1
|
Zheng X, Hu F, Chen X, Yang G, Li M, Peng Y, Li J, Yang S, Zhang L, Wan J, Wei N, Li R. Role of microglia polarization induced by glucose metabolism disorder in the cognitive impairment of mice from PM 2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176603. [PMID: 39349199 DOI: 10.1016/j.scitotenv.2024.176603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Studies have found that PM2.5 can damage the brain, accelerate cognitive impairment, and increase the risk of developing a variety of neurodegenerative diseases. However, the potential molecular mechanisms by which PM2.5 causes learning and memory problems are yet to be explored. In this study, we evaluated the neurotoxic effects in mice after 12 weeks of PM2.5 exposure, and found that this exposure resulted in learning and memory disorders, pathological brain damage, and M1 phenotype polarization on microglia, especially in the hippocampus. The severity of this damage increased with increasing PM2.5 concentration. Proteomic analysis, as well as validation results, suggested that PM2.5 exposure led to abnormal glucose metabolism in the mouse brain, which is mainly characterized by significant expression of hexokinase, phosphofructokinase, and lactate dehydrogenase. We therefore administered the glycolysis inhibitor 2-deoxy-d-glucose (2-DG) to the mice exposed to PM2.5, and showed that inhibition of glycolysis by 2-DG significantly alleviated PM2.5-induced hippocampal microglia M1 phenotype polarization, and reduced the release of inflammatory factors, improved synaptic structure and related protein expression, which alleviated the cognitive impairment induced by PM2.5 exposure. In summary, our study found that abnormal glucose metabolism-mediated inflammatory polarization of microglia played a role in learning and memory disorders in mice exposed to PM2.5. This study provides new insights into the neurotoxicity caused by PM2.5 exposure, and provides some theoretical references for the prevention and control of cognitive impairment induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Xinyue Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Fei Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Xinyue Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ge Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Min Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yang Peng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Jinghan Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shuiqing Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ling Zhang
- School of Public Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jian Wan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Nianpeng Wei
- Wuhan Hongpeng Ecological Technology Co., Ltd., Wuhan 430070, China
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
2
|
Mohammadzadeh M, Khoshakhlagh AH, Grafman J. Air pollution: a latent key driving force of dementia. BMC Public Health 2024; 24:2370. [PMID: 39223534 PMCID: PMC11367863 DOI: 10.1186/s12889-024-19918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Many researchers have studied the role of air pollutants on cognitive function, changes in brain structure, and occurrence of dementia. Due to the wide range of studies and often contradictory results, the present systematic review was conducted to try and clarify the relationship between air pollutants and dementia. To identify studies for this review, a systematic search was conducted in Scopus, PubMed, and Web of Science databases (without historical restrictions) until May 22, 2023. The PECO statement was created to clarify the research question, and articles that did not meet the criteria of this statement were excluded. In this review, animal studies, laboratory studies, books, review articles, conference papers and letters to the editors were avoided. Also, studies focused on the effect of air pollutants on cellular and biochemical changes (without investigating dementia) were also excluded. A quality assessment was done according to the type of design of each article, using the checklist developed by the Joanna Briggs Institute (JBI). Finally, selected studies were reviewed and discussed in terms of Alzheimer's dementia and non-Alzheimer's dementia. We identified 14,924 articles through a systematic search in databases, and after comprehensive reviews, 53 articles were found to be eligible for inclusion in the current systematic review. The results showed that chronic exposure to higher levels of air pollutants was associated with adverse effects on cognitive abilities and the presence of dementia. Studies strongly supported the negative effects of PM2.5 and then NO2 on the brain and the development of neurodegenerative disorders in old age. Because the onset of brain structural changes due to dementia begins decades before the onset of disease symptoms, and that exposure to air pollution is considered a modifiable risk factor, taking preventive measures to reduce air pollution and introducing behavioral interventions to reduce people's exposure to pollutants is advisable.
Collapse
Affiliation(s)
- Mahdiyeh Mohammadzadeh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Climate Change and Health Research Center (CCHRC), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran.
| | - Jordan Grafman
- Department of Physical Medicine & Rehabilitation, Neurology, Cognitive Neurology and Alzheimer's Center, Department of Psychiatry, Feinberg School of Medicine & Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Zhuang Z, Li D, Zhang S, Hu Z, Deng W, Lin H. Short-Term Exposure to PM 2.5 Chemical Components and Depression Outpatient Visits: A Case-Crossover Analysis in Three Chinese Cities. TOXICS 2024; 12:136. [PMID: 38393231 PMCID: PMC10892610 DOI: 10.3390/toxics12020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND The association between specific chemical components of PM2.5 and depression remains largely unknown. METHODS We conducted a time-stratified case-crossover analysis with a distributed lag nonlinear model (DLNM) to evaluate the relationship of PM2.5 and its chemical components, including black carbon (BC), organic matter (OM), sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+), with the depression incidence. Daily depression outpatients were enrolled from Huizhou, Shenzhen, and Zhaoqing. RESULTS Among 247,281 outpatients, we found the strongest cumulative effects of PM2.5 and its chemical components with the odd ratios (ORs) of 1.607 (95% CI: 1.321, 1.956) and 1.417 (95% CI: 1.245, 1.612) at the 50th percentile of PM2.5 and OM at lag 21, respectively. Furthermore, the ORs with SO42- and NH4+ at the 75th percentile on the same lag day were 1.418 (95% CI: 1.247, 1.613) and 1.025 (95% CI: 1.009, 1.140). Relatively stronger associations were observed among females and the elderly. CONCLUSIONS Our study suggests that PM2.5 and its chemical components might be important risk factors for depression. Reducing PM2.5 emissions, with a particular focus on the major sources of SO42- and OM, might potentially alleviate the burden of depression in South China.
Collapse
Affiliation(s)
- Zitong Zhuang
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Dan Li
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Shiyu Zhang
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhaoyang Hu
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Wenfeng Deng
- Huizhou Center for Disease Control and Prevention, No. 10 Jiangbei Fumin Road, Huizhou 516003, China;
| | - Hualiang Lin
- School of Public Health, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou 510080, China
| |
Collapse
|
4
|
Ju K, Lu L, Liao W, Yang C, Xu Z, Wang W, Zhao L, Pan J. Long-term exposure of PM 2.5 components on the adults' depressive symptoms in China - Evidence from a representative longitudinal nationwide cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159434. [PMID: 36244492 DOI: 10.1016/j.scitotenv.2022.159434] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
In recent years, there is growing evidence that long-term exposure to fine particulate matter (PM2.5) is associated with depressive symptoms. However, little is known about the individual effects of PM2.5 components, particularly in low-income and middle-income countries. We investigated the association between long-term exposure to major components of PM2.5 and worsening depressive symptoms in Chinese adults based on a large, long-term, nationally representative, population-based prospective cohort. Our data were derived from China Family Panel Study (CFPS) wave 2012, 2016 and 2018 and a long-term (2010-2019) high-resolution PM2.5 components dataset covering the whole China. We assessed respondents' depressive symptoms using standardized scales and applied advanced Fixed-effect ordered logit model (FE-ologit) to capture the ordinal nature of respondents' depressive symptoms and control for individual-specific and time-invariant effects to investigate their associations with PM2.5 components. We included 9503 respondents and the FE-ologit model results indicated that the odds ratio of increase per standard unit was 1.118 (95 % CI: 1.020, 1.225) for black carbon, 1.134 (95 % CI: 1.028, 1.252) for organic matter, 1.127 for ammonium (95 % CI: 1.011, 1.255), 1.107 for nitrate (95 % CI: 0.981, 1.248), and 1.117 for sulfate (95 % CI: 1.020, 1.224). Our study suggests that long-term exposure to PM2.5 components is significantly associated with worsening of depressive symptoms, and that different components may have different toxicity. Reducing PM2.5 emissions, especially the major sources of organic matter and ammonium, may reduce the burden of depressive symptoms in Chinese adults.
Collapse
Affiliation(s)
- Ke Ju
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Liyong Lu
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Weibin Liao
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Chenyu Yang
- Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zongyou Xu
- Medical School, Hubei Minzu University, Enshi 445000, China
| | - Wen Wang
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Li Zhao
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Jay Pan
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; School of Public Administration, Sichuan University.
| |
Collapse
|
5
|
Xu C, Zhang J, Zhou Q, Wang J, Liu C, Tian Y, Huang D, Ye H, Jin Y. Exposure to a real traffic environment impairs brain cognition in aged mice. ENVIRONMENTAL RESEARCH 2022; 215:114181. [PMID: 36113572 DOI: 10.1016/j.envres.2022.114181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Traffic-related air pollution (TRAP) has been a common public health problem, which is associated with central nervous system dysfunction according to large-scale epidemiological studies. Current studies are mostly limited to artificial laboratory exposure environments and specific genetic mechanisms remain unclear. Therefore, we chose a real-world transportation environment to expose aged mice, transporting them from the laboratory to a 1-m-high dry platform inside the campus and tunnel, and the mice were exposed daily from 7 a.m. to 7 p.m. for 2, 4 and 12 weeks respectively. Compared with the control group (in campus), the memory function of mice in the experimental group (in tunnel) was significantly impaired in the Morris water maze test. TRAP exposure increased the number of activated microglia in the hippocampal DG, CA1, CA3 regions and dorsolateral prefrontal cortex (dPFC). And neuroinflammation and oxidative stress levels were up-regulated in both hippocampus and dPFC of aged mice. By screening the risk genes of Alzheimer's disease, we found the mRNA and protein levels of ABCA7 were down-regulated and those of PYK2 were up-regulated. The DNA methylation ratios increased in four CpG sites of abca7 promoter region and decreased in one CpG site of pyk2 promoter region, which were consistent with the altered expression of ABCA7 and PYK2. In conclusion, exposure to the real traffic environment impaired memory function and enhanced neuroinflammation and oxidative stress responses, which could be relevant to the altered expression and DNA methylation levels of ABCA7 and PYK2. Our work provides a new and promising understanding of the pathological mechanisms of cognitive impairment caused by traffic-related air pollution.
Collapse
Affiliation(s)
- Chenlu Xu
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Zhang
- Department of General Practice, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qinfeng Zhou
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Juling Wang
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenyang Liu
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Tian
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danni Huang
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huaizhuang Ye
- Teaching and Research Center, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongtang Jin
- Environmental Epigenetics Laboratory, Department of Environmental Medicine, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China; Department of General Practice, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Zundel CG, Ryan P, Brokamp C, Heeter A, Huang Y, Strawn JR, Marusak HA. Air pollution, depressive and anxiety disorders, and brain effects: A systematic review. Neurotoxicology 2022; 93:272-300. [PMID: 36280190 PMCID: PMC10015654 DOI: 10.1016/j.neuro.2022.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Accumulating data suggest that air pollution increases the risk of internalizing psychopathology, including anxiety and depressive disorders. Moreover, the link between air pollution and poor mental health may relate to neurostructural and neurofunctional changes. We systematically reviewed the MEDLINE database in September 2021 for original articles reporting effects of air pollution on 1) internalizing symptoms and behaviors (anxiety or depression) and 2) frontolimbic brain regions (i.e., hippocampus, amygdala, prefrontal cortex). One hundred and eleven articles on mental health (76% human, 24% animals) and 92 on brain structure and function (11% human, 86% animals) were identified. For literature search 1, the most common pollutants examined were PM2.5 (64.9%), NO2 (37.8%), and PM10 (33.3%). For literature search 2, the most common pollutants examined were PM2.5 (32.6%), O3 (26.1%) and Diesel Exhaust Particles (DEP) (26.1%). The majority of studies (73%) reported higher internalizing symptoms and behaviors with higher air pollution exposure. Air pollution was consistently associated (95% of articles reported significant findings) with neurostructural and neurofunctional effects (e.g., increased inflammation and oxidative stress, changes to neurotransmitters and neuromodulators and their metabolites) within multiple brain regions (24% of articles), or within the hippocampus (66%), PFC (7%), and amygdala (1%). For both literature searches, the most studied exposure time frames were adulthood (48% and 59% for literature searches 1 and 2, respectively) and the prenatal period (26% and 27% for literature searches 1 and 2, respectively). Forty-three percent and 29% of studies assessed more than one exposure window in literature search 1 and 2, respectively. The extant literature suggests that air pollution is associated with increased depressive and anxiety symptoms and behaviors, and alterations in brain regions implicated in risk of psychopathology. However, there are several gaps in the literature, including: limited studies examining the neural consequences of air pollution in humans. Further, a comprehensive developmental approach is needed to examine windows of susceptibility to exposure and track the emergence of psychopathology following air pollution exposure.
Collapse
Affiliation(s)
- Clara G Zundel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Patrick Ryan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Cole Brokamp
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Autumm Heeter
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Yaoxian Huang
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, USA.
| | - Jeffrey R Strawn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Anxiety Disorders Research Program, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.
| | - Hilary A Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
7
|
Younan D, Wang X, Millstein J, Petkus AJ, Beavers DP, Espeland MA, Chui HC, Resnick SM, Gatz M, Kaufman JD, Wellenius GA, Whitsel EA, Manson JE, Rapp SR, Chen JC. Air quality improvement and cognitive decline in community-dwelling older women in the United States: A longitudinal cohort study. PLoS Med 2022; 19:e1003893. [PMID: 35113870 PMCID: PMC8812844 DOI: 10.1371/journal.pmed.1003893] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 12/15/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Late-life exposure to ambient air pollution is a modifiable risk factor for dementia, but epidemiological studies have shown inconsistent evidence for cognitive decline. Air quality (AQ) improvement has been associated with improved cardiopulmonary health and decreased mortality, but to the best of our knowledge, no studies have examined the association with cognitive function. We examined whether AQ improvement was associated with slower rate of cognitive decline in older women aged 74 to 92 years. METHODS AND FINDINGS We studied a cohort of 2,232 women residing in the 48 contiguous US states that were recruited from more than 40 study sites located in 24 states and Washington, DC from the Women's Health Initiative (WHI) Memory Study (WHIMS)-Epidemiology of Cognitive Health Outcomes (WHIMS-ECHO) study. They were predominantly non-Hispanic White women and were dementia free at baseline in 2008 to 2012. Measures of annual (2008 to 2018) cognitive function included the modified Telephone Interview for Cognitive Status (TICSm) and the telephone-based California Verbal Learning Test (CVLT). We used regionalized universal kriging models to estimate annual concentrations (1996 to 2012) of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) at residential locations. Estimates were aggregated to the 3-year average immediately preceding (recent exposure) and 10 years prior to (remote exposure) WHIMS-ECHO enrollment. Individual-level improved AQ was calculated as the reduction from remote to recent exposures. Linear mixed effect models were used to examine the associations between improved AQ and the rates of cognitive declines in TICSm and CVLT trajectories, adjusting for sociodemographic (age; geographic region; race/ethnicity; education; income; and employment), lifestyle (physical activity; smoking; and alcohol), and clinical characteristics (prior hormone use; hormone therapy assignment; depression; cardiovascular disease (CVD); hypercholesterolemia; hypertension; diabetes; and body mass index [BMI]). For both PM2.5 and NO2, AQ improved significantly over the 10 years before WHIMS-ECHO enrollment. During a median of 6.2 (interquartile range [IQR] = 5.0) years of follow-up, declines in both general cognitive status (β = -0.42/year, 95% CI: -0.44, -0.40) and episodic memory (β = -0.59/year, 95% CI: -0.64, -0.54) were observed. Greater AQ improvement was associated with slower decline in TICSm (βPM2.5improvement = 0.026 per year for improved PM2.5 by each IQR = 1.79 μg/m3 reduction, 95% CI: 0.001, 0.05; βNO2improvement = 0.034 per year for improved NO2 by each IQR = 3.92 parts per billion [ppb] reduction, 95% CI: 0.01, 0.06) and CVLT (βPM2.5 improvement = 0.070 per year for improved PM2.5 by each IQR = 1.79 μg/m3 reduction, 95% CI: 0.02, 0.12; βNO2improvement = 0.060 per year for improved NO2 by each IQR = 3.97 ppb reduction, 95% CI: 0.005, 0.12) after adjusting for covariates. The respective associations with TICSm and CVLT were equivalent to the slower decline rate found with 0.9 to 1.2 and1.4 to 1.6 years of younger age and did not significantly differ by age, region, education, Apolipoprotein E (ApoE) e4 genotypes, or cardiovascular risk factors. The main limitations of this study include measurement error in exposure estimates, potential unmeasured confounding, and limited generalizability. CONCLUSIONS In this study, we found that greater improvement in long-term AQ in late life was associated with slower cognitive declines in older women. This novel observation strengthens the epidemiologic evidence of an association between air pollution and cognitive aging.
Collapse
Affiliation(s)
- Diana Younan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| | - Joshua Millstein
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Andrew J. Petkus
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| | - Daniel P. Beavers
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Mark A. Espeland
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Helena C. Chui
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, California, United States of America
| | - Joel D. Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Gregory A. Wellenius
- Department of Environmental Health, Boston University, Boston, Massachusetts, United States of America
| | - Eric A. Whitsel
- Departments of Epidemiology and Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - JoAnn E. Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen R. Rapp
- Departments of Psychiatry and Behavioral Medicine and Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, United States of America
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Thiankhaw K, Chattipakorn N, Chattipakorn SC. PM2.5 exposure in association with AD-related neuropathology and cognitive outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118320. [PMID: 34634399 DOI: 10.1016/j.envpol.2021.118320] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Particulate matter with a diameter of less than 2.5 μm or PM2.5 is recognized worldwide as a cause of public health problems, mainly associated with respiratory and cardiovascular diseases. There is accumulating evidence to show that exposure to PM2.5 has a crucial causative role in various neurological disorders, the main ones being dementia and Alzheimer's disease (AD). PM2.5 can activate glial and microglial activity, resulting in neuroinflammation, increased intracellular ROS production, and ultimately neuronal apoptosis. PM2.5 also causes the alteration of neuronal morphology and synaptic changes and increases AD biomarkers, including amyloid-beta and hyperphosphorylated-tau, as well as raising the levels of enzymes involved in the amyloidogenic pathway. Clinical trials have highlighted the correlation between exposure to PM2.5, dementia, and AD diagnosis. This correlation is also displayed by concordant evidence from animal models, as indicated by increased AD biomarkers in cerebrospinal fluid and markers of vascular injury. Blood-brain barrier disruption is another aggravated phenomenon demonstrated in people at risk who are exposed to PM2.5. This review summarizes and discusses studies from in vitro, in vivo, and clinical studies on causative relationships of PM2.5 exposure to AD-related neuropathology. Conflicting data are also examined in order to determine the actual association between ambient air pollution and neurodegenerative diseases.
Collapse
Affiliation(s)
- Kitti Thiankhaw
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
9
|
Wang X, Younan D, Petkus AJ, Beavers DP, Espeland MA, Chui HC, Resnick SM, Gatz M, Kaufman JD, Wellenius GA, Whitsel EA, Manson JE, Chen JC. Ambient Air Pollution and Long-Term Trajectories of Episodic Memory Decline among Older Women in the WHIMS-ECHO Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97009. [PMID: 34516296 PMCID: PMC8437247 DOI: 10.1289/ehp7668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Episodic memory decline varies by age and underlying neuropathology. Whether ambient air pollution contributes to the heterogeneity of episodic memory decline in older populations remains unclear. OBJECTIVES We estimated associations between air pollution exposures and episodic memory decline according to pollutant, exposure time window, age, and latent class subgroups defined by episodic memory trajectories. METHODS Participants were from the Women's Health Initiative Memory Study-Epidemiology of Cognitive Health Outcomes. Older women (n = 2,056 ; 74-92 years of age) completed annual (2008-2018) episodic memory assessments using the telephone-based California Verbal Learning Test (CVLT). We estimated 3-y average fine particulate matter [PM with an aerodynamic diameter of ≤ 2.5 μ m (PM 2.5 )] and nitrogen dioxide (NO 2 ) exposures at baseline and 10 y earlier (recent and remote exposures, respectively), using regionalized national universal kriging. Separate latent class mixed models were used to estimate associations between interquartile range increases in exposures and CVLT trajectories in women ≤ 80 and > 80 years of age , adjusting for covariates. RESULTS Two latent classes were identified for women ≤ 80 years of age (n = 828 ), "slow-decliners" {slope = - 0.12 / y [95% confidence interval (CI): - 0.23 , - 0.01 ] and "fast-decliners" [slope = - 1.79 / y (95% CI: - 2.08 , - 1.50 )]}. In the slow-decliner class, but not the fast-decliner class, PM 2.5 exposures were associated with a greater decline in CVLT scores over time, with a stronger association for recent vs. remote exposures [- 0.16 / y (95% CI: - 2.08 , - 0.03 ) per 2.88 μ g / m 3 and - 0.11 / y (95% CI: - 0.22 , 0.01) per 3.27 μ g / m 3 , respectively]. Among women ≥ 80 years of age (n = 1,128 ), the largest latent class comprised "steady-decliners" [slope = - 1.35 / y (95% CI: - 1.53 , - 1.17 )], whereas the second class, "cognitively resilient", had no decline in CVLT on average. PM 2.5 was not associated with episodic memory decline in either class. A 6.25 -ppb increase in recent NO 2 was associated with nonsignificant acceleration of episodic memory decline in the ≤ 80 -y-old fast-decliner class [- 0.21 / y (95% CI: - 0.45 , 0.04)], and in the > 80 -y-old cognitively resilient class [- 0.10 / y (95% CI: - 0.24 , 0.03)] and steady-decliner class [- 0.11 / y (95% CI: - 0.27 , 0.05)]. Associations with recent NO 2 exposure in women > 80 years of age were stronger and statistically significant when 267 women with incident probable dementia were excluded [e.g., - 0.12 / y (95% CI: - 0.22 , - 0.02 ) for the cognitively resilient class]. In contrast with changes in CVLT over time, there were no associations between exposures and CVLT scores during follow-up in any subgroup. DISCUSSION In a community-dwelling U.S. population of older women, associations between late-life exposure to ambient air pollution and episodic memory decline varied by age-related cognitive trajectories, exposure time windows, and pollutants. https://doi.org/10.1289/EHP7668.
Collapse
Affiliation(s)
- Xinhui Wang
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Diana Younan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| | - Andrew J. Petkus
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Daniel P. Beavers
- Department of Biostatistics and Data Sciences, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Mark A. Espeland
- Department of Biostatistics and Data Sciences, Wake Forest School of Medicine, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Helena C. Chui
- Department of Neurology, University of Southern California, Los Angeles, California, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, USA
| | - Margaret Gatz
- Center for Economic and Social Research, University of Southern California, Los Angeles, California, USA
| | - Joel D. Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine (General Internal Medicine), and Epidemiology, University of Washington, Seattle, Washington, USA
| | - Gregory A. Wellenius
- Department of Environmental Health, Boston University, Boston, Massachusetts, USA
| | - Eric A. Whitsel
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - JoAnn E. Manson
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiu-Chiuan Chen
- Department of Neurology, University of Southern California, Los Angeles, California, USA
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
10
|
Younan D, Wang X, Gruenewald T, Gatz M, Serre ML, Vizuete W, Braskie MN, Woods NF, Kahe K, Garcia L, Lurmann F, Manson JE, Chui HC, Wallace RB, Espeland MA, Chen JC. Racial/Ethnic Disparities in Alzheimer's Disease Risk: Role of Exposure to Ambient Fine Particles. J Gerontol A Biol Sci Med Sci 2021; 77:977-985. [PMID: 34383042 PMCID: PMC9071399 DOI: 10.1093/gerona/glab231] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Whether racial/ethnic disparities in Alzheimer's disease (AD) risk may be explained by ambient fine particles (PM2.5) has not been studied. METHOD We conducted a prospective, population-based study on a cohort of Black (n = 481) and White (n = 6 004) older women (aged 65-79) without dementia at enrollment (1995-1998). Cox models accounting for competing risk were used to estimate the hazard ratio (HR) for racial/ethnic disparities in AD (1996-2010) defined by Diagnostic and Statistical Manual of Mental Disorders, 4th edition and the association with time-varying annual average PM2.5 (1999-2010) estimated by spatiotemporal model. RESULTS Over an average follow-up of 8.3 (±3.5) years with 158 incident cases (21 in Black women), the racial disparities in AD risk (range of adjusted HRBlack women = 1.85-2.41) observed in various models could not be explained by geographic region, age, socioeconomic characteristics, lifestyle factors, cardiovascular risk factors, and hormone therapy assignment. Estimated PM2.5 exposure was higher in Black (14.38 ± 2.21 µg/m3) than in White (12.55 ± 2.76 µg/m3) women, and further adjustment for the association between PM2.5 and AD (adjusted HRPM2.5 = 1.18-1.28) slightly reduced the racial disparities by 2%-6% (HRBlack women = 1.81-2.26). The observed association between PM2.5 and AD risk was ~2 times greater in Black (HRPM2.5 = 2.10-2.60) than in White (HRPM2.5 = 1.07-1.15) women (range of interaction ps: <.01-.01). We found similar results after further adjusting for social engagement (social strain, social support, social activity, living alone), stressful life events, Women's Health Initiative's clinic sites, and neighborhood socioeconomic characteristics. CONCLUSIONS PM2.5 may contribute to racial/ethnic disparities in AD risk and its associated increase in AD risk was stronger among Black women.
Collapse
Affiliation(s)
- Diana Younan
- University of Southern California, Los Angeles, USA
| | - Xinhui Wang
- University of Southern California, Los Angeles, USA
| | | | | | | | | | | | - Nancy F Woods
- University of Washington School of Nursing, Seattle, USA
| | - Ka Kahe
- Columbia University Irving Medical Center, New York, New York, USA
| | | | - Fred Lurmann
- Sonoma Technology, Inc., Petaluma, California, USA
| | - JoAnn E Manson
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Mark A Espeland
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jiu-Chiuan Chen
- Address correspondence to: Jiu-Chiuan Chen, MD, ScD, University of Southern California, 2001 N Soto Street, Los Angeles, CA 90032, USA. E-mail:
| |
Collapse
|
11
|
Haghani A, Morgan TE, Forman HJ, Finch CE. Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. J Alzheimers Dis 2021; 76:773-797. [PMID: 32538853 DOI: 10.3233/jad-200377] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological studies are associating elevated exposure to air pollution with increased risk of Alzheimer's disease and other neurodegenerative disorders. In effect, air pollution accelerates many aging conditions that promote cognitive declines of aging. The underlying mechanisms and scale of effects remain largely unknown due to its chemical and physical complexity. Moreover, individual responses to air pollution are shaped by an intricate interface of pollutant mixture with the biological features of the exposed individual such as age, sex, genetic background, underlying diseases, and nutrition, but also other environmental factors including exposure to cigarette smoke. Resolving this complex manifold requires more detailed environmental and lifestyle data on diverse populations, and a systematic experimental approach. Our review aims to summarize the modest existing literature on experimental studies on air pollution neurotoxicity for adult rodents and identify key gaps and emerging challenges as we go forward. It is timely for experimental biologists to critically understand prior findings and develop innovative approaches to this urgent global problem. We hope to increase recognition of the importance of air pollution on brain aging by our colleagues in the neurosciences and in biomedical gerontology, and to support the immediate translation of the findings into public health guidelines for the regulation of remedial environmental factors that accelerate aging processes.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | | | - Caleb E Finch
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA.,Dornsife College, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Petkus AJ, Younan D, Wang X, Beavers DP, Espeland MA, Gatz M, Gruenewald T, Kaufman JD, Chui HC, Millstein J, Rapp SR, Manson JE, Resnick SM, Wellenius GA, Whitsel EA, Widaman K, Chen JC. Associations Between Air Pollution Exposure and Empirically Derived Profiles of Cognitive Performance in Older Women. J Alzheimers Dis 2021; 84:1691-1707. [PMID: 34744078 PMCID: PMC9057084 DOI: 10.3233/jad-210518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Elucidating associations between exposures to ambient air pollutants and profiles of cognitive performance may provide insight into neurotoxic effects on the aging brain. OBJECTIVE We examined associations between empirically derived profiles of cognitive performance and residential concentrations of particulate matter of aerodynamic diameter < 2.5 (PM2.5) and nitrogen dioxide (NO2) in older women. METHOD Women (N = 2,142) from the Women's Health Initiative Study of Cognitive Aging completed a neuropsychological assessment measuring attention, visuospatial, language, and episodic memory abilities. Average yearly concentrations of PM2.5 and NO2 were estimated at the participant's addresses for the 3 years prior to the assessment. Latent profile structural equation models identified subgroups of women exhibiting similar profiles across tests. Multinomial regressions examined associations between exposures and latent profile classification, controlling for covariates. RESULT Five latent profiles were identified: low performance across multiple domains (poor multi-domain; n = 282;13%), relatively poor verbal episodic memory (poor memory; n = 216; 10%), average performance across all domains (average multi-domain; n = 974; 45%), superior memory (n = 381; 18%), and superior attention (n = 332; 15%). Using women with average cognitive ability as the referent, higher PM2.5 (per interquartile range [IQR] = 3.64μg/m3) was associated with greater odds of being classified in the poor memory (OR = 1.29; 95% Confidence Interval [CI] = 1.10-1.52) or superior attention (OR = 1.30; 95% CI = 1.10-1.53) profiles. NO2 (per IQR = 9.86 ppb) was associated with higher odds of being classified in the poor memory (OR = 1.38; 95% CI = 1.17-1.63) and lower odds of being classified with superior memory (OR = 0.81; 95% CI = 0.67-0.97). CONCLUSION Exposure to PM2.5 and NO2 are associated with patterns of cognitive performance characterized by worse verbal episodic memory relative to performance in other domains.
Collapse
Affiliation(s)
- Andrew J. Petkus
- University of Southern California, Department of Neurology, Los Angeles, CA, USA
| | - Diana Younan
- University of Southern California, Department of Population and Public Health Sciences, Los Angeles, CA, USA
| | - Xinhui Wang
- University of Southern California, Department of Neurology, Los Angeles, CA, USA
| | - Daniel P. Beavers
- Wake Forest School of Medicine, Department of Biostatistics, Winston-Salem, NC, USA
| | - Mark A. Espeland
- Wake Forest School of Medicine, Department of Biostatistics, Winston-Salem, NC, USA
| | - Margaret Gatz
- University of Southern California, Center for Economic and Social Research, Los Angeles, CA, USA
| | - Tara Gruenewald
- Chapman University, Department of Psychology, Orange, CA, USA
| | - Joel D. Kaufman
- University of Washington, Department of Environmental and Occupational Health Sciences, Seattle, WA, USA
| | - Helena C. Chui
- University of Southern California, Department of Neurology, Los Angeles, CA, USA
| | - Joshua Millstein
- University of Southern California, Department of Population and Public Health Sciences, Los Angeles, CA, USA
| | - Stephen R. Rapp
- Wake Forest School of Medicine, Department of Psychiatry and Behavioral Medicine, Winston-Salem, NC, USA
| | - JoAnn E. Manson
- Harvard Medical School, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Susan M. Resnick
- National Institute on Aging, Laboratory of Behavioral Neuroscience, Baltimore, MD, USA
| | | | - Eric A. Whitsel
- University of North Carolina, Departments of Epidemiology and Medicine, Chapel Hill, NC, USA
| | - Keith Widaman
- University of California, Riverside, Graduate School of Education, Riverside, CA, USA
| | - Jiu-Chiuan Chen
- University of Southern California, Department of Neurology, Los Angeles, CA, USA
- University of Southern California, Department of Population and Public Health Sciences, Los Angeles, CA, USA
| |
Collapse
|
13
|
Cole TB, Chang YC, Dao K, Daza R, Hevner R, Costa LG. Developmental exposure to diesel exhaust upregulates transcription factor expression, decreases hippocampal neurogenesis, and alters cortical lamina organization: relevance to neurodevelopmental disorders. J Neurodev Disord 2020; 12:41. [PMID: 33327933 PMCID: PMC7745370 DOI: 10.1186/s11689-020-09340-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Background Exposure to traffic-related air pollution (TRAP) during development and/or in adulthood has been associated in many human studies with both neurodevelopmental and neurodegenerative diseases, such as autism spectrum disorder (ASD) and Alzheimer’s disease (AD) or Parkinson’s disease (PD). Methods In the present study, C57BL/6 J mice were exposed to environmentally relevant levels (250+/−50 μg/m3) of diesel exhaust (DE) or filtered air (FA) during development (E0 to PND21). The expression of several transcription factors relevant for CNS development was assessed on PND3. To address possible mechanistic underpinnings of previously observed behavioral effects of DE exposure, adult neurogenesis in the hippocampus and laminar organization of neurons in the somatosensory cortex were analyzed on PND60. Results were analyzed separately for male and female mice. Results Developmental DE exposure caused a male-specific upregulation of Pax6, Tbr1, Tbr2, Sp1, and Creb1 on PND3. In contrast, in both males and females, Tbr2+ intermediate progenitor cells in the PND60 hippocampal dentate gyrus were decreased, as an indication of reduced adult neurogenesis. In the somatosensory region of the cerebral cortex, laminar distribution of Trb1, calbindin, and parvalbumin (but not of Ctip2 or Cux1) was altered by developmental DE exposure. Conclusions These results provide additional evidence to previous findings indicating the ability of developmental DE exposure to cause biochemical/molecular and behavioral alterations that may be involved in neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Toby B Cole
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA. .,Center on Human Development and Disability, University of Washington, Seattle, WA, USA.
| | - Yu-Chi Chang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.,Gradient Corporation, Seattle, WA, USA
| | - Khoi Dao
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Ray Daza
- Department of Pathology, University of California at San Diego, San Diego, CA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Robert Hevner
- Department of Pathology, University of California at San Diego, San Diego, CA, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Lucio G Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
14
|
Boda E, Rigamonti AE, Bollati V. Understanding the effects of air pollution on neurogenesis and gliogenesis in the growing and adult brain. Curr Opin Pharmacol 2020; 50:61-66. [DOI: 10.1016/j.coph.2019.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 01/16/2023]
|
15
|
Younan D, Petkus AJ, Widaman KF, Wang X, Casanova R, Espeland MA, Gatz M, Henderson VW, Manson JE, Rapp SR, Sachs BC, Serre ML, Gaussoin SA, Barnard R, Saldana S, Vizuete W, Beavers DP, Salinas JA, Chui HC, Resnick SM, Shumaker SA, Chen JC. Particulate matter and episodic memory decline mediated by early neuroanatomic biomarkers of Alzheimer's disease. Brain 2020; 143:289-302. [PMID: 31746986 PMCID: PMC6938036 DOI: 10.1093/brain/awz348] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/30/2019] [Accepted: 09/16/2019] [Indexed: 01/28/2023] Open
Abstract
Evidence suggests exposure to particulate matter with aerodynamic diameter <2.5 μm (PM2.5) may increase the risk for Alzheimer's disease and related dementias. Whether PM2.5 alters brain structure and accelerates the preclinical neuropsychological processes remains unknown. Early decline of episodic memory is detectable in preclinical Alzheimer's disease. Therefore, we conducted a longitudinal study to examine whether PM2.5 affects the episodic memory decline, and also explored the potential mediating role of increased neuroanatomic risk of Alzheimer's disease associated with exposure. Participants included older females (n = 998; aged 73-87) enrolled in both the Women's Health Initiative Study of Cognitive Aging and the Women's Health Initiative Memory Study of Magnetic Resonance Imaging, with annual (1999-2010) episodic memory assessment by the California Verbal Learning Test, including measures of immediate free recall/new learning (List A Trials 1-3; List B) and delayed free recall (short- and long-delay), and up to two brain scans (MRI-1: 2005-06; MRI-2: 2009-10). Subjects were assigned Alzheimer's disease pattern similarity scores (a brain-MRI measured neuroanatomical risk for Alzheimer's disease), developed by supervised machine learning and validated with data from the Alzheimer's Disease Neuroimaging Initiative. Based on residential histories and environmental data on air monitoring and simulated atmospheric chemistry, we used a spatiotemporal model to estimate 3-year average PM2.5 exposure preceding MRI-1. In multilevel structural equation models, PM2.5 was associated with greater declines in immediate recall and new learning, but no association was found with decline in delayed-recall or composite scores. For each interquartile increment (2.81 μg/m3) of PM2.5, the annual decline rate was significantly accelerated by 19.3% [95% confidence interval (CI) = 1.9% to 36.2%] for Trials 1-3 and 14.8% (4.4% to 24.9%) for List B performance, adjusting for multiple potential confounders. Long-term PM2.5 exposure was associated with increased Alzheimer's disease pattern similarity scores, which accounted for 22.6% (95% CI: 1% to 68.9%) and 10.7% (95% CI: 1.0% to 30.3%) of the total adverse PM2.5 effects on Trials 1-3 and List B, respectively. The observed associations remained after excluding incident cases of dementia and stroke during the follow-up, or further adjusting for small-vessel ischaemic disease volumes. Our findings illustrate the continuum of PM2.5 neurotoxicity that contributes to early decline of immediate free recall/new learning at the preclinical stage, which is mediated by progressive atrophy of grey matter indicative of increased Alzheimer's disease risk, independent of cerebrovascular damage.
Collapse
Affiliation(s)
- Diana Younan
- University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | - Andrew J Petkus
- University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | - Keith F Widaman
- University of California at Riverside, 900 University Ave, Riverside, CA, USA
| | - Xinhui Wang
- University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | - Ramon Casanova
- Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC, USA
| | - Mark A Espeland
- Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC, USA
| | - Margaret Gatz
- University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | | | - JoAnn E Manson
- Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA, USA
| | - Stephen R Rapp
- Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC, USA
| | - Bonnie C Sachs
- Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC, USA
| | - Marc L Serre
- University of North Carolina, 250 E Franklin S, Chapel Hill, NC, USA
| | - Sarah A Gaussoin
- Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC, USA
| | - Ryan Barnard
- Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC, USA
| | - Santiago Saldana
- Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC, USA
| | - William Vizuete
- University of North Carolina, 250 E Franklin S, Chapel Hill, NC, USA
| | - Daniel P Beavers
- Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC, USA
| | - Joel A Salinas
- Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, USA
| | - Helena C Chui
- University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Boulevard, Suite 100, Baltimore, MD, USA
| | - Sally A Shumaker
- Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC, USA
| | - Jiu-Chiuan Chen
- University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| |
Collapse
|
16
|
Gondalia R, Baldassari A, Holliday KM, Justice AE, Méndez-Giráldez R, Stewart JD, Liao D, Yanosky JD, Brennan KJM, Engel SM, Jordahl KM, Kennedy E, Ward-Caviness CK, Wolf K, Waldenberger M, Cyrys J, Peters A, Bhatti P, Horvath S, Assimes TL, Pankow JS, Demerath EW, Guan W, Fornage M, Bressler J, North KE, Conneely KN, Li Y, Hou L, Baccarelli AA, Whitsel EA. Methylome-wide association study provides evidence of particulate matter air pollution-associated DNA methylation. ENVIRONMENT INTERNATIONAL 2019; 132:104723. [PMID: 31208937 PMCID: PMC6754789 DOI: 10.1016/j.envint.2019.03.071] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 05/17/2023]
Abstract
BACKGROUND DNA methylation (DNAm) may contribute to processes that underlie associations between air pollution and poor health. Therefore, our objective was to evaluate associations between DNAm and ambient concentrations of particulate matter (PM) ≤2.5, ≤10, and 2.5-10 μm in diameter (PM2.5; PM10; PM2.5-10). METHODS We conducted a methylome-wide association study among twelve cohort- and race/ethnicity-stratified subpopulations from the Women's Health Initiative and the Atherosclerosis Risk in Communities study (n = 8397; mean age: 61.5 years; 83% female; 45% African American; 9% Hispanic/Latino American). We averaged geocoded address-specific estimates of daily and monthly mean PM concentrations over 2, 7, 28, and 365 days and 1 and 12 months before exams at which we measured leukocyte DNAm in whole blood. We estimated subpopulation-specific, DNAm-PM associations at approximately 485,000 Cytosine-phosphate-Guanine (CpG) sites in multi-level, linear, mixed-effects models. We combined subpopulation- and site-specific estimates in fixed-effects, inverse variance-weighted meta-analyses, then for associations that exceeded methylome-wide significance and were not heterogeneous across subpopulations (P < 1.0 × 10-7; PCochran's Q > 0.10), we characterized associations using publicly accessible genomic databases and attempted replication in the Cooperative Health Research in the Region of Augsburg (KORA) study. RESULTS Analyses identified significant DNAm-PM associations at three CpG sites. Twenty-eight-day mean PM10 was positively associated with DNAm at cg19004594 (chromosome 20; MATN4; P = 3.33 × 10-8). One-month mean PM10 and PM2.5-10 were positively associated with DNAm at cg24102420 (chromosome 10; ARPP21; P = 5.84 × 10-8) and inversely associated with DNAm at cg12124767 (chromosome 7; CFTR; P = 9.86 × 10-8). The PM-sensitive CpG sites mapped to neurological, pulmonary, endocrine, and cardiovascular disease-related genes, but DNAm at those sites was not associated with gene expression in blood cells and did not replicate in KORA. CONCLUSIONS Ambient PM concentrations were associated with DNAm at genomic regions potentially related to poor health among racially, ethnically and environmentally diverse populations of U.S. women and men. Further investigation is warranted to uncover mechanisms through which PM-induced epigenomic changes may cause disease.
Collapse
Affiliation(s)
- Rahul Gondalia
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Antoine Baldassari
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Katelyn M Holliday
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Community and Family Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Anne E Justice
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Geisinger Health System, Danville, PA, USA
| | - Raúl Méndez-Giráldez
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Duanping Liao
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeff D Yanosky
- Division of Epidemiology, Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Kasey J M Brennan
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Kristina M Jordahl
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Elizabeth Kennedy
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Cavin K Ward-Caviness
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, 104 Mason Farm Rd, Chapel Hill, NC, USA
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, Germany; Environmental Science Center, University of Augsburg, Augsburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, Neuherberg, Germany
| | - Parveen Bhatti
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Steve Horvath
- Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | | | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Ellen W Demerath
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Myriam Fornage
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jan Bressler
- Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA; Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University Chicago, Evanston, IL, USA
| | - Andrea A Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Ibanez C, Suhard D, Elie C, Ebrahimian T, Lestaevel P, Roynette A, Dhieux-Lestaevel B, Gensdarmes F, Tack K, Tessier C. Evaluation of the Nose-to-Brain Transport of Different Physicochemical Forms of Uranium after Exposure via Inhalation of a UO4 Aerosol in the Rat. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:97010. [PMID: 31566443 PMCID: PMC6791583 DOI: 10.1289/ehp4927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Health-risk issues are raised concerning inhalation of particulate pollutants that are thought to have potential hazardous effects on the central nervous system. The brain is presented as a direct target of particulate matter (PM) exposure because of the nose-to-brain pathway involvement. The main cause of contamination in nuclear occupational activities is related to exposure to aerosols containing radionuclides, particularly uranium dust. It has been previously demonstrated that instilled solubilized uranium in the rat nasal cavity is conveyed to the brain via the olfactory nerve. OBJECTIVE The aim of this study was to analyze the anatomical localization of uranium compounds in the olfactory system after in vivo exposure to a polydisperse aerosol of uranium tetraoxide (UO4) particles. METHODS The olfactory neuroepithelium (OE) and selected brain structures-olfactory bulbs (OB), frontal cortex (FC), hippocampus (HIP), cerebellum (Cer), and brainstem (BS)-were microdissected 4 h after aerosol inhalation via a nose-only system in adult rats. Tissues were subjected to complementary analytical techniques. RESULTS Uranium concentrations measured by inductively coupled plasma mass spectrometry (ICP-MS) were significantly higher in all brain structures from exposed animals compared with their respective controls. We observed that cerebral uranium concentrations followed an anteroposterior gradient with typical accumulation in the OB, characteristic of a direct olfactory transfer of inhaled compounds. Secondary ion mass spectrometry (SIMS) microscopy and transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM-EDX) were used in order to track elemental uranium in situ in the olfactory epithelium. Elemental uranium was detected in precise anatomical regions: olfactory neuron dendrites, paracellular junctions of neuroepithelial cells, and olfactory nerve tracts (around axons and endoneural spaces). CONCLUSION These neuroanatomical observations in a rat model are consistent with the transport of elemental uranium in different physicochemical forms (solubilized, nanoparticles) along olfactory nerve bundles after inhalation of UO4 microparticles. This work contributes to knowledge of the mechanistic actions of particulate pollutants on the brain. https://doi.org/10.1289/EHP4927.
Collapse
Affiliation(s)
- Chrystelle Ibanez
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, Service de recherche sur les effets biologiques et sanitaires des rayonnements ionisants, Laboratoire de Radiotoxicologie et Radiobiologie Expérimentale, Fontenay aux Roses, France
| | - David Suhard
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, Service de recherche sur les effets biologiques et sanitaires des rayonnements ionisants, Laboratoire de Recherche en Radiochimie, Spéciation et Imagerie, Fontenay aux Roses, France
| | - Christelle Elie
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, Service de recherche sur les effets biologiques et sanitaires des rayonnements ionisants, Laboratoire de Radiotoxicologie et Radiobiologie Expérimentale, Fontenay aux Roses, France
| | - Teni Ebrahimian
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, Service de recherche sur les effets biologiques et sanitaires des rayonnements ionisants, Laboratoire de Radiotoxicologie et Radiobiologie Expérimentale, Fontenay aux Roses, France
| | - Philippe Lestaevel
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, Service de recherche sur les effets biologiques et sanitaires des rayonnements ionisants, Laboratoire de Radiotoxicologie et Radiobiologie Expérimentale, Fontenay aux Roses, France
| | - Audrey Roynette
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle de Sûreté des Installations et des Systèmes Nucléaire, Service du Confinement et de l’Aérodispersion des Polluants, Laboratoire de Physique et de Métrologie des Aérosols, Gif-sur-Yvette, France
| | - Bernadette Dhieux-Lestaevel
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle de Sûreté des Installations et des Systèmes Nucléaire, Service du Confinement et de l’Aérodispersion des Polluants, Laboratoire de Physique et de Métrologie des Aérosols, Gif-sur-Yvette, France
| | - François Gensdarmes
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle de Sûreté des Installations et des Systèmes Nucléaire, Service du Confinement et de l’Aérodispersion des Polluants, Laboratoire de Physique et de Métrologie des Aérosols, Gif-sur-Yvette, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire, Pôle Santé Environnement, Service de recherche sur les effets biologiques et sanitaires des rayonnements ionisants, Laboratoire de Radiotoxicologie et Radiobiologie Expérimentale, Fontenay aux Roses, France
| | - Christine Tessier
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay aux Roses, France
| |
Collapse
|
18
|
Curbani F, de Oliveira Busato F, Marcarini do Nascimento M, Olivieri DN, Tadokoro CE. Inhale, exhale: Why particulate matter exposure in animal models are so acute? Data and facts behind the history. Data Brief 2019; 25:104237. [PMID: 31367664 PMCID: PMC6646918 DOI: 10.1016/j.dib.2019.104237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/31/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022] Open
Abstract
We present a dataset obtained by extracting information from an extensive literature search of toxicological experiments using mice and rat animal models to study the effects of exposure to airborne particulate matter (PM). Our dataset covers results reported from 75 research articles considering paper published in 2017 and seminal papers from previous years. The compiled data and normalization were processed with an equation based on a PM dosimetry model. This equation allows the comparison of different toxicological experiments using instillation and inhalation as PM exposure protocols with respect to inhalation rates, concentrations and PM exposure doses of the toxicological experiments performed by different protocols using instillation and inhalation PM as exposure methods. This data complements the discussions and interpretations presented in the research article “Inhale, exhale: why particulate matter exposure in animal models are so acute?” Curbani et al., 2019.
Collapse
Affiliation(s)
- Flávio Curbani
- Programa de Pós-Graduação em Ecologia de Ecossistemas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil.,Departamento de Tecnologia Industrial, Centro Tecnológico, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, CEP 29060-970, Vitória, ES, Brazil
| | - Fernanda de Oliveira Busato
- Laboratory of Immunobiology, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| | - Maynara Marcarini do Nascimento
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| | | | - Carlos Eduardo Tadokoro
- Programa de Pós-Graduação em Ecologia de Ecossistemas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Vila Velha, Rua Comissário José Dantas de Melo, 21, Boa Vista, CEP 29102-920, Vila Velha, ES, Brazil
| |
Collapse
|
19
|
Zhang Y, Yang D, Yang B, Li B, Guo J, Xiao C. PM2.5 induces cell cycle arrest through regulating mTOR/P70S6K1 signaling pathway. Exp Ther Med 2019; 17:4371-4378. [PMID: 31086573 PMCID: PMC6489014 DOI: 10.3892/etm.2019.7466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
Fine particulate matter (PM2.5) pollution has become a serious problem in China. This study aims to elucidate the toxicity mechanism of PM2.5. Protein levels were detected by western blotting and RT-qPCR, and cell cycle was detected by flow cytometry. The results showed that exposure to PM2.5 induces cell cycle arrest and downregulation of the expression of cyclin D1 protein. Moreover, the protein expression of thymidylate synthase (TS) enzyme was found to be downregulated and the mRNA expression of TS was upregulated after PM2.5 exposure. Knockout of TS gene promoted cell cycle arrest and downregulation of the expression of cyclin D1 protein after PM2.5 exposure. Our data further revealed that PM2.5 exposure downregulates the expression of TS and cyclin D1 partially through the downregulation of the mammalian target of rapamycin (mTOR)/P70S6K1 signaling pathway. Thus, these findings indicate that PM2.5-induced cell cycle arrest might be due to the downregulation of mTOR/P70S6K1 signaling pathway, and thus inhibits the expression of TS protein.
Collapse
Affiliation(s)
- Yu Zhang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| | - Dan Yang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China.,Department of Pharmacology, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Biao Yang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| | - Bingyu Li
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| | - Jie Guo
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| | - Chunling Xiao
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| |
Collapse
|
20
|
Zhang Y, Li S, Li J, Han L, He Q, Wang R, Wang X, Liu K. Developmental toxicity induced by PM2.5 through endoplasmic reticulum stress and autophagy pathway in zebrafish embryos. CHEMOSPHERE 2018; 197:611-621. [PMID: 29407824 DOI: 10.1016/j.chemosphere.2018.01.092] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 06/07/2023]
Abstract
The aims of this study were to investigate the mechanism underlying the developmental toxicity of fine particulate matter (PM2.5) and provide a more thorough understanding of the toxicity of PM2.5 in an ecological environment. Zebrafish embryos at 4 h post-fertilization were exposed to PM2.5 at doses of 200, 300, 400, 500, 600 and 800 μg/mL for 120 h. The mortality, hatching rate, morphology score, body length, locomotor capacity, histological changes, antioxidant defense system, leukocyte migration, inflammation-related gene mRNA expression, endoplasmic reticulum stress (ERS) and autophagy were evaluated to study PM2.5-induced developmental toxicity and its underlying mechanisms. PM2.5 exposure significantly increased the mortality and malformations and reduced the hatching rate and body length of the zebrafish. PM2.5 significantly reduced the locomotor capacity of zebrafish larvae, increased the levels of ROS and disturbed the antioxidant defense system in zebrafish larvae. In addition, a histological examination showed that the heart, liver, intestines and muscle of the PM2.5-treated zebrafish exhibited abnormal changes and a significant increase in cellular autophagic accumulation. RT-PCR showed that the expression of genes related to inflammation (tgfβ and cox2), ERS (hspa5, chop, ire1, xbp1s, and atf6) and autophagy (lc3, beclin1 and atg3) pathways was significantly increased in the PM2.5-treated zebrafish, indicating that PM2.5 induced inflammation and promoted ERS and autophagy responses via the activation of the IRE1-XBP1 and ATF6 pathways. Together, our data indicate that PM2.5 induced a dose- and time-dependent increase in developmental toxicity to zebrafish embryos. Additionally, ERS and autophagy may play important roles in PM2.5-induced developmental toxicity.
Collapse
Affiliation(s)
- Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China.
| | - Saiyu Li
- Shandong Analysis and Test Center, 19 Keyuan Road, Lixia District, Jinan, 250014, Shandong Province, PR China
| | - Juanjuan Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China; Shanxi Medical University, 56 Xinjiannan Road, Yingze District, Taiyuan, 030001, Shanxi Province, PR China
| | - Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Ximin Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China.
| |
Collapse
|