1
|
Pedreañez A, Mosquera-Sulbaran JA, Tene D. Role of the receptor for advanced glycation end products in the severity of SARS-CoV-2 infection in diabetic patients. Diabetol Int 2024; 15:732-744. [PMID: 39469543 PMCID: PMC11512988 DOI: 10.1007/s13340-024-00746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/17/2024] [Indexed: 10/30/2024]
Abstract
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, is a severe disease in older adults and in individuals with associated comorbidities such as diabetes mellitus. Patients with diabetes infected with SARS-CoV-2 are more likely to develop severe pneumonia, hospitalization, and mortality compared with infected non-diabetic patients. During diabetes, hyperglycemia contributes to the maintenance of a low-grade inflammatory state which has been implicated in the microvascular and macrovascular complications associated with this pathology. The receptor for advanced glycation end products (RAGE) is a multi-ligand pattern recognition receptor, expressed on a wide variety of cells, which participates as an important mediator of inflammatory responses in many diseases, including lung diseases. This review highlights the role of RAGE in the pathophysiology of COVID-19 with special emphasis on diabetic patients. These data could explain the severity of the disease, positioning it as a key therapeutic target in the clinical management of this infection.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Apartado Postal: 23, Maracaibo 4001-A, Maracaibo, Zulia Venezuela
| | - Jesús A. Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas “Dr. Américo Negrette”, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Diego Tene
- Universidad Nacional del Chimborazo, Facultad de Ciencias de la Salud, Riobamba, Ecuador
| |
Collapse
|
2
|
Berdiaki A, Neagu M, Tzanakakis P, Spyridaki I, Pérez S, Nikitovic D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024; 14:1186. [PMID: 39334952 PMCID: PMC11430160 DOI: 10.3390/biom14091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
| | - Petros Tzanakakis
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Ioanna Spyridaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Serge Pérez
- Centre de Recherche sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), University Grenoble Alpes, 38000 Grenoble, France;
| | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| |
Collapse
|
3
|
Zglejc-Waszak K, Jozwik M, Thoene M, Wojtkiewicz J. Role of Receptor for Advanced Glycation End-Products in Endometrial Cancer: A Review. Cancers (Basel) 2024; 16:3192. [PMID: 39335163 PMCID: PMC11430655 DOI: 10.3390/cancers16183192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Endometrial cancer (EC) is the most common gynecological malignancy. EC is associated with metabolic disorders that may promote non-enzymatic glycation and activate the receptor for advanced glycation end-products (RAGE) signaling pathways. Thus, we assumed that RAGE and its ligands may contribute to EC. Of particular interest is the interaction between diaphanous-related formin 1 (Diaph1) and RAGE during the progression of human cancers. Diaph1 is engaged in the proper organization of actin cytoskeletal dynamics, which is crucial in cancer invasion, metastasis, angiogenesis, and axonogenesis. However, the detailed molecular role of RAGE in EC remains uncertain. In this review, we discuss epigenetic factors that may play a key role in the RAGE-dependent endometrial pathology. We propose that DNA methylation may regulate the activity of the RAGE pathway in the uterus. The accumulation of negative external factors, such as hyperglycemia, inflammation, and oxidative stress, may interfere with the DNA methylation process. Therefore, further research should take into account the role of epigenetic mechanisms in EC progression.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Anatomy, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Marcin Jozwik
- Department of Gynecology and Obstetrics, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-045 Olsztyn, Poland
| | - Michael Thoene
- Department of Medical Biology, Faculty of Health Sciences, University of Warmia and Mazury in Olsztyn, Żołnierska 14C Str., 10-561 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, Faculty of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
4
|
Turner DP, Winn RA, Findlay VJ. Biosocial determinants inform on enduring cancer disparities. Trends Cancer 2024; 10:673-676. [PMID: 38839546 DOI: 10.1016/j.trecan.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Social, environmental, and biological risk factors influence exposures to newly termed 'biosocial determinants of health'. As molecular factors that lie at the intersection between lived experiences and individual biology, biosocial determinants may inform on the enduring complexity of cancer disparity across transdisciplinary studies.
Collapse
Affiliation(s)
- David P Turner
- Department of Surgery, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| | - Robert A Winn
- Department of Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth, University, Richmond, VA, USA
| | - Victoria J Findlay
- Department of Surgery, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Singh S, Kumar A, Gupta S, Agrawal R. Curative role of natural PPARγ agonist in non-alcoholic fatty liver disease (NAFLD). Tissue Barriers 2024; 12:2289830. [PMID: 38050958 PMCID: PMC11262216 DOI: 10.1080/21688370.2023.2289830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
NAFLD is a condition that develops when the liver accumulates excess fat without alcohol consumption. This chronic liver ailment progresses along with insulin resistant and is typically not diagnosed until the patients have cirrhosis. Nuclear hormone receptor superfamily PPARs are essential for metabolism of fatty acids and glucose. In liver, lipid metabolism is regulated by nuclear receptors and PPARα, and PPARβ/δ encourages fatty acid β-oxidation. PPAR-γ, an energy-balanced receptor is a crucial regulator in NAFLD. The partial activation of PPAR-γ could lead to increased level of adiponectin and insulin sensitivity, thus improved NAFLD. Because of less side effects, natural compounds are emerged as potential therapeutic agents for NAFLD by PPARγ agonists. Although the results from preclinical studies are promising, further research is needed to determine the potential dosing and efficacy of mentioned compounds in human subjects. In this review, we summarize the effect of natural PPARγ agonist in the NAFLD.
Collapse
Affiliation(s)
- Swati Singh
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| | - Anit Kumar
- Department of Pharmacology, Divine College of Pharmacy, Bihar, India
| | - Suruchi Gupta
- School of Pharmacy, YBN University, Ranchi, Jharkhand, India
| | - Rohini Agrawal
- College of Pharmacy, JSS Academy of Technical Sciences, Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Jing PF, Chen J, Yu ED, Miao CY. Predictive value of preoperative routine examination for the prognosis of patients with pT2N0M0 or pT3N0M0 colorectal cancer. World J Gastrointest Oncol 2024; 16:2429-2438. [PMID: 38994158 PMCID: PMC11236233 DOI: 10.4251/wjgo.v16.i6.2429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND In recent years, the incidence of colorectal cancer (CRC) has been increasing. With the popularization of endoscopic technology, a number of early CRC has been diagnosed. However, despite current treatment methods, some patients with early CRC still experience postoperative recurrence and metastasis. AIM To search for indicators associated with early CRC recurrence and metastasis to identify high-risk populations. METHODS A total of 513 patients with pT2N0M0 or pT3N0M0 CRC were retrospectively enrolled in this study. Results of blood routine test, liver and kidney function tests and tumor markers were collected before surgery. Patients were followed up through disease-specific database and telephone interviews. Tumor recurrence, metastasis or death were used as the end point of study to find the risk factors and predictive value related to early CRC recurrence and metastasis. RESULTS We comprehensively compared the predictive value of preoperative blood routine, blood biochemistry and tumor markers for disease-free survival (DFS) and overall survival (OS) of CRC. Cox multivariate analysis demonstrated that low platelet count was significantly associated with poor DFS [hazard ratio (HR) = 0.995, 95% confidence interval (CI): 0.991-0.999, P = 0.015], while serum carcinoembryonic antigen (CEA) level (HR = 1.008, 95%CI: 1.001-1.016, P = 0.027) and serum total cholesterol level (HR = 1.538, 95%CI: 1.026-2.305, P = 0.037) were independent risk factors for OS. The cutoff value of serum CEA level for predicting OS was 2.74 ng/mL. Although the OS of CRC patients with serum CEA higher than the cutoff value was worse than those with lower CEA level, the difference between the two groups was not statistically significant (P = 0.075). CONCLUSION For patients with T2N0M0 or T3N0M0 CRC, preoperative platelet count was a protective factor for DFS, while serum CEA level was an independent risk factor for OS. Given that these measures are easier to detect and more acceptable to patients, they may have broader applications.
Collapse
Affiliation(s)
- Peng-Fei Jing
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Jin Chen
- Department of Endocrinology and Metabolism, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - En-Da Yu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| |
Collapse
|
7
|
Jing PF, Chen J, Yu ED, Miao CY. Predictive value of preoperative routine examination for the prognosis of patients with pT2N0M0 or pT3N0M0 colorectal cancer. World J Gastrointest Oncol 2024; 16:2417-2426. [DOI: 10.4251/wjgo.v16.i6.2417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND In recent years, the incidence of colorectal cancer (CRC) has been increasing. With the popularization of endoscopic technology, a number of early CRC has been diagnosed. However, despite current treatment methods, some patients with early CRC still experience postoperative recurrence and metastasis.
AIM To search for indicators associated with early CRC recurrence and metastasis to identify high-risk populations.
METHODS A total of 513 patients with pT2N0M0 or pT3N0M0 CRC were retrospectively enrolled in this study. Results of blood routine test, liver and kidney function tests and tumor markers were collected before surgery. Patients were followed up through disease-specific database and telephone interviews. Tumor recurrence, metastasis or death were used as the end point of study to find the risk factors and predictive value related to early CRC recurrence and metastasis.
RESULTS We comprehensively compared the predictive value of preoperative blood routine, blood biochemistry and tumor markers for disease-free survival (DFS) and overall survival (OS) of CRC. Cox multivariate analysis demonstrated that low platelet count was significantly associated with poor DFS [hazard ratio (HR) = 0.995, 95% confidence interval (CI): 0.991-0.999, P = 0.015], while serum carcinoembryonic antigen (CEA) level (HR = 1.008, 95%CI: 1.001-1.016, P = 0.027) and serum total cholesterol level (HR = 1.538, 95%CI: 1.026-2.305, P = 0.037) were independent risk factors for OS. The cutoff value of serum CEA level for predicting OS was 2.74 ng/mL. Although the OS of CRC patients with serum CEA higher than the cutoff value was worse than those with lower CEA level, the difference between the two groups was not statistically significant (P = 0.075).
CONCLUSION For patients with T2N0M0 or T3N0M0 CRC, preoperative platelet count was a protective factor for DFS, while serum CEA level was an independent risk factor for OS. Given that these measures are easier to detect and more acceptable to patients, they may have broader applications.
Collapse
Affiliation(s)
- Peng-Fei Jing
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Jin Chen
- Department of Endocrinology and Metabolism, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - En-Da Yu
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University/Naval Medical University, Shanghai 200433, China
| |
Collapse
|
8
|
Khan H, Rafi Z, Khan MY, Maarfi F, Rehman S, Kaur K, Ahmad MK, Shahab U, Ahmad N, Ahmad S. Epigenetic contributions to cancer: Exploring the role of glycation reactions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 387:143-193. [PMID: 39179346 DOI: 10.1016/bs.ircmb.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Advanced Glycation End-products (AGEs), with their prolonged half-life in the human body, are emerging as potent diagnostic indicators. Early intervention studies, focusing on AGE cross-link breakers, have shown encouraging results in heart failure patients, paving the way for disease progression monitoring and therapy effectiveness evaluation. AGEs are the byproducts of a non-enzymatic reaction where sugars interact with proteins, lipids, and nucleic acids. These compounds possess the power to alter numerous biological processes, ranging from disrupting molecular conformation and promoting cross-linking to modifying enzyme activity, reducing clearance, and impairing receptor recognition. The damage inflicted by AGEs through the stimulation of intracellular signaling pathways is associated with the onset of chronic diseases across various organ systems. This review consolidates the characteristics of AGEs and the challenges posed by their expression in diverse physiological and pathological states. Furthermore, it highlights the clinical relevance of AGEs and the latest research breakthroughs aimed at reducing AGE accumulation.
Collapse
Affiliation(s)
- Hamda Khan
- Department of Biochemistry, Faculty of Medicine, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, India
| | - Mohd Yasir Khan
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | - Farah Maarfi
- School of Applied & Life Sciences, Uttaranchal University, Dehradun, India
| | | | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | | | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, India
| | - Naved Ahmad
- Department of Computer Science and Information System, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia.
| |
Collapse
|
9
|
Abuduyimiti T, Goto H, Kimura K, Oshima Y, Tanida R, Kamoshita K, Leerach N, Abuduwaili H, Oo HK, Li Q, Galicia-Medina CM, Takayama H, Ishii KA, Nakano Y, Takeshita Y, Iba T, Naito H, Honda M, Harada K, Yamamoto Y, Takamura T. Diabetes Accelerates Steatohepatitis in Mice: Liver Pathology and Single-Cell Gene Expression Signatures. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:693-707. [PMID: 38309428 DOI: 10.1016/j.ajpath.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/27/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Glucose lowering independently reduces liver fibrosis in human nonalcoholic fatty liver disease. This study investigated the impact of diabetes on steatohepatitis and established a novel mouse model for diabetic steatohepatitis. Male C57BL/6J mice were fed a 60% high-fat diet (HFD) and injected with carbon tetrachloride (CCl4) and streptozotocin (STZ) to induce diabetes. The HFD+CCl4+STZ group showed more severe liver steatosis, hepatocyte ballooning, and regenerative nodules compared with other groups. Diabetes up-regulated inflammatory cytokine-associated genes and increased the M1/M2 macrophage ratios in the liver. Single-cell RNA sequencing analysis of nonparenchymal cells in the liver showed that diabetes reduced Kupffer cells and increased bone marrow-derived recruited inflammatory macrophages, such as Ly6Chi-RM. Diabetes globally reduced liver sinusoidal endothelial cells (LSECs). Furthermore, genes related to the receptor for advanced glycation end products (RAGE)/Toll-like receptor 4 (TLR4) were up-regulated in Ly6Chi-RM and LSECs in mice with diabetes, suggesting a possible role of RAGE/TLR4 signaling in the interaction between inflammatory macrophages and LSECs. This study established a novel diabetic steatohepatitis model using a combination of HFD, CCl4, and STZ. Diabetes exacerbated steatosis, hepatocyte ballooning, fibrosis, regenerative nodule formation, and the macrophage M1/M2 ratios triggered by HFD and CCl4. Single-cell RNA sequencing analysis indicated that diabetes activated inflammatory macrophages and impairs LSECs through the RAGE/TLR4 signaling pathway. These findings open avenues for discovering novel therapeutic targets for diabetic steatohepatitis.
Collapse
Affiliation(s)
- Tuerdiguli Abuduyimiti
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan; Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hisanori Goto
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan; Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kumi Kimura
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yu Oshima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Ryota Tanida
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kyoko Kamoshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Nontaphat Leerach
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Halimulati Abuduwaili
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hein Ko Oo
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Qifang Li
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Cynthia M Galicia-Medina
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hiroaki Takayama
- Life Sciences Division, Engineering and Technology Department, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kiyo-Aki Ishii
- Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yujiro Nakano
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yumie Takeshita
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tomohiro Iba
- Department of Vascular Molecular Physiology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Hisamichi Naito
- Department of Vascular Molecular Physiology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| |
Collapse
|
10
|
Deepu V, Rai V, Agrawal DK. Quantitative Assessment of Intracellular Effectors and Cellular Response in RAGE Activation. ARCHIVES OF INTERNAL MEDICINE RESEARCH 2024; 7:80-103. [PMID: 38784044 PMCID: PMC11113086 DOI: 10.26502/aimr.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The review delves into the methods for the quantitative assessment of intracellular effectors and cellular response of Receptor for Advanced Glycation End products (RAGE), a vital transmembrane receptor involved in a range of physiological and pathological processes. RAGE bind to Advanced Glycation End products (AGEs) and other ligands, which in turn activate diverse downstream signaling pathways that impact cellular responses such as inflammation, oxidative stress, and immune reactions. The review article discusses the intracellular signaling pathways activated by RAGE followed by differential activation of RAGE signaling across various diseases. This will ultimately guide researchers in developing targeted and effective interventions for diseases associated with RAGE activation. Further, we have discussed how PCR, western blotting, and microscopic examination of various molecules involved in downstream signaling can be leveraged to monitor, diagnose, and explore diseases involving proteins with unique post-translational modifications. This review article underscores the pressing need for advancements in molecular approaches for disease detection and management involving RAGE.
Collapse
Affiliation(s)
- Vinitha Deepu
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| |
Collapse
|
11
|
Karihtala P, Leivonen SK, Puistola U, Urpilainen E, Jääskeläinen A, Leppä S, Jukkola A. Serum protein profiling reveals an inflammation signature as a predictor of early breast cancer survival. Breast Cancer Res 2024; 26:61. [PMID: 38594742 PMCID: PMC11005292 DOI: 10.1186/s13058-024-01812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Breast cancers exhibit considerable heterogeneity in their biology, immunology, and prognosis. Currently, no validated, serum protein-based tools are available to evaluate the prognosis of patients with early breast cancer. METHODS The study population consisted of 521 early-stage breast cancer patients with a median follow-up of 8.9 years. Additionally, 61 patients with breast fibroadenoma or atypical ductal hyperplasia were included as controls. We used a proximity extension assay to measure the preoperative serum levels of 92 proteins associated with inflammatory and immune response processes. The invasive cancers were randomly split into discovery (n = 413) and validation (n = 108) cohorts for the statistical analyses. RESULTS Using LASSO regression, we identified a nine-protein signature (CCL8, CCL23, CCL28, CSCL10, S100A12, IL10, IL10RB, STAMPB2, and TNFβ) that predicted various survival endpoints more accurately than traditional prognostic factors. In the time-dependent analyses, the prognostic power of the model remained rather stable over time. We also developed and validated a 17-protein model with the potential to differentiate benign breast lesions from malignant lesions (Wilcoxon p < 2.2*10- 16; AUC 0.94). CONCLUSIONS Inflammation and immunity-related serum proteins have the potential to rise above the classical prognostic factors of early-stage breast cancer. They may also help to distinguish benign from malignant breast lesions.
Collapse
Affiliation(s)
- Peeter Karihtala
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, P.O. Box 180, Helsinki, FI-00029, Finland.
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | - Suvi-Katri Leivonen
- Applied Tumor Genomics, Research Programs Unit, Medical Faculty, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Ulla Puistola
- Department of Obstetrics and Gynecology, Medical Research Center, Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Elina Urpilainen
- Department of Obstetrics and Gynecology, Medical Research Center, Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, Wellbeing Services County of North Ostrobothnia, Oulu, Finland
| | - Anniina Jääskeläinen
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Sirpa Leppä
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, University of Helsinki, P.O. Box 180, Helsinki, FI-00029, Finland
- Applied Tumor Genomics, Research Programs Unit, Medical Faculty, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Arja Jukkola
- Department of Oncology, Tampere Cancer Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, Tampere, Finland
| |
Collapse
|
12
|
Blair I, Fan J, Gillespie K, Mesaros C. Ferroptosis and HMGB2 induced calreticulin translocation required for immunogenic cell death are controlled by the nuclear exporter XPO1. RESEARCH SQUARE 2024:rs.3.rs-4009459. [PMID: 38496553 PMCID: PMC10942558 DOI: 10.21203/rs.3.rs-4009459/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the nucleus into the extracellular milieu. We previously showed that cisplatin mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is responsible for translocation of CRT to the plasma membrane. CT-HMGB2 is three orders of magnitude more potent than oxaliplatin at inducing CRT translocation. Inhibition of HMGB1 and HMGB2 secretion and/or their activation of nuclear factor-kappa B (NF-kB) has potential utility for treating cardiovascular, and neurodegenerative diseases; whereas CT-HMGB2 could augment therapeutic approaches to cancer treatment.
Collapse
|
13
|
Blair I, Fan J, Gillespie K, Mesaros C. Ferroptosis and HMGB2 induced calreticulin translocation required for immunogenic cell death are controlled by the nuclear exporter XPO1. RESEARCH SQUARE 2024:rs.3.rs-4009459. [PMID: 38496553 PMCID: PMC10942558 DOI: 10.21203/rs.3.rs-4009459/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cisplatin and oxaliplatin cause the secretion of high mobility group box 1 (HMGB1) from cancer cells, which is necessary for initiation of immunogenic cell death (ICD). Calreticulin (CRT) translocation from the endoplasmic reticulum to the plasma membrane is also required; oxaliplatin induces this translocation but cisplatin does not. We have discovered that oxaliplatin causes the secretion of both HMGB1 and HMGB2 from the nucleus into the extracellular milieu. We previously showed that cisplatin mediated secretion of HMGB1 is controlled by the nuclear exporter XPO1 (chromosomal maintenance 1; CRM1). We now find that XPO1 regulates oxaliplatin mediated secretion of both HMGB1 and HMGB2. XPO1 inhibition causes nuclear accumulation of both proteins, inhibition of oxaliplatin-mediated ferroptosis of colon cancer cells, and inhibition of CRT translocation to the plasma membrane of lung and colon cancer cells. Incubation of cancer cells with cell targeted (CT)-HMGB2 confirmed that HMGB2 is responsible for translocation of CRT to the plasma membrane. CT-HMGB2 is three orders of magnitude more potent than oxaliplatin at inducing CRT translocation. Inhibition of HMGB1 and HMGB2 secretion and/or their activation of nuclear factor-kappa B (NF-kB) has potential utility for treating cardiovascular, and neurodegenerative diseases; whereas CT-HMGB2 could augment therapeutic approaches to cancer treatment.
Collapse
|
14
|
Uceda AB, Mariño L, Casasnovas R, Adrover M. An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys Rev 2024; 16:189-218. [PMID: 38737201 PMCID: PMC11078917 DOI: 10.1007/s12551-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/14/2024] Open
Abstract
The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic interventions against it.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Rodrigo Casasnovas
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Miquel Adrover
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| |
Collapse
|
15
|
Rojas A, Lindner C, Schneider I, Gonzalez I, Uribarri J. The RAGE Axis: A Relevant Inflammatory Hub in Human Diseases. Biomolecules 2024; 14:412. [PMID: 38672429 PMCID: PMC11048448 DOI: 10.3390/biom14040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
In 1992, a transcendental report suggested that the receptor of advanced glycation end-products (RAGE) functions as a cell surface receptor for a wide and diverse group of compounds, commonly referred to as advanced glycation end-products (AGEs), resulting from the non-enzymatic glycation of lipids and proteins in response to hyperglycemia. The interaction of these compounds with RAGE represents an essential element in triggering the cellular response to proteins or lipids that become glycated. Although initially demonstrated for diabetes complications, a growing body of evidence clearly supports RAGE's role in human diseases. Moreover, the recognizing capacities of this receptor have been extended to a plethora of structurally diverse ligands. As a result, it has been acknowledged as a pattern recognition receptor (PRR) and functionally categorized as the RAGE axis. The ligation to RAGE leads the initiation of a complex signaling cascade and thus triggering crucial cellular events in the pathophysiology of many human diseases. In the present review, we intend to summarize basic features of the RAGE axis biology as well as its contribution to some relevant human diseases such as metabolic diseases, neurodegenerative, cardiovascular, autoimmune, and chronic airways diseases, and cancer as a result of exposure to AGEs, as well as many other ligands.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Cristian Lindner
- Department of Radiology, Faculty of Medicine, University of Concepción, Concepción 4030000, Chile;
| | - Ivan Schneider
- Centre of Primary Attention, South Metropolitan Health Service, Santiago 3830000, Chile;
| | - Ileana Gonzalez
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca 34600000, Chile; (A.R.); (I.G.)
| | - Jaime Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| |
Collapse
|
16
|
Xin X, Liu H, Zhang S, Li P, Zhao X, Zhang X, Li S, Wu S, Zhao F, Tan J. S100A8/A9 promotes endometrial fibrosis via regulating RAGE/JAK2/STAT3 signaling pathway. Commun Biol 2024; 7:116. [PMID: 38253716 PMCID: PMC10803310 DOI: 10.1038/s42003-024-05814-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Intrauterine adhesion (IUA) is characterized by endometrial fibrosis. S100A8/A9 plays an important role in inflammation and fibroblast activation. However, the role of S100A8/A9 in IUA remains unclear. In this study, we collect normal and IUA endometrium to verify the expression of S100A8/A9. Human endometrial stromal cells (hEnSCs) are isolated to evaluate fibrosis progression after S100A8/A9 treatment. A porcine IUA model is established by electrocautery injury to confirm the therapeutic effect of menstrual blood-derived stromal cells (MenSCs) on IUA. Our study reveals increased S100A8/A9 expression in IUA endometrium. S100A8/A9 significantly enhances hEnSCs proliferation and upregulates fibrosis-related and inflammation-associated markers. Furthermore, S100A8/A9 induces hEnSCs fibrosis through the RAGE-JAK2-STAT3 pathway. Transplantation of MenSCs in a porcine IUA model notably enhances angiogenesis, mitigates endometrial fibrosis and downregulates S100A8/A9 expression. In summary, S100A8/A9 induces hEnSCs fibrosis via the RAGE-JAK2-STAT3 pathway, and MenSCs exhibit marked effects on endometrial restoration in the porcine IUA model.
Collapse
Affiliation(s)
- Xing Xin
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Hao Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Minimally Invasive Surgical Robot, Liaoning Province, Shenyang, China
| | - Siwen Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Pingping Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Xinyang Zhao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Xudong Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Shuyu Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China
| | - Fujie Zhao
- Obstetrics and Gynecology Department, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110022, Shenyang, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, 110022, Shenyang, China.
| |
Collapse
|
17
|
Lai SWT, Bhattacharya S, Lopez Gonzalez EDJ, Shuck SC. Methylglyoxal-Derived Nucleoside Adducts Drive Vascular Dysfunction in a RAGE-Dependent Manner. Antioxidants (Basel) 2024; 13:85. [PMID: 38247509 PMCID: PMC10812505 DOI: 10.3390/antiox13010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Diabetic kidney disease (DKD) is a leading cause of death in patients with diabetes. An early precursor to DKD is endothelial cell dysfunction (ECD), which often precedes and exacerbates vascular disease progression. We previously discovered that covalent adducts formed on DNA, RNA, and proteins by the reactive metabolic by-product methylglyoxal (MG) predict DKD risk in patients with type 1 diabetes up to 16 years pre-diagnosis. However, the mechanisms by which MG adducts contribute to vascular disease onset and progression remain unclear. Here, we report that the most predominant MG-induced nucleoside adducts, N2-(1-carboxyethyl)-deoxyguanosine (CEdG) and N2-(1-carboxyethyl)-guanosine (CEG), drive endothelial dysfunction. Following CEdG or CEG exposure, primary human umbilical vein endothelial cells (HUVECs) undergo endothelial dysfunction, resulting in enhanced monocyte adhesion, increased reactive oxygen species production, endothelial permeability, impaired endothelial homeostasis, and exhibit a dysfunctional transcriptomic signature. These effects were discovered to be mediated through the receptor for advanced glycation end products (RAGE), as an inhibitor for intracellular RAGE signaling diminished these dysfunctional phenotypes. Therefore, we found that not only are MG adducts biomarkers for DKD, but that they may also have a role as potential drivers of vascular disease onset and progression and a new therapeutic modality.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.W.T.L.); (E.D.J.L.G.)
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.W.T.L.); (E.D.J.L.G.)
| | - Sarah C. Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (S.W.T.L.); (E.D.J.L.G.)
| |
Collapse
|
18
|
Peterson LL, Ligibel JA. Dietary and serum advanced glycation end-products and clinical outcomes in breast cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:188995. [PMID: 37806640 DOI: 10.1016/j.bbcan.2023.188995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/31/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
One in five women with breast cancer will relapse despite ideal treatment. Body weight and physical activity are strongly associated with recurrence risk, thus lifestyle modification is an attractive strategy to improve prognosis. Trials of dietary modification in breast cancer are promising but the role of specific diets is unclear, as is whether high-quality diet without weight loss can impact prognosis. Advanced glycation end-products (AGEs) are compounds produced in the body during sugar metabolism. Exogenous AGEs, such as those found in food, combined with endogenous AGEs, make up the total body AGE load. AGEs deposit in tissues over time impacting cell signaling pathways and altering protein functions. AGEs can be measured or estimated in the diet and measured in blood through their metabolites. Studies demonstrate an association between AGEs and breast cancer risk and prognosis. Here, we review the clinical data on dietary and serum AGEs in breast cancer.
Collapse
Affiliation(s)
- Lindsay L Peterson
- Washington University School of Medicine, Division of Medical Oncology, Siteman Cancer Center, 660 S. Euclid Avenue, Campus Box 8056, St. Louis, MO 63110, United States of America.
| | - Jennifer A Ligibel
- Dana-Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
19
|
Dobrucki IT, Miskalis A, Nelappana M, Applegate C, Wozniak M, Czerwinski A, Kalinowski L, Dobrucki LW. Receptor for advanced glycation end-products: Biological significance and imaging applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1935. [PMID: 37926944 DOI: 10.1002/wnan.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The receptor for advanced glycation end-products (RAGE or AGER) is a transmembrane, immunoglobulin-like receptor that, due to its multiple isoform structures, binds to a diverse range of endo- and exogenous ligands. RAGE activation caused by the ligand binding initiates a cascade of complex pathways associated with producing free radicals, such as reactive nitric oxide and oxygen species, cell proliferation, and immunoinflammatory processes. The involvement of RAGE in the pathogenesis of disorders such as diabetes, inflammation, tumor progression, and endothelial dysfunction is dictated by the accumulation of advanced glycation end-products (AGEs) at pathologic states leading to sustained RAGE upregulation. The involvement of RAGE and its ligands in numerous pathologies and diseases makes RAGE an interesting target for therapy focused on the modulation of both RAGE expression or activation and the production or exogenous administration of AGEs. Despite the known role that the RAGE/AGE axis plays in multiple disease states, there remains an urgent need to develop noninvasive, molecular imaging approaches that can accurately quantify RAGE levels in vivo that will aid in the validation of RAGE and its ligands as biomarkers and therapeutic targets. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Iwona T Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Academy of Medical and Social Applied Sciences, Elblag, Poland
| | - Angelo Miskalis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Nelappana
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Catherine Applegate
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
| | - Marcin Wozniak
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| | - Andrzej Czerwinski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Leszek Kalinowski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
20
|
Alafaleq NO, Alruwaished GI, Khan MS, Al-Shouli ST, Mujamammi AH, Sabi EM, Sumaily KM, Almansour M, Alokail MS. Non-enzymatic glycation and aggregation of camel immunoglobulins induce breast cancer cell proliferation. J Mol Recognit 2023; 36:e3062. [PMID: 37849017 DOI: 10.1002/jmr.3062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Glycation of biomolecules results in the formation of advanced glycation end products (AGEs). Immunoglobulin G (IgG) has been implicated in the progression of various diseases, including diabetes and cancer. This study purified three IgG subclasses (IgG1, IgG2, and IgG3) from Camelus dromedarius colostrum using ammonium sulfate fractionation and chromatographic procedures. SDS-PAGE was performed to confirm the purity and molecular weight of the IgG subclasses. Several biochemical and biophysical techniques were employed to study the effect of glycation on camel IgG using methylglyoxal (MGO), a dicarbonyl sugar. Early glycation measurement showed an increase in the fructosamine content by ~four-fold in IgG2, ~two-fold in IgG3, and a slight rise in IgG1. AGEs were observed in all classes of IgGs with maximum hyperchromicity (96.6%) in IgG2. Furthermore, glycation-induced oxidation of IgGs led to an increase in carbonyl content and loss of -SH groups. Among subclass, IgG2 showed the highest (39.7%) increase in carbonyl content accompanied by 82.5% decrease in -SH groups. Far UV-CD analysis illustrated perturbation of β-sheet structure during glycation reaction with MGO. Moreover, glycation of IgG proceeds to various conformational states like aggregation and increased hydrophobicity. In addition, the cytotoxicity assay (MTT) illustrated the proliferation of breast cancer cells (MCF-7) with IgG2 treatment.
Collapse
Affiliation(s)
- Nouf O Alafaleq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ghaida I Alruwaished
- National Drug and Cosmetic Control Laboratory, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Samia T Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed H Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Essa M Sabi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Khalid M Sumaily
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Almansour
- Medical Education Department, College of Medicine & KSUMC, King Saud University, Riyadh, Saudi Arabia
| | - Majed S Alokail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Michailidou F. Engineering of Therapeutic and Detoxifying Enzymes. Angew Chem Int Ed Engl 2023; 62:e202308814. [PMID: 37433049 DOI: 10.1002/anie.202308814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Therapeutic enzymes present excellent opportunities for the treatment of human disease, modulation of metabolic pathways and system detoxification. However, current use of enzyme therapy in the clinic is limited as naturally occurring enzymes are seldom optimal for such applications and require substantial improvement by protein engineering. Engineering strategies such as design and directed evolution that have been successfully implemented for industrial biocatalysis can significantly advance the field of therapeutic enzymes, leading to biocatalysts with new-to-nature therapeutic activities, high selectivity, and suitability for medical applications. This minireview highlights case studies of how state-of-the-art and emerging methods in protein engineering are explored for the generation of therapeutic enzymes and discusses gaps and future opportunities in the field of enzyme therapy.
Collapse
Affiliation(s)
- Freideriki Michailidou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| |
Collapse
|
22
|
He J, Wei L, Tan S, Liang B, Liu J, Lu L, Wang T, Wang J, Huang Y, Chen Z, Li H, Zhang L, Zhou Z, Cao Y, Ye X, Yang Z, Xian S, Wang L. Macrophage RAGE deficiency prevents myocardial fibrosis by repressing autophagy-mediated macrophage alternative activation. FASEB J 2023; 37:e23259. [PMID: 37855749 DOI: 10.1096/fj.202300173rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/10/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
Myocardial fibrosis (MF) is the characteristic pathological feature of various cardiovascular diseases that lead to heart failure (HF) or even fatal outcomes. Alternatively, activated macrophages are involved in the development of fibrosis and tissue remodeling. Although the receptor for advanced glycation end products (RAGE) is involved in MF, its potential role in regulating macrophage function in cardiac fibrosis has not been fully investigated. We aimed to determine the role of macrophage RAGE in transverse aortic constriction (TAC)-induced MF. In this study, we found that RAGE expression was markedly increased in the infiltrated alternatively activated macrophages within mice hearts after TAC. RAGE knockout mice showed less infiltration of alternatively activated macrophages and attenuated cardiac hypertrophy and fibrosis compared to the wild-type mice. Our data suggest that mice with macrophage-specific genetic deletion of RAGE were protected from interstitial fibrosis and cardiac dysfunction when subjected to pressure overload, which led to a decreased proportion of alternatively activated macrophages in heart tissues. Our in vitro experiments demonstrated that RAGE deficiency inhibited the differentiation into alternatively activated macrophages by suppressing autophagy activation. In the co-culture system, in vitro polarization of RAW264.7 macrophages toward an alternatively activated phenotype stimulated the expression of α-smooth muscle actin and collagen in cardiac fibroblasts. However, the knockdown of RAGE and inhibition of autophagy in macrophages showed reduced fibroblast-to-myofibroblast transition (FMT). Collectively, our results suggest that RAGE plays an important role in the recruitment and activation of alternatively activated macrophages by regulating autophagy, which contributes to MF. Thus, blockage of RAGE signaling may be an attractive therapeutic target for the treatment of hypertensive heart disease.
Collapse
Affiliation(s)
- Jiaqi He
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Lan Wei
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Shengan Tan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Birong Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Jing Liu
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Lu Lu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Ting Wang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Yusheng Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Zixin Chen
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Huan Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Lu Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Zheng Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhong Cao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Xiaohan Ye
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqi Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Shaoxiang Xian
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| | - Lingjun Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
- Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou, China
- National Clinical Research Base of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Liao WL, Lin H, Li YH, Yang TY, Chen MC. RAGE potentiates EGFR signaling and interferes with the anticancer effect of gefitinib on NSCLC cells. Am J Physiol Cell Physiol 2023; 325:C1313-C1325. [PMID: 37746694 DOI: 10.1152/ajpcell.00494.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
The receptor for advanced glycation end-products (RAGE) has been implicated in tumorigenesis, whereas epidermal growth factor receptor (EGFR) signaling plays a vital role in lung cancer progression. Both RAGE and EGFR are transmembrane receptors that transmit intracellular signals through ligand binding, and their downstream signaling cascades show substantial overlap. However, the interplay between these two molecules remains poorly understood. In the present study, we evaluated the correlation between RAGE and EGFR in the tumorigenesis of non-small cell lung cancer (NSCLC) and evaluated the impact of RAGE on the response of NSCLC cells to gefitinib, an EGFR-tyrosine kinase inhibitor (TKI). The expression and activation of EGFR and the phosphorylation of its downstream molecules, signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (Erk), were increased in RAGE-overexpressed A549 (A549-RAGE) cells. Notably, ligand-triggered activation of EGFR signaling was significantly greater in A549-RAGE compared with A549-parental cells. In addition, gefitinib had less effect on the inhibition of EGFR signaling in A549-RAGE cells. These findings were validated in other NSCLC cell lines, H1299 and H1975. Furthermore, upon gefitinib administration, the antiapoptotic marker B-cell lymphoma 2 (Bcl-2) expression was upregulated in A549-RAGE cells, whereas the apoptotic markers Bcl-2 associated X protein (Bax) and Bcl-2 interacting mediator (Bim) remained at lower levels compared with A549-parental cells. Importantly, our findings provide evidence that RAGE interferes with the anticancer effect of gefitinib by modulating the activation of EGFR-STAT3 and EGFR-Erk pathways. Overall, these significant findings deepen our understanding of the intricate relationship between RAGE and EGFR signaling in NSCLC tumorigenesis and provide new considerations for the clinical treatment of NSCLC.NEW & NOTEWORTHY This study represents a pioneering endeavor in comprehending the intricate interplay between RAGE and EGFR signaling within NSCLC. The findings reveal that RAGE serves to enhance EGFR phosphorylation and activation, consequently modulating apoptosis regulators through the EGFR-STAT3 and EGFR-Erk1/2 signaling pathways. Through this mechanism, RAGE potentially imparts resistance to the toxicity induced by EGFR-TKIs in NSCLC cells.
Collapse
Affiliation(s)
- Wan-Ling Liao
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hsuan Li
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Ying Yang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Mei-Chih Chen
- Department of Medical Research, Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
24
|
Applegate CC, Nelappana MB, Nielsen EA, Kalinowski L, Dobrucki IT, Dobrucki LW. RAGE as a Novel Biomarker for Prostate Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:4889. [PMID: 37835583 PMCID: PMC10571903 DOI: 10.3390/cancers15194889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) has been implicated in driving prostate cancer (PCa) growth, aggression, and metastasis through the fueling of chronic inflammation in the tumor microenvironment. This systematic review and meta-analysis summarizes and analyzes the current clinical and preclinical data to provide insight into the relationships among RAGE levels and PCa, cancer grade, and molecular effects. A multi-database search was used to identify original clinical and preclinical research articles examining RAGE expression in PCa. After screening and review, nine clinical and six preclinical articles were included. The associations of RAGE differentiating benign prostate hyperplasia (BPH) or normal prostate from PCa and between tumor grades were estimated using odds ratios (ORs) and associated 95% confidence intervals (CI). Pooled estimates were calculated using random-effect models due to study heterogeneity. The clinical meta-analysis found that RAGE expression was highly likely to be increased in PCa when compared to BPH or normal prostate (OR: 11.3; 95% CI: 4.4-29.1) and that RAGE was overexpressed in high-grade PCa when compared to low-grade PCa (OR: 2.5; 95% CI: 1.8-3.4). In addition, meta-analysis estimates of preclinical studies performed by albatross plot generation found robustly positive associations among RAGE expression/activation and PCa growth and metastatic potential. This review demonstrates that RAGE expression is strongly tied to PCa progression and can serve as an effective diagnostic target to differentiate between healthy prostate, low-grade PCa, and high-grade PCa, with potential theragnostic applications.
Collapse
Affiliation(s)
- Catherine C. Applegate
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.C.A.)
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael B. Nelappana
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.C.A.)
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elaine A. Nielsen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.C.A.)
| | - Leszek Kalinowski
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-211 Gdansk, Poland
| | - Iwona T. Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.C.A.)
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61853, USA
| | - Lawrence W. Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (C.C.A.)
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61853, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
25
|
Palanissami G, Paul SF. AGEs and RAGE: metabolic and molecular signatures of the glycation-inflammation axis in malignant or metastatic cancers. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:812-849. [PMID: 37970208 PMCID: PMC10645465 DOI: 10.37349/etat.2023.00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/12/2023] [Indexed: 11/17/2023] Open
Abstract
From attributing mutations to cancers with the advent of cutting-edge genetic technology in recent decades, to re-searching the age-old theory of intrinsic metabolic shift of cancers (Warburg's glycolysis), the quest for a precise panacea for mainly the metastatic cancers, remains incessant. This review delineates the advanced glycation end product (AGE)-receptor for AGE (RAGE) pathway driven intricate oncogenic cues, budding from the metabolic (glycolytic) reliance of tumour cells, branching into metastatic emergence of malignancies. Strong AGE-RAGE concomitance in metastasis, chemo-resistance and cancer resurgence adversely incite disease progression and patient mortality. At the conjunction of metabolic and metastatic shift of cancers, are the "glycolytically" generated AGEs and AGE-activated RAGE, instigating aberrant molecular pathways, culminating in aggressive malignancies. AGEs as by-products of metabolic insurgence, modify the metabolome, epigenome and microbiome, besides coercing the inter-, intra- and extra-cellular micro-milieu conducive for oncogenic events like epithelial-mesenchymal transition (EMT). AGE-RAGE synergistically elicit ATP surge for surplus energy, autophagy for apoptotic evasion and chemo-resistance, insulin-like growth factor 1 (IGF-1) for meta-inflammation and angiogenesis, high mobility group box-1 (HMGB1) for immune tolerance, S100 proteins for metastasis, and p53 protein attenuation for tumour suppression. AGEs are pronouncedly reported in invasive forms of breast, prostate, colon and pancreatic cancers, higher in patients with cancer than healthy counterparts, and higher in advanced stage than localized phase. Hence, the investigation of person-specific presence of AGEs, soluble RAGE and AGE-activated RAGE can be advocated as impending bio-markers for diagnostic, prognostic and therapeutic purposes, to predict cancer risk in patients with diabetes, obesity, metabolic syndrome as well as general population, to monitor prognosis and metastasis in patients with cancer, and to reckon complications in cancer survivors. Furthermore, clinical reports of exogenous (dietary) and endogenous (internally formed) AGEs in cancer patients, and contemporary clinical trials involving AGE-RAGE axis in cancer are underlined with theranostic implications.
Collapse
Affiliation(s)
- Gowri Palanissami
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600 116, Tamil Nadu, India
| | - Solomon F.D. Paul
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600 116, Tamil Nadu, India
| |
Collapse
|
26
|
Zhang C, Yin D, Zhu X, Zhou W, Xu Z, Wu L, Gu W. Predictive value of ELWI combined with sRAGE/esRAGE levels in the prognosis of critically ill patients with acute respiratory distress syndrome. Sci Rep 2023; 13:15463. [PMID: 37726414 PMCID: PMC10509270 DOI: 10.1038/s41598-023-42798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/14/2023] [Indexed: 09/21/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition. Accurate judgement of the disease progression is essential for controlling the condition in ARDS patients. We investigated whether changes in the level of serum sRAGE/esRAGE could predict the 28-day mortality of ICU patients with ARDS. A total of 83 ARDS patients in the ICU of the Second Affiliated Hospital of Nantong University from January 2021 to June 2022 were consecutively enrolled in this study. Demographic data, primary diagnosis and comorbidities were obtained. Multiple scoring systems, real-time monitoring systems, and biological indicators were determined within 6 h of admission. The clinical parameters for survival status of the ARDS patients were identified by multivariate logistic regression. Receiver operating characteristic (ROC) curve analysis was employed to verify the accuracy of the prognosis of the related parameters. The admission level of sRAGE was significantly higher in the nonsurvival group than in the survival group (p < 0.05), whereas the serum esRAGE level showed the opposite trend. Multivariate logistic regression analysis showed that sRAGE (AUC 0.673, p < 0.05), esRAGE (AUC 0.704, p < 0.05), and ELWI (extravascular lung water index) (AUC 0.717, p < 0.05) were independent risk factors for the prognosis of ARDS. Model B (ELWI + esRAGE) could not be built as a valid linear regression model (ELWI, p = 0.079 > 0.05). Model C (esRAGE + sRAGE) was proven to have no significance because it had a predictive value similar to that of the serum levels of esRAGE (Z = 0.993, p = 0.351) or sRAGE (Z = 1.116, p = 0.265) alone. Subsequently, Model D (sRAGE + esRAGE + ELWI) showed the best 28-day mortality predictive value with a cut-off value of 0.426 (AUC 0.841; p < 0.001), and Model A (sRAGE + ELWI) had a cut-off value of 0.401 (AUC 0.820; p < 0.001), followed by sRAGE (AUC 0.704, p = 0.004), esRAGE (AUC 0.717, p = 0.002), and ELWI (AUC 0.637, p = 0.028). In addition, there was no statistically significant difference between Model A and Model D (Z = 0.966, p = 0.334). The admission level of sRAGE was higher in the nonsurvival group, while the serum esRAGE level showed the opposite trend. Model A and Model D could be used as reliable combined prediction models for predicting the 28-day mortality of ARDS patients.
Collapse
Affiliation(s)
- Chengliang Zhang
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nantong University, 6# North Road, Child Lane, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Dekun Yin
- Department of Anesthesiology, Funing People's Hospital of Jiangsu, Yancheng, 224400, Jiangsu Province, China
| | - Xi Zhu
- Grade 21, Clinical Medicine, Nantong University Medical School, Nantong, 226001, Jiangsu, China
| | - Wenshuo Zhou
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nantong University, 6# North Road, Child Lane, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Zhihua Xu
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nantong University, 6# North Road, Child Lane, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Liuping Wu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Weili Gu
- Department of Intensive Care Medicine, The Second Affiliated Hospital of Nantong University, 6# North Road, Child Lane, Chongchuan District, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
27
|
D’Arino A, Caputo S, Eibenschutz L, Piemonte P, Buccini P, Frascione P, Bellei B. Skin Cancer Microenvironment: What We Can Learn from Skin Aging? Int J Mol Sci 2023; 24:14043. [PMID: 37762344 PMCID: PMC10531546 DOI: 10.3390/ijms241814043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is a natural intrinsic process associated with the loss of fibrous tissue, a slower cell turnover, and a reduction in immune system competence. In the skin, the continuous exposition of environmental factors superimposes extrinsic damage, mainly due to ultraviolet radiation causing photoaging. Although not usually considered a pathogenic event, photoaging affects cutaneous biology, increasing the risk of skin carcinogenesis. At the cellular level, aging is typified by the rise of senescence cells a condition characterized by reduced or absent capacity to proliferate and aberrant hyper-secretory activity. Senescence has a double-edged sword in cancer biology given that senescence prevents the uncontrolled proliferation of damaged cells and favors their clearance by paracrine secretion. Nevertheless, the cumulative insults and the poor clearance of injured cells in the elderly increase cancer incidence. However, there are not conclusive data proving that aged skin represents a permissive milieu for tumor onset. On the other hand, tumor cells are capable of activating resident fibroblasts onto a pro-tumorigenic phenotype resembling those of senescent fibroblasts suggesting that aged fibroblasts might facilitate cancer progression. This review discusses changes that occur during aging that can prime neoplasm or increase the aggressiveness of melanoma and non-melanoma skin cancer.
Collapse
Affiliation(s)
- Andrea D’Arino
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Laura Eibenschutz
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Paolo Piemonte
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pierluigi Buccini
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pasquale Frascione
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| |
Collapse
|
28
|
Pujals M, Mayans C, Bellio C, Méndez O, Greco E, Fasani R, Alemany-Chavarria M, Zamora E, Padilla L, Mitjans F, Nuciforo P, Canals F, Nonell L, Abad M, Saura C, Tabernero J, Villanueva J. RAGE/SNAIL1 signaling drives epithelial-mesenchymal plasticity in metastatic triple-negative breast cancer. Oncogene 2023; 42:2610-2628. [PMID: 37468678 DOI: 10.1038/s41388-023-02778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Epithelial/Mesenchymal (E/M) plasticity plays a fundamental role both in embryogenesis and during tumorigenesis. The receptor for advanced glycation end products (RAGE) is a driver of cell plasticity in fibrotic diseases; however, its role and molecular mechanism in triple-negative breast cancer (TNBC) remains unclear. Here, we demonstrate that RAGE signaling maintains the mesenchymal phenotype of aggressive TNBC cells by enforcing the expression of SNAIL1. Besides, we uncover a crosstalk mechanism between the TGF-β and RAGE pathways that is required for the acquisition of mesenchymal traits in TNBC cells. Consistently, RAGE inhibition elicits epithelial features that block migration and invasion capacities. Next, since RAGE is a sensor of the tumor microenvironment, we modeled acute acidosis in TNBC cells and showed it promotes enhanced production of RAGE ligands and the activation of RAGE-dependent invasive properties. Furthermore, acute acidosis increases SNAIL1 levels and tumor cell invasion in a RAGE-dependent manner. Finally, we demonstrate that in vivo inhibition of RAGE reduces metastasis incidence and expands survival, consistent with molecular effects that support the relevance of RAGE signaling in E/M plasticity. These results uncover new molecular insights on the regulation of E/M phenotypes in cancer metastasis and provide rationale for pharmacological intervention of this signaling axis.
Collapse
Affiliation(s)
- Mireia Pujals
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carla Mayans
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Chiara Bellio
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Olga Méndez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Emanuela Greco
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roberta Fasani
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mercè Alemany-Chavarria
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Esther Zamora
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Laura Padilla
- LEITAT Technological Center, 08028, Barcelona, Spain
| | | | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francesc Canals
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Lara Nonell
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María Abad
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Altos Labs Cambridge Institute of Science, Cambridge, UK
| | - Cristina Saura
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Josep Tabernero
- Medical Oncology Service, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- IOB Institute of Oncology, Quiron Group (Quiron-IOB), Barcelona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Josep Villanueva
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
29
|
Katsi V, Papakonstantinou I, Tsioufis K. Atherosclerosis, Diabetes Mellitus, and Cancer: Common Epidemiology, Shared Mechanisms, and Future Management. Int J Mol Sci 2023; 24:11786. [PMID: 37511551 PMCID: PMC10381022 DOI: 10.3390/ijms241411786] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The involvement of cardiovascular disease in cancer onset and development represents a contemporary interest in basic science. It has been recognized, from the most recent research, that metabolic syndrome-related conditions, ranging from atherosclerosis to diabetes, elicit many pathways regulating lipid metabolism and lipid signaling that are also linked to the same framework of multiple potential mechanisms for inducing cancer. Otherwise, dyslipidemia and endothelial cell dysfunction in atherosclerosis may present common or even interdependent changes, similar to oncogenic molecules elevated in many forms of cancer. However, whether endothelial cell dysfunction in atherosclerotic disease provides signals that promote the pre-clinical onset and proliferation of malignant cells is an issue that requires further understanding, even though more questions are presented with every answer. Here, we highlight the molecular mechanisms that point to a causal link between lipid metabolism and glucose homeostasis in metabolic syndrome-related atherosclerotic disease with the development of cancer. The knowledge of these breakthrough mechanisms may pave the way for the application of new therapeutic targets and for implementing interventions in clinical practice.
Collapse
Affiliation(s)
- Vasiliki Katsi
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
| | | | - Konstantinos Tsioufis
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
30
|
Clarke DM, Curtis KL, Wendt RA, Stapley BM, Clark ET, Beckett N, Campbell KM, Arroyo JA, Reynolds PR. Decreased Expression of Pulmonary Homeobox NKX2.1 and Surfactant Protein C in Developing Lungs That Over-Express Receptors for Advanced Glycation End-Products (RAGE). J Dev Biol 2023; 11:33. [PMID: 37489334 PMCID: PMC10366714 DOI: 10.3390/jdb11030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors of the immunoglobin superfamily prominently expressed by lung epithelium. Previous experiments demonstrated that over-expression of RAGE by murine alveolar epithelium throughout embryonic development causes neonatal lethality coincident with significant lung hypoplasia. In the current study, we evaluated the expression of NKX2.1 (also referred to as TTF-1), a homeodomain-containing transcription factor critical for branching morphogenesis, in mice that differentially expressed RAGE. We also contextualized NKX2.1 expression with the abundance of FoxA2, a winged double helix DNA binding protein that influences respiratory epithelial cell differentiation and surfactant protein expression. Conditional RAGE over-expression was induced in mouse lung throughout gestation (embryonic day E0-18.5), as well as during the critical saccular period of development (E15.5-18.5), and analyses were conducted at E18.5. Histology revealed markedly less lung parenchyma beginning in the canalicular stage of lung development and continuing throughout the saccular period. We discovered consistently decreased expression of both NKX2.1 and FoxA2 in lungs from transgenic (TG) mice compared to littermate controls. We also observed diminished surfactant protein C in TG mice, suggesting possible hindered differentiation and/or proliferation of alveolar epithelial cells under the genetic control of these two critical transcription factors. These results demonstrate that RAGE must be specifically regulated during lung formation. Perturbation of epithelial cell differentiation culminating in respiratory distress and perinatal lethality may coincide with elevated RAGE expression in the lung parenchyma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paul R. Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
31
|
Garza-Campos A, Prieto-Correa JR, Domínguez-Rosales JA, Hernández-Nazará ZH. Implications of receptor for advanced glycation end products for progression from obesity to diabetes and from diabetes to cancer. World J Diabetes 2023; 14:977-994. [PMID: 37547586 PMCID: PMC10401444 DOI: 10.4239/wjd.v14.i7.977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 07/12/2023] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are chronic pathologies with a high incidence worldwide. They share some pathological mechanisms, including hyperinsulinemia, the production and release of hormones, and hyperglycemia. The above, over time, affects other systems of the human body by causing tissue hypoxia, low-grade inflammation, and oxidative stress, which lay the pathophysiological groundwork for cancer. The leading causes of death globally are T2DM and cancer. Other main alterations of this pathological triad include the accumulation of advanced glycation end products and the release of endogenous alarmins due to cell death (i.e., damage-associated molecular patterns) such as the intracellular proteins high-mobility group box protein 1 and protein S100 that bind to the receptor for advanced glycation products (RAGE) - a multiligand receptor involved in inflammatory and metabolic and neoplastic processes. This review analyzes the latest advanced reports on the role of RAGE in the development of obesity, T2DM, and cancer, with an aim to understand the intracellular signaling mechanisms linked with cancer initiation. This review also explores inflammation, oxidative stress, hypoxia, cellular senescence, RAGE ligands, tumor microenvironment changes, and the “cancer hallmarks” of the leading tumors associated with T2DM. The assimilation of this information could aid in the development of diagnostic and therapeutic approaches to lower the morbidity and mortality associated with these diseases.
Collapse
Affiliation(s)
- Andrea Garza-Campos
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Roberto Prieto-Correa
- Programa de Doctorado en Ciencias en Biología Molecular en Medicina, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Alfredo Domínguez-Rosales
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Zamira Helena Hernández-Nazará
- Departamento de Biología Molecular y Genómica, Instituto de Investigación en Enfermedades Crónico-Degenerativas, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
32
|
Talia M, Cirillo F, Spinelli A, Zicarelli A, Scordamaglia D, Muglia L, De Rosis S, Rigiracciolo DC, Filippelli G, Perrotta ID, Davoli M, De Rosa R, Macirella R, Brunelli E, Miglietta AM, Nardo B, Tosoni D, Pece S, De Francesco EM, Belfiore A, Maggiolini M, Lappano R. The Ephrin tyrosine kinase a3 (EphA3) is a novel mediator of RAGE-prompted motility of breast cancer cells. J Exp Clin Cancer Res 2023; 42:164. [PMID: 37434266 DOI: 10.1186/s13046-023-02747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The receptor for advanced glycation-end products (RAGE) and its ligands have been implicated in obesity and associated inflammatory processes as well as in metabolic alterations like diabetes. In addition, RAGE-mediated signaling has been reported to contribute to the metastatic progression of breast cancer (BC), although mechanistic insights are still required. Here, we provide novel findings regarding the transcriptomic landscape and the molecular events through which RAGE may prompt aggressive features in estrogen receptor (ER)-positive BC. METHODS MCF7 and T47D BC cells stably overexpressing human RAGE were used as a model system to evaluate important changes like cell protrusions, migration, invasion and colony formation both in vitro through scanning electron microscopy, clonogenic, migration and invasion assays and in vivo through zebrafish xenografts experiments. The whole transcriptome of RAGE-overexpressing BC cells was screened by high-throughput RNA sequencing. Thereafter, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses allowed the prediction of potential functions of differentially expressed genes (DEGs). Flow cytometry, real time-PCR, chromatin immunoprecipitation, immunofluorescence and western blot assays were performed to investigate the molecular network involved in the regulation of a novel RAGE target gene namely EphA3. The clinical significance of EphA3 was explored in the TCGA cohort of patients through the survivALL package, whereas the pro-migratory role of EphA3 signaling was ascertained in both BC cells and cancer-associated fibroblasts (CAFs). Statistical analysis was performed by t-tests. RESULTS RNA-seq findings and GSEA analysis revealed that RAGE overexpression leads to a motility-related gene signature in ER-positive BC cells. Accordingly, we found that RAGE-overexpressing BC cells exhibit long filopodia-like membrane protrusions as well as an enhanced dissemination potential, as determined by the diverse experimental assays. Mechanistically, we established for the first time that EphA3 signaling may act as a physical mediator of BC cells and CAFs motility through both homotypic and heterotypic interactions. CONCLUSIONS Our data demonstrate that RAGE up-regulation leads to migratory ability in ER-positive BC cells. Noteworthy, our findings suggest that EphA3 may be considered as a novel RAGE target gene facilitating BC invasion and scattering from the primary tumor mass. Overall, the current results may provide useful insights for more comprehensive therapeutic approaches in BC, particularly in obese and diabetic patients that are characterized by high RAGE levels.
Collapse
Affiliation(s)
- Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Asia Spinelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | | | | | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036, Rende, Italy
| | - Mariano Davoli
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036, Rende, Italy
| | - Rosanna De Rosa
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036, Rende, Italy
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036, Rende, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036, Rende, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, 87100, Cosenza, Italy
| | - Bruno Nardo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
- Breast and General Surgery Unit, Regional Hospital Cosenza, 87100, Cosenza, Italy
| | - Daniela Tosoni
- European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | - Salvatore Pece
- European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università Degli Studi Di Milano, 20142, Milan, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
33
|
Halstenbach T, Nelson K, Iglhaut G, Schilling O, Fretwurst T. Impact of peri-implantitis on the proteome biology of crevicular fluid: A pilot study. J Periodontol 2023; 94:835-847. [PMID: 36585920 DOI: 10.1002/jper.22-0461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/22/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND The proteome of the peri-implant crevicular fluid (PICF) has not been systematically investigated. The aim of the present study was to reveal the proteome biology of dental implants affected with peri-implantitis. METHODS Patients with at least one diseased implant were included (probing depth ≥6 mm, ≥3 mm peri-implant radiological bone loss). Using sterile paper strips, samples were collected from healthy implants (I), healthy teeth (T) and peri-implantitis affected implants (P). Proteome analysis was performed using liquid chromatography - tandem mass spectrometry (LC-MS/MS) and data independent acquisition, allowing the identification and quantification of human and bacterial proteins as well as semi-specific peptides. RESULTS A total of 38 samples from 14 patients were included in the study; 2332 different human proteins were identified across all samples. No differentially expressed proteins between T and I were found. Comparing P to I, 59 proteins were found upregulated and 31 downregulated in P with significance. Upregulated proteins included proinflammatory proteins such as immunoglobulins, dysferlin, and S100P, as well as antimicrobial proteins, for example, myeloperoxidase or azurocidin. Gene ontology analysis further revealed higher activity of immunological pathways. Proteolytic patterns indicated the activity of inflammatory proteins such as cathepsin G. A total of 334 bacterial proteins were identified and quantified. Peri-implantitis showed elevated proteolytic activity. CONCLUSION I and T share similarities in their proteome, while diseased implants deviate strongly from healthy conditions. The PICF proteome of peri-implantitis affected sites exhibits an inflammatory fingerprint, dominated by neutrophil activity when compared with healthy implants.
Collapse
Affiliation(s)
- Tim Halstenbach
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Katja Nelson
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Gerhard Iglhaut
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Tobias Fretwurst
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
34
|
Dai X, Hou Y, Deng T, Lin G, Cao Y, Yu G, Wei W, Zheng Q, Huang L, Ma S. A specific RAGE-binding peptide inhibits triple negative breast cancer growth through blocking of Erk1/2/NF-κB pathway. Eur J Pharmacol 2023; 954:175861. [PMID: 37380046 DOI: 10.1016/j.ejphar.2023.175861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/30/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive cancer that poses a significant threat to women's health. Unfortunately, the lack of clinical targets leads the poor clinical outcomes in TNBC. Many cancers demonstrate overexpression of receptor for advanced glycation end products (RAGE), which can contribute to cancer progression. Despite the potential therapeutic value of blocking RAGE for TNBC treatment, effective peptide drugs have yet to be developed. In our study, we observed that RAGE was highly expressed in TNBC and was associated with poor disease progression. We subsequently investigated the antitumor effects and underlying mechanisms of the RAGE antagonist peptide RP7 in both in vitro and in vivo models of TNBC. Our study revealed that RP7 selectively binds to RAGE-overexpressing TNBC cell lines, including MDA-MB-231 and BT549, and significantly inhibits cell viability, migration, and invasion in both cell lines. Furthermore, RP7-treatment suppressed tumor growth in TNBC xenograft mouse models without inducing detectable toxicity in normal tissues. Mechanistically, RP7 was found to inhibit the phosphorylation of ERK1/2, IKKα/β, IKBα, and p65 to block the NF-κB pathway, prevent the entry of p65 into the nucleus, decrease the protein expression of Bcl-2 and HMGB1, and promote the release of cytochrome C from the mitochondria into the cytoplasm. These effects were observed to activate apoptosis and inhibit epithelial-mesenchymal transition (EMT) in TNBC cells. This study highlights RAGE as a candidate therapeutic target for TNBC treatment and suggests that the RAGE antagonist peptide RP7 is a promising anticancer drug for TNBC.
Collapse
Affiliation(s)
- Xiaoyong Dai
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Yibo Hou
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Ting Deng
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Gaoyang Lin
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Yuanxiong Cao
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Guiyuan Yu
- Shenzhen Maternal and Child Health Hospital Affiliated to Southern Medical University, Shenzhen, Guangdong, China
| | - Wei Wei
- The Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Qing Zheng
- College of Pharmacy, Jinan University, 510632 Guangzhou, Guangdong, People's Republic of China
| | - Laiqiang Huang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Shenzhen Key Laboratory of Gene and Antibody Therapy, State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
35
|
Zhang I, Liu S, Zhang L, Liang R, Fang Q, Zhao J, Ren L, Medina E, Filippov A, Bonjoc KJ, Chaudhry A, Dayyani M, Bild A, Badie B. RAGE ablation attenuates glioma progression and enhances tumor immune responses by suppressing galectin-3 expression. Neuro Oncol 2023; 25:886-898. [PMID: 36394567 PMCID: PMC10158202 DOI: 10.1093/neuonc/noac250] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Malignant gliomas consist of heterogeneous cellular components that have adopted multiple overlapping escape mechanisms that overcome both targeted and immune-based therapies. The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily that is activated by diverse proinflammatory ligands present in the tumor microenvironment. Activation of RAGE by its ligands stimulates multiple signaling pathways that are important in tumor growth and invasion. However, treatment strategies that only target the interaction of RAGE with its ligands are ineffective as cancer therapies due to the abundance and diversity of exogenous RAGE ligands in gliomas. METHODS As an alternative approach to RAGE ligand inhibition, we evaluated the genetic ablation of RAGE on the tumorigenicity of 2 syngeneic murine glioma models. RAGE expression was inhibited in the GL261 and K-Luc gliomas by shRNA and CRSPR/Cas9 techniques prior to intracranial implantation. Tumor growth, invasion, and inflammatory responses were examined by histology, survival, Nanostring, and flow cytometry. RESULTS Intracellular RAGE ablation abrogated glioma growth and invasion by suppressing AKT and ERK1/2 activities and by downregulating MMP9 expression. Interestingly, RAGE inhibition in both glioma models enhanced tumor inflammatory responses by downregulating the expression of galectin-3 and potentiated immunotherapy responses to immune checkpoint blockade. CONCLUSIONS We demonstrated that intracellular RAGE ablation suppresses multiple cellular pathways that are important in glioma progression, invasion, and immune escape. These findings strongly support the development of RAGE ablation as a treatment strategy for malignant gliomas.
Collapse
Affiliation(s)
- Ian Y Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Shunan Liu
- Department of Pharmacology, The Pharmacy School of Jilin University, Changchun, Jilin Province, P.R. China
| | - Leying Zhang
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Rongrui Liang
- Department of Oncology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China
| | - Qingxiao Fang
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Zhao
- Tianjin Union Medicine Center, Tianjin, 300123, P.R. China
| | - Lyuzhi Ren
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Eric F Medina
- Graduate Education Progr-BRI, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Aleksandr Filippov
- Graduate Education Progr-BRI, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Kimberley-Jane Bonjoc
- Imaging Administration, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Ammar Chaudhry
- Diagnostic Radiology, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Mojtaba Dayyani
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Andrea H Bild
- Medical Oncology, City of Hope Beckman Research Institute, Duarte, California, USA
| | - Behnam Badie
- Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, California, USA
| |
Collapse
|
36
|
Asif M, Alvi SS, Azaz T, Khan AR, Tiwari B, Hafeez BB, Nasibullah M. Novel Functionalized Spiro [Indoline-3,5'-pyrroline]-2,2'dione Derivatives: Synthesis, Characterization, Drug-Likeness, ADME, and Anticancer Potential. Int J Mol Sci 2023; 24:ijms24087336. [PMID: 37108498 PMCID: PMC10139052 DOI: 10.3390/ijms24087336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A highly stereo-selective, one-pot, multicomponent method was chosen to synthesize the novel functionalized 1, 3-cycloaddition spirooxindoles (SOXs) (4a-4h). Synthesized SOXs were analyzed for their drug-likeness and ADME parameters and screened for their anticancer activity. Our molecular docking analysis revealed that among all derivatives of SOXs (4a-4h), 4a has a substantial binding affinity (∆G) -6.65, -6.55, -8.73, and -7.27 Kcal/mol with CD-44, EGFR, AKR1D1, and HER-2, respectively. A functional study demonstrated that SOX 4a has a substantial impact on human cancer cell phenotypes exhibiting abnormality in cytoplasmic and nuclear architecture as well as granule formation leading to cell death. SOX 4a treatment robustly induced reactive oxygen species (ROS) generation in cancer cells as observed by enhanced DCFH-DA signals. Overall, our results suggest that SOX (4a) targets CD-44, EGFR, AKR1D1, and HER-2 and induces ROS generation in cancer cells. We conclude that SOX (4a) could be explored as a potential chemotherapeutic molecule against various cancers in appropriate pre-clinical in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Mohd Asif
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sahir Sultan Alvi
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tazeen Azaz
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Bilal Bin Hafeez
- Department of Immunology and Microbiology, South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Malik Nasibullah
- Department of Chemistry, Integral University, Lucknow 226026, Uttar Pradesh, India
| |
Collapse
|
37
|
Asif M, Aqil F, Alasmary FA, almalki AS, Khan AR, Nasibullah M. Lewis base-catalyzed synthesis of highly functionalized spirooxindole-pyranopyrazoles and their in vitro anticancer studies. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
38
|
Asif M, Saquib M, Rahman Khan A, Aqil F, salem Almalki A, Ali Alasmary F, Singh J, Nasibullah M. Synthesis of Functionalized 2′,5‐Oxo‐spiro[furan‐2,3′‐indoline]‐3‐carboxylate Derivatives as Antiproliferative Agents: ADMET Studies, and Molecular Docking against P2Y12 Inhibitors. ChemistrySelect 2023. [DOI: 10.1002/slct.202204536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Mohd Asif
- Department of Chemistry Integral University Lucknow 226026, U.P. India
| | - Mohammad Saquib
- Department of Chemistry University of Allahabad Prayagraj (Allahabad) 211002 India
| | - Abdul Rahman Khan
- Department of Chemistry Integral University Lucknow 226026, U.P. India
| | - Farrukh Aqil
- UofL Health-Brown Cancer Center and Department of Medicine University of Louisville Louisville KY40202 USA
| | - Amani salem Almalki
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Fatmah Ali Alasmary
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Jaya Singh
- Department of Chemistry LRPG College Sahibabad Ghaziabad 201005 India
| | - Malik Nasibullah
- Department of Chemistry Integral University Lucknow 226026, U.P. India
| |
Collapse
|
39
|
Hu Q, Chen Y, Deng X, Li Y, Ma X, Zeng J, Zhao Y. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation. Biomed Pharmacother 2023; 159:114252. [PMID: 36641921 DOI: 10.1016/j.biopha.2023.114252] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most severe complications of diabetes. However, due to its complex pathological mechanisms, no effective therapeutic methods (other than ACEIs and ARBs) have been applied, which have been used for many years in clinical practice. Recent studies have shown that emerging therapeutics, including novel target-based pharmacotherapy, cell therapies, and dietary regulation, are leading to new hopes for DN management. This review aims to shed new light on the treatment of DN by describing the important pathological mechanisms of DN and by analysing recent advances in clinical treatment, including drug therapy, cell therapy, and dietary regulation. In pathological mechanisms, RAAS activation, AGE accumulation, and EMT are involved in inflammation, cellular stress, apoptosis, pyroptosis, and autophagy. In pharmacotherapy, several new therapeutics, including SGLT2 inhibitors, GLP-1 agonists, and MRAs, are receiving public attention. In addition, stem cell therapies and dietary regulation are also being emphasized. Herein, we highlight the importance of combining therapy and dietary regulation in the treatment of DN and anticipate more basic research or clinical trials to verify novel strategies.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of PLA General Hospital, Beijing 100039, China.
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yanling Zhao
- Department of Pharmacy, the Fifth Medical Center of PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
40
|
Coste K, Bruet S, Chollat-Namy C, Filhol O, Cochet C, Gallot D, Marceau G, Blanchon L, Sapin V, Belville C. Characterization of RAGE and CK2 Expressions in Human Fetal Membranes. Int J Mol Sci 2023; 24:ijms24044074. [PMID: 36835482 PMCID: PMC9966553 DOI: 10.3390/ijms24044074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
At the feto-maternal interface, fetal membranes (FM) play a crucial role throughout pregnancy. FM rupture at term implicates different sterile inflammation mechanisms including pathways activated by the transmembrane glycoprotein receptor for advanced glycation end-products (RAGE) belonging to the immunoglobulin superfamily. As the protein kinase CK2 is also implicated in the inflammation process, we aimed to characterize the expressions of RAGE and the protein kinase CK2 as a candidate regulator of RAGE expression. The amnion and choriodecidua were collected from FM explants and/or primary amniotic epithelial cells throughout pregnancy and at term in spontaneous labor (TIL) or term without labor (TNL). The mRNA and protein expressions of RAGE and the CK2α, CK2α', and CK2β subunits were investigated using reverse transcription quantitative polymerase chain reaction and Western blot assays. Their cellular localizations were determined with microscopic analyses, and the CK2 activity level was measured. RAGE and the CK2α, CK2α', and CK2β subunits were expressed in both FM layers throughout pregnancy. At term, RAGE was overexpressed in the amnion from the TNL samples, whereas the CK2 subunits were expressed at the same level in the different groups (amnion/choriodecidua/amniocytes, TIL/TNL), without modification of the CK2 activity level and immunolocalization. This work paves the way for future experiments regarding the regulation of RAGE expression by CK2 phosphorylation.
Collapse
Affiliation(s)
- Karen Coste
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Neonatal Intensive Care Department, F-63000 Clermont-Ferrand, France
| | - Shaam Bruet
- CHU Clermont-Ferrand, Neonatal Intensive Care Department, F-63000 Clermont-Ferrand, France
| | - Caroline Chollat-Namy
- CHU Clermont-Ferrand, Neonatal Intensive Care Department, F-63000 Clermont-Ferrand, France
| | - Odile Filhol
- INSERM, CEA, UMR Biosanté, U1292, University Grenoble Alpes, F-38000 Grenoble, France
| | - Claude Cochet
- INSERM, CEA, UMR Biosanté, U1292, University Grenoble Alpes, F-38000 Grenoble, France
| | - Denis Gallot
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Obstetrics and Gynecology Department, F-63000 Clermont-Ferrand, France
| | - Geoffroy Marceau
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Biochemistry and Molecular Genetic Department, F-63000 Clermont-Ferrand, France
| | - Loïc Blanchon
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Vincent Sapin
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Biochemistry and Molecular Genetic Department, F-63000 Clermont-Ferrand, France
| | - Corinne Belville
- iGReD, Team “Translational Approach to Epithelial Injury and Repair”, UMR6293 CNRS-U1103 INSERM, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-4-7317-8174
| |
Collapse
|
41
|
Rojas A, Lindner C, Schneider I, González I, Morales MA. Contributions of the receptor for advanced glycation end products axis activation in gastric cancer. World J Gastroenterol 2023; 29:997-1010. [PMID: 36844144 PMCID: PMC9950863 DOI: 10.3748/wjg.v29.i6.997] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
Compelling shreds of evidence derived from both clinical and experimental research have demonstrated the crucial contribution of receptor for advanced glycation end products (RAGE) axis activation in the development of neoplasms, including gastric cancer (GC). This new actor in tumor biology plays an important role in the onset of a crucial and long-lasting inflammatory milieu, not only by supporting phenotypic changes favoring growth and dissemination of tumor cells, but also by functioning as a pattern-recognition receptor in the inflammatory response to Helicobacter pylori infection. In the present review, we aim to highlight how the overexpression and activation of the RAGE axis contributes to the proliferation and survival of GC cells as and their acquisition of more invasive phenotypes that promote dissemination and metastasis. Finally, the contribution of some single nucleotide polymorphisms in the RAGE gene as susceptibility or poor prognosis factors is also discussed.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Cristian Lindner
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Iván Schneider
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Ileana González
- Biomedical Research Laboratories, Medicine Faculty, Catholic University of Maule, Talca 34600000, Chile
| | - Miguel Angel Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Chile
| |
Collapse
|
42
|
Kennon AM, Stewart JA. Paracrine Signals in Calcified Conditioned Media Elicited Differential Responses in Primary Aortic Vascular Smooth Muscle Cells and in Adventitial Fibroblasts. Int J Mol Sci 2023; 24:ijms24043599. [PMID: 36835011 PMCID: PMC9961433 DOI: 10.3390/ijms24043599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Our goal was to determine if paracrine signals from different aortic layers can impact other cell types in the diabetic microenvironment, specifically medial vascular smooth muscle cells (VSMCs) and adventitial fibroblasts (AFBs). The diabetic hyperglycemic aorta undergoes mineral dysregulation, causing cells to be more responsive to chemical messengers eliciting vascular calcification. Advanced glycation end-products (AGEs)/AGE receptors (RAGEs) signaling has been implicated in diabetes-mediated vascular calcification. To elucidate responses shared between cell types, pre-conditioned calcified media from diabetic and non-diabetic VSMCs and AFBs were collected to treat cultured murine diabetic, non-diabetic, diabetic RAGE knockout (RKO), and non-diabetic RKO VSMCs and AFBs. Calcium assays, western blots, and semi-quantitative cytokine/chemokine profile kits were used to determine signaling responses. VSMCs responded to non-diabetic more than diabetic AFB calcified pre-conditioned media. AFB calcification was not significantly altered when VSMC pre-conditioned media was used. No significant changes in VSMCs signaling markers due to treatments were reported; however, genotypic differences existed. Losses in AFB α-smooth muscle actin were observed with diabetic pre-conditioned VSMC media treatment. Superoxide dismutase-2 (SOD-2) increased with non-diabetic calcified + AGE pre-conditioned VSMC media, while same treatment decreased diabetic AFBs levels. Overall, non-diabetic and diabetic pre-conditioned media elicited different responses from VSMCs and AFBs.
Collapse
Affiliation(s)
- Amber M. Kennon
- Department of Investigational Cancer, Division of Cancer Medicine, U.T.M.D Anderson Cancer Center, Houston, TX 77030, USA
| | - James A. Stewart
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
- Correspondence: ; Tel.: +1-(662)-915-2309
| |
Collapse
|
43
|
de Almeida GRL, Szczepanik JC, Selhorst I, Cunha MP, Dafre AL. The expanding impact of methylglyoxal on behavior-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110635. [PMID: 36103947 DOI: 10.1016/j.pnpbp.2022.110635] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/17/2023]
Abstract
Methylglyoxal (MGO) is a reactive dicarbonyl compound formed as a byproduct of glycolysis. MGO is a major cell-permeant precursor of advanced glycation end products (AGEs), since it readily reacts with basic phospholipids and nucleotides, as well as amino acid residues of proteins, such as arginine, cysteine, and lysine. The AGEs production induced by MGO are widely associated with several pathologies, including neurodegenerative diseases. However, the impact of MGO metabolism and AGEs formation in the central nervous system (particularly in neurons, astrocytes and oligodendrocytes) on behavior and psychiatric diseases is not fully understood. Here, we briefly present background information on the biological activity of MGO in the central nervous system. It was gathered the available information on the role of MGO metabolism at the physiological processes, as well as at the neurobiology of psychiatry diseases, especially pain-related experiences, anxiety, depression, and cognition impairment-associated diseases. To clarify the role of MGO on behavior and associated diseases, we reviewed primarily the main findings at preclinical studies focusing on genetic and pharmacological approaches. Since monoamine neurotransmitter systems are implicated as pivotal targets on the pathophysiology and treatment of psychiatry and cognitive-related diseases, we also reviewed how MGO affects these neurotransmission systems and the implications of this phenomenon for nociception and pain; learning and cognition; and mood. In summary, this review highlights the pivotal role of glyoxalase 1 (Glo1) and MGO levels in modulating behavioral phenotypes, as well as related cellular and molecular signaling. Conclusively, this review signals dopamine as a new neurochemical MGO target, as well as highlights how MGO metabolism can modulate the pathophysiology and treatment of pain, psychiatric and cognitive-related diseases.
Collapse
Affiliation(s)
- Gudrian R L de Almeida
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Jozimar C Szczepanik
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Ingrid Selhorst
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Department of Basic Sciences of Life, Federal University of Juiz de Fora, 35010-177 Governador Valadares, MG, Brazil.
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
44
|
Wu Y, Zhang Y, Jiao J. The relationship between n-3 polyunsaturated fatty acids and telomere: A review on proposed nutritional treatment against metabolic syndrome and potential signaling pathways. Crit Rev Food Sci Nutr 2022; 64:4457-4476. [PMID: 36330807 DOI: 10.1080/10408398.2022.2142196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Metabolic syndrome (MetS), a cluster of metabolic abnormalities composed of central obesity, elevated blood pressure, glucose disturbances, hypercholesterolemia and dyslipidaemia, has increasingly become a public health problem in the 21st century worldwide. The dysfunction of telomeres, the repetitive DNA with highly conserved sequences (5'-TTAGGG-3'), is remarkably correlated with organismal aging, even suggesting a causal relationship with metabolic disorders. The health benefits of n-3 polyunsaturated fatty acids (PUFAs) in multiple disorders are associated with telomere length in evidence, which have recently drawn wide attention. However, functional targets and pathways for the associations of n-3 PUFAs and telomere with MetS remain scare. Few studies have summarized the role of n-3 PUFAs in DNA damage repair pathways, anti-inflammatory pathways, and redox balance, linking with telomere biology, and other potential telomere-related signaling pathways. This review aims to (i) elucidate how n-3 PUFAs ameliorate telomere attrition in the context of anti-oxidation and anti-inflammation; (ii) unravel the role of n-3 PUFAs in modulating telomere-related neuron dysfunction and regulating the neuro-endocrine-immunological network in MetS; (iii) epidemiologically implicate the associations of metabolic disorders and n-3 PUFAs with telomere length; and (iv) suggest promising biochemical approaches and advancing methodologies to overcome the inter-variation problem helpful for future research.
Collapse
Affiliation(s)
- Yuqi Wu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingjing Jiao
- Department of Nutrition, School of Public Health, Department of Clinical Nutrition, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
45
|
Samuel SM, Varghese E, Kubatka P, Büsselberg D. Tirzepatide-Friend or Foe in Diabetic Cancer Patients? Biomolecules 2022; 12:1580. [PMID: 36358930 PMCID: PMC9687454 DOI: 10.3390/biom12111580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 09/25/2023] Open
Abstract
It is a well-accepted fact that obesity and diabetes increase the risk of incidence of different cancers and their progression, leading to a decrease in the quality of life among affected cancer patients. In addition to decreasing the risk of cancers, maintaining a healthy body mass index (BMI)/body weight and/or blood glucose levels within the normal range critically impacts the response to anti-cancer therapy among affected individuals. A cancer patient managing their body weight and maintaining blood glucose control responds better to anti-cancer therapy than obese individuals and those whose blood glucose levels remain higher than normal during therapeutic intervention. In some cases, anti-diabetic/glucose-lowering drugs, some of which are also used to promote weight loss, were found to possess anti-cancer potential themselves and/or support anti-cancer therapy when used to treat such patients. On the other hand, certain glucose-lowering drugs promoted the cancer phenotype and risked cancer progression when used for treatment. Tirzepatide (TRZD), the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide/gastric inhibitory peptide (GIP) agonist, has recently gained interest as a promising injectable drug for the treatment of type 2 diabetes and was approved by the FDA after successful clinical trials (SURPASS 1/2/3/4 and 5, NCT03954834, NCT03987919, NCT03882970, NCT03730662, and NCT04039503). In addition, the reports from the SURMOUNT-1 clinical trial (NCT04184622) support the use of TRZD as an anti-obesity drug. In the current review article, we examine the possibility and molecular mechanisms of how TRZD intervention could benefit cancer therapeutics or increase the risk of cancer progression when used as an anti-diabetic drug in diabetic patients.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
46
|
Rojas A, Lindner C, Schneider I, Gonzàlez I, Morales MA. Receptor of advanced glycation end-products axis and gallbladder cancer: A forgotten connection that we should reconsider. World J Gastroenterol 2022; 28:5679-5690. [PMID: 36338887 PMCID: PMC9627425 DOI: 10.3748/wjg.v28.i39.5679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/05/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Compelling evidence derived from clinical and experimental research has demonstrated the crucial contribution of chronic inflammation in the development of neoplasms, including gallbladder cancer. In this regard, data derived from clinical and experimental studies have demonstrated that the receptor of advanced glycation end-products (RAGE)/AGEs axis plays an important role in the onset of a crucial and long-lasting inflammatory milieu, thus supporting tumor growth and development. AGEs are formed in biological systems or foods, and food-derived AGEs, also known as dietary AGEs are known to contribute to the systemic pool of AGEs. Once they bind to RAGE, the activation of multiple and crucial signaling pathways are triggered, thus favoring the secretion of several proinflammatory cytokines also involved in the promotion of gallbladder cancer invasion and migration. In the present review, we aimed to highlight the relevance of the association between high dietary AGEs intakes and high risk for gallbladder cancer, and emerging data supporting that dietary intervention to reduce gallbladder cancer risk is a very attractive approach that deserves much more research efforts.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Laboratories, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Cristian Lindner
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Iván Schneider
- Medicine Faculty, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Ileana Gonzàlez
- Biomedical Research Laboratories, Catholic University of Maule, Talca 34600000, Maule, Chile
| | - Miguel Angel Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago 8320000, Santiago, Chile
| |
Collapse
|
47
|
Vasudevan J, Jiang K, Fernandez J, Lim CT. Extracellular matrix mechanobiology in cancer cell migration. Acta Biomater 2022; 163:351-364. [PMID: 36243367 DOI: 10.1016/j.actbio.2022.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/11/2022] [Accepted: 10/06/2022] [Indexed: 11/01/2022]
Abstract
The extracellular matrix (ECM) is pivotal in modulating tumor progression. Besides chemically stimulating tumor cells, it also offers physical support that orchestrates the sequence of events in the metastatic cascade upon dynamically modulating cell mechanosensation. Understanding this translation between matrix biophysical cues and intracellular signaling has led to rapid growth in the interdisciplinary field of cancer mechanobiology in the last decade. Substantial efforts have been made to develop novel in vitro tumor mimicking platforms to visualize and quantify the mechanical forces within the tissue that dictate tumor cell invasion and metastatic growth. This review highlights recent findings on tumor matrix biophysical cues such as fibrillar arrangement, crosslinking density, confinement, rigidity, topography, and non-linear mechanics and their implications on tumor cell behavior. We also emphasize how perturbations in these cues alter cellular mechanisms of mechanotransduction, consequently enhancing malignancy. Finally, we elucidate engineering techniques to individually emulate the mechanical properties of tumors that could help serve as toolkits for developing and testing ECM-targeted therapeutics on novel bioengineered tumor platforms. STATEMENT OF SIGNIFICANCE: Disrupted ECM mechanics is a driving force for transitioning incipient cells to life-threatening malignant variants. Understanding these ECM changes can be crucial as they may aid in developing several efficacious drugs that not only focus on inducing cytotoxic effects but also target specific matrix mechanical cues that support and enhance tumor invasiveness. Designing and implementing an optimal tumor mimic can allow us to predictively map biophysical cue-modulated cell behaviors and facilitate the design of improved lab-grown tumor models with accurately controlled structural features. This review focuses on the abnormal changes within the ECM during tumorigenesis and its implications on tumor cell-matrix mechanoreciprocity. Additionally, it accentuates engineering approaches to produce ECM features of varying levels of complexity which is critical for improving the efficiency of current engineered tumor tissue models.
Collapse
|
48
|
Baldari S, Di Modugno F, Nisticò P, Toietta G. Strategies for Efficient Targeting of Tumor Collagen for Cancer Therapy. Cancers (Basel) 2022; 14:cancers14194706. [PMID: 36230627 PMCID: PMC9563908 DOI: 10.3390/cancers14194706] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The tumor microenvironment encompasses the cellular and extracellular matrix components that support and shape the three-dimensional framework in which solid tumors develop and grow. The extracellular matrix of the tumor is characterized by increased deposition and aberrant architecture of collagen fibers. Therefore, as a key mechanical component of the tumor microenvironment, collagen plays a critical role in cancer progression, metastasis, and therapeutic response. To boost the efficacy of current anticancer therapies, including immunotherapy, innovative approaches should take into account strategies directed against the dysregulated non-cancer cell stromal components. In the current review, we provide an overview of the principal approaches to target tumor collagen to provide therapeutic benefits. Abstract The tumor stroma, which comprises stromal cells and non-cellular elements, is a critical component of the tumor microenvironment (TME). The dynamic interactions between the tumor cells and the stroma may promote tumor progression and metastasis and dictate resistance to established cancer therapies. Therefore, novel antitumor approaches should combine anticancer and anti-stroma strategies targeting dysregulated tumor extracellular matrix (ECM). ECM remodeling is a hallmark of solid tumors, leading to extensive biochemical and biomechanical changes, affecting cell signaling and tumor tissue three-dimensional architecture. Increased deposition of fibrillar collagen is the most distinctive alteration of the tumor ECM. Consequently, several anticancer therapeutic strategies have been developed to reduce excessive tumor collagen deposition. Herein, we provide an overview of the current advances and challenges of the main approaches aiming at tumor collagen normalization, which include targeted anticancer drug delivery, promotion of degradation, modulation of structure and biosynthesis of collagen, and targeting cancer-associated fibroblasts, which are the major extracellular matrix producers.
Collapse
|
49
|
Santolla MF, Talia M, Cirillo F, Scordamaglia D, De Rosis S, Spinelli A, Miglietta AM, Nardo B, Filippelli G, De Francesco EM, Belfiore A, Lappano R, Maggiolini M. The AGEs/RAGE Transduction Signaling Prompts IL-8/CXCR1/2-Mediated Interaction between Cancer-Associated Fibroblasts (CAFs) and Breast Cancer Cells. Cells 2022; 11:2402. [PMID: 35954247 PMCID: PMC9368521 DOI: 10.3390/cells11152402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 01/27/2023] Open
Abstract
Advanced glycation end products (AGEs) and the cognate receptor, named RAGE, are involved in metabolic disorders characterized by hyperglycemia, type 2 diabetes mellitus (T2DM) and obesity. Moreover, the AGEs/RAGE transduction pathway prompts a dysfunctional interaction between breast cancer cells and tumor stroma toward the acquisition of malignant features. However, the action of the AGEs/RAGE axis in the main players of the tumor microenvironment, named breast cancer-associated fibroblasts (CAFs), remains to be fully explored. In the present study, by chemokine array, we first assessed that interleukin-8 (IL-8) is the most up-regulated pro-inflammatory chemokine upon AGEs/RAGE activation in primary CAFs, obtained from breast tumors. Thereafter, we ascertained that the AGEs/RAGE signaling promotes a network cascade in CAFs, leading to the c-Fos-dependent regulation of IL-8. Next, using a conditioned medium from AGEs-exposed CAFs, we determined that IL-8/CXCR1/2 paracrine activation induces the acquisition of migratory and invasive features in MDA-MB-231 breast cancer cells. Altogether, our data provide new insights on the involvement of IL-8 in the AGEs/RAGE transduction pathway among the intricate connections linking breast cancer cells to the surrounding stroma. Hence, our findings may pave the way for further investigations to define the role of IL-8 as useful target for the better management of breast cancer patients exhibiting metabolic disorders.
Collapse
Affiliation(s)
- Maria Francesca Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Asia Spinelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, 87100 Cosenza, Italy
| | - Bruno Nardo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Breast and General Surgery Unit, Regional Hospital Cosenza, 87100 Cosenza, Italy
| | | | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
50
|
Dong H, Zhang Y, Huang Y, Deng H. Pathophysiology of RAGE in inflammatory diseases. Front Immunol 2022; 13:931473. [PMID: 35967420 PMCID: PMC9373849 DOI: 10.3389/fimmu.2022.931473] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a non-specific multi-ligand pattern recognition receptor capable of binding to a range of structurally diverse ligands, expressed on a variety of cell types, and performing different functions. The ligand-RAGE axis can trigger a range of signaling events that are associated with diabetes and its complications, neurological disorders, cancer, inflammation and other diseases. Since RAGE is involved in the pathophysiological processes of many diseases, targeting RAGE may be an effective strategy to block RAGE signaling.
Collapse
|