
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur. India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah. Saudi Arabia
| |
Collapse
|
7
|
Gene Expression Profile in Different Age Groups and Its Association with Cognitive Function in Healthy Malay Adults in Malaysia. Cells 2021; 10:cells10071611. [PMID: 34199148 PMCID: PMC8304476 DOI: 10.3390/cells10071611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanism of cognitive aging at the molecular level is complex and not well understood. Growing evidence suggests that cognitive differences might also be caused by ethnicity. Thus, this study aims to determine the gene expression changes associated with age-related cognitive decline among Malay adults in Malaysia. A cross-sectional study was conducted on 160 healthy Malay subjects, aged between 28 and 79, and recruited around Selangor and Klang Valley, Malaysia. Gene expression analysis was performed using a HumanHT-12v4.0 Expression BeadChip microarray kit. The top 20 differentially expressed genes at p < 0.05 and fold change (FC) = 1.2 showed that PAFAH1B3, HIST1H1E, KCNA3, TM7SF2, RGS1, and TGFBRAP1 were regulated with increased age. The gene set analysis suggests that the Malay adult's susceptibility to developing age-related cognitive decline might be due to the changes in gene expression patterns associated with inflammation, signal transduction, and metabolic pathway in the genetic network. It may, perhaps, have important implications for finding a biomarker for cognitive decline and offer molecular targets to achieve successful aging, mainly in the Malay population in Malaysia.
Collapse
|
8
|
Thakur N, Pandey RK, Mannan R, Pruthi A, Mehrotra S. Association of TGFB -509C>T promoter polymorphism with primary angle closure glaucoma in a North Indian Punjabi cohort. BMC Ophthalmol 2021; 21:165. [PMID: 33832461 PMCID: PMC8028242 DOI: 10.1186/s12886-021-01924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Transforming growth factor beta (TGFB) is an important candidate gene implicated in glaucoma pathogenesis because it affects retinal ganglionic cell survival. The present study assessed the genetic association of -509C > T variant in the TGFB promoter region with primary open angle glaucoma (POAG) and primary angle closure glaucoma (PACG) in a North Indian Punjabi population. METHOD A total of 867 subjects (307 POAG, 133 PACG cases and 427 controls) were recruited from the targeted population. Genotyping was done by PCR-RFLP method and the data was analyzed using PLINK software (v1.07). Logistic regression under different genetic models was applied and genotype phenotype correlation was assessed by one-way ANOVA. RESULT A statistically significant difference in the frequency of heterozygotes among PACG cases (53.16%) and controls (30.07%) (p = 0.0002) was observed. Genetic model analysis revealed that mutant "TT" genotype conferred 2-fold risk towards PACG development under recessive model (p = 0.0019) while dominant model and co-dominant model provided 0.62 and 0.37 fold protection against PACG (p = 0.025 and p = 0.0001, respectively). Data segregation based on sex revealed a strong protective effect of heterozygous 'CT' genotype against progression of PACG among females (p = 0.002, OR = 0.37, 95% CI = 0.19-0.70), but conferred 2.14-fold risk among female POAG subjects (p = 0.013). CONCLUSION The study revealed a strong genetic association of -509C > T variant in TGFB with PACG in females. There is a need to replicate the results in a larger PACG cohort in other populations and further assess the contribution of sex specific factors in modifying genetic susceptibility to PACG.
Collapse
Affiliation(s)
- Nanamika Thakur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| | | | - Rashim Mannan
- All India Institute of Medical Sciences, New Delhi, India
| | - Archna Pruthi
- All India Institute of Medical Sciences, New Delhi, India
| | - Sanjana Mehrotra
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
9
|
Increase Risk of Dementia in Patients With Sudden Hearing Loss: A Population-Based Cohort Study With 7-Year Follow-Up in Taiwan. Otol Neurotol 2020; 41:1334-1340. [PMID: 32810013 DOI: 10.1097/mao.0000000000002795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the prevalence and risk of subsequent dementia in subjects with sudden hearing loss during a 7-year follow-up period through comparisons with cohorts matched by sex, age group, and year of index date. STUDY DESIGN A retrospective matched-cohort study. SETTING The Longitudinal Health Insurance Database 2000 (LHID2000) in Taiwan. PATIENTS This study included a total of 11,148 subjects, including 1,858 in the study group and 9,290 in the comparison cohort group. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) We analyzed the differences in sociodemographic characteristics and comorbidities between subjects with sudden hearing loss and the comparison cohort group. Then, we estimated the risk of dementia and also plotted the survival outcomes to evaluate differences in dementia-free survival rates between the two groups. RESULTS The dementia incidence rates per 1000 person-years were 20.45 and 8.15 for the subjects with sudden hearing loss and comparison cohorts, respectively. When we adjusted for the subjects' characteristics, the hazard ratio for dementia was 1.69 (95% confidence interval [CI] = 1.06-2.68, p < 0.01) for subjects with sudden hearing loss compared with comparison cohorts during the follow-up period, and subjects with sudden hearing loss had lower 7-year dementia-free survival rates compared with comparison cohorts by using a log-rank test. Furthermore, male subjects with sudden hearing loss had a higher risk of dementia (adjusted hazard ratio [HR] = 2.11) than did the male comparison cohorts. CONCLUSIONS This study revealed a relationship between sudden hearing loss and dementia in an Asian country. The risk of dementia was higher among patients with sudden hearing loss compared with matched cohorts during the 7-year follow-up period.
Collapse
|
10
|
TGF-β Signaling in Cellular Senescence and Aging-Related Pathology. Int J Mol Sci 2019; 20:ijms20205002. [PMID: 31658594 PMCID: PMC6834140 DOI: 10.3390/ijms20205002] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/27/2022] Open
Abstract
Aging is broadly defined as the functional decline that occurs in all body systems. The accumulation of senescent cells is considered a hallmark of aging and thought to contribute to the aging pathologies. Transforming growth factor-β (TGF-β) is a pleiotropic cytokine that regulates a myriad of cellular processes and has important roles in embryonic development, physiological tissue homeostasis, and various pathological conditions. TGF-β exerts potent growth inhibitory activities in various cell types, and multiple growth regulatory mechanisms have reportedly been linked to the phenotypes of cellular senescence and stem cell aging in previous studies. In addition, accumulated evidence has indicated a multifaceted association between TGF-β signaling and aging-associated disorders, including Alzheimer’s disease, muscle atrophy, and obesity. The findings regarding these diseases suggest that the impairment of TGF-β signaling in certain cell types and the upregulation of TGF-β ligands contribute to cell degeneration, tissue fibrosis, inflammation, decreased regeneration capacity, and metabolic malfunction. While the biological roles of TGF-β depend highly on cell types and cellular contexts, aging-associated changes are an important additional context which warrants further investigation to better understand the involvement in various diseases and develop therapeutic options. The present review summarizes the relationships between TGF-β signaling and cellular senescence, stem cell aging, and aging-related diseases.
Collapse
|
11
|
Microglial Phenotyping in Neurodegenerative Disease Brains: Identification of Reactive Microglia with an Antibody to Variant of CD105/Endoglin. Cells 2019; 8:cells8070766. [PMID: 31340569 PMCID: PMC6678308 DOI: 10.3390/cells8070766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Inflammation is considered a key pathological process in neurodegenerative diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD), but there are still mechanisms not understood. In the brain, most microglia are performing essential homeostatic functions, but can also respond to pathogenic stimuli by producing harmful pro-inflammatory cytokines or free radicals. Distinguishing between damaging and homeostatic microglia in human diseased brain tissues is a challenge. This report describes findings using a monoclonal antibody to CD105/Endoglin (R&D Systems MAB1097) that identifies subtypes of activated microglia. CD105/Endoglin is a co-receptor for transforming growth factor beta (TGFβ) receptor that antagonizes TGFβ signaling. CD105/Endoglin is a marker for vascular endothelial cells, but was originally identified as a marker for activated macrophages. This antibody did not identify endothelial cells in brain sections, only microglia-like cells. In this study, we examined with this antibody tissue section from middle temporal gyrus derived from human brains from normal control subjects with low-plaque pathology, high-plaque pathology, and AD cases, and also substantia nigra samples from control and PD cases, in conjunction with antibodies to markers of pathology and microglia. In low-plaque pathology cases, CD105-positive microglia were mostly absent, but noticeably increased with increasing pathology. CD105-positive cells strongly colocalized with amyloid-beta plaques, but not phosphorylated tau positive tangles. In substantia nigra, strong microglial CD105 staining was observed in microglia associated with degenerating dopaminergic neurons and neuromelanin. In PD cases with few surviving dopaminergic neurons, this staining had decreased. By Western blot, this antibody identified polypeptide bands of 70 kDa in brain samples, and samples from microglia, macrophages, and brain endothelial cells. In comparison with other tested CD105 antibodies, this antibody did not recognize the glycosylated forms of CD105 on Western blots. Overall, the data indicate that this antibody and this marker could have utility for subtyping of microglia in pathologically-involved tissue.
Collapse
|
12
|
Caruso G, Fresta CG, Musso N, Giambirtone M, Grasso M, Spampinato SF, Merlo S, Drago F, Lazzarino G, Sortino MA, Lunte SM, Caraci F. Carnosine Prevents Aβ-Induced Oxidative Stress and Inflammation in Microglial Cells: A Key Role of TGF-β1. Cells 2019; 8:E64. [PMID: 30658430 PMCID: PMC6356400 DOI: 10.3390/cells8010064] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Carnosine (β-alanyl-L-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Carnosine is involved in cellular defense mechanisms against oxidative stress, including the inhibition of amyloid-beta (Aβ) aggregation and the scavenging of reactive species. Microglia play a central role in the pathogenesis of Alzheimer's disease, promoting neuroinflammation through the secretion of inflammatory mediators and free radicals. However, the effects of carnosine on microglial cells and neuroinflammation are not well understood. In the present work, carnosine was tested for its ability to protect BV-2 microglial cells against oligomeric Aβ1-42-induced oxidative stress and inflammation. Carnosine prevented cell death in BV-2 cells challenged with Aβ oligomers through multiple mechanisms. Specifically, carnosine lowered the oxidative stress by decreasing NO and O₂-• intracellular levels as well as the expression of iNOS and Nox enzymes. Carnosine also decreased the secretion of pro-inflammatory cytokines such as IL-1β, simultaneously rescuing IL-10 levels and increasing the expression and the release of TGF-β1. Carnosine also prevented Aβ-induced neurodegeneration in mixed neuronal cultures challenged with Aβ oligomers, and these neuroprotective effects were completely abolished by SB431542, a selective inhibitor of the type-1 TGF-β receptor. Our data suggest a multimodal mechanism of action of carnosine underlying its protective effects on microglial cells against Aβ toxicity with a key role of TGF-β1 in mediating these protective effects.
Collapse
Affiliation(s)
| | - Claudia G Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
| | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95125 Catania, Italy.
| | | | - Margherita Grasso
- Oasi Research Institute-IRCCS, 94018 Troina, Italy.
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| | - Simona F Spampinato
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, 95125 Catania, Italy.
| | - Maria A Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95125 Catania, Italy.
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA.
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy.
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
| |
Collapse
|
13
|
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:575-590. [PMID: 30406177 PMCID: PMC6214864 DOI: 10.1016/j.trci.2018.06.014] [Citation(s) in RCA: 1235] [Impact Index Per Article: 205.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by cognitive decline and the presence of two core pathologies, amyloid β plaques and neurofibrillary tangles. Over the last decade, the presence of a sustained immune response in the brain has emerged as a third core pathology in AD. The sustained activation of the brain's resident macrophages (microglia) and other immune cells has been demonstrated to exacerbate both amyloid and tau pathology and may serve as a link in the pathogenesis of the disorder. In the following review, we provide an overview of inflammation in AD and a detailed coverage of a number of microglia-related signaling mechanisms that have been implicated in AD. Additional information on microglia signaling and a number of cytokines in AD are also reviewed. We also review the potential connection of risk factors for AD and how they may be related to inflammatory mechanisms.
Collapse
Affiliation(s)
- Jefferson W. Kinney
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Shane M. Bemiller
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew S. Murtishaw
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Amanda M. Leisgang
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Arnold M. Salazar
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Bruce T. Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
14
|
Vargas DM, De Bastiani MA, Zimmer ER, Klamt F. Alzheimer's disease master regulators analysis: search for potential molecular targets and drug repositioning candidates. ALZHEIMERS RESEARCH & THERAPY 2018; 10:59. [PMID: 29935546 PMCID: PMC6015462 DOI: 10.1186/s13195-018-0394-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/30/2018] [Indexed: 02/03/2023]
Abstract
Background Alzheimer’s disease (AD) is a multifactorial and complex neuropathology that involves impairment of many intricate molecular mechanisms. Despite recent advances, AD pathophysiological characterization remains incomplete, which hampers the development of effective treatments. In fact, currently, there are no effective pharmacological treatments for AD. Integrative strategies such as transcription regulatory network and master regulator analyses exemplify promising new approaches to study complex diseases and may help in the identification of potential pharmacological targets. Methods In this study, we used transcription regulatory network and master regulator analyses on transcriptomic data of human hippocampus to identify transcription factors (TFs) that can potentially act as master regulators in AD. All expression profiles were obtained from the Gene Expression Omnibus database using the GEOquery package. A normal hippocampus transcription factor-centered regulatory network was reconstructed using the ARACNe algorithm. Master regulator analysis and two-tail gene set enrichment analysis were employed to evaluate the inferred regulatory units in AD case-control studies. Finally, we used a connectivity map adaptation to prospect new potential therapeutic interventions by drug repurposing. Results We identified TFs with already reported involvement in AD, such as ATF2 and PARK2, as well as possible new targets for future investigations, such as CNOT7, CSRNP2, SLC30A9, and TSC22D1. Furthermore, Connectivity Map Analysis adaptation suggested the repositioning of six FDA-approved drugs that can potentially modulate master regulator candidate regulatory units (Cefuroxime, Cyproterone, Dydrogesterone, Metrizamide, Trimethadione, and Vorinostat). Conclusions Using a transcription factor-centered regulatory network reconstruction we were able to identify several potential molecular targets and six drug candidates for repositioning in AD. Our study provides further support for the use of bioinformatics tools as exploratory strategies in neurodegenerative diseases research, and also provides new perspectives on molecular targets and drug therapies for future investigation and validation in AD. Electronic supplementary material The online version of this article (10.1186/s13195-018-0394-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- D M Vargas
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
| | - M A De Bastiani
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - E R Zimmer
- Pharmacology Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.,Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90619-900, Brazil
| | - F Klamt
- Laboratory of Cellular Biochemistry, Biochemistry Department, Institute of Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.,National Science Technology Institute for Translational Medicine (INCT-TM), National Council for Scientific and Technological Development (CNPq), Porto Alegre, Brazil
| |
Collapse
|
15
|
Neurobiological links between depression and AD: The role of TGF-β1 signaling as a new pharmacological target. Pharmacol Res 2018; 130:374-384. [DOI: 10.1016/j.phrs.2018.02.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/03/2018] [Accepted: 02/07/2018] [Indexed: 12/19/2022]
|
16
|
Merkulova-Rainon T, Mantsounga CS, Broquères-You D, Pinto C, Vilar J, Cifuentes D, Bonnin P, Kubis N, Henrion D, Silvestre JS, Lévy BI. Peripheral post-ischemic vascular repair is impaired in a murine model of Alzheimer’s disease. Angiogenesis 2018. [DOI: 10.1007/s10456-018-9608-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Ren J, Zhao G, Sun X, Liu H, Jiang P, Chen J, Wu Z, Peng D, Fang Y, Zhang C. Identification of plasma biomarkers for distinguishing bipolar depression from major depressive disorder by iTRAQ-coupled LC-MS/MS and bioinformatics analysis. Psychoneuroendocrinology 2017; 86:17-24. [PMID: 28910601 DOI: 10.1016/j.psyneuen.2017.09.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/28/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
It is important to differentiate between bipolar disorder (BD) and major depressive disorder (MDD) in the first depressive episode because of the potential treatment implications. Previous studies have mainly focused on the different clinical features or pathological biomarkers to distinguish these two diseases; however, a better understanding of the proteomics profiling of BD may help aid future therapeutic strategies. Here, we applied isobaric tags for relative and absolute quantification (iTRAQ) technology combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify differentially expressed proteins between MDD and bipolar depression (BP). In total, 30 MDD, 30 BP and 30 healthy subjects were included. Proteins from depleted plasma samples were digested into peptides, individually labeled with iTRAQ reagents, combined and subjected to LC-MS/MS and further bioinformatics analyses. Our results showed that 9 proteins were significantly altered between MDD and BP. Briefly, B2RAN2, B4E1B2, APOA1, ENG, SBSN and QSOX2 were up-regulated, whereas ORM1, MRC2 and SLPI were down-regulated. Most identified proteins were related to the immune system. The bioinformatics analysis showed that B2RAN2 (highly similar to vanin-1) was involved in the significantly enriched KEGG pathways "pantothenate and CoA biosynthesis" (P=0.009). B2RAN2 and ENG may play important roles in depression. They may serve as candidate biomarkers for distinguishing MDD and BP. Further validation and investigation are required to illuminate the roles of B2RAN2 and ENG in MDD and BP. The current study provided a potential and novel biomarker panel that may, in turn, aid the diagnosis of BD.
Collapse
Affiliation(s)
- Juanjuan Ren
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqing Zhao
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiujia Sun
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Liu
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Jiang
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Chen
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguo Wu
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chen Zhang
- Department of Biochemistry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Platania CBM, Fisichella V, Fidilio A, Geraci F, Lazzara F, Leggio GM, Salomone S, Drago F, Pignatello R, Caraci F, Bucolo C. Topical Ocular Delivery of TGF-β1 to the Back of the Eye: Implications in Age-Related Neurodegenerative Diseases. Int J Mol Sci 2017; 18:ijms18102076. [PMID: 28973964 PMCID: PMC5666758 DOI: 10.3390/ijms18102076] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 11/17/2022] Open
Abstract
Dysregulation of the transforming growth factor-β1 (TGF-β1)/selected small mother against decapentaplegic (SMAD) pathway can be implicated in development of age-related macular degeneration (AMD), and the delivery of TGF-β1 could be beneficial for AMD. We developed a new ophthalmic formulation of TGF-β1 assessing the ocular pharmacokinetic profile of TGF-β1 in the rabbit eye. Small unilamellar vesicles (SUV) loaded with TGF-β1 were complemented with Annexin V and Ca2+, and the vitreous bioavailability of TGF-β1 was assessed after topical ocular administration by a commercial ELISA kit. We detected high levels of TGF-β1 (Cmax 114.7 ± 12.40 pg/mL) in the vitreous after 60 min (Tmax) from the topical application of the liposomal suspension. Ocular tolerability was also assessed by a modified Draize’s test. The new formulation was well tolerated. In conclusion, we demonstrated that the novel formulation was able to deliver remarkable levels of TGF-β1 into the back of the eye after topical administration. Indeed, this TGF-β1 delivery system may be useful in clinical practice to manage ophthalmic conditions such as age-related macular degeneration, skipping invasive intraocular injections.
Collapse
Affiliation(s)
- Chiara Bianca Maria Platania
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy.
| | - Vincenzo Fisichella
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy.
| | - Annamaria Fidilio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy.
| | - Federica Geraci
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy.
| | - Francesca Lazzara
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy.
| | - Gian Marco Leggio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy.
- Center for Research in Ocular Pharmacology-CERFO University of Catania, 95123 Catania, Italy.
| | - Salvatore Salomone
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy.
- Center for Research in Ocular Pharmacology-CERFO University of Catania, 95123 Catania, Italy.
| | - Filippo Drago
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy.
- Center for Research in Ocular Pharmacology-CERFO University of Catania, 95123 Catania, Italy.
| | - Rosario Pignatello
- Center for Research in Ocular Pharmacology-CERFO University of Catania, 95123 Catania, Italy.
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
- NANO-i-Research Center on Ocular Nanotechnology, University of Catania, 95125 Catania, Italy.
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy.
- IRCSS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, 94018 Troina, Italy.
| | - Claudio Bucolo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy.
- Center for Research in Ocular Pharmacology-CERFO University of Catania, 95123 Catania, Italy.
| |
Collapse
|
19
|
Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Aβ Oligomers in Alzheimer's Disease Model. J Neurosci 2017; 37:6797-6809. [PMID: 28607171 DOI: 10.1523/jneurosci.3351-16.2017] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/28/2017] [Accepted: 05/31/2017] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive decline, increasingly attributed to neuronal dysfunction induced by amyloid-β oligomers (AβOs). Although the impact of AβOs on neurons has been extensively studied, only recently have the possible effects of AβOs on astrocytes begun to be investigated. Given the key roles of astrocytes in synapse formation, plasticity, and function, we sought to investigate the impact of AβOs on astrocytes, and to determine whether this impact is related to the deleterious actions of AβOs on synapses. We found that AβOs interact with astrocytes, cause astrocyte activation and trigger abnormal generation of reactive oxygen species, which is accompanied by impairment of astrocyte neuroprotective potential in vitro We further show that both murine and human astrocyte conditioned media (CM) increase synapse density, reduce AβOs binding, and prevent AβO-induced synapse loss in cultured hippocampal neurons. Both a neutralizing anti-transforming growth factor-β1 (TGF-β1) antibody and siRNA-mediated knockdown of TGF-β1, previously identified as an important synaptogenic factor secreted by astrocytes, abrogated the protective action of astrocyte CM against AβO-induced synapse loss. Notably, TGF-β1 prevented hippocampal dendritic spine loss and memory impairment in mice that received an intracerebroventricular infusion of AβOs. Results suggest that astrocyte-derived TGF-β1 is part of an endogenous mechanism that protects synapses against AβOs. By demonstrating that AβOs decrease astrocyte ability to protect synapses, our results unravel a new mechanism underlying the synaptotoxic action of AβOs in AD.SIGNIFICANCE STATEMENT Alzheimer's disease is characterized by progressive cognitive decline, mainly attributed to synaptotoxicity of the amyloid-β oligomers (AβOs). Here, we investigated the impact of AβOs in astrocytes, a less known subject. We show that astrocytes prevent synapse loss induced by AβOs, via production of transforming growth factor-β1 (TGF-β1). We found that AβOs trigger morphological and functional alterations in astrocytes, and impair their neuroprotective potential. Notably, TGF-β1 reduced hippocampal dendritic spine loss and memory impairment in mice that received intracerebroventricular infusions of AβOs. Our results describe a new mechanism underlying the toxicity of AβOs and indicate novel therapeutic targets for Alzheimer's disease, mainly focused on TGF-β1 and astrocytes.
Collapse
|
20
|
Hutter-Schmid B, Humpel C. Alpha-Smooth Muscle Actin mRNA and Protein Are Increased in Isolated Brain Vessel Extracts of Alzheimer Mice. Pharmacology 2016; 98:251-260. [PMID: 27463512 DOI: 10.1159/000448007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder of the brain, characterized by extracellular beta-amyloid (Aβ) plaques, intracellular tau pathology, neurodegeneration and inflammation. There is clear evidence that the blood-brain barrier is damaged in AD and that vessel function is impaired. Alpha-smooth muscle actin (αSMA) is a prominent protein expressed on brain vessels, especially in cells located closer to the arteriole end of the capillaries, which possibly influences the blood vessel contraction. The aim of the present study was to observe αSMA protein and mRNA expression in isolated brain vessel extracts and cortex in an Alzheimer mouse model with strong Aβ plaque deposition. Our data revealed a prominent expression of αSMA protein in isolated brain vessel extracts of AD mice by Western blot analysis. Immunostaining showed that these vessels were associated with Aβ plaques. Quantitative real-time PCR analysis confirmed this increase at the mRNA expression level and showed a significant increase of transforming growth factor beta-1 mRNA expression in AD mice. In situ hybridization demonstrated a strong expression pattern of αSMA mRNA in the whole cortex and hippocampus. In conclusion, our data provide evidence that αSMA protein and mRNA are enhanced in vessels in an AD mouse model, possibly counteracting vessel malfunction in AD.
Collapse
Affiliation(s)
- Bianca Hutter-Schmid
- Department of Psychiatry, Psychotherapy and Psychosomatics, Laboratory of Psychiatry and Experimental Alzheimer's Research, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
21
|
von Bernhardi R, Cornejo F, Parada GE, Eugenín J. Role of TGFβ signaling in the pathogenesis of Alzheimer's disease. Front Cell Neurosci 2015; 9:426. [PMID: 26578886 PMCID: PMC4623426 DOI: 10.3389/fncel.2015.00426] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/09/2015] [Indexed: 12/19/2022] Open
Abstract
Aging is the main risk factor for Alzheimer’s disease (AD); being associated with conspicuous changes on microglia activation. Aged microglia exhibit an increased expression of cytokines, exacerbated reactivity to various stimuli, oxidative stress, and reduced phagocytosis of β-amyloid (Aβ). Whereas normal inflammation is protective, it becomes dysregulated in the presence of a persistent stimulus, or in the context of an inflammatory environment, as observed in aging. Thus, neuroinflammation can be a self-perpetuating deleterious response, becoming a source of additional injury to host cells in neurodegenerative diseases. In aged individuals, although transforming growth factor β (TGFβ) is upregulated, its canonical Smad3 signaling is greatly reduced and neuroinflammation persists. This age-related Smad3 impairment reduces protective activation while facilitating cytotoxic activation of microglia through several cellular mechanisms, potentiating microglia-mediated neurodegeneration. Here, we critically discuss the role of TGFβ-Smad signaling on the cytotoxic activation of microglia and its relevance in the pathogenesis of AD. Other protective functions, such as phagocytosis, although observed in aged animals, are not further induced by inflammatory stimuli and TGFβ1. Analysis in silico revealed that increased expression of receptor scavenger receptor (SR)-A, involved in Aβ uptake and cell activation, by microglia exposed to TGFβ, through a Smad3-dependent mechanism could be mediated by transcriptional co-factors Smad2/3 over the MSR1 gene. We discuss that changes of TGFβ-mediated regulation could at least partially mediate age-associated microglia changes, and, together with other changes on inflammatory response, could result in the reduction of protective activation and the potentiation of cytotoxicity of microglia, resulting in the promotion of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Francisca Cornejo
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Guillermo E Parada
- Laboratory of Neuroscience, Faculty of Medicine, Department of Neurology, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Jaime Eugenín
- Laboratory of Neural Systems, Faculty of Chemistry and Biology, Department of Biology, Universidad de Santiago de Chile Santiago, Chile
| |
Collapse
|
22
|
Schmidt U, Keck ME, Buell DR. miRNAs and other non-coding RNAs in posttraumatic stress disorder: A systematic review of clinical and animal studies. J Psychiatr Res 2015; 65:1-8. [PMID: 25896120 DOI: 10.1016/j.jpsychires.2015.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 03/14/2015] [Accepted: 03/16/2015] [Indexed: 01/07/2023]
Abstract
In the last couple of years, non-coding (nc) RNAs like micro-RNAs (miRNAs), small interference RNAs (siRNAs) and long ncRNAs (lncRNAs) have emerged as promising candidates for biomarkers and drug-targets in a variety of psychiatric disorders. In contrast to reports on ncRNAs in affective disorders, schizophrenia and anxiety disorders, manuscripts on ncRNAs in posttraumatic stress disorder (PTSD) and associated animal models are scarce. Aiming to stimulate ncRNA research in PTSD and to identify the hitherto most promising ncRNA candidates and associated pathways for psychotrauma research, we conducted the first review on ncRNAs in PTSD. We aimed to identify studies reporting on the expression, function and regulation of ncRNAs in PTSD patients and in animals exhibiting a PTSD-like syndrome. Following the PRISMA guidelines for systematic reviews, we systematically screened the PubMed database for clinical and animal studies on ncRNAs in PTSD, animal models for PTSD and animal models employing a classical fear conditioning paradigm. Using 112 different combinations of search terms, we retrieved 523 articles of which we finally included and evaluated three clinical and 12 animal studies. In addition, using the web-based tool DIANA miRPath v2.0, we searched for molecular pathways shared by the predicted targets of the here-evaluated miRNA candidates. Our findings suggest that mir-132, which has been found to be regulated in three of the here included studies, as well as miRNAs with an already established role in Alzheimer's disease (AD) seem to be particularly promising candidates for future miRNA studies in PTSD. These results are limited by the low number of human trials and by the heterogeneity of included animal studies.
Collapse
Affiliation(s)
- Ulrike Schmidt
- Max Planck Institute of Psychiatry, Department of Clinical Research, Kraepelinstrasse 10, 80804 München, Germany.
| | - Martin E Keck
- Max Planck Institute of Psychiatry, Department of Clinical Research, Kraepelinstrasse 10, 80804 München, Germany; Clienia Privatklinik Schloessli, Schloesslistr. 8, CH-8618 Oetwil am See, Switzerland
| | - Dominik R Buell
- Max Planck Institute of Psychiatry, Department of Clinical Research, Kraepelinstrasse 10, 80804 München, Germany
| |
Collapse
|
23
|
Pellicciotta I, Marciscano AE, Hardee ME, Francis D, Formenti S, Barcellos-Hoff MH. Development of a novel multiplexed assay for quantification of transforming growth factor-β (TGF-β). Growth Factors 2015; 33:79-91. [PMID: 25586866 DOI: 10.3109/08977194.2014.999367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Changes in activity or levels of transforming growth factor-β (TGF-β) are associated with a variety of diseases; however, measurement of TGF-β in biological fluids is highly variable. TGF-β is biologically inert when associated with its latency-associated peptide (LAP). Most available immunoassays require exogenous activation by acid/heat to release TGF-β from the latent complex. We developed a novel electrochemiluminescence-based multiplexed assay on the MesoScale Discovery® platform that eliminates artificial activation, simultaneously measures both active TGF-β1 and LAP1 and includes an internal control for platelet-derived TGF-β contamination in blood specimens. We optimized this assay to evaluate plasma levels as a function of activation type and clinical specimen preparation. We determined that breast cancer patients' plasma have higher levels of circulating latent TGF-β (LTGF-β) as measured by LAP1 than healthy volunteers (p < 0.0001). This assay provides a robust tool for correlative studies of LTGF-β levels with disease, treatment outcomes and toxicity with a broad clinical applicability.
Collapse
|
24
|
Chen JH, Ke KF, Lu JH, Qiu YH, Peng YP. Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ1-42-induced Alzheimer's disease model rats. PLoS One 2015; 10:e0116549. [PMID: 25658940 PMCID: PMC4319949 DOI: 10.1371/journal.pone.0116549] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/08/2014] [Indexed: 12/15/2022] Open
Abstract
Neuroinflammation has been reported to be associated with Alzheimer’s disease (AD) pathogenesis. Neuroinflammation is generally considered as an outcome of glial activation; however, we recently demonstrated that T helper (Th)17 cells, a subpopulation of proinflammatory CD4+ T cells, are also involved in AD pathogenesis. Transforming growth factor (TGF)-β1, a cytokine that can be expressed in the brain, can be immunosuppressive, but its effects on lymphocyte-mediated neuroinflammation in AD pathogenesis have not been well addressed. In the current study we administered TGF-β1 via intracerebroventricle (ICV) and intranasal (IN) routes in AD model rats to investigate its antiinflammatory and neuroprotective effects. The AD rat model was prepared by bilateral hippocampal injection of amyloid-β (Aβ)1–42. TGF-β1 was administered via ICV one hour prior to Aβ1–42 injection or via both nares seven days after Aβ1–42 injection. ICV administration of TGF-β1 before Aβ1–42 injection remarkably ameliorated Aβ1–42-induced neurodegeneration and prevented Aβ1–42-induced increases in glia-derived proinflammatory mediators (TNF-α, IL-1β and iNOS), as well as T cell-derived proinflammatory cytokines (IFN-γ, IL-2, IL-17 and IL-22), in the hypothalamus, serum or cerebrospinal fluid (CSF) in a concentration-dependent manner. TGF-β1 pretreatment also prevented Aβ1–42-induced decreases in the neurotrophic factors, IGF-1, GDNF and BDNF, and in the antiinflammatory cytokine, IL-10. Similarly, IN administration of TGF-β1 after Aβ1–42 injection reduced neurodegeneration, elevation of proinflammatory mediators and cytokines, and reduction of neurotrophic and antiinflammatory factors, in the hypothalamus, serum or CSF. These findings suggest that TGF-β1 suppresses glial and T cell-mediated neuroinflammation and thereby alleviates AD-related neurodegeneration. The effectiveness of IN administered TGF-β1 in reducing Aβ1–42 neurotoxicity suggests a possible therapeutic approach in patients with AD.
Collapse
Affiliation(s)
- Jia-Hui Chen
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Neurology, Affiliated Hospital, Nantong University, Nantong, China
| | - Kai-Fu Ke
- Department of Neurology, Affiliated Hospital, Nantong University, Nantong, China
| | - Jian-Hua Lu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- * E-mail: (YHQ); (YPP)
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- * E-mail: (YHQ); (YPP)
| |
Collapse
|
25
|
Cong L, Jia J, Qin W, Ren Y, Sun Y. Genome-wide analysis of DNA methylation in an APP/PS1 mouse model of Alzheimer's disease. Acta Neurol Belg 2014; 114:195-206. [PMID: 24347181 DOI: 10.1007/s13760-013-0267-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/29/2013] [Indexed: 12/16/2022]
Abstract
To investigate aberrant genome-wide CpG methylation patterns in cortex brain tissue of APP/PS1 mice and as compared to controls, which allows for identification of novel disease-associated genes. This study investigates the genome-wide DNA methylation profiles of the cortex from APP/PS1 transgenic mice and control mice using the Roche NimbleGen chip platform. Functional analysis was then conducted by Ingenuity Pathways Analysis system. The methylated DNA fragments in the genome of each sample were enriched by MeDIP and the whole-genome interrogations were hybridized to the Roche NimbleGen Human DNA Methylation 3x720 K CpG Island Plus RefSeq Promoter Array that cover 15,980 CpG islands and 20,404 reference gene promoter regions of the entire human genome. Analysis reveals 2346 CpG sites representing 485 unique genes as potentially associated with AD disease status pending confirmation in additional study. At the same time, these hyper-methylated genes display familial aggregation. An impairment of the transforming growth factor-β1 (TGF-β1) signaling pathway has been demonstrated to be specific to the AD brain and, particularly, to the early phase of the disease, supporting a role for epigenetic change of TGF-β1 in AD pathology. In future research, we will focus on TGF-β1, as it appeared to be the most promising candidate for AD.
Collapse
|
26
|
Meurer SK, Alsamman M, Scholten D, Weiskirchen R. Endoglin in liver fibrogenesis: Bridging basic science and clinical practice. World J Biol Chem 2014; 5:180-203. [PMID: 24921008 PMCID: PMC4050112 DOI: 10.4331/wjbc.v5.i2.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/29/2013] [Accepted: 01/17/2014] [Indexed: 02/05/2023] Open
Abstract
Endoglin, also known as cluster of differentiation CD105, was originally identified 25 years ago as a novel marker of endothelial cells. Later it was shown that endoglin is also expressed in pro-fibrogenic cells including mesangial cells, cardiac and scleroderma fibroblasts, and hepatic stellate cells. It is an integral membrane-bound disulfide-linked 180 kDa homodimeric receptor that acts as a transforming growth factor-β (TGF-β) auxiliary co-receptor. In humans, several hundreds of mutations of the endoglin gene are known that give rise to an autosomal dominant bleeding disorder that is characterized by localized angiodysplasia and arteriovenous malformation. This disease is termed hereditary hemorrhagic telangiectasia type I and induces various vascular lesions, mainly on the face, lips, hands and gastrointestinal mucosa. Two variants of endoglin (i.e., S- and L-endoglin) are formed by alternative splicing that distinguishes from each other in the length of their cytoplasmic tails. Moreover, a soluble form of endoglin, i.e., sol-Eng, is shedded by the matrix metalloprotease-14 that cleaves within the extracellular juxtamembrane region. Endoglin interacts with the TGF-β signaling receptors and influences Smad-dependent and -independent effects. Recent work has demonstrated that endoglin is a crucial mediator during liver fibrogenesis that critically controls the activity of the different Smad branches. In the present review, we summarize the present knowledge of endoglin expression and function, its involvement in fibrogenic Smad signaling, current models to investigate endoglin function, and the diagnostic value of endoglin in liver disease.
Collapse
|
27
|
Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer's disease: a comparative overview. Mol Neurobiol 2014; 50:534-44. [PMID: 24567119 PMCID: PMC4182618 DOI: 10.1007/s12035-014-8657-1] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/04/2014] [Indexed: 12/23/2022]
Abstract
This article gives a comprehensive overview of cytokine and other inflammation associated protein levels in plasma, serum and cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). We reviewed 118 research articles published between 1989 and 2013 to compare the reported levels of 66 cytokines and other proteins related to regulation and signaling in inflammation in the blood or CSF obtained from MCI and AD patients. Several cytokines are evidently regulated in (neuro-) inflammatory processes associated with neurodegenerative disorders. Others do not display changes in the blood or CSF during disease progression. However, many reports on cytokine levels in MCI or AD are controversial or inconclusive, particularly those which provide data on frequently investigated cytokines like tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6). The levels of several cytokines are possible indicators of neuroinflammation in AD. Some of them might increase steadily during disease progression or temporarily at the time of MCI to AD conversion. Furthermore, elevated body fluid cytokine levels may correlate with an increased risk of conversion from MCI to AD. Yet, research results are conflicting. To overcome interindividual variances and to obtain a more definite description of cytokine regulation and function in neurodegeneration, a high degree of methodical standardization and patients collective characterization, together with longitudinal sampling over years is essential.
Collapse
|
28
|
Bosco P, Ferri R, Salluzzo MG, Castellano S, Signorelli M, Nicoletti F, Nuovo SD, Drago F, Caraci F. Role of the Transforming-Growth-Factor-β1 Gene in Late-Onset Alzheimer's Disease: Implications for the Treatment. Curr Genomics 2013; 14:147-56. [PMID: 24082824 PMCID: PMC3637679 DOI: 10.2174/1389202911314020007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 11/22/2022] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common form of dementia in the elderly. LOAD has a complex and largely unknown etiology with strong genetic determinants. Genetics of LOAD is known to involve several genetic risk factors among which the Apolipoprotein E (APOE) gene seems to be the major recognized genetic determinant. Recent efforts have been made to identify other genetic factors involved in the pathophysiology of LOAD such as genes associated with a deficit of neurotrophic factors in the AD brain. Genetic variations of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), and transforming-growth-factor-β1 (TGF-β1) are known to increase the risk to develop LOAD and have also been related to depression susceptibility in LOAD. Transforming-Growth-Factor-β1 (TGF-β1) is a neurotrophic factor that exerts neuroprotective effects against ß-amyloid-induced neurodegeneration. Recent evidence suggests that a specific impairment in the signaling of TGF-β is an early event in the pathogenesis of AD. TGF-β1 protein levels are predominantly under genetic control, and the TGF-β1 gene, located on chromosome 19q13.1–3, con-tains several single nucleotide polymorphisms (SNPs) upstream and in the transcript region, such as the SNP at codon +10 (T/C) and +25 (G/C), which is known to influence the level of expression of TGF-β1. In the present review, we summarize the current literature on genetic risk factors for LOAD, focusing on the role of the TGF-β1 gene, finally discussing the possible implications of these genetic studies for the selection of patients eligible for neuroprotective strategies in AD.
Collapse
Affiliation(s)
- Paolo Bosco
- IRCCS Associazione Oasi Maria S.S. - Institute for Research on Mental Retardation and Brain Aging, 94018 Troina, Enna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Caraci F, Bosco P, Signorelli M, Spada RS, Cosentino FI, Toscano G, Bonforte C, Muratore S, Prestianni G, Panerai S, Giambirtone MC, Gulotta E, Romano C, Salluzzo MG, Nicoletti F, Copani A, Drago F, Aguglia E, Ferri R. The CC genotype of transforming growth factor-β1 increases the risk of late-onset Alzheimer's disease and is associated with AD-related depression. Eur Neuropsychopharmacol 2012; 22:281-9. [PMID: 21924590 DOI: 10.1016/j.euroneuro.2011.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 07/29/2011] [Accepted: 08/18/2011] [Indexed: 12/17/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) is a neurotrophic factor that exerts neuroprotective effects against β-amyloid-induced neurodegeneration. Recently, a specific impairment of the TGF-β1 signaling pathway has been demonstrated in Alzheimer's disease (AD) brain. TGF-β1 is also involved in the pathogenesis of depressive disorders, which may occur in 30-40% of AD patients. The TGF-β1 gene contains single nucleotide polymorphisms (SNPs) at codon +10 (T/C) and +25 (G/C), which are known to influence the level of expression of TGF-β1. We investigated TGF-β1 +10 (T/C) and +25 (G/C) SNPs and allele frequencies in 131 sporadic AD patients and in 135 healthy age- and sex-matched controls. Genotypes of the TGF-β1 SNPs at codon +10 (T/C) and +25 (G/C) did not differ between AD patients and controls, whereas the allele frequencies of codon +10 polymorphism showed a significant difference (P = 0.0306). We also found a different distribution of the +10 (C/C) phenotype (continuity-corrected χ(2) test with one degree of freedom = 4.460, P = 0.0347) between late onset AD (LOAD) patients and controls (P = 0.0126), but not between early onset AD (EOAD) patients and controls. In addition, the presence of the C/C genotype increased the risk of LOAD regardless of the status of apolipoprotein E4 (odds ratio [OR] = 2.34; 95% CI = 1.19-4.59). Compared to patients bearing the T/T and C/T polymorphisms, LOAD TGF-β1 C/C carriers also showed > 5-fold risk to develop depressive symptoms independently of a history of depression (OR = 5.50; 95% CI = 1.33-22.69). An association was also found between the TGF-β1 C/C genotype and the severity of depressive symptoms (HAM-D(17) ≥ 14) (P < 0.05). These results suggest that the CC genotype of the TGF-β1 gene increases the risk to develop LOAD and is also associated with depressive symptoms in AD.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Measurement of human latent Transforming Growth Factor-β1 using a latency associated protein-reactive ELISA. J Immunol Methods 2012; 379:23-9. [PMID: 22406166 DOI: 10.1016/j.jim.2012.02.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 02/23/2012] [Accepted: 02/23/2012] [Indexed: 12/14/2022]
Abstract
Human Transforming Growth Factor (TGF)-β1, one of three TGF-β isoforms, is a pleotropic cytokine critical for many physiological and immunological processes. TGF-β1 is secreted in a latent form, linked to Latency Associated Protein (LAP). Analysis of Latent TGF-β1 by TGF-β1 ELISA requires dissociation of TGF-β1 from LAP, e.g. by acidification of samples. The ELISA then measures total TGF-β1, equivalent to dissociated Latent TGF-β1 plus any free TGF-β1 present prior to acidification. Evolutionary conservation of TGF-β1 across mammals also renders TGF-β1 ELISAs reactive with TGF-β1 in bovine serum often used in human cell cultures. To enable a direct analysis of Latent TGF-β1, monoclonal antibodies were made against LAP from human Latent TGF-β1 and used to develop a LAP ELISA detecting Latent TGF-β1. The ELISA did not react with LAP from human Latent TGF-β2 or 3, respectively, nor with Latent TGF-β in bovine serum. EDTA-containing plasma from healthy subjects (n=20) was analyzed by conventional TGF-β1 ELISA and LAP ELISA. By TGF-β1 ELISA, total TGF-β1 were detected in all samples (median 133 pM, range 34-348 pM); low levels of free TGF-β1 found in 8/20 non-acidified samples showed that >98.5% of the total TGF-β1 derived from Latent TGF-β1. Latent TGF-β1 found in non-acidified samples by LAP ELISA (median 154 pM, range 48-403 pM) was comparable in molar levels to, and correlated with, total TGF-β1 (r(s) 0.96, p<0.0001). A similar agreement between the total TGF-β1 and the LAP ELISA was found with citrate- and heparin-containing plasma. The LAP ELISA facilitates analysis of Latent TGF-β1 without sample acidification and is not compromised by the presence of bovine serum in human cell supernatants.
Collapse
|
31
|
Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V, Drago F, Nicoletti F, Copani A. Dysfunction of TGF-β1 signaling in Alzheimer's disease: perspectives for neuroprotection. Cell Tissue Res 2011; 347:291-301. [PMID: 21879289 DOI: 10.1007/s00441-011-1230-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 08/07/2011] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects about 35 million people worldwide. Current drugs for AD only treat the symptoms and do not interfere with the underlying pathogenic mechanisms of the disease. AD is characterized by the presence of β-amyloid (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Identification of the molecular determinants underlying Aβ-induced neurodegeneration is an essential step for the development of disease-modifying drugs. Recently, an impairment of the transforming growth factor-β1 (TGF-β1) signaling pathway has been demonstrated to be specific to the AD brain and, particularly, to the early phase of the disease. TGF-β1 is a neurotrophic factor responsible for the initiation and maintenance of neuronal differentiation and synaptic plasticity. The deficiency of TGF-β1 signaling is associated with Aβ pathology and neurofibrillary tangle formation in AD animal models. Reduced TGF-β1 signaling seems to contribute both to microglial activation and to ectopic cell-cycle re-activation in neurons, two events that contribute to neurodegeneration in the AD brain. The neuroprotective features of TGF-β1 indicate the advantage of rescuing TGF-β1 signaling as a means to slow down the neurodegenerative process in AD.
Collapse
Affiliation(s)
- Filippo Caraci
- Department of Drug Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Walshe TE, Leach LL, D'Amore PA. TGF-β signaling is required for maintenance of retinal ganglion cell differentiation and survival. Neuroscience 2011; 189:123-31. [PMID: 21664439 DOI: 10.1016/j.neuroscience.2011.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 04/11/2011] [Accepted: 05/11/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE To determine the role of TGF-β1 in the maintenance of retinal ganglion cell line (RGC-5) differentiation and integrity. METHODS RGC-5 cells were differentiated in media conditioned by human non-pigmented ciliary epithelial cells (HNPE) for 4 days before treatment with TGF-β1 for 24 h. Cells were examined for morphological changes and harvested for western blot and real-time PCR analysis. For study of apoptosis, differentiated RGC-5 cells were grown in serum-free medium for 24 h in the presence or absence of TGF-β1 and collected for Annexin V/Propidium iodide FACs analysis. The role of MAPK pathways in TGF-β1-dependent signaling was determined by treatment with specific inhibitors of ERK, JNK and p38. RESULTS Differentiation of RGC-5 cells in HNPE-conditioned media (CM) increased the neural cell markers, Brn-3c, NF-160, Thy1.2, Tau and PGP9.5. Treatment with TGF-β1 significantly increased the length of neurites extended by differentiated RGC-5s, concomitant with increased expression of NF-160 and PGP9.5, but not Brn-3c, Thy1.2 or Tau. TGF-β1 also decreased RGC-5 cell apoptosis in serum-free medium. p38 phosphorylation, but not smad2/3, JNK or ERK phosphorylation, was increased in TGF-β1 treated cells. Specific inhibition of p38 signaling reversed TGF-β1 induced neurite growth. CONCLUSIONS These findings demonstrate the induction of RGC-5 cell differentiation by HNPE-derived CM and illustrate a role for TGF-β1 in maintaining RGC-5 cell survival and promoting neurite outgrowth through p38 MAPK.
Collapse
Affiliation(s)
- T E Walshe
- Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute, 20 Staniford Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
33
|
Suwanabol PA, Kent KC, Liu B. TGF-β and restenosis revisited: a Smad link. J Surg Res 2011; 167:287-97. [PMID: 21324395 PMCID: PMC3077463 DOI: 10.1016/j.jss.2010.12.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/12/2010] [Accepted: 12/15/2010] [Indexed: 01/17/2023]
Abstract
Despite novel surgical therapies for the treatment of atherosclerosis, restenosis continues to be a significant impediment to the long-term success of vascular interventions. Transforming growth factor-beta (TGF-β), a family of cytokines found to be up-regulated at sites of arterial injury, has long been implicated in restenosis; a role that has largely been attributed to TGF-β-mediated vascular fibrosis. However, emerging data indicate that the role of TGF-β in intimal thickening and arterial remodeling, the critical components of restenosis, is complex and multidirectional. Recent advancements have clarified the basic signaling pathway of TGF-β, making evident the need to redefine the precise role of this family of cytokines and its primary signaling pathway, Smad, in restenosis. Unraveling TGF-β signaling in intimal thickening and arterial remodeling will pave the way for a clearer understanding of restenosis and the development of innovative pharmacological therapies.
Collapse
Affiliation(s)
- Pasithorn A. Suwanabol
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - K. Craig Kent
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bo Liu
- Department of Surgery, Division of Vascular Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|