1
|
Dong YF, Li YS, Liu H, Li L, Zheng JJ, Yang ZF, Sun YK, Du ZW, Xu DH, Li N, Jiang XC, Gao JQ. Precisely targeted drug delivery by mesenchymal stem cells-based biomimetic liposomes to cerebral ischemia-reperfusion injured hemisphere. J Control Release 2024; 371:484-497. [PMID: 38851537 DOI: 10.1016/j.jconrel.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
The precise and targeted delivery of therapeutic agents to the lesion sites remains a major challenge in treating brain diseases represented by ischemic stroke. Herein, we modified liposomes with mesenchymal stem cells (MSC) membrane to construct biomimetic liposomes, termed MSCsome. MSCsome (115.99 ± 4.03 nm) exhibited concentrated accumulation in the cerebral infarcted hemisphere of mice with cerebral ischemia-reperfusion injury, while showing uniform distribution in the two cerebral hemispheres of normal mice. Moreover, MSCsome exhibited high colocalization with damaged nerve cells in the infarcted hemisphere, highlighting its advantageous precise targeting capabilities over liposomes at both the tissue and cellular levels. Leveraging its superior targeting properties, MSCsome effectively delivered Dl-3-n-butylphthalide (NBP) to the injured hemisphere, making a single-dose (15 mg/kg) intravenous injection of NBP-encapsulated MSCsome facilitate the recovery of motor functions in model mice by improving the damaged microenvironment and suppressing neuroinflammation. This study underscores that the modification of the MSC membrane notably enhances the capacity of liposomes for precisely targeting the injured hemisphere, which is particularly crucial in treating cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yun-Fei Dong
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yao-Sheng Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Hui Liu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Lu Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Juan-Juan Zheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Ze-Feng Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Yuan-Kai Sun
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Zhi-Wei Du
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Dong-Hang Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Ni Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315041, PR China
| | - Xin-Chi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.
| | - Jian-Qing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China; Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| |
Collapse
|
2
|
Tack RWP, Amboni C, van Nuijs D, Pekna M, Vergouwen MDI, Rinkel GJE, Hol EM. Inflammation, Anti-inflammatory Interventions, and Post-stroke Cognitive Impairment: a Systematic Review and Meta-analysis of Human and Animal Studies. Transl Stroke Res 2023:10.1007/s12975-023-01218-5. [PMID: 38012509 DOI: 10.1007/s12975-023-01218-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
The pathophysiology and treatment of post-stroke cognitive impairment (PSCI) are not clear. Stroke triggers an inflammatory response, which might affect synapse function and cognitive status. We performed a systematic review and meta-analysis to assess whether patients with PSCI have increased levels of inflammatory markers and whether anti-inflammatory interventions in animals decrease PSCI. We systematically searched PubMed, EMBASE, and PsychInfo for studies on stroke. For human studies, we determined the standardized mean difference (SMD) on the association between PSCI and markers of inflammation. For animal studies, we determined the SMD of post-stroke cognitive outcome after an anti-inflammatory intervention. Interventions were grouped based on proposed mechanism of action. In patients, the SMD of inflammatory markers for those with versus those without PSCI was 0.46 (95% CI 0.18; 0.76; I2 = 92%), and the correlation coefficient between level of inflammation and cognitive scores was - 0.25 (95% CI - 0.34; - 0.16; I2 = 75%). In animals, the SMD of cognition for those treated with versus those without anti-inflammatory interventions was 1.43 (95% CI 1.12; 1.74; I2 = 83%). The largest effect sizes in treated animals were for complement inhibition (SMD = 1.94 (95% CI 1.50; 2.37), I2 = 51%) and fingolimod (SMD = 2.1 (95% CI 0.75; 3.47), I2 = 81%). Inflammation is increased in stroke survivors with cognitive impairment and is negatively correlated with cognitive functioning. Anti-inflammatory interventions seem to improve cognitive functioning in animals. Complement inhibition and fingolimod are promising therapies on reducing PSCI.
Collapse
Affiliation(s)
- Reinier W P Tack
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Claudia Amboni
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Danny van Nuijs
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Mervyn D I Vergouwen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Gabriel J E Rinkel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Nong J, Glassman PM, Myerson JW, Zuluaga-Ramirez V, Rodriguez-Garcia A, Mukalel A, Omo-Lamai S, Walsh LR, Zamora ME, Gong X, Wang Z, Bhamidipati K, Kiseleva RY, Villa CH, Greineder CF, Kasner SE, Weissman D, Mitchell MJ, Muro S, Persidsky Y, Brenner JS, Muzykantov VR, Marcos-Contreras OA. Targeted Nanocarriers Co-Opting Pulmonary Intravascular Leukocytes for Drug Delivery to the Injured Brain. ACS NANO 2023; 17:13121-13136. [PMID: 37432926 PMCID: PMC10373654 DOI: 10.1021/acsnano.2c08275] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.
Collapse
Affiliation(s)
- Jia Nong
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick M. Glassman
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Pharmaceutical Sciences, Temple University
School of Pharmacy, Philadelphia, Pennsylvania 19140, United States
| | - Jacob W. Myerson
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Viviana Zuluaga-Ramirez
- Department
of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Alba Rodriguez-Garcia
- Department
of Pathology and Laboratory Medicine, Ovarian Cancer Research Center,
Perelman School of Medicine, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center
for Cellular Immunotherapies, Abramson Cancer Center, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alvin Mukalel
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Serena Omo-Lamai
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Landis R. Walsh
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marco E. Zamora
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- School
of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Xijing Gong
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhicheng Wang
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kartik Bhamidipati
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Raisa Y. Kiseleva
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Carlos H. Villa
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Colin Fred Greineder
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Scott E. Kasner
- Department
of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Drew Weissman
- Division
of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael J. Mitchell
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Abramson
Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute
for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular
Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute
for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain
- Institute of Catalonia for Research and
Advanced Studies (ICREA), Barcelona, 08010, Spain
- Institute
for Bioscience and Biotechnology (IBBR), College Park, Maryland 20850, United States
| | - Yuri Persidsky
- Department
of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
- Center
for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Jacob Samuel Brenner
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Division
of Pulmonary Allergy, and Critical Care, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Vladimir R. Muzykantov
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Oscar A. Marcos-Contreras
- Department
of Systems Pharmacology and Translational Therapeutics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Li M, Wang S, Zhang C, Chi C, Liu R, Wang T, Fu F. Escin alleviates stress-induced intestinal dysfunction to protect brain injury by regulating the gut-brain axis in ischemic stroke rats. Int Immunopharmacol 2023; 115:109659. [PMID: 36608442 DOI: 10.1016/j.intimp.2022.109659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023]
Abstract
Hyperactivity of HPA axis results in intestinal dysfunction, which may play a role in brain injury caused by ischemic stroke (IS). Escin shows a neuroprotective effect but it may not penetrate blood brain barrier (BBB). Previous work in our laboratory showed that escin ameliorated intestinal injury in animals. The aim of this study is to investigate whether escin attenuates brain injury by improving intestinal dysfunction in middle cerebral artery occlusion (MCAO) rats, to mimic IS. MCAO rats and lipopolysaccharides (LPS)-induced Caco-2 cells were used to evaluate the effects of escin in vivo and in vitro. The results showed that escin could not penetrate BBB but reduced brain infarct volume, improved neurological function, inhibited neuroinflammation, ameliorated intestinal dysfunction and tissue integrity by increasing the expression of the tight junction protein in vivo and in vitro. Escin reduced the increased corticosterone and endotoxin level in blood of MCAO rats, regulated GR/p38 MAPK/NF-κB signaling pathway in ileal tissue and LPS/TLR4/NF-κB signaling pathway in ischemic brain tissue. These findings suggest that escin could attenuate ischemic brain injury by improving intestinal dysfunction, and it may be a promising way to protect brain injury by protecting intestine, instead of targeting the brain directly after IS.
Collapse
Affiliation(s)
- Min Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China; College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Shengguang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China
| | - Ce Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Chenglin Chi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, PR China.
| |
Collapse
|
5
|
Meng J, Zhang J, Fang J, Li M, Ding H, Zhang W, Chen C. Dynamic inflammatory changes of the neurovascular units after ischemic stroke. Brain Res Bull 2022; 190:140-151. [DOI: 10.1016/j.brainresbull.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
6
|
Thangameeran SIM, Pang CY, Lee CH, Tsai ST, Hu WF, Liew HK. Experimental animal models and evaluation techniques in intracerebral hemorrhage. Tzu Chi Med J 2022; 35:1-10. [PMID: 36866349 PMCID: PMC9972928 DOI: 10.4103/tcmj.tcmj_119_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 06/10/2022] [Indexed: 11/04/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most lethal type of cerebral stroke without effective therapy. Although clinical trials with various surgeries have been conducted, none have improved clinical outcomes compared to the current medical management for ICH. Several ICH animal models, including autologous blood injection, collagenase injection, thrombin injection, and microballoon inflation methods, have been developed to elucidate the underlying mechanisms of ICH-induced brain injury. These models could also be used for discovering new therapy for ICH preclinically. We summarize the existing ICH animal models and the evaluation parameters used to measure the disease outcomes. We conclude that these models, resembling the different aspects of ICH pathogenesis, have their advantages and disadvantages. None of the current models closely represent the severity of ICH seen in clinical settings. More appropriate models are needed to streamline ICH's clinical outcomes and be used for validating newly developed treatment protocols.
Collapse
Affiliation(s)
| | - Cheng-Yoong Pang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan,Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chien-Hui Lee
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sheng-Tzung Tsai
- Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Fen Hu
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan,PhD Program in Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan,Address for correspondence: Dr. Hock-Kean Liew, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 707, Section 3, Chung-Yang Road, Hualien, Taiwan. E-mail:
| |
Collapse
|
7
|
Wang J, Zhang J, Ye Y, Xu Q, Li Y, Feng S, Xiong X, Jian Z, Gu L. Peripheral Organ Injury After Stroke. Front Immunol 2022; 13:901209. [PMID: 35720359 PMCID: PMC9200619 DOI: 10.3389/fimmu.2022.901209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023] Open
Abstract
Stroke is a disease with high incidence, mortality and disability rates. It is also the main cause of adult disability in developed countries. Stroke is often caused by small emboli on the inner wall of the blood vessels supplying the brain, which can lead to arterial embolism, and can also be caused by cerebrovascular or thrombotic bleeding. With the exception of recombinant tissue plasminogen activator (rt-PA), which is a thrombolytic drug used to recanalize the occluded artery, most treatments have been demonstrated to be ineffective. Stroke can also induce peripheral organ damage. Most stroke patients have different degrees of injury to one or more organs, including the lung, heart, kidney, spleen, gastrointestinal tract and so on. In the acute phase of stroke, severe inflammation occurs in the brain, but there is strong immunosuppression in the peripheral organs, which greatly increases the risk of peripheral organ infection and aggravates organ damage. Nonneurological complications of stroke can affect treatment and prognosis, may cause serious short-term and long-term consequences and are associated with prolonged hospitalization and increased mortality. Many of these complications are preventable, and their adverse effects can be effectively mitigated by early detection and appropriate treatment with various medical measures. This article reviews the pathophysiological mechanism, clinical manifestations and treatment of peripheral organ injury after stroke.
Collapse
Affiliation(s)
- Jin Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiehua Zhang
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi Feng
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Bai P, Zhu R, Wang P, Jiang F, Zhen J, Yao Y, Zhao C, Liang Z, Wang M, Liu B, Li M, Li N, Yuan J. The efficacy and safety of fingolimod plus standardized treatment versus standardized treatment alone for acute ischemic stroke: A systematic review and meta-analysis. Pharmacol Res Perspect 2022; 10:e00972. [PMID: 35585652 PMCID: PMC9117458 DOI: 10.1002/prp2.972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022] Open
Abstract
Acute ischemic stroke (AIS) is the most common type of stroke. Fingolimod is a sphingosine analog that acts on sphingosine‐1‐phosphate receptors (S1PR). Recently, the safety and efficacy of fingolimod in both patients with intracerebral hemorrhage and patients with AIS have been investigated in proof‐of‐concept trials. In this review, we performed a meta‐analysis to evaluate the efficacy and safety of fingolimod for AIS. This study was conducted according to the PRISMA (Preferred Reporting Items for Systemic review and Meta‐Analysis) statement. We searched for publications on the PubMed, Embase, Cochrane Central Register of Controlled Trials, Clinical trials, CNKI, Wanfang Data, VIP, CBM up to August 2021. We compiled five studies; a main meta‐analysis forest plots were conducted for the values of the proportion of patients whose modified Rankin scale (MRS) score was 0–1 at day 90. There were heterogeneities in each study; the method of sensitivity analysis was performed. A sensitivity analysis was performed with a mean difference (MD) of the efficacy of fingolimod plus standardized treatment versus standardized treatment alone. Random effect model is used for meta‐analysis regardless of the I2 index. The analysis was carried out for categorical variables using the risk ratio (RR), LogRR, and its 95% CI. The methodological quality of each randomized controlled trial (RCTs) was assessed according to the Cochrane Collaboration tool to assess the risk of bias (ROB). A meta‐analysis of five studies with 228 participants was conducted. The risk ratio of patients whose MRS score was 0–1 at day 90 between fingolimod plus standardized treatment and standardized treatment alone was 2.59 (95%CI, 1.48–4.56). The Fingolimod plus standard treatment group decreased infarct growth and improved clinical function than the standard treatment.
Collapse
Affiliation(s)
- Peng Bai
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Runxiu Zhu
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Ping Wang
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Feng Jiang
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Jin Zhen
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Yuan Yao
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Chenhui Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zihong Liang
- Department of Psychiatry, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Meiling Wang
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Bin Liu
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Min Li
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Na Li
- Nursing Department, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| | - Jun Yuan
- Department of Neurology, Inner Mongolia People's Hospital No. 20 of Zhaowuda Road, Hohhot, 010017, Inner Mongolia, People's Republic of China
| |
Collapse
|
9
|
Mi L, Min X, Chai Y, Zhang J, Chen X. NLRP1 Inflammasomes: A Potential Target for the Treatment of Several Types of Brain Injury. Front Immunol 2022; 13:863774. [PMID: 35707533 PMCID: PMC9189285 DOI: 10.3389/fimmu.2022.863774] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
NOD-like receptor (NLR) family pyrin domain-containing 1 (NLRP1) is a member of the NLR family. The NLRP1 inflammasome consists of the NLRP1 protein, the adaptor protein apoptosis-associated speck-like protein containing a CARD domain, and the effector molecule pro-caspase-1. When stimulated, the inflammasome initiates the cleavage of pro-caspase-1 and converts it into its active form, caspase-1; then, caspase-1 facilitates the cleavage of the proinflammatory cytokines interleukin-1β and interleukin-18 into their active and secreted forms. In addition, caspase-1 also mediates the cleavage of gasdermin D, which leads to pyroptosis, an inflammatory form of cell death. Pathological events that damage the brain and result in neuropathological conditions can generally be described as brain injury. Neuroinflammation, especially that driven by NLRP1, plays a considerable role in the pathophysiology of brain injury, such as early brain injury (EBI) of subarachnoid hemorrhage, ischemic brain injury during stroke, and traumatic brain injury (TBI). In this article, a thorough overview of NLRP1 is presented, including its structure, mechanism of activation, and role in neuroinflammation. We also present recent studies on NLRP1 as a target for the treatment of EBI, ischemic brain injury, TBI, and other types of brain injury, thus highlighting the perspective of NLRP1 as an effective mediator of catastrophic brain injury.
Collapse
Affiliation(s)
- Liang Mi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xiaobin Min
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Baodi Clinical College, Tianjin Medical University, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
- *Correspondence: Xin Chen,
| |
Collapse
|
10
|
Yan W, Ren D, Feng X, Huang J, Wang D, Li T, Zhang D. Neuroprotective and Anti-Inflammatory Effect of Pterostilbene Against Cerebral Ischemia/Reperfusion Injury via Suppression of COX-2. Front Pharmacol 2021; 12:770329. [PMID: 34795593 PMCID: PMC8593399 DOI: 10.3389/fphar.2021.770329] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background: The incidence of cerebral ischemia disease leading cause of death in human population worldwide. Treatment of cerebral ischemia remains a clinical challenge for researchers and mechanisms of cerebral ischemia remain unknown. During the cerebral ischemia, inflammatory reaction and oxidative stress plays an important role. The current investigation scrutinized the neuroprotective and anti-inflammatory role of pterostilbene against cerebral ischemia in middle cerebral artery occlusion (MCAO) rodent model and explore the underlying mechanism. Methods: The rats were divided into following groups viz., normal, sham, MCAO and MCAO + pterostilbene (25 mg/kg) group, respectively. The groups received the oral administration of pterostilbene for 30 days followed by MCAO induction. The neurological score, brain water content, infarct volume and Evan blue leakage were estimated. Hepatic, renal, heart, inflammatory cytokines and inflammatory mediators were estimated. Results: Pterostilbene treatment significantly (p < 0.001) improved the body weight and suppressed the glucose level and brain weight. Pterostilbene significantly (p < 0.001) reduced the hepatic, renal and heart parameters. Pterostilbene significantly (p < 0.001) decreased the level of glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and decreased the level of malonaldehyde (MDA), 8-Hydroxy-2′-deoxyguanosine (8-OHdG). Pterostilbene significantly (p < 0.001) inflammatory cytokines and inflammatory parameters such as cyclooxygenase-2 (COX-2), inducible nitric oxidase synthase (iNOS) and prostaglandin (PGE2). Pterostilbene significantly (p < 0.001) down-regulated the level of metalloproteinases (MMP) such as MMP-2 and MMP-9. Pterostilbene suppressed the cellular swelling, cellular disintegration, macrophage infiltration, monocyte infiltration and polymorphonuclear leucocyte degranulation in the brain. Conclusion: In conclusion, Pterostilbene exhibited the neuroprotective effect against cerebral ischemia in rats via anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Dongqing Ren
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Xiaoxue Feng
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Jinwen Huang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Dabin Wang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Ting Li
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| | - Dong Zhang
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
11
|
Michalettos G, Walter HL, Antunes ARP, Wieloch T, Talhada D, Ruscher K. Effect of Anti-inflammatory Treatment with AMD3100 and CX 3CR1 Deficiency on GABA A Receptor Subunit and Expression of Glutamate Decarboxylase Isoforms After Stroke. Mol Neurobiol 2021; 58:5876-5889. [PMID: 34417725 PMCID: PMC8599239 DOI: 10.1007/s12035-021-02510-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022]
Abstract
Following stroke, attenuation of detrimental inflammatory pathways might be a promising strategy to improve long-term outcome. In particular, cascades driven by pro-inflammatory chemokines interact with neurotransmitter systems such as the GABAergic system. This crosstalk might be of relevance for mechanisms of neuronal plasticity, however, detailed studies are lacking. The purpose of this study was to determine if treatment with 1,1′-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] (AMD3100), an antagonist to the C-X-C chemokine receptor type 4 (CXCR4) and partial allosteric agonist to CXCR7 (AMD3100) alone or in combination with C-X3-C chemokine receptor type 1 (CX3CR1) deficiency, affect the expression of GABAA subunits and glutamate decarboxylase (GAD) isoforms. Heterozygous, CX3CR1-deficient mice and wild-type littermates were subjected to photothrombosis (PT). Treatment with AMD3100 (0.5 mg/kg twice daily i.p.) was administered starting from day 2 after induction of PT until day 14 after the insult. At this time point, GABAA receptor subunits (α3, β3, δ), GAD65 and GAD67, and CXCR4 were analyzed from the peri-infarct tissue and homotypic brain regions of the contralateral hemisphere by quantitative real-time PCR and Western Blot. Fourteen days after PT, CX3CR1 deficiency resulted in a significant decrease of the three GABAA receptor subunits in both the lesioned and the contralateral hemisphere compared to sham-operated mice. Treatment with AMD3100 promoted the down-regulation of GABAA subunits and GAD67 in the ipsilateral peri-infarct area, while the β3 subunit and the GAD isoforms were up-regulated in homotypic regions of the contralateral cortex. Changes in GABAA receptor subunits and GABA synthesis suggest that the CXCR4/7 and CX3CR1 signaling pathways are involved in the regulation of GABAergic neurotransmission in the post-ischemic brain.
Collapse
Affiliation(s)
- Georgios Michalettos
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Helene L Walter
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184, Lund, Sweden.,Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ana Rita Pombo Antunes
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Daniela Talhada
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184, Lund, Sweden
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184, Lund, Sweden. .,LUBIN Lab - Lunds Laboratorium För Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Lund, Sweden.
| |
Collapse
|
12
|
Acteoside isolated from Colebrookea oppositifolia attenuates I/R brain injury in Wistar rats via modulation of HIF-1α, NF-κB, and VEGF pathways. Inflammopharmacology 2021; 29:1565-1577. [PMID: 34365555 DOI: 10.1007/s10787-021-00851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
AIMS The objective of this study was to assess the anti-stroke activity of acteoside isolated from methanolic root extract of C. oppositifolia METHODS: Ischemia-reperfusion(I/R) brain injury was induced in Wistar rats to assess the anti-stroke activity of acteoside. Rats were pretreated with acteoside (10, 25 & 50 mg/kg, p.o.) before the induction of I/R injury. Parameters such as neurological, motor-cognitive functions were evaluated along with morphological (brain volume, infarct size), biochemical (SOD, Catalase, GSH, lipid peroxidation, TNF-α, IL-6, IL-10, ICAM-1, HIF-1α, VEGF, and NF-κB), histopathological, and gene expression studies (HIF-1α, VEGF) were performed to study the protective effect of acteoside against I/R induced brain injury. RESULTS I/R injury caused significant deterioration of neurological (p < 0.01), motor (p < 0.01) and cognitive (p < 0.01) functions, associated with increase in the brain volume (p < 0.01), and infarct size (p < 0.01); increase in the levels of MDA, TNF-α, IL-6, ICAM-1, HIF-1α, VEGF, and NF-κB along with significant decrease in SOD, catalase, GSH, and IL-10 (p < 0.01 for all parameters) compared to Sham control group. Histology of brain tissue of disease control group exhibited significant vascular changes, neutrophil infiltration, cerebral oedema, and necrosis of the neuronal cells. Further, the gene-expression studies showed significant increase in the HIF-1α (p < 0.01) and VEGF (p < 0.01) mRNA levels in the I/R control compared to Sham control. Interestingly, the acteoside (10, 25 & 50 mg/kg) has prevented the neurological, motor and cognitive dysfunctions, along with inhibiting the morphological, biochemical, histological and gene expression changes induced by I/R-injury (p < 0.05 for 10 mg; p < 0.01 for 25 & 50 mg/kg of acteoside for all the parameters). CONCLUSION These findings suggest that acteoside possess potent anti-stroke activity through modulation of HIF-1α, NF-κB, and VEGF pathway along with its potent antioxidant activity.
Collapse
|
13
|
Poon CL, Chen CY. Exploring the Impact of Cerebrovascular Disease and Major Depression on Non-diseased Human Tissue Transcriptomes. Front Genet 2021; 12:696836. [PMID: 34349785 PMCID: PMC8327210 DOI: 10.3389/fgene.2021.696836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background The development of complex diseases is contributed by the combination of multiple factors and complicated interactions between them. Inflammation has recently been associated with many complex diseases and may cause long-term damage to the human body. In this study, we examined whether two types of complex disease, cerebrovascular disease (CVD) or major depression (MD), systematically altered the transcriptomes of non-diseased human tissues and whether inflammation is linked to identifiable molecular signatures, using post-mortem samples from the Genotype-Tissue Expression (GTEx) project. Results Following a series of differential expression analyses, dozens to hundreds of differentially expressed genes (DEGs) were identified in multiple tissues between subjects with and without a history of CVD or MD. DEGs from these disease-associated tissues-the visceral adipose, tibial artery, caudate, and spinal cord for CVD; and the hypothalamus, putamen, and spinal cord for MD-were further analyzed for functional enrichment. Many pathways associated with immunological events were enriched in the upregulated DEGs of the CVD-associated tissues, as were the neurological and metabolic pathways in DEGs of the MD-associated tissues. Eight gene-tissue pairs were found to overlap with those prioritized by our transcriptome-wide association studies, indicating a potential genetic effect on gene expression for circulating cytokine phenotypes. Conclusion Cerebrovascular disease and major depression cause detectable changes in the gene expression of non-diseased tissues, suggesting that a possible long-term impact of diseases, lifestyles and environmental factors may together contribute to the appearance of "transcriptomic scars" on the human body. Furthermore, inflammation is probably one of the systemic and long-lasting effects of cerebrovascular events.
Collapse
Affiliation(s)
- Chi-Lam Poon
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, United States
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
14
|
Song YS, Lee SH, Jung JH, Song IH, Park HS, Moon BS, Kim SE, Lee BC. TSPO Expression Modulatory Effect of Acetylcholinesterase Inhibitor in the Ischemic Stroke Rat Model. Cells 2021; 10:cells10061350. [PMID: 34072449 PMCID: PMC8227181 DOI: 10.3390/cells10061350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
We performed in vivo PET imaging with 3-[18F]F-CP118,954 (1) for acetylcholinesterase (AChE) and [18F]fluoromethyl-PBR28-d2 (2) for translocator protein 18-kDa (TSPO) to investigate the inflammatory brain response after stroke. Imaging studies were performed in the middle cerebral artery occlusion (MCAO) Sprague-Dawley rat model for a period of three weeks. The percentage injected dose per tissue weight (%ID/g) of striatum of 1, and cortex of 2 were obtained, respectively. To trace the sequential inflammatory responses, AChE imaging of 1 was done on post-MCAO day 2, after giving cold PK-11195 for 1 day, and TSPO imaging of 2 was carried out on post-MCAO day 11, after giving donepezil for 10 days. AChE activity in the MCAO-lesioned side were significantly higher than that of the contralateral side on day one, and TSPO activity was highest on day 11. TSPO inhibitor, PK-11195 did not affect AChE activity on day two, while AChE inhibitor, donepezil significantly lowered TSPO binding on day 12. Our study demonstrates that AChE level is elevated in the early course of brain ischemia as a trigger for the inflammatory response, and TSPO level is elevated persistently throughout the post-ischemic injury in the brain. Also, the AChE inhibitor may be able to inhibit or delay neurotoxic inflammatory responses and serve as a beneficial treatment option.
Collapse
Affiliation(s)
- Yoo Sung Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (Y.S.S.); (S.H.L.); (J.H.J.); (I.H.S.); (H.S.P.)
| | - Sang Hee Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (Y.S.S.); (S.H.L.); (J.H.J.); (I.H.S.); (H.S.P.)
- Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
| | - Jae Ho Jung
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (Y.S.S.); (S.H.L.); (J.H.J.); (I.H.S.); (H.S.P.)
| | - In Ho Song
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (Y.S.S.); (S.H.L.); (J.H.J.); (I.H.S.); (H.S.P.)
| | - Hyun Soo Park
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (Y.S.S.); (S.H.L.); (J.H.J.); (I.H.S.); (H.S.P.)
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul 07804, Korea;
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (Y.S.S.); (S.H.L.); (J.H.J.); (I.H.S.); (H.S.P.)
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Korea
- Correspondence: (S.E.K.); (B.C.L.); Tel.: +82-31-787-7671 (S.E.K.); +82-31-787-2956 (B.C.L.)
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam 13620, Korea; (Y.S.S.); (S.H.L.); (J.H.J.); (I.H.S.); (H.S.P.)
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Korea
- Correspondence: (S.E.K.); (B.C.L.); Tel.: +82-31-787-7671 (S.E.K.); +82-31-787-2956 (B.C.L.)
| |
Collapse
|
15
|
Kuo TT, Wang V, Wu JS, Chen YH, Tseng KY. Post-stroke Delivery of Valproic Acid Promotes Functional Recovery and Differentially Modifies Responses of Peri-Infarct Microglia. Front Mol Neurosci 2021; 14:639145. [PMID: 34122007 PMCID: PMC8194695 DOI: 10.3389/fnmol.2021.639145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
The specific role of peri-infarct microglia and the timing of its morphological changes following ischemic stroke are not well understood. Valproic acid (VPA) can protect against ischemic damage and promote recovery. In this study, we first determined whether a single dose of VPA after stroke could decrease infarction area or improve functional recovery. Next, we investigated the number and morphological characteristic of peri-infarct microglia at different time points and elucidated the mechanism of microglial response by VPA treatment. Male Sprague-Dawley rats were subjected to distal middle cerebral artery occlusion (dMCAo) for 90 min, followed by reperfusion. Some received a single injection of VPA (200 mg/kg) 90 min after the induction of ischemia, while vehicle-treated animals underwent the same procedure with physiological saline. Infarction volume was calculated at 48 h after reperfusion, and neurological symptoms were evaluated. VPA didn’t significantly reduce infarct volume but did ameliorate neurological deficit at least partially compared with vehicle. Meanwhile, VPA reduced dMCAo-induced elevation of IL-6 at 24 h post-stroke and significantly decreased the number of CD11b-positive microglia within peri-infarct cortex at 7 days. Morphological analysis revealed that VPA therapy leads to higher fractal dimensions, smaller soma size and lower circularity index of CD11b-positive cells within peri-infarct cortex at both 2 and 7 days, suggesting that VPA has core effects on microglial morphology. The modulation of microglia morphology caused by VPA might involve HDAC inhibition-mediated suppression of galectin-3 production. Furthermore, qPCR analysis of CD11b-positive cells at 3 days post-stroke suggested that VPA could partially enhance M2 subset polarization of microglia in peri-infarct cortex. Analysis of VPA-induced changes to gene expressions at 3 days post-stroke implies that these alternations of the biomarkers and microglial responses are implicated in the upregulation of wound healing, collagen trimmer, and extracellular matrix genes within peri-infarct cortex. Our results are the first to show that a low dose of VPA promotes short-term functional recovery but does not alter infarct volume. The decreases in the expression of both IL-6 and galectin-3 might influence the morphological characteristics and transcriptional profiles of microglia and extracellular matrix remodeling, which could contribute to the improved recovery.
Collapse
Affiliation(s)
- Tung-Tai Kuo
- Department of Neurological Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Vicki Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jui-Sheng Wu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
16
|
Antoniazzi AM, Unda SR, Klyde DM, Miller R, Lam S, Fluss R, Altschul DJ. Sterile Leukocytosis Predicts Hemorrhagic Transformation in Arterial Ischemic Stroke: A National Inpatient Sample Study. Cureus 2021; 13:e14973. [PMID: 34123669 PMCID: PMC8192266 DOI: 10.7759/cureus.14973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Hemorrhage transformation (HT) is a known complication of arterial ischemic stroke (AIS). In addition, it is known that the increase of proinflammatory immune cells in the brain tissue after AIS predict worse outcomes. However, it is not clear whether inflammation due to preceding or post-stroke infections affect outcomes and moreover, if systemic inflammatory markers could be useful as a clinical prediction tool for HT post-stroke. Therefore, our objective was to assess the association between systemic pro-inflammatory profile in AIS patients with HT and in-hospital mortality that did not course with acute infections during hospitalization. METHODS This study was conducted using the 2016 and 2017 National Inpatient Sample (NIS) with International Classification of Diseases (ICD-10) codes. Multivariate logistic regression was used to examine the association between HT and in-hospital mortality with pro-inflammatory anomalies of white blood cells (WBCs) in AIS patients. Exclusion criteria comprised patients with under 18 years old, and with a diagnosis of gastrointestinal, urogenital, respiratory infection, bacteremia, viral infection, sepsis, or fever. RESULTS A total of 212,356 patients with AIS were included in the analysis. 422 (0.2%) patients had a HT and 10,230 (4.8%) patients died during hospitalization. The most common WBC pro-inflammatory marker was leukocytosis with 6.9% (n=29/422) of HT and 5.5% (n=560/10,230) of patients that died during hospitalization. After adjusting for socio-demographic, comorbidities and treatment factors, leukocytosis was found to be an independent risk factor for both outcomes, HT [OR = 1.5, 95% CI: 1-2.3, p=0.024] and, in-hospital mortality [OR = 1.5, 95% CI: 1.3-1.6, p < 0.001]. CONCLUSION Sterile leukocytosis is a potential clinical prediction tool to determine which patients are at higher risk of developing HT and die during hospitalization.
Collapse
Affiliation(s)
| | | | - Daniel M Klyde
- Neurological Surgery, Montefiore Medical Center, New York, USA
| | - Raphael Miller
- Neurological Surgery, Montefiore Medical Center, New York, USA
| | - Sharon Lam
- Neurological Surgery, Montefiore Medical Center, New York, USA
| | - Rose Fluss
- Neurological Surgery, Montefiore Medical Center, New York, USA
| | - David J Altschul
- Neurological Surgery, Albert Einstein College of Medicine, Bronx, USA
| |
Collapse
|
17
|
Du H, He Y, Pan Y, Zhao M, Li Z, Wang Y, Yang J, Wan H. Danhong Injection Attenuates Cerebral Ischemia-Reperfusion Injury in Rats Through the Suppression of the Neuroinflammation. Front Pharmacol 2021; 12:561237. [PMID: 33927611 PMCID: PMC8076794 DOI: 10.3389/fphar.2021.561237] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/12/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation is one of the major causes of damage of the central nervous system (CNS) and plays a vital role in the pathogenesis of cerebral ischemia, which can result in long-term disability and neuronal death. Danhong injection (DHI), a traditional Chinese medicine injection, has been applied to the clinical treatment of cerebral stoke for many years. In this study, we investigated the protective effects of DHI on cerebral ischemia-reperfusion injury (CIRI) in rats and explored its potential anti-neuroinflammatory properties. CIRI in adult male SD rats was induced by middle cerebral artery occlusion (MCAO) for 1 h and reperfusion for 24 h. Results showed that DHI (0.5, 1, and 2 ml/kg) dose-dependently improved the neurological deficits and alleviated cerebral infarct volume and histopathological damage of the cerebral cortex caused by CIRI. Moreover, DHI (0.5, 1, and 2 ml/kg) inhibited the mRNA expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), intercellular cell adhesion molecule-1 (ICAM-1), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) in ischemic brains, downregulated TNF-α, IL-1β, and monocyte chemotactic protein-1 (MCP-1) levels in serum, and reduced the neutrophil infiltration (myeloperoxidase, MPO) in ischemic brains, in a dose-dependent manner. Immunohistochemical staining results also revealed that DHI dose-dependently diminished the protein expressions of ICAM-1 and COX-2, and suppressed the activation of microglia (ionized calcium-binding adapter molecule 1, Iba-1) and astrocyte (glial fibrillary acidic protein, GFAP) in the cerebral cortex. Western blot analysis showed that DHI significantly downregulated the phosphorylation levels of the proteins in nuclear factor κB (NF-κB) and mitogen-activated protein kinas (MAPK) signaling pathways in ischemic brains. These results indicate that DHI exerts anti-neuroinflammatory effects against CIRI, which contribute to the amelioration of CNS damage.
Collapse
Affiliation(s)
- Haixia Du
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Mengdi Zhao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhiwei Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
Ko IG, Jin JJ, Hwang L, Kim SH, Kim CJ, Jeon JW, Chung JY, Han JH. Adenosine A2A receptor agonist polydeoxyribonucleotide ameliorates short-term memory impairment by suppressing cerebral ischemia-induced inflammation via MAPK pathway. PLoS One 2021; 16:e0248689. [PMID: 33735236 PMCID: PMC7971468 DOI: 10.1371/journal.pone.0248689] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebral ischemia causes tissue death owing to occlusion of the cerebral blood vessels, and cerebral ischemia activates mitogen-activated protein kinase (MAPK) and induces secretion of pro-inflammatory cytokines. Adenosine A2A receptor agonist, polydeoxyribonucleotide (PDRN), suppresses the secretion of pro-inflammatory cytokines and exhibits anti-inflammatory effect. In the current study, the therapeutic effect of PDRN on cerebral ischemia was evaluated using gerbils. For the induction of cerebral ischemia, the common carotid arteries were exposed, and then aneurysm clips were used to occlude the common carotid arteries bilaterally for 7 minutes. In the PDRN-treated groups, the gerbils were injected intraperitoneally with 0.3 mL of saline containing 8 mg/kg PDRN, per a day for 7 days following cerebral ischemia induction. In order to confirm the participation of the adenosine A2A receptor in the effects mediated by PDRN, 8 mg/kg 7-dimethyl-1-propargylxanthine (DMPX), adenosine A2A receptor antagonist, was treated with PDRN. In the current study, induction of ischemia enhanced the levels of pro-inflammatory cytokines and increased phosphorylation of MAPK signaling factors in the hippocampus and basolateral amygdala. However, treatment with PDRN ameliorated short-term memory impairment by suppressing the production of pro-inflammatory cytokines and inactivation of MAPK signaling factors in cerebral ischemia. Furthermore, PDRN treatment enhanced the concentration of cyclic adenosine-3,5'-monophosphate (cAMP) as well as phosphorylation of cAMP response element-binding protein (p-CREB). Co-treatment of DMPX and PDRN attenuated the therapeutic effect of PDRN on cerebral ischemia. Based on these findings, PDRN may be developed as the primary treatment in cerebral ischemia.
Collapse
Affiliation(s)
- Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jun-Jang Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Lakkyong Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sang-Hoon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jung Won Jeon
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jun-Young Chung
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jin Hee Han
- Department of Anesthesiology and Pain Medicine, Kyung Hee Medical Center, College of Medicine, Kyung Hee University, Seoul, Korea
- * E-mail:
| |
Collapse
|
19
|
Yuan S, Zhang T. Boeravinone B Protects Brain against Cerebral Ichemia Reperfusion Injury in Rats: Possible Role of Anti-inflammatory and Antioxidant. J Oleo Sci 2021; 70:927-936. [PMID: 34193669 DOI: 10.5650/jos.ess21037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is well known that inflammatory reactions and oxidative stress play a key role in the pathogenesis of cerebral ischemia and secondary injury. Boeravinone B (BB) proofed their anti-inflammatory and antioxidant effect, but their neuroprotective effects still unknown. In this experimental study, we explore the neuro-protective effect of Boeravinone B on the ischemia/reperfusion and explore the possible mechanism. Male Wistar rats were used for the current experimental study. First induces natural I/R injury in rats and treated with BB and nifedipine, respectively. Rats were subjected to ischemia after 6 consecutive days by occlusion of the bilateral common carotid arteries (BCCAO). Neurological score, biochemical, antioxidant, pro-inflammatory cytokines and inflammatory parameters were estimated in the serum and brain tissue. BB treatment significantly (p < 0.001) suppressed neuronal injury, dose-dependently decreased the cerebral water content. BB treatment altered the pro-inflammatory cytokines, antioxidant and inflammatory mediators in the serum and brain tissue. BB regulated the expression of glycine (Gly), glutamic acid (Glu), taurine (Tau), aspartic acid (Asp) and γ-aminobutyric acid (GABA) and enhanced the activity of Na+, K+ ATPase and Ca2+ ATPase. BB significantly (p < 0.001) reduced antioxidant enzymes such as glutathione (GSH), glutathione peroxidase (GPx), catalase (CAT), malondialdehyde (MDA), glutathione reductase (GR); inflammatory cytokines include interleukin-4 (IL-4), interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), interleukin-6 (IL-6) and interleukin-1β (IL-1β); inflammatory mediators include prostaglandin (PGE2), nuclear kappa factor B (NF-κB) and cyclooxygenase-2 (COX-2), respectively. In this study, we have found that Boeravinone B exhibited protection against cerebral I/R by reducing oxidative stress and inflammatory reaction.
Collapse
Affiliation(s)
- Shaojie Yuan
- Department of Neurology, Xingtai People's Hospital
| | - Tong Zhang
- Department of Neurology, Xingtai People's Hospital
| |
Collapse
|
20
|
Schweizer J, Bustamante A, Lapierre-Fétaud V, Faura J, Scherrer N, Azurmendi Gil L, Fluri F, Schütz V, Luft A, Boned S, Sanchez JC, Montaner J, Katan M. SAA (Serum Amyloid A): A Novel Predictor of Stroke-Associated Infections. Stroke 2020; 51:3523-3530. [PMID: 33161846 DOI: 10.1161/strokeaha.120.030064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND PURPOSE The aim of this study was to evaluate and independently validate SAA (serum amyloid A)-a recently discovered blood biomarker-to predict poststroke infections. METHODS The derivation cohort (A) was composed of 283 acute ischemic stroke patients and the independent validation cohort (B), of 367 patients. The primary outcome measure was any stroke-associated infection, defined by the criteria of the US Centers for Disease Control and Prevention, occurring during hospitalization. To determine the association of SAA levels on admission with the development of infections, logistic regression models were calculated. The discriminatory ability of SAA was assessed, by calculating the area under the receiver operating characteristic curve. RESULTS After adjusting for all predictors that were significantly associated with any infection in the univariate analysis, SAA remained an independent predictor in study A (adjusted odds ratio, 1.44 [95% CI, 1.16-1.79]; P=0.001) and in study B (adjusted odds ratio, 1.52 [1.05-2.22]; P=0.028). Adding SAA to the best regression model without the biomarker, the discriminatory accuracy improved from 0.76 (0.69-0.83) to 0.79 (0.72-0.86; P<0.001; likelihood ratio test) in study A. These results were externally validated in study B with an improvement in the area under the receiver operating characteristic curve, from 0.75 (0.70-0.81) to 0.76 (0.71-0.82; P<0.038). CONCLUSIONS Among patients with ischemic stroke, blood SAA measured on admission is a novel independent predictor of infection after stroke. SAA improved the discrimination between patients who developed an infection compared with those who did not in both derivation and validation cohorts. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT00390962.
Collapse
Affiliation(s)
- Juliane Schweizer
- Department of Neurology, University Hospital Zurich, Switzerland (J.S., N.S., V.S., A.L., M.K.)
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain (A.B., J.F., J.M.).,Department of Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain (A.B., S.B.)
| | - Vanessa Lapierre-Fétaud
- Translational Biomarker Group, Department of Human Protein Sciences, University of Geneva, Switzerland (V.L.-F., L.A., J.-C.S.)
| | - Júlia Faura
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain (A.B., J.F., J.M.)
| | | | - Leire Azurmendi Gil
- Translational Biomarker Group, Department of Human Protein Sciences, University of Geneva, Switzerland (V.L.-F., L.A., J.-C.S.)
| | - Felix Fluri
- Department of Neurology, University Hospital Wuerzburg, Germany (F.F.)
| | - Valerie Schütz
- Department of Neurology, University Hospital Zurich, Switzerland (J.S., N.S., V.S., A.L., M.K.)
| | - Andreas Luft
- Department of Neurology, University Hospital Zurich, Switzerland (J.S., N.S., V.S., A.L., M.K.)
| | - Sandra Boned
- Department of Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain (A.B., S.B.)
| | - Jean-Charles Sanchez
- Translational Biomarker Group, Department of Human Protein Sciences, University of Geneva, Switzerland (V.L.-F., L.A., J.-C.S.)
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain (A.B., J.F., J.M.)
| | - Mira Katan
- Department of Neurology, University Hospital Zurich, Switzerland (J.S., N.S., V.S., A.L., M.K.)
| |
Collapse
|
21
|
Yan W, Sun W, Fan J, Wang H, Han S, Li J, Yin Y. Sirt1-ROS-TRAF6 Signaling-Induced Pyroptosis Contributes to Early Injury in Ischemic Mice. Neurosci Bull 2020; 36:845-859. [PMID: 32253651 PMCID: PMC7410906 DOI: 10.1007/s12264-020-00489-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/04/2019] [Indexed: 01/01/2023] Open
Abstract
Stroke is an acute cerebro-vascular disease with high incidence and poor prognosis, most commonly ischemic in nature. In recent years, increasing attention has been paid to inflammatory reactions as symptoms of a stroke. However, the role of inflammation in stroke and its underlying mechanisms require exploration. In this study, we evaluated the inflammatory reactions induced by acute ischemia and found that pyroptosis occurred after acute ischemia both in vivo and in vitro, as determined by interleukin-1β, apoptosis-associated speck-like protein, and caspase-1. The early inflammation resulted in irreversible ischemic injury, indicating that it deserves thorough investigation. Meanwhile, acute ischemia decreased the Sirtuin 1 (Sirt1) protein levels, and increased the TRAF6 (TNF receptor associated factor 6) protein and reactive oxygen species (ROS) levels. In further exploration, both Sirt1 suppression and TRAF6 activation were found to contribute to this pyroptosis. Reduced Sirt1 levels were responsible for the production of ROS and increased TRAF6 protein levels after ischemic exposure. Moreover, N-acetyl-L-cysteine, an ROS scavenger, suppressed the TRAF6 accumulation induced by oxygen-glucose deprivation via suppression of ROS bursts. These phenomena indicate that Sirt1 is upstream of ROS, and ROS bursts result in increased TRAF6 levels. Further, the activation of Sirt1 during the period of ischemia reduced ischemia-induced injury after 72 h of reperfusion in mice with middle cerebral artery occlusion. In sum, these results indicate that pyroptosis-dependent machinery contributes to the neural injury during acute ischemia via the Sirt1-ROS-TRAF6 signaling pathway. We propose that inflammatory reactions occur soon after oxidative stress and are detrimental to neuronal survival; this provides a promising therapeutic target against ischemic injuries such as a stroke.
Collapse
Affiliation(s)
- Weijie Yan
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China
| | - Wei Sun
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jiahui Fan
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China
| | - Haiqing Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Song Han
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China
| | - Junfa Li
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China
| | - Yanling Yin
- Department of Neurobiology, Ministry of Education Key Laboratory for Neurodegenerative Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
22
|
TREM-1-targeting LP17 attenuates cerebral ischemia-induced neuronal injury by inhibiting oxidative stress and pyroptosis. Biochem Biophys Res Commun 2020; 529:554-561. [PMID: 32736673 DOI: 10.1016/j.bbrc.2020.05.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/20/2022]
Abstract
Stroke ranks as the second leading cause of disability and death globally. Trigger receptors expressed on myeloid cells (TREM) -1 are responsible for the activation of the innate immune response and also play a critical role in inflammation. In this study, we reported the contribution of TREM-1 after ischemic damage in a rat middle cerebral artery occlusion (MCAO) model. This study also demonstrated that TREM-1 expression was upregulated following cerebral infarction in rats. TREM-1 inhibition was determined using its selective inhibitor, LP17, which indicated a neuroprotective effect on cerebral infarction damage. The findings revealed that inhibition of TREM-1 by administering LP17 improved cerebral damage and decreased ischemic areas and brain water contents. Moreover, LP17 decreased MCAO-induced microglial activation and neurodegeneration, evidenced by a reduction in the expression of microglial Iba-1 and FJ-B positive cells, and reversed neuronal loss. Besides, the contribution of LP17 to ischemic neuronal damage may be associated with a decrease in the production of pro-inflammatory cytokines, and enhanced production of anti-inflammatory cytokine IL-10. Both in vivo and in vitro studies showed that inhibiting TREM-1 attenuated ROS accumulation, lipid per-oxidation (LPO) contents such as malondialdehyde (MDA) and enhanced the superoxide dismutase (SOD) activity after ischemia. Inhibiting TREM-1 alleviated inflammation and pyroptosis found in MCAO rats. This was achieved through the inhibition of the levels of NLRP3, caspase-1, ASC (an apoptosis-associated speck-like protein containing a CARD) and gasdermin D. These results confirmed that inhibiting TREM-1 protects against ischemia-induced neuronal damage and alleviates microglial mediated neuro-inflammation by reducing oxidative stress and pyroptosis. Therefore, blocking TREM-1 expression provides an effective intervention for improving ischemic stroke.
Collapse
|
23
|
Non-coding RNAs in Ischemic Stroke: Roles in the Neuroinflammation and Cell Death. Neurotox Res 2020; 38:564-578. [DOI: 10.1007/s12640-020-00236-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/10/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022]
|
24
|
Li S, Lu Y, Ding D, Ma Z, Xing X, Hua X, Xu J. Fibroblast growth factor 2 contributes to the effect of salidroside on dendritic and synaptic plasticity after cerebral ischemia/reperfusion injury. Aging (Albany NY) 2020; 12:10951-10968. [PMID: 32518214 PMCID: PMC7346066 DOI: 10.18632/aging.103308] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
Ischemic stroke, a serious neurological disease, is associated with cell death, axonal and dendritic plasticity, and other activities. Anti-inflammatory, anti-apoptotic, promote dendritic and synaptic plasticity are critical therapeutic targets after ischemic stroke. Fibroblast growth factor-2 (FGF2), which is involved in the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/CAMP response element (CRE)-binding protein (CREB) pathway, has been shown to facilitate dendritic and synaptic plasticity. Salidroside (Sal) has been reported to have anti-inflammatory, anti-oxidative, and anti-apoptotic effects; however, the underlying mechanisms of Sal in promoting dendritic and synaptic plasticity remain unclear. Here, the anti-inflammatory, anti-apoptotic, dendritic and synaptic plasticity effects of Sal were investigated in vitro in PC12 cells under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions and in vivo in rats with middle cerebral artery occlusion/reperfusion (MCAO/R). We investigated the role of Sal in promoting dendritic and synaptic plasticity in the ischemic penumbra and whether the FGF2-mediated cAMP/PKA/CREB pathway was involved in this process. The present study demonstrated that Sal could significantly inhibit inflammation and apoptosis, and promote dendritic and synaptic plasticity. Overall, our study suggests that Sal is an effective treatment for ischemic stroke that functions via the FGF2-mediated cAMP/PKA/CREB pathway to promote dendritic and synaptic plasticity.
Collapse
Affiliation(s)
- Sisi Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Yechen Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Daofang Ding
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Zhenzhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Xiangxin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Xuyun Hua
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China.,Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China.,Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| |
Collapse
|
25
|
Kwon HS, Lee EH, Park HH, Jin JH, Choi H, Lee KY, Lee YJ, Lee JH, de Oliveira FMS, Kim HY, Seo Kim Y, Kim BJ, Heo SH, Chang DI, Kamali-Moghaddam M, Koh SH. Early increment of soluble triggering receptor expressed on myeloid cells 2 in plasma might be a predictor of poor outcome after ischemic stroke. J Clin Neurosci 2020; 73:215-218. [PMID: 32067825 DOI: 10.1016/j.jocn.2020.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/08/2020] [Indexed: 01/02/2023]
Abstract
Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) is derived from cleavage of TREM2, which is expressed on the cell surface of microlgia and other tissue-specific macrophages. In the present study, the changes in the sTREM2 levels after ischemic stroke (IS) and their association with clinical outcomes were evaluated. A total of 43 patients diagnosed with non-cardioembolic IS between June 2011 and May 2014 were consecutively included in this study. Patients treated with intravenous thrombolysis or intra-arterial thrombectomy were excluded. Plasma samples were collected three times (days 1, 7, and 90) after ictus. The sTREM2 level was measured in the samples using the highly sensitive solid-phase proximity ligation assay (SP-PLA). Among the 43 subjects, higher initial NIH stroke scale (NIHSS) score (P = 0.005), early increment of sTREM2 (P < 0.001), and late decrement of sTREM2 (P = 0.002), were more common in patients with poor outcome. Based on multivariate analysis, initial NIHSS score (P = 0.015) and early increment of sTREM2 (P = 0.032) were independently associated with poor outcome. The results from the present study indicate that increment of sTREM2 level at the early phase was a predictor of poor outcome. Serial follow-up of sTREM2 may aid prognosis after stroke.
Collapse
Affiliation(s)
- Hyuk Sung Kwon
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Eun-Hye Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Hwa Jin
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hojin Choi
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Hyun Young Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Young Seo Kim
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Bum Joon Kim
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Sung Hyuk Heo
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Dae-Il Chang
- Department of Neurology, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Predictors of malignant cerebral edema in cerebral artery infarction: A meta-analysis. J Neurol Sci 2020; 409:116607. [DOI: 10.1016/j.jns.2019.116607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 12/29/2022]
|
27
|
Li J, Gu Z, Liu Y, Wang Y, Zhao M. Astilbin attenuates cerebral ischemia/reperfusion injury by inhibiting the TLR4/MyD88/NF-κB pathway. Toxicol Res (Camb) 2019; 8:1002-1008. [PMID: 34055311 PMCID: PMC8142934 DOI: 10.1039/c9tx00222g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is the second most common cause of death worldwide and cerebral ischemia/reperfusion (I/R) injury also leads to serious tissue damage. Astilbin, a natural bioactive flavonoid compound, has been reported to have protective effects on neurological diseases. This study aims to investigate the effects of astilbin on cerebral I/R injury and determine the mechanisms involved. The results demonstrated that, in cerebral I/R rats, astilbin could attenuate I/R injury in the hippocampal region, decreasing the activity of lactate dehydrogenase (LDH) and malondialdehyde (MDA) in the rat brain. Astilbin also inhibited the I/R-induced upregulation of pro-inflammatory mediators (TNFα, IL-1β, IL-6). Similarly, in hypoxia/reperfusion (H/R) treated human neuroblastoma cells, astilbin could increase the cell viability of SH-SY5Y, decrease the activity of LDH and MDA, and inhibit the H/R-induced upregulation of pro-inflammatory mediators. For the mechanism study, western blot results indicated that astilbin could inhibit the expression of Toll-like receptor 4 (TLR4), myeloid differential protein 88 (MYD88) and phosphorylated NF-κB p65 in H/R treated SH-SY5Y cells. The research indicated that astilbin ameliorated cerebral I/R injury partly via the TLR4/MyD88/NF-κB pathway. Astilbin may have potential therapeutic effects on cerebral ischemia.
Collapse
Affiliation(s)
- Jing Li
- Changchun University of Chinese Medicine , Changchun City , Jilin Province 130000 , China . ; Tel: +86-0431-81953783
| | - Zhaowei Gu
- Changchun University of Chinese Medicine , Changchun City , Jilin Province 130000 , China . ; Tel: +86-0431-81953783
| | - Yue Liu
- Changchun University of Chinese Medicine , Changchun City , Jilin Province 130000 , China . ; Tel: +86-0431-81953783
| | - Yu Wang
- Changchun University of Chinese Medicine , Changchun City , Jilin Province 130000 , China . ; Tel: +86-0431-81953783
| | - Min Zhao
- Changchun University of Chinese Medicine , Changchun City , Jilin Province 130000 , China . ; Tel: +86-0431-81953783
| |
Collapse
|
28
|
Guan L, Guo S, Yip J, Elkin KB, Li F, Peng C, Geng X, Ding Y. Artificial Hibernation by Phenothiazines: A Potential Neuroprotective Therapy Against Cerebral Inflammation in Stroke. Curr Neurovasc Res 2019; 16:232-240. [DOI: 10.2174/1567202616666190624122727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022]
Abstract
Background:
The inflammatory response to acute cerebral ischemia is a major factor in
stroke pathobiology and patient outcome. In the clinical setting, no effective pharmacologic treatments
are currently available. Phenothiazine drugs, such as chlorpromazine and promethazine,
(C+P) have been widely studied because of their ability to induce neuroprotection through artificial
hibernation after stroke. The present study determined their effect on the inflammatory response.
Methods:
Sprague-Dawley rats were divided into 4 groups: (1) sham, (2) stroke, (3) stroke treated
by C+P without temperature control and (4) stroke treated by C+P with temperature control (n=8
per group). To assess the neuroprotective effect of C+P, brain damage was measured using infarct
volume and neurological deficits. The expression of inflammatory response molecules tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β), intercellular adhesion molecule 1 (ICAM-1), vascular
cell adhesion molecule 1 (VCAM-1), and nuclear factor kappa light chain enhancer of activated
B cells (NF-κB) was determined by real-time PCR and Western blotting
Results:
TNF-α, IL-1β, ICAM-1, VCAM-1, and NF-κB mRNA and protein expressions were upregulated,
and brain damage and neurological deficits were increased after stroke. These markers
of cerebral injury were significantly reduced following C+P administration under drug-induced
hypothermia, while C+P administration under normal body temperature reduced them by a lesser
degree.
Conclusion:
This study showed an inhibitory effect of C+P on brain inflammation, which may be
partially dependent on drug-induced hibernation, as well as other mechanisms of action by these
drugs. These findings further suggest the great potential of C+P in the clinical treatment of ischemic
stroke.
Collapse
Affiliation(s)
- Longfei Guan
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, MI, United States
| | - Sichao Guo
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, MI, United States
| | - James Yip
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, MI, United States
| | - Kenneth B. Elkin
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, MI, United States
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Changya Peng
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, MI, United States
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, MI, United States
| |
Collapse
|
29
|
Zhao H, Feng Y, Wei C, Li Y, Ma H, Wang X, Cui Z, Jin WN, Shi FD. Colivelin Rescues Ischemic Neuron and Axons Involving JAK/STAT3 Signaling Pathway. Neuroscience 2019; 416:198-206. [DOI: 10.1016/j.neuroscience.2019.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/24/2019] [Accepted: 07/10/2019] [Indexed: 01/10/2023]
|
30
|
Nirwane A, Johnson J, Nguyen B, Miner JH, Yao Y. Mural cell-derived laminin-α5 plays a detrimental role in ischemic stroke. Acta Neuropathol Commun 2019; 7:23. [PMID: 30777135 PMCID: PMC6378751 DOI: 10.1186/s40478-019-0676-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/10/2019] [Indexed: 12/12/2022] Open
Abstract
At the blood-brain barrier (BBB), laminin-α5 is predominantly synthesized by endothelial cells and mural cells. Endothelial laminin-α5 is dispensable for BBB maintenance under homeostatic conditions but inhibits inflammatory cell extravasation in pathological conditions. Whether mural cell-derived laminin-α5 is involved in vascular integrity regulation, however, remains unknown. To answer this question, we generated transgenic mice with laminin-α5 deficiency in mural cells (α5-PKO). Under homeostatic conditions, no defects in BBB integrity and cerebral blood flow (CBF) were observed in α5-PKO mice, suggesting that mural cell-derived laminin-α5 is dispensable for BBB maintenance and CBF regulation under homeostatic conditions. After ischemia-reperfusion (MCAO) injury, however, α5-PKO mice displayed less severe neuronal injury, including reduced infarct volume, decreased neuronal death, and improved neurological function. In addition, α5-PKO mice also showed attenuated vascular damage (milder BBB disruption, reduced inflammatory cell infiltration, decreased brain edema, and diminished hemorrhagic transformation). Mechanistic studies revealed less severe tight junction protein (TJP) loss and pericyte coverage reduction in α5-PKO mice after ischemia-reperfusion injury, indicating that the attenuated ischemic injury in α5-PKO mice is possibly due to less severe vascular damage. These findings suggest that mural cell-derived laminin-α5 plays a detrimental role in ischemic stroke and that inhibiting its signaling may have a neuroprotective effect.
Collapse
|
31
|
Duris K, Jurajda M. Evolutionary concept of inflammatory response and stroke. J Neurosci Res 2019; 98:98-104. [PMID: 30742319 DOI: 10.1002/jnr.24392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/21/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
The immune system plays an important role under both physiological and pathological conditions. Immune surveillance as well as defense and healing processes are crucial for the organism, but the immune system has a natural tendency to act aggressively when excessively stimulated. We may assume that the immune system is not designed to deal with severe conditions, such as polytrauma or severe stroke, because these are not compatible with life in the wilderness and evolution has no chance to act in such cases. These conditions are associated with exaggerated/deregulated inflammatory response, which may cause more damage than initial pathology. In this article, we would like to sketch a basic concept of the immune system-brain interactions from the evolutionary point of view and to discuss some implications related to stroke.
Collapse
Affiliation(s)
- K Duris
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Neurosurgery, The University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - M Jurajda
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
32
|
Chen L, Chen W, Zhang M, Cheng D, Wang X. Comparison of therapeutic effects of melatonin by two different routes in focal cerebral ischemic rats. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Objective: To explore the therapeutic effects of melatonin by two different routes, by caudal vein and intraperitoneal injection, on cerebral ischemia-reperfusion (IR) injury in adult rats. Methods: 60 Sprague-Dawley rats were randomly divided into normal control (CON), middle cerebral artery occlusion (MCAO), intraperitoneal and caudal vein injection groups. Nissl and immunohistochemical staining were used to observe the morphological and quantitative changes of neurons and the expression of cleaved Caspase-3, Fas and FasL proteins in the injured cerebral cortex. Results: More Nissl-stained and NeuN+ cells were observed in both the intraperitoneal and caudal vein injection groups as compared with the MCAO group (P < 0.05), and the number of Nissl-stained and NeuN+ cells in caudal vein injection group was significantly higher than in intraperitoneal injection group at each time point (all P < 0.05). There were fewer cleaved Caspase-3+, Fas+ and FasL+ cells in both intraperitoneal and caudal vein injection groups than that in MCAO group 24 hours and 72 hours after IR (all P < 0.05). Meanwhile, there were significantly fewer cleaved Caspase-3+, Fas+ and FasL+ cells in caudal vein injection group than in intraperitoneal group (all P < 0.05). Conclusions: Melatonin therapy by both intraperitoneal and caudal vein injection could alleviate the expression of cleaved Caspase-3, Fas and FasL proteins in the cerebral cortex in rats after cerebral ischemia reperfusion and protect the neurons from injury, and had neuroprotective effects, and the therapeutic effect by caudal vein injection was better than by intraperitoneal injection.
Collapse
|
33
|
Degradation of TRPML1 in Neurons Reduces Neuron Survival in Transient Global Cerebral Ischemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4612727. [PMID: 30662583 PMCID: PMC6312622 DOI: 10.1155/2018/4612727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/28/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022]
Abstract
Postcardiac arrest syndrome yields poor neurological outcomes, but the mechanisms underlying this condition remain poorly understood. Autophagy plays an important role in neuronal apoptosis induced by ischemia. However, whether autophagy is involved in neuron apoptosis induced by cardiac arrest has been less studied. This study found that TRPML1 participates in cerebral ischemic reperfusion injury. Primary neurons were isolated and treated with mucolipin synthetic agonist 1 (ML-SA1), as well as infected with the recombinant lentivirus TRPML1 overexpression vector in vitro. ML-SA1 was delivered intracerebroventricularly in transient global ischemia model. Protein expression levels were determined by western blot. Neurological deficit score and the infarct volume were analyzed for the detection of neuronal damage. We found that TRPML1 was significantly downregulated in vivo and in vitro ischemic reperfusion model. We also observed that TRPML1 overexpression or treatment with the ML-SA1 attenuated neuronal death in primary neurons and ameliorated neurological dysfunction in vivo. Our findings suggested that autophagy and apoptosis were activated after transient global ischemia. Administration of ML-SA1 before transient global ischemia ameliorated neurological dysfunction possibly through the promotion of autophagy and the inhibition of apoptosis.
Collapse
|
34
|
The Pathogenesis of Necroptosis-Dependent Signaling Pathway in Cerebral Ischemic Disease. Behav Neurol 2018; 2018:6814393. [PMID: 30140326 PMCID: PMC6081565 DOI: 10.1155/2018/6814393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/13/2018] [Indexed: 11/18/2022] Open
Abstract
Necroptosis is the best-described form of regulated necrosis at present, which is widely recognized as a component of caspase-independent cell death mediated by the concerted action of receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3). Mixed-lineage kinase domain-like (MLKL) was phosphorylated by RIPK3 at the threonine 357 and serine 358 residues and then formed tetramers and translocated onto the plasma membrane, which destabilizes plasma membrane integrity leading to cell swelling and membrane rupture. Necroptosis is downstream of the tumor necrosis factor (TNF) receptor family, and also interaction with NOD-like receptor pyrin 3 (NLRP3) induced inflammasome activation. Multiple inhibitors of RIPK1 and MLKL have been developed to block the cascade of signal pathways for procedural necrosis and represent potential leads for drug development. In this review, we highlight recent progress in the study of roles for necroptosis in cerebral ischemic disease and discuss how these modifications delicately control necroptosis.
Collapse
|
35
|
Lü C, Liu Q, Zeng X. [Effects of interleukin 10 gene modified bone marrow mesenchymal stem cells on expression of inflammatory cytokines and neuronal apoptosis in rats after cerebral ischemia reperfusion injury]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 31:240-245. [PMID: 29786261 DOI: 10.7507/1002-1892.201605095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To explore the effects of interleukin 10 (IL-10) gene modified bone marrow mesenchymal stem cells (BMSCs) on the expression of inflammatory cytokines and neuronal apoptosis in rats after cerebral ischemia reperfusion injury. Methods BMSCs were cultured by whole bone marrow adherence screening method. The properties of BMSCs were identified by immunocytochemical methods. BMSCs at passage 3 were transfected with recombinant adenovirus IL-10 gene (AdIL-10-BMSCs). The model of middle cerebral artery occlusion was made in 40 adult male Sprague Dawley rats by thread embolism method. The rats were randomly divided into 4 groups ( n=10). At 3 hours after modelling, the rats of groups A, B, C, and D received tail intravenous injection of 1 mL L-DMEM medium containing 10% FBS, 61.78 ng IL-10, 1 mL BMSCs suspension (2×10 6 cells/mL), and 1 mL AdIL-10-BMSCs cell suspension (2×10 6 cells/mL), respectively. The cells were labelled with BrdU before cell transplantation in groups C and D. At 7 days after reperfusion, the brain tissue was harvested to detect the expression of OX42 by immunohistochemical assay, to determine the concentration of tumor necrosis factor α (TNF-α) and IL-1β by ELISA, and to detect the apoptosis by TUNEL assay. BrdU labelled cells were observed by immunofluorescence staining in groups C and D. Results BrdU labelled positive cells with green fluorescence were observed in the brain tissue of groups C and D, which mainly distributed in the striatum, cerebral cortex, and subcortex around the infarction area. The number of OX42 positive cells was significantly less in groups B, C, and D than group A ( P<0.05), and in group D than groups B and C ( P<0.05). Compared with the other 3 groups, the contents of TNF-α and IL-1β significantly decreased in group D ( P<0.05). TUNEL assay showed that the apoptotic cells (TUNEL positive cells) were mainly seen in the striatum and fronto parietal subcortical tissues (equivalent to ischemic penumbra). The number of TUNEL positive cells in group D was significantly less than that in groups A, B, and C ( P<0.05). Conclusion AdIL-10-BMSCs can inhibit secretion of TNF-α and IL-1β from microglial cells and inhibit the nerve cell apoptosis around infarct brain tissue, which might contribute to its protective role upon cerebral ischemia reperfusion injury.
Collapse
Affiliation(s)
- Cui Lü
- Electrocardiographic Room, Affiliated Hospital of Weifang Medical University, Weifang Shandong, 261031, P.R.China
| | - Qian Liu
- Electrocardiographic Room, Affiliated Hospital of Weifang Medical University, Weifang Shandong, 261031, P.R.China
| | - Xianwei Zeng
- Electrocardiographic Room, Affiliated Hospital of Weifang Medical University, Weifang Shandong, 261031,
| |
Collapse
|
36
|
Zha A, Vahidy F, Randhawa J, Parsha K, Bui T, Aronowski J, Savitz SI. Association Between Splenic Contraction and the Systemic Inflammatory Response After Acute Ischemic Stroke Varies with Age and Race. Transl Stroke Res 2017; 9:484-492. [PMID: 29282627 DOI: 10.1007/s12975-017-0596-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/21/2022]
Abstract
Animal models have demonstrated the deleterious contribution of splenic immunocytes on secondary brain injury after stroke. While previous work has demonstrated splenic contraction (SC) in patients with acute ischemic stroke (AIS) and intracranial hemorrhage (ICH), no clinical studies have examined the relationship between the systemic inflammatory response syndrome (SIRS) with SC in stroke patients. This is a retrospective analysis of a previous prospective observational study where daily spleen sizes were evaluated in 178 acute stroke patients. Spleen contraction was based on previously established normograms of healthy volunteers from the same study. SC from the first 24 h of stroke onset was evaluated against criteria for SIRS for the first 5 days of admission after AIS. Ninety-one patients had verified AIS without concurrent infection at admission. SIRS was not associated with SC at admission. African-American patients with early SIRS had higher odds of having SC. Older patients with persistent SIRS at 72 h had lower odds of SC. At 48 h, there was significantly higher lymphocytosis and lower neutrophils present in patients with SC. Patients with SIRS at 72 h were more likely to have worse discharge mRS. This study provides evidence for an association among SC and SIRS in African-American patients suggesting that spleen changes could be a biomarker for detecting SIRS in this population. Our data also indicate a counter association between SC and a lack of SIRS in patients older than 75. Further studies are needed to ascertain how age affects this association.
Collapse
Affiliation(s)
- Alicia Zha
- Department of Neurology and The Institute for Stroke and Cerebrovascular Disease, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Farhaan Vahidy
- Department of Neurology and The Institute for Stroke and Cerebrovascular Disease, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Jaskaren Randhawa
- Department of Neurology and The Institute for Stroke and Cerebrovascular Disease, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Kaushik Parsha
- Department of Neurology and The Institute for Stroke and Cerebrovascular Disease, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Thanh Bui
- Department of Neurology and The Institute for Stroke and Cerebrovascular Disease, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Jaroslaw Aronowski
- Department of Neurology and The Institute for Stroke and Cerebrovascular Disease, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Sean I Savitz
- Department of Neurology and The Institute for Stroke and Cerebrovascular Disease, McGovern Medical School, UTHealth, Houston, TX, 77030, USA.
| |
Collapse
|
37
|
Azurmendi L, Lapierre-Fetaud V, Schneider J, Montaner J, Katan M, Sanchez JC. Proteomic discovery and verification of serum amyloid A as a predictor marker of patients at risk of post-stroke infection: a pilot study. Clin Proteomics 2017; 14:27. [PMID: 28701906 PMCID: PMC5506582 DOI: 10.1186/s12014-017-9162-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/03/2017] [Indexed: 12/25/2022] Open
Abstract
Background Post-stroke infections occur in 20–36% of stroke patients and are associated with high morbidity and mortality rates. Early identification of patients at risk of developing an infection could improve care via an earlier treatment leading to a better outcome. We used proteomic tools in order to discover biomarkers able to stratify patients at risk of post-stroke infection. Methods The post hoc analysis of a prospective cohort study including 40 ischemic stroke patients included 21 infected and 19 non-infected participants. A quantitative, isobaric labeling, proteomic strategy was applied to the plasma samples of 5 infected and 5 non-infected patients in order to highlight any significantly modulated proteins. A parallel reaction monitoring (PRM) assay was applied to 20 additional patients (10 infected and 10 non-infected) to verify discovery results. The most promising protein was pre-validated using an ELISA immunoassay on 40 patients and at different time points after stroke onset. Results Tandem mass analysis identified 266 proteins, of which only serum amyloid A (SAA1/2) was significantly (p = 0.007) regulated between the two groups of patients. This acute-phase protein appeared to be 2.2 times more abundant in infected patients than in non-infected ones. These results were verified and validated using PRM and ELISA immunoassays, which showed that infected patients had significantly higher concentrations of SAA1/2 than non-infected patients at hospital admission, but also at 1, 3, and 5 days after admission. Conclusions The present study demonstrated that SAA1/2 is a promising predictor, at hospital admission, of stroke patients at risk of developing an infection. Further large, multicenter validation studies are needed to confirm these results. If confirmed, SAA1/2 concentrations could be used to identify the patients most at risk of post-stroke infections and therefore implement treatments more rapidly, thus reducing mortality. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9162-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- L Azurmendi
- Translational Biomarker Group, Department of Human Protein Sciences, University of Geneva, Rue Michel Servet 1, 1211 Geneve 4, Switzerland
| | - V Lapierre-Fetaud
- Translational Biomarker Group, Department of Human Protein Sciences, University of Geneva, Rue Michel Servet 1, 1211 Geneve 4, Switzerland
| | - J Schneider
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - J Montaner
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M Katan
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Jean-Charles Sanchez
- Translational Biomarker Group, Department of Human Protein Sciences, University of Geneva, Rue Michel Servet 1, 1211 Geneve 4, Switzerland
| |
Collapse
|
38
|
Yang J, Su J, Wan F, Yang N, Jiang H, Fang M, Xiao H, Wang J, Tang J. Tissue kallikrein protects against ischemic stroke by suppressing TLR4/NF-κB and activating Nrf2 signaling pathway in rats. Exp Ther Med 2017; 14:1163-1170. [PMID: 28810574 DOI: 10.3892/etm.2017.4614] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/24/2017] [Indexed: 01/04/2023] Open
Abstract
Brain damage following cerebral ischemia-reperfusion (I/R) is a complicated pathophysiological course, in which inflammation and oxidative stress have been suggested to serve an important role. Toll-like receptor 4 (TLR4) has been suggested to be involved in secondary inflammatory process in cerebral ischemia. Nuclear factor erythroid 2-related factor 2 (Nrf2), an important regulator of the antioxidant host defense, maintains the cellular redox homeostasis. Tissue kallikrein (TK) has been proven to elicit a variety of biological effects in ischemic stroke through its anti-inflammatory and anti-oxidant properties. However, the mechanisms underlying its beneficial effects remain poorly defined. The present study examined the hypothesis that TK attenuates ischemic cerebral injury via the TLR4/nuclear factor-κB (NF-κB) and Nrf2 signaling pathways. Using a transient rat middle cerebral artery occlusion (MCAO) model, the effects of immediate and delayed TK treatment subsequent to reperfusion were investigated. The neurological deficits, infarct size, and the expression of TLR4/NF-κB and Nrf2 pathway in ischemic brain tissues were measured at 24 following MCAO. The results indicated that TK immediate treatment significantly improved neurological deficits and reduced the infarct size, accompanied by the inhibition of TLR4 and NF-κB levels, and the activation of Nrf2 pathway. Furthermore, TK delayed treatment also exerted neuroprotection against I/R injury. However, the neuroprotective effect of TK immediate treatment was better compared with that of TK delayed treatment. In conclusion, the results indicated that TK protected the brain against ischemic injury in rats after MCAO through its anti-oxidative and anti-inflammatory effects. Suppression of TLR4/NF-κB and activation of the Nrf2 pathway contributed to the neuroprotective effects induced by TK in cerebral ischemia. Therefore, TK may provide an effective intervention with a wider therapeutic window for ischemic stroke.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Neurology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianhua Su
- Department of Neurology, The Affiliated Jintan Hospital of Medical College of Jiangsu University, Jintan, Jiangsu 213200, P.R. China
| | - Fen Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Nan Yang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Haibo Jiang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingming Fang
- Department of Neurology, Jiangsu Hospital of Chinese Traditional and Western Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Hang Xiao
- Department of Neurotoxicology, Nanjing Medical University, Nanjing, Jiangsu 211199, P.R. China
| | - Jun Wang
- Department of Neurotoxicology, Nanjing Medical University, Nanjing, Jiangsu 211199, P.R. China
| | - Jinrong Tang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
39
|
Shukla V, Shakya AK, Perez-Pinzon MA, Dave KR. Cerebral ischemic damage in diabetes: an inflammatory perspective. J Neuroinflammation 2017; 14:21. [PMID: 28115020 PMCID: PMC5260103 DOI: 10.1186/s12974-016-0774-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/07/2016] [Indexed: 12/16/2022] Open
Abstract
Stroke is one of the leading causes of death worldwide. A strong inflammatory response characterized by activation and release of cytokines, chemokines, adhesion molecules, and proteolytic enzymes contributes to brain damage following stroke. Stroke outcomes are worse among diabetics, resulting in increased mortality and disabilities. Diabetes involves chronic inflammation manifested by reactive oxygen species generation, expression of proinflammatory cytokines, and activation/expression of other inflammatory mediators. It appears that increased proinflammatory processes due to diabetes are further accelerated after cerebral ischemia, leading to increased ischemic damage. Hypoglycemia is an intrinsic side effect owing to glucose-lowering therapy in diabetics, and is known to induce proinflammatory changes as well as exacerbate cerebral damage in experimental stroke. Here, we present a review of available literature on the contribution of neuroinflammation to increased cerebral ischemic damage in diabetics. We also describe the role of hypoglycemia in neuroinflammation and cerebral ischemic damage in diabetics. Understanding the role of neuroinflammatory mechanisms in worsening stroke outcome in diabetics may help limit ischemic brain injury and improve clinical outcomes.
Collapse
Affiliation(s)
- Vibha Shukla
- Cerebral Vascular Disease Research Laboratories, University of Miami School of Medicine, Miami, FL, 33136, USA.,Department of Neurology (D4-5), University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA
| | - Akhalesh Kumar Shakya
- Present address: Department of Microbiology and Immunology, and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami School of Medicine, Miami, FL, 33136, USA.,Department of Neurology (D4-5), University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA.,Neuroscience Program, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami School of Medicine, Miami, FL, 33136, USA. .,Department of Neurology (D4-5), University of Miami Miller School of Medicine, 1420 NW 9th Ave, NRB/203E, Miami, FL, 33136, USA. .,Neuroscience Program, University of Miami School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
40
|
Chen J, Cui C, Yang X, Xu J, Venkat P, Zacharek A, Yu P, Chopp M. MiR-126 Affects Brain-Heart Interaction after Cerebral Ischemic Stroke. Transl Stroke Res 2017; 8:374-385. [PMID: 28101763 DOI: 10.1007/s12975-017-0520-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases are approximately three times higher in patients with neurological deficits than in patients without neurological deficits. MicroRNA-126 (MiR-126) facilitates vascular remodeling and decreases fibrosis and is emerging as an important factor in the pathogenesis of cardiovascular diseases and cerebral stroke. In this study, we tested the hypothesis that decreased miR-126 after ischemic stroke may play an important role in regulating cardiac function. Wild-type (WT), specific conditional-knockout endothelial cell miR-126 (miR-126EC-/-), and miR-126 knockout control (miR-126fl/fl) mice were subjected to distal middle cerebral artery occlusion (dMCAo) (n = 10/group). Cardiac hemodynamics and function were measured using transthoracic Doppler echocardiography. Mice were sacrificed at 28 days after dMCAo. WT mice subjected to stroke exhibited significantly decreased cardiac ejection fraction and increased myocyte hypertrophy, fibrosis as well as increased heart inflammation, infiltrating macrophages, and oxidative stress compared to non-stroke animals. Stroke significantly decreased serum and heart miR-126 expression and increased miR-126 target genes, vascular cell adhesion protein-1, and monocyte chemotactic protein-1 gene, and protein expression in the heart compared to non-stroke mice. MiR-126EC-/- mice exhibited significantly decreased cardiac function and increased cardiomyocyte hypertrophy, fibrosis, and inflammatory factor expression after stroke compared to miR-126fl/fl stroke mice. Exosomes derived from endothelial cells of miR-126EC-/- (miR-126EC-/-EC-Exo) mice exhibited significantly decreased miR-126 expression than exosomes derived from miR-126fl/fl (miR-126fl/fl-EC-Exo) mice. Treatment of cardiomyocytes subjected to oxygen glucose deprivation with miR-126fl/fl-EC-Exo exhibited significantly decreased hypertrophy than with miR-126EC-/-EC-Exo treatment. Ischemic stroke directly induces cardiac dysfunction. Decreasing miR-126 expression may contribute to cardiac dysfunction after stroke in mice.
Collapse
Affiliation(s)
- Jieli Chen
- Henry Ford Hospital Neurology, Detroit, MI, 48202, USA. .,Gerontology Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | | | - Xiaoping Yang
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Jiang Xu
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, 48202, USA
| | | | - Alex Zacharek
- Henry Ford Hospital Neurology, Detroit, MI, 48202, USA
| | - Peng Yu
- Henry Ford Hospital Neurology, Detroit, MI, 48202, USA
| | - Michael Chopp
- Henry Ford Hospital Neurology, Detroit, MI, 48202, USA.,Department of Physics, Oakland University, Rochester, MI, 48309, USA
| |
Collapse
|
41
|
E2-25K SUMOylation inhibits proteasome for cell death during cerebral ischemia/reperfusion. Cell Death Dis 2016; 7:e2573. [PMID: 28032866 PMCID: PMC5261013 DOI: 10.1038/cddis.2016.428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/12/2023]
Abstract
Cerebral ischemia/reperfusion (I/R) causes brain damage accompanied by ubiquitin accumulation and impairment of proteasome activity. In this study, we report that E2-25K, an E2-conjugating enzyme, is SUMOylated during oxidative stress and regulates cerebral I/R-induced damage. Knockdown of E2-25K expression protects against oxygen/glucose deprivation and reoxygenation (OGD/R)-induced neuronal cell death, whereas ectopic expression of E2-25K stimulates it. Compared with the control mice, cerebral infarction lesions and behavioral/neurological disorders are ameliorated in E2-25K knockout mice during middle cerebral artery occlusion and reperfusion. In particular, E2-25K is SUMOylated at Lys14 under oxidative stress, OGD/R and I/R to prompt cell death. Further, E2-25K downregulates the proteasome subunit S5a to impair proteasome complex and thus restrain proteasome activity under oxidative stress. This proteasome inhibitory activity of E2-25K is dependent on its SUMOylation. These results suggest that E2-25K has a crucial role in oxidative stress and cerebral I/R-induced damage through inhibiting proteasome via its SUMOylation.
Collapse
|
42
|
Sun X, Song X, Zhang L, Sun J, Wei X, Meng L, An J. NLRP2 is highly expressed in a mouse model of ischemic stroke. Biochem Biophys Res Commun 2016; 479:656-662. [PMID: 27693696 DOI: 10.1016/j.bbrc.2016.09.157] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
Abstract
Nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) are a class of cytoplasmic pattern-recognition receptors with a major role in innate immunity. Fourteen of the twenty-two human NLRs contain a pyrin domain and form the NLRP subfamily (NLRPs). Among NLRPs, NLRP2 is less well-understood in aspects of distribution and functions, especially in central nervous system (CNS). This study was the first to explore the expression of NLRP2 in central nervous system both under normal conditions and in ischemic stroke models. We found NLRP2 protein had a basal level of expression in CNS, mainly in astrocytes and was significantly elevated in ischemic brains in vivo or oxygen-glucose deprivation-treated cells in vitro. And silencing of NLRP2 genes could reduce the apoptotic rate of oxygen-glucose deprivation-treated cells. Thus high expression of NLRP2, especially in astrocytes, may play important roles in the pathophysiological process of ischemic stroke and has potential clinical value for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xia Sun
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, 250012 PR China
| | - Xiao Song
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, 250012 PR China
| | - Li Zhang
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021 PR China
| | - Jian Sun
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, 250012 PR China
| | - Xinbing Wei
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, 250012 PR China
| | - Liya Meng
- Department of Dermatology, The Second Affiliated Hospital of Shandong University, Jinan, Shandong, 250033 PR China
| | - Jie An
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong, 250012 PR China.
| |
Collapse
|
43
|
Zhu SZ, Gu Y, Wu Z, Hu YF, Pan SY. Hypothermia followed by rapid rewarming exacerbates ischemia-induced brain injury and augments inflammatory response in rats. Biochem Biophys Res Commun 2016; 474:175-181. [DOI: 10.1016/j.bbrc.2016.04.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/17/2016] [Indexed: 12/25/2022]
|
44
|
Carvajal HG, Suárez-Meade P, Borlongan CV. Amnion-derived stem cell transplantation: A novel treatment for neurological disorders. Brain Circ 2016; 2:1-7. [PMID: 30276271 PMCID: PMC6126246 DOI: 10.4103/2394-8108.178537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 01/03/2016] [Accepted: 01/13/2016] [Indexed: 12/20/2022] Open
Abstract
In this review, we evaluated the literature reporting the use of amniotic stem cells (ASCs) in regenerative medicine for the treatment of neurological disorders. There is an increasing amount of evidence that indicates the exacerbation of the primary injury by inflammation in neurological disorders characterized by rampant inflammation, thereby increasing damage to the central nervous system (CNS). To address this, we focus on the amnion cells' anti-inflammatory properties, which make their transplantation a promising treatment for these disorders. In addition, we offered insights into new applications of the ASC in the fields of regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Horacio G Carvajal
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Florida, USA
| | - Paola Suárez-Meade
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Florida, USA
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Florida, USA
| |
Collapse
|
45
|
Xian W, Wu Y, Xiong W, Li L, Li T, Pan S, Song L, Hu L, Pei L, Yao S, Shang Y. The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response. Biochem Biophys Res Commun 2016; 472:175-81. [PMID: 26915798 DOI: 10.1016/j.bbrc.2016.02.090] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/22/2016] [Indexed: 12/31/2022]
Abstract
Inflammation plays a crucial role in acute ischemic stroke pathogenesis. Macrophage-derived Maresin 1 (MaR1) is a newly uncovered mediator with potent anti-inflammatory abilities. Here, we investigated the effect of MaR1 on acute inflammation and neuroprotection in a mouse brain ischemia reperfusion (I/R) model. Male C57 mice were subjected to 1-h middle cerebral artery occlusion (MCAO) and reperfusion. By the methods of 2,3,5-triphenyltetrazolium chloride, haematoxylin and eosin or Fluoro-Jade B staining, neurological deficits scoring, ELISA detection, immunofluorescence assay and western blot analysis, we found that intracerebroventricular injection of MaR1 significantly reduced the infarct volume and neurological defects, essentially protected the brain tissue and neurons from injury, alleviated pro-inflammatory reactions and NF-κB p65 activation and nuclear translocation. Taken together, our results suggest that MaR1 significantly protects against I/R injury probably by inhibiting pro-inflammatory reactions.
Collapse
Affiliation(s)
- Wenjing Xian
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiong
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longyan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangwen Pan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Song
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lisha Hu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
46
|
Ayzenberg I, Hoepner R, Kleiter I. Fingolimod for multiple sclerosis and emerging indications: appropriate patient selection, safety precautions, and special considerations. Ther Clin Risk Manag 2016; 12:261-72. [PMID: 26929636 PMCID: PMC4767105 DOI: 10.2147/tcrm.s65558] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fingolimod (FTY720), an immunotherapeutic drug targeting the sphingosine-1-phosphate receptor, is a widely used medication for relapsing-remitting multiple sclerosis (MS). Apart from the pivotal Phase III trials demonstrating efficacy against placebo and interferon-β-1a once weekly, sufficient clinical data are now available to assess its real-world efficacy and safety profile. Approved indications of fingolimod differ between countries. This discrepancy, to some extent, reflects the intermediate position of fingolimod in the expanding lineup of MS medications. With individualization of therapy, appropriate patient selection gets more important. We discuss various scenarios for fingolimod use in relapsing-remitting MS and their pitfalls: as first-line therapy, as escalation therapy after failure of previous immunotherapies, and as de-escalation therapy following highly potent immunotherapies. Potential side effects such as bradycardia, infections, macular edema, teratogenicity, and progressive multifocal leukoencephalopathy as well as appropriate safety precautions are outlined. Disease reactivation has been described upon fingolimod cessation; therefore, patients should be closely monitored for MS activity for several months after stopping fingolimod. Finally, we discuss preclinical and clinical data indicating neuroprotective effects of fingolimod, which might open the way to future indications such as stroke, Alzheimer’s disease, and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Ilya Ayzenberg
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Robert Hoepner
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Ingo Kleiter
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
47
|
Zhu Z, Fu Y, Tian D, Sun N, Han W, Chang G, Dong Y, Xu X, Liu Q, Huang D, Shi FD. Combination of the Immune Modulator Fingolimod With Alteplase in Acute Ischemic Stroke: A Pilot Trial. Circulation 2015. [PMID: 26202811 DOI: 10.1161/circulationaha.115.016371] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammatory and immune responses triggered by brain ischemia worsen clinical outcomes of stroke and contribute to hemorrhagic transformation, massive edema, and reperfusion injury associated with intravenous alteplase. We assessed whether a combination of the immune-modulator fingolimod and alteplase is safe and effective in attenuating reperfusion injury in patients with acute ischemic stroke treated within the first 4.5 hours of symptom onset. METHODS AND RESULTS In this multicenter trial, we randomly assigned 25 eligible patients with hemispheric ischemic stroke stemming from anterior or middle cerebral arterial occlusion to receive alteplase alone and 22 patients to receive alteplase plus oral fingolimod 0.5 mg daily for 3 consecutive days within 4.5 hours of the onset of ischemic stroke. Compared with patients who received alteplase alone, patients who received the combination of fingolimod with alteplase exhibited lower circulating lymphocytes, smaller lesion volumes (10.1 versus 34.3 mL; P=0.04), less hemorrhage (1.2 versus 4.4 mL; P=0.01), and attenuated neurological deficits in National Institute of Health Stroke Scales (4 versus 2; P=0.02) at day 1. Furthermore, restrained lesion growth from day 1 to 7 (-2.3 versus 12.1 mL; P<0.01) with a better recovery at day 90 (modified Rankin Scale score 0-1, 73% versus 32%; P<0.01) was evident in patients given fingolimod and alteplase. No serious adverse events were recorded in all patients. CONCLUSIONS In this pilot study, combination therapy of fingolimod and alteplase was well tolerated, attenuated reperfusion injury, and improved clinical outcomes in patients with acute ischemic stroke. These findings need to be tested in further clinical trials. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT02002390.
Collapse
Affiliation(s)
- Zilong Zhu
- Departments of Neurology, Immunology, Radiology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Tianjin HuanHu Hospital, Tianjin, China
| | - Ying Fu
- Departments of Neurology, Immunology, Radiology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Decai Tian
- Departments of Neurology, Immunology, Radiology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Na Sun
- Departments of Neurology, Immunology, Radiology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Han
- Departments of Neurology, Immunology, Radiology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guoqiang Chang
- Departments of Neurology, Immunology, Radiology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yinhua Dong
- Department of Neurology, Tianjin Forth Central Hospital, Tianjin, China
| | - Xiaolin Xu
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Qiang Liu
- Departments of Neurology, Immunology, Radiology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Tianjin HuanHu Hospital, Tianjin, China
| | - Deren Huang
- Neurology and Neuroscience Associates, Unity Health Network, Akron, OH
| | - Fu-Dong Shi
- Departments of Neurology, Immunology, Radiology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Tianjin HuanHu Hospital, Tianjin, China
| |
Collapse
|
48
|
Ma S, Zhao H, Ji X, Luo Y. Peripheral to central: Organ interactions in stroke pathophysiology. Exp Neurol 2015; 272:41-9. [PMID: 26054885 DOI: 10.1016/j.expneurol.2015.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/20/2015] [Accepted: 05/23/2015] [Indexed: 12/27/2022]
Abstract
Stroke is associated with a high risk of disability and mortality, and with the exception of recombinant tissue-type plasminogen activator for acute stroke, most treatments have proven ineffective. Clinical translation of promising experimental therapeutics is limited by inadequate stroke models and a lack of understanding of the mechanisms underlying acute stroke and how they affect outcome. Bidirectional communication between the ischemic brain and peripheral immune system modulates stroke progression and tissue repair, while epidemiological studies have provided evidence of an association between organ dysfunction and stroke risk. This crosstalk can determine the fate of stroke patients and must be taken into consideration when investigating the pathophysiological mechanisms and therapeutic options for stroke. This review summarizes the current evidence for interactions between the brain and other organs in stroke pathophysiology in basic and clinic studies, and discusses the role of these interactions in the progression and outcome of stroke and how they can direct the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Shubei Ma
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Haiping Zhao
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China.
| |
Collapse
|
49
|
Han Z, Liu X, Luo Y, Ji X. Therapeutic hypothermia for stroke: Where to go? Exp Neurol 2015; 272:67-77. [PMID: 26057949 DOI: 10.1016/j.expneurol.2015.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/16/2015] [Accepted: 06/04/2015] [Indexed: 01/08/2023]
Abstract
Ischemic stroke is a major cause of death and long-term disability worldwide. Thrombolysis with recombinant tissue plasminogen activator is the only proven and effective treatment for acute ischemic stroke; however, therapeutic hypothermia is increasingly recognized as having a tissue-protective function and positively influencing neurological outcome, especially in cases of ischemia caused by cardiac arrest or hypoxic-ischemic encephalopathy in newborns. Yet, many aspects of hypothermia as a treatment for ischemic stroke remain unknown. Large-scale studies examining the effects of hypothermia on stroke are currently underway. This review discusses the mechanisms underlying the effect of hypothermia, as well as trends in hypothermia induction methods, methods for achieving optimal protection, side effects, and therapeutic strategies combining hypothermia with other neuroprotective treatments. Finally, outstanding issues that must be addressed before hypothermia treatment is implemented at a clinical level are also presented.
Collapse
Affiliation(s)
- Ziping Han
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Xiangrong Liu
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Yumin Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China
| | - Xunming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China; Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing 100053, China.
| |
Collapse
|
50
|
Inhibition of immunoproteasome reduces infarction volume and attenuates inflammatory reaction in a rat model of ischemic stroke. Cell Death Dis 2015; 6:e1626. [PMID: 25633295 PMCID: PMC4669779 DOI: 10.1038/cddis.2014.586] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/19/2014] [Accepted: 12/15/2014] [Indexed: 11/26/2022]
Abstract
The detailed knowledge about the contribution of immunoproteasome to the neuroinflammation in ischemic stroke is still not available. The immunoreactivity of low molecular mass peptide 2 (LMP2) and low molecular mass peptide 7 (LMP7) was evident in the ipsilateral ischemic cerebral cortex and striatum following transient middle cerebral artery occlusion (MCAO). Both LMP2 and LMP7 increased as early as 4 h after the MCAO, further increased at 24 h, peaked at 72 h and decreased 7 days later. LMP2 and LMP7 were mainly present in astrocytes and microglia/macrophage cells, respectively. LMP2 knockdown by shRNA (short hairpin RNA) markedly reduced the levels of LMP2 and LMP7 protein and caused 75.5 and 78.6% decrease in the caspase-like (C-L) and chymotrypsin-like (CT-L) activities, respectively. Compared with cont-shRNA group (39.7%, infarction volumes/total ipsilateral hemisphere), the infarction volumes were reduced to 22.5% in LMP2-shRNA group. Additionally, LMP2 knockdown significantly reduced activated astrocytes and microglia, the expression nuclear factor kappa B (NF-κB) p65, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and caused less accumulation of ischemia-induced protein ubiquitination compared with MG132. These findings demonstrate that inhibition of LMP2 significantly attenuates inflammatory reaction and offers neuroprotection against focal cerebral ischemia in rats, suggesting that selective immunoproteasome inhibitors may be a promising strategy for stroke treatment.
Collapse
|