1
|
Basu D. Palmitoylethanolamide, an endogenous fatty acid amide, and its pleiotropic health benefits: A narrative review. J Biomed Res 2024; 38:1-15. [PMID: 39433509 DOI: 10.7555/jbr.38.20240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The global nutritional transition has led to high frequency and severity of chronic degenerative diseases worldwide, primarily driven by chronic inflammatory stress. At the mealtimes, various pharmaceutical products aim to prevent such an inflammatory stress, they usually cause various systemic side effects. Therefore, supplementation of natural and safe ingredients is a great strategy to reduce the risk and severity of inflammatory stress-related diseases. As a result, palmitoylethanolamide (PEA), an endocannabinoid-like mediator, has been extensively studied for its myriad of actions, including anti-inflammatory, anti-microbial, immunostimulatory, neuroprotective, and pain-reducing effects with high tolerability and safety of PEA in animals and humans. Because of the multiple molecular targets and mechanisms of action, PEA has shown therapeutic benefits in various diseases, including neurological, psychiatric, ophthalmic, metabolic, oncological, renal, hepatic, immunological, rheumatological, and gastrointestinal conditions. The current review highlights the roles and functions of PEA in various physiological and pathological conditions, further supporting the use of PEA as an important dietary agent.
Collapse
Affiliation(s)
- Debasis Basu
- Healious Global METTA Clinic, Kolkata, West Bengal 700029, India
| |
Collapse
|
2
|
Jayawickreme DK, Ekwosi C, Anand A, Andres-Mach M, Wlaź P, Socała K. Luteolin for neurodegenerative diseases: a review. Pharmacol Rep 2024; 76:644-664. [PMID: 38904713 PMCID: PMC11294387 DOI: 10.1007/s43440-024-00610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and multiple sclerosis affect millions of people around the world. In addition to age, which is a key factor contributing to the development of all neurodegenerative diseases, genetic and environmental components are also important risk factors. Current methods of treating neurodegenerative diseases are mostly symptomatic and do not eliminate the cause of the disease. Many studies focus on searching for natural substances with neuroprotective properties that could be used as an adjuvant therapy in the inhibition of the neurodegeneration process. These compounds include flavonoids, such as luteolin, showing significant anti-inflammatory, antioxidant, and neuroprotective activity. Increasing evidence suggests that luteolin may confer protection against neurodegeneration. In this review, we summarize the scientific reports from preclinical in vitro and in vivo studies regarding the beneficial effects of luteolin in neurodegenerative diseases. Luteolin was studied most extensively in various models of Alzheimer's disease but there are also several reports showing its neuroprotective effects in models of Parkinson's disease. Though very limited, studies on possible protective effects of luteolin against Huntington's disease and multiple sclerosis are also discussed here. Overall, although preclinical studies show the potential benefits of luteolin in neurodegenerative disorders, clinical evidence on its therapeutic efficacy is still deficient.
Collapse
Affiliation(s)
| | - Cletus Ekwosi
- Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Apurva Anand
- Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-950, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland.
| |
Collapse
|
3
|
Kim N, Parolin B, Renshaw D, Deb SK, Zariwala MG. Formulated Palmitoylethanolamide Supplementation Improves Parameters of Cognitive Function and BDNF Levels in Young, Healthy Adults: A Randomised Cross-Over Trial. Nutrients 2024; 16:489. [PMID: 38398813 PMCID: PMC10891801 DOI: 10.3390/nu16040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator which is naturally produced in the body and found in certain foods. The aim of this study was to assess the effect of a bioavailable formulated form of PEA (Levagen+®) on serum BDNF levels and parameters of cognitive function in healthy adults. METHODS A randomised double-blinded placebo-controlled cross-over trial was implemented to measure the effects of a 6-week 700 mg/day course of formulated PEA supplementation versus a placebo. Participants (n = 39) completed pre- and post-assessments of a lab-based cognitive test. Serum samples were collected to measure BDNF concentrations using an immunoassay. RESULTS A significant increase in serum BDNF levels was found following PEA supplementation compared with the placebo (p = 0. 0057, d = 0.62). The cognition test battery demonstrated improved memory with PEA supplementation through better first success (p = 0.142, d = 0.54) and fewer errors (p = 0.0287; d = -0.47) on the Paired Associates Learning test. CONCLUSION This was the first study to report a direct beneficial effect of Levagen+® PEA supplementation on memory improvement as well as corresponding increases in circulating neurotrophic marker levels. This suggests that formulated PEA holds promise as an innovative and practical intervention for cognitive health enhancement.
Collapse
Affiliation(s)
- Nadia Kim
- Centre for Nutraceuticals, University of Westminster, London W1W6 UW, UK (S.K.D.)
| | - Brenda Parolin
- Centre for Nutraceuticals, University of Westminster, London W1W6 UW, UK (S.K.D.)
| | - Derek Renshaw
- Centre for Health and Life Sciences (CHLS), Coventry University, Coventry CV1 5FB, UK;
| | - Sanjoy K. Deb
- Centre for Nutraceuticals, University of Westminster, London W1W6 UW, UK (S.K.D.)
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | | |
Collapse
|
4
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Polyphenols Targeting NF-κB Pathway in Neurological Disorders: What We Know So Far? Int J Biol Sci 2024; 20:1332-1355. [PMID: 38385077 PMCID: PMC10878147 DOI: 10.7150/ijbs.90982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Polyphenolic compounds have shown promising neuroprotective properties, making them a valuable resource for identifying prospective drug candidates to treat several neurological disorders (NDs). Numerous studies have reported that polyphenols can disrupt the nuclear factor kappa B(NF-κB) pathway by inhibiting the phosphorylation or ubiquitination of signaling molecules, which further prevents the degradation of IκB. Additionally, they prevent NF-κB translocation to the nucleus and pro-inflammatory cytokine production. Polyphenols such as curcumin, resveratrol, and pterostilbene had significant inhibitory effects on NF-κB, making them promising candidates for treating NDs. Recent experimental findings suggest that polyphenols possess a wide range of pharmacological properties. Notably, much attention has been directed towards their potential therapeutic effects in NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, anxiety, depression, autism, and spinal cord injury (SCI). Much preclinical data supporting the neurotherapeutic benefits of polyphenols has been developed. Nevertheless, this study has described the significance of polyphenols as potential neurotherapeutic agents, specifically emphasizing their impact on the NF-κB pathway. This article offers a comprehensive analysis of the involvement of polyphenols in NDs, including both preclinical and clinical perspectives.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang 323000, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China
| | - Chuxiao Shao
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang 323000, China
| | - Peiwu Geng
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang 323000, China
| | - Shuanghua Wang
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang 323000, China
| | - Jian Xiao
- Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang 323000, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325000, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
5
|
Crupi L, Capra AP, Paterniti I, Lanza M, Calapai F, Cuzzocrea S, Ardizzone A, Esposito E. Evaluation of the nutraceutical Palmitoylethanolamide in reducing intraocular pressure (IOP) in patients with glaucoma or ocular hypertension: a systematic review and meta-analysis. Nat Prod Res 2024:1-20. [PMID: 38269580 DOI: 10.1080/14786419.2024.2306916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
Intraocular pressure (IOP) positively correlates with both normal and high-tension glaucoma. To date, IOP targeting remains the validated pharmacological approach in counteracting glaucoma progression as well as in halting vision loss. Among the different adjuvant compounds, evidence highlighted the potential effectiveness of Palmitoylethanolamide (PEA), an endogenous fatty acid amide. Thus, a systematic review of the literature was conducted, thoroughly evaluating PEA treatment regimen in decreasing IOP in patients with eye disorders. We checked for articles across the scientific databases Pubmed (MEDLINE), Embase (OVID), and Web of Science from the inception to 30 August 2023, and a total of 828 articles were recovered. Six of these studies (199 patients) were included in the systematic review after the study selection process, and three studies for meta-analysia. Overall, PEA showed significant efficacy in reducing IOP in patients, this encourages its clinical use in glaucoma as well as across different forms of eye disorders.
Collapse
Affiliation(s)
- Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Fabrizio Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Bonzanino M, Riolo M, Battaglini I, Perna M, De Mattei M. PEALut in the Dietary Management of Patients with Acute Ischemic Stroke: A Prospective Randomized Controlled Clinical Trial. J Clin Med 2024; 13:509. [PMID: 38256644 PMCID: PMC10816980 DOI: 10.3390/jcm13020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Acute ischemic stroke (AIS), which represents 87% of all strokes, is caused by reduced blood supply to the brain associated with a prolonged inflammatory process that exacerbates brain damage. The composite containing co-ultramicronized Palmitoylethanolamide and luteolin (PEALut) is known to promote the resolution of neuroinflammation, being a promising nutritional approach to contrast inflammatory processes occurring in AIS. This study included 60 patients affected by acute ischemic stroke and undergoing thrombolysis. PEALut 770 mg was administered to 30 patients, twice daily for 90 days, in addition to the standard therapy. Neurological deficit, independence in activities of daily living, disability and cognitive impairment were investigated. In all patients, the severity of AIS defined by the NIHSS score evolved from moderate to minor (p < 0.0001). Patients' independence in daily living activities and disability evaluated using BI and mRS showed a significant improvement over time, with a statistically significant difference in favor of PEALut-treated patients (p < 0.002 for BI, p < 0.0001 for mRS), who achieved also a marked improvement of cognitive function evaluated using MMSE and MoCA tests. PEALut proved to be a safe and effective treatment in addition to thrombolysis in the management of patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Massimo Bonzanino
- S. S. Stoke Unit, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| | - Marianna Riolo
- S. C. Neurologia, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| | - Iacopo Battaglini
- S. C. Neurologia, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| | - Marilisa Perna
- S. S. Stoke Unit, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| | - Marco De Mattei
- S. C. Neurologia, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| |
Collapse
|
7
|
Pinosanu LR, Wolff N, Olaru DG, Popa-Wagner A. Stem Cell Treatments in Preclinical Relevant Stroke Models. CURRENT HEALTH SCIENCES JOURNAL 2023; 49:487-494. [PMID: 38559835 PMCID: PMC10976206 DOI: 10.12865/chsj.49.04.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/11/2023] [Indexed: 04/04/2024]
Abstract
Since stroke has limited treatment options, an active search for new therapeutic approaches is required. Initial excitement of using cell-based therapies to stimulate recovery processes in the ischemic brain turned into a more measured perspective, acknowledging obstacles related to the unfavorable environments associated in part with aging. Given the predominance of stroke in older populations, evaluating the effectiveness of cell therapies in aged brain environments is essential and clinically relevant. Despite a common perception of the aged brain being resistant to regeneration, recent research with neural precursor cells and bone marrow-derived mesenchymal stem cells indicates that cell-based therapy can promote plasticity and remodeling in the aged rat brain. However, significant differences in the aged brain compared to the young brain, such as expedited progression of ischemic injury to brain infarction, decreased rate of endogenous neurogenesis, and delayed onset of neurological recovery, must be noted. The effectiveness of cell-based therapies may further be connected to age-related comorbidities such as diabetes or hyperlipidemia, potentially leading to maladaptive or impaired brain remodeling. These age-related factors need careful consideration in the clinical application of restorative therapies for stroke.
Collapse
Affiliation(s)
- Leonard Radu Pinosanu
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Nora Wolff
- University of Crete, School of Sciences, Faculty of Medicine, Heraklion, Crete, Greece
| | - Denissa Greta Olaru
- Department of Ophthalmology, University of Medicine and Pharmacy of Craiova, Romania
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging (ARES), University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
8
|
Huang R, Xu M, Guo W, Cheng M, Dong R, Tu J, Xu S, Zou C. Network pharmacology and experimental verification-based strategy for exploring the mechanisms of luteolin in the treatment of osteosarcoma. Cancer Cell Int 2023; 23:213. [PMID: 37749554 PMCID: PMC10521544 DOI: 10.1186/s12935-023-03046-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Luteolin is an active ingredient in various traditional Chinese medicines for the treatment of multiple tumors. However, the mechanisms of its inhibitory effect on osteosarcoma proliferation and metastasis remain unclear. PURPOSE To elucidate the anti-osteosarcoma mechanisms of luteolin based on network pharmacology and experimental verification. STUDY DESIGN Integrate network pharmacology predictions, scRNA-seq analysis, molecular docking, and experimental validation. METHODS Luteolin-related targets and osteosarcoma-associated targets were collected from several public databases. The luteolin against osteosarcoma targets were screened and a PPI network was constructed to identify the hub targets. The GO and KEGG enrichment of osteosarcoma-associated targets and luteolin against osteosarcoma targets were performed. And scRNA-seq analysis was performed to determine the distribution of the core target expression in OS tissues. Molecular docking, cell biological assays, and osteosarcoma orthotopic mouse model was performed to validate the inhibitory effect and mechanisms of luteolin on osteosarcoma proliferation and metastasis. RESULTS Network pharmacology showed that 251 luteolin against osteosarcoma targets and 8 hub targets including AKT1, ALB, CASP3, IL6, JUN, STAT3, TNF, and VEGFA, and the PI3K-AKT signaling pathway might play an important role in anti-osteosarcoma of luteolin. Analysis of public data revealed that AKT1, IL6, JUN, STAT3, TNF, and VEGFA expression in OS tissue was significantly higher than that in normal bones, and the diagnostic value of VEGFA for overall survival and metastasis was increased over time. scRNA-seq analysis revealed significantly higher expression of AKT1, STAT3, and VEGFA in MYC+ osteoblastic OS cells, especially in primary samples. Moreover, the docking activity between luteolin and the hub targets was excellent, as verified by molecular docking. Experimental results showed that luteolin could inhibit cell viability and significantly decrease the expression of AKT1, STAT3, IL6, TNF, and VEGFA, and luteolin could also inhibit osteosarcoma proliferation and metastasis in osteosarcoma orthotopic mouse model. CONCLUSION This study shows that luteolin may regulate multiple signaling pathways by targeting various genes like AKT1, STAT3, IL6, TNF, and VEGFA to inhibit osteosarcoma proliferation and metastasis.
Collapse
Affiliation(s)
- Renxuan Huang
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Mingxian Xu
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Weitang Guo
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Mingzhe Cheng
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Rui Dong
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Sciences, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| | - Jian Tu
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China
| | - Shao Xu
- Department of Stomatology, The Third Affiliated Hospital of Southern Medical University, No. 183, Zhongshan Road, Guangzhou, 510630, China.
| | - Changye Zou
- Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-Sen University, No. 58, 2nd Zhongshan Road, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Ri MH, Xing Y, Zuo HX, Li MY, Jin HL, Ma J, Jin X. Regulatory mechanisms of natural compounds from traditional Chinese herbal medicines on the microglial response in ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154889. [PMID: 37262999 DOI: 10.1016/j.phymed.2023.154889] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Development of clinically effective neuroprotective agents for stroke therapy is still a challenging task. Microglia play a critical role in brain injury and recovery after ischemic stroke. Traditional Chinese herbal medicines (TCHMs) are based on a unique therapeutic principle, have various formulas, and have long been widely used to treat stroke. Therefore, the active compounds in TCHMs and their underlying mechanisms of action are attracting increasing attention in the field of stroke drug development. PURPOSE To summarize the regulatory mechanisms of TCHM-derived natural compounds on the microglial response in animal models of ischemic stroke. METHODS We searched studies published until 10 April 2023 in the Web of Science, PubMed, and ScienceDirect using the following keywords: natural compounds, natural products or phytochemicals, traditional Chinese Medicine or Chinese herbal medicine, microglia, and ischemic stroke. This review was prepared according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analysis) guidelines. RESULTS Natural compounds derived from TCHMs can attenuate the M1 phenotype of microglia, which is involved in the detrimental inflammatory response, via inhibition of NF-κB, MAPKs, JAK/STAT, Notch, TLR4, P2X7R, CX3CR1, IL-17RA, the NLRP3 inflammasome, and pro-oxidant enzymes. Additionally, the neuroprotective response of microglia with the M2 phenotype can be enhanced by activating Nrf2/HO-1, PI3K/AKT, AMPK, PPARγ, SIRT1, CB2R, TREM2, nAChR, and IL-33/ST2. Several clinical trials showed that TCHM-derived natural compounds that regulate microglial responses have significant and safe therapeutic effects, but further well-designed clinical studies are needed. CONCLUSIONS Further research regarding the direct targets and potential pleiotropic or synergistic effects of natural compounds would provide a more reasonable approach for regulation of the microglial response with the possibility of successful stroke drug development.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
10
|
Franco GA, Interdonato L, Cordaro M, Cuzzocrea S, Di Paola R. Bioactive Compounds of the Mediterranean Diet as Nutritional Support to Fight Neurodegenerative Disease. Int J Mol Sci 2023; 24:7318. [PMID: 37108480 PMCID: PMC10139089 DOI: 10.3390/ijms24087318] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative disorders are a widespread cause of morbidity and mortality worldwide, characterized by neuroinflammation, oxidative stress, and neuronal depletion. They include selective malfunction and progressive loss of neurons, glial cells, and neural networks in the brain and spinal cord. There is an urgent need to develop new and more effective therapeutic strategies to combat these devastating diseases because, today, there is no treatment that can cure degenerative diseases; however, we have many symptomatic treatments. Current nutritional approaches are beginning to reflect a fundamental change in our understanding of health. The Mediterranean diet may have a protective effect on the neurodegenerative process because it is rich in antioxidants, fiber, and omega-3 polyunsaturated fatty acids. Increasing knowledge regarding the impact of diet on regulation at the genetic and molecular levels is changing the way we consider the role of nutrition, resulting in new dietary strategies. Natural products, thanks to their bioactive compounds, have recently undergone extensive exploration and study for their therapeutic potential for a variety of diseases. Targeting simultaneous multiple mechanisms of action and a neuroprotection approach with the diet could prevent cell death and restore function to damaged neurons. For these reasons, this review will be focused on the therapeutic potential of natural products and the associations between the Mediterranean-style diet (MD), neurodegenerative diseases, and markers and mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Gianluca Antonio Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
11
|
Versace V, Ortelli P, Dezi S, Ferrazzoli D, Alibardi A, Bonini I, Engl M, Maestri R, Assogna M, Ajello V, Pucks-Faes E, Saltuari L, Sebastianelli L, Kofler M, Koch G. Co-ultramicronized palmitoylethanolamide/luteolin normalizes GABA B-ergic activity and cortical plasticity in long COVID-19 syndrome. Clin Neurophysiol 2023; 145:81-88. [PMID: 36455453 PMCID: PMC9650483 DOI: 10.1016/j.clinph.2022.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/26/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Transcranial magnetic stimulation (TMS) studies showed that patients with cognitive dysfunction and fatigue after COVID-19 exhibit impaired cortical GABAB-ergic activity, as revealed by reduced long-interval intracortical inhibition (LICI). Aim of this study was to test the effects of co-ultramicronized palmitoylethanolamide/luteolin (PEA-LUT), an endocannabinoid-like mediator able to enhance GABA-ergic transmission and to reduce neuroinflammation, on LICI. METHODS Thirty-nine patients (26 females, mean age 49.9 ± 11.4 years, mean time from infection 296.7 ± 112.3 days) suffering from persistent cognitive difficulties and fatigue after mild COVID-19 were randomly assigned to receive either PEA-LUT 700 mg + 70 mg or PLACEBO, administered orally bid for eight weeks. The day before (PRE) and at the end of the treatment (POST), they underwent TMS protocols to assess LICI. We further evaluate short-latency afferent inhibition (SAI) and long-term potentiation (LTP)-like cortical plasticity. RESULTS Patients treated with PEA-LUT but not with PLACEBO showed a significant increase of LICI and LTP-like cortical plasticity. SAI remained unaffected. CONCLUSIONS Eight weeks of treatment with PEA-LUT restore GABAB activity and cortical plasticity in long Covid patients. SIGNIFICANCE This study confirms altered physiology of the motor cortex in long COVID-19 syndrome and indicates PEA-LUT as a candidate for the treatment of this post-viral condition.
Collapse
Affiliation(s)
- Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Italy.
| | - Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Italy
| | - Sabrina Dezi
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Italy
| | - Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Italy
| | - Alessia Alibardi
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Italy
| | - Ilenia Bonini
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Italy
| | - Michael Engl
- Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Italy
| | - Roberto Maestri
- Department of Biomedical Engineering, Scientific Institute of Montescano - IRCCS, Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Martina Assogna
- Experimental Neuropsychophysiology Lab, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Valentina Ajello
- Department of Cardiac Anesthesia, Tor Vergata University Hospital, Rome, Italy
| | | | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Italy
| | - Markus Kofler
- Department of Neurology, Hochzirl Hospital, Zirl, Austria
| | - Giacomo Koch
- Experimental Neuropsychophysiology Lab, Santa Lucia Foundation IRCCS, Rome, Italy,Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Ntalouka F, Tsirivakou A. Luteolin: A promising natural agent in management of pain in chronic conditions. FRONTIERS IN PAIN RESEARCH 2023; 4:1114428. [PMID: 36937566 PMCID: PMC10016360 DOI: 10.3389/fpain.2023.1114428] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
Pain due to chronic conditions is a frequent and insufficiently addressed problem. Current drug options for pain management (either in cases of chronic inflammatory conditions or neuropathy) do not adequately treat pain. Moreover, they are associated with important adverse events in long term use. Luteolin is a flavonoid widely present in the plant kingdom and its sources have been assembled in a comprehensive list of this paper. Luteolin has shown in several research studies a range of pharmacological properties; anti-inflammatory, antioxidant, neuroprotective, and analgesic. In this article, we summarize the effects and potential benefits from introducing luteolin as an adjuvant agent in established protocols for pain management. We review the most indicative in vivo and in vitro evidence of how luteolin can target the molecular pathways involved in pathogenesis of chronic inflammatory and neuropathic pain. The data reviewed strongly support luteolin's promising benefits in pain management and raise the need for further clinical trials that can establish its role in clinical practice.
Collapse
|
13
|
Baier A, Szyszka R. CK2 and protein kinases of the CK1 superfamily as targets for neurodegenerative disorders. Front Mol Biosci 2022; 9:916063. [PMID: 36275622 PMCID: PMC9582958 DOI: 10.3389/fmolb.2022.916063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Casein kinases are involved in a variety of signaling pathways, and also in inflammation, cancer, and neurological diseases. Therefore, they are regarded as potential therapeutic targets for drug design. Recent studies have highlighted the importance of the casein kinase 1 superfamily as well as protein kinase CK2 in the development of several neurodegenerative pathologies, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. CK1 kinases and their closely related tau tubulin kinases as well as CK2 are found to be overexpressed in the mammalian brain. Numerous substrates have been detected which play crucial roles in neuronal and synaptic network functions and activities. The development of new substances for the treatment of these pathologies is in high demand. The impact of these kinases in the progress of neurodegenerative disorders, their bona fide substrates, and numerous natural and synthetic compounds which are able to inhibit CK1, TTBK, and CK2 are discussed in this review.
Collapse
Affiliation(s)
- Andrea Baier
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Ryszard Szyszka
- Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Lublin, Poland
| |
Collapse
|
14
|
Hagan K, Varelas P, Zheng H. Endocannabinoid System of the Blood-Brain Barrier: Current Understandings and Therapeutic Potentials. Cannabis Cannabinoid Res 2022; 7:561-568. [PMID: 34918950 PMCID: PMC9587775 DOI: 10.1089/can.2021.0101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The endocannabinoid system (ECS) has been found at the blood-brain barrier (BBB), as Cannabinoid receptors were characterized in human brain microvascular endothelial cells and astrocytes. In several in vitro and in vivo studies, cannabinoids decreased BBB permeability and enhanced membrane integrity, which may be achieved through endothelial tight junctions and other mechanisms. These permeability regulation effects of cannabinoids suggested that the ECS may protect the brain by enhancing barrier integrity. Related questions about cannabinoid-drug interaction and drug distribution across the BBB are also raised. Specifically, can cannabinoids significantly reduce drug bioavailability to the brain? More in-depth and systematic investigations are needed to characterize and quantify these effects of cannabinoids on brain microvasculature physiopathology. Therefore, this review summarizes literatures from different disciplines to promote more research on assessing the therapeutic benefits and risks of using cannabinoids to protect BBB from dysfunctions or breakdown, and to avoid consequent brain damages due to inflammation, neurodegenerations, hemorrhage, ischemia, or other causes.
Collapse
Affiliation(s)
- Kofi Hagan
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | | | - HaiAn Zheng
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| |
Collapse
|
15
|
Di Stadio A, D’Ascanio L, Vaira LA, Cantone E, De Luca P, Cingolani C, Motta G, De Riu G, Vitelli F, Spriano G, De Vincentiis M, Camaioni A, La Mantia I, Ferreli F, Brenner MJ. Ultramicronized Palmitoylethanolamide and Luteolin Supplement Combined with Olfactory Training to Treat Post-COVID-19 Olfactory Impairment: A Multi-Center Double-Blinded Randomized Placebo- Controlled Clinical Trial. Curr Neuropharmacol 2022; 20:2001-2012. [PMID: 35450527 PMCID: PMC9886808 DOI: 10.2174/1570159x20666220420113513] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/23/2022] [Accepted: 04/09/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Olfactory training is the only evidence-based treatment for post-viral olfactory dysfunction. Smell disorders after SARS-CoV-2 infection have been attributed to neuroinflammatory events within the olfactory bulb and the central nervous system. Therefore, targeting neuroinflammation is one potential strategy for promoting recovery from post-COVID-19 chronic olfactory dysfunction. Palmitoylethanolamide and luteolin (PEA-LUT) are candidate antiinflammatory/ neuroprotective agents. OBJECTIVE To investigate recovery of olfactory function in patients treated with PEA-LUT oral supplements plus olfactory training versus olfactory training plus placebo. METHODS Multicenter double-blinded randomized placebo-controlled clinical trial was held. Eligible subjects had prior COVID-19 and persistent olfactory impairment >6 months after follow-up SARS-CoV-2 negative testing, without prior history of olfactory dysfunction or other sinonasal disorders. Participants were randomized to daily oral supplementation with ultramicronized PEA-LUT 770 mg plus olfactory training (intervention group) or olfactory training with placebo (control). Sniffin' Sticks assessments were used to test the patients at baseline and 90 days. RESULTS A total of 185 patients, including intervention (130) and control (55) were enrolled. The intervention group showed significantly greater improvement in olfactory threshold, discrimination, and identification scores compared to controls (p=0.0001). Overall, 92% of patients in the intervention group improved versus 42% of controls. Magnitude of recovery was significantly greater in the intervention group versus control (12.8 + 8.2 versus mean 3.2 + 3), with >10-fold higher prevalence of anosmia in control versus intervention groups at the 90-day endpoint. CONCLUSION Among individuals with olfactory dysfunction post-COVID-19, combining PEA-LUT with olfactory training resulted in greater recovery of smell than olfactory training alone.
Collapse
Affiliation(s)
- Arianna Di Stadio
- Address correspondence to this author at the University of Catania, Otolaryngology Department, Catania, Italy; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Topography of neurotrophins in the rat neocortex and their role in neuron apoptosis after experimental ischemic stroke. J Chem Neuroanat 2022; 124:102122. [PMID: 35718293 DOI: 10.1016/j.jchemneu.2022.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022]
Abstract
Neuronal loss due to apoptosis after ischemic injury depends on the trophic support of neurons and cytoprotective effects of neurotrophins (NTs). Different NTs may activate both pro- and antiapoptotic factors. Their distribution in the ischemic core (IC) and penumbra (IP) has been poorly studied. The available data on the localization of NTs in the ischemic brain are contradictory and depend to a certain degree on the pathogenetic model used. The distribution of NTs in different layers of the ischemic cortex is also largely unknown hindering our understanding of their exact effects and targets in different zones of the ischemic brain. We examined the immunolocalization of brain-derived neurotrophic factor (BDNF), neurotrophin-3, and glial cell line-derived neurotrophic factor (GDNF) in the parietal cortex using a rat model of ischemic stroke due to permanent occlusion of the middle cerebral artery. The spatial density of immunoreactive (IR) cells varied across the cortical layers and changed with time after ischemic injury. Their distribution in the IC differed considerably from that in the IP. The immunolocalization of neurotrophins in the contralateral hemisphere was similar to that in IP. We also studied the distribution of pro- and anti-apoptotic factors in IC and IP with and without intravenous BDNF administration. In the model without BDNF administration, the proportions of Bcl-2-, p53-, caspase-3-, and Mdm2-IR cells showed different dynamics during the ischemic period. In the model with BDNF administration, Mdm2 immunoreactivity was mainly observed in pyramidal cells of layers V/VI, and Bcl-2, in interneurons of layers II and III. The dynamics of p53 immunoreactivity was opposite to that of caspase-3 throughout the ischemic period. The present results suggest that after ischemic injury, 1) the number of neurotrophin-positive cells increases in the early ischemic period and decreases afterwards; 2) there is a close metabolic relationship between astrocytes and neurons contributing to their adaptation to ischemic conditions; 3) the IP borders undergo constant changes; 4) in the IP, neuronal loss occurs mainly by apoptotic pathway throughout the ischemic period; 5) BDNF may enhance considerably antiapoptotic mechanisms with a predominance of Mdm-2 activity in pyramidal neurons.
Collapse
|
17
|
Cifelli P, Ruffolo G, Ceccanti M, Cambieri C, Libonati L, Palma E, Inghilleri M. Classical and Unexpected Effects of Ultra-Micronized PEA in Neuromuscular Function. Biomolecules 2022; 12:biom12060758. [PMID: 35740883 PMCID: PMC9221058 DOI: 10.3390/biom12060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Recently, the endocannabinoid system has attracted growing attention from the scientific community for its involvement in homeostatic and pathological processes as they pertains to human physiology. Among the constituents of the endocannabinoid system, the molecule palmitoyl ethanolamide has particularly been studied for its ability to reduce several inflammatory processes involving the central nervous system. Here, we reviewed published literature and summarized the main targets of the palmitoyl ethanolamide, along with its unique possible mechanisms for restoring correct functioning of the central nervous system. Moreover, we have highlighted a less-known characteristic of palmitoyl ethanolamide, namely its ability to modulate the function of the neuromuscular junction by binding to acetylcholine receptors in different experimental conditions. Indeed, there are several studies that have highlighted how ultra-micronized palmitoyl ethanolamide is an interesting nutraceutical support for the treatment of pathological neuromuscular conditions, specifically when the normal activity of the acetylcholine receptor is altered. Although further multicentric clinical trials are needed to confirm the efficacy of ultra-micronized palmitoyl ethanolamide in improving symptoms of neuromuscular diseases, all the literature reviewed here strongly supports the ability of this endocannabinoid-like molecule to modulate the acetylcholine receptors thus resulting as a valid support for the treatment of human neuromuscular diseases.
Collapse
Affiliation(s)
- Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Correspondence: (P.C.); (M.I.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
- IRCCS San Raffaele Roma, 00163 Rome, Italy
| | - Marco Ceccanti
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Chiara Cambieri
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Laura Libonati
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
| | - Maurizio Inghilleri
- Department of Human Neuroscience, University of Rome Sapienza, 00185 Rome, Italy; (M.C.); (C.C.); (L.L.)
- Correspondence: (P.C.); (M.I.)
| |
Collapse
|
18
|
Facchinetti R, Valenza M, Gomiero C, Mancini GF, Steardo L, Campolongo P, Scuderi C. Co-Ultramicronized Palmitoylethanolamide/Luteolin Restores Oligodendrocyte Homeostasis via Peroxisome Proliferator-Activated Receptor-α in an In Vitro Model of Alzheimer's Disease. Biomedicines 2022; 10:1236. [PMID: 35740258 PMCID: PMC9219769 DOI: 10.3390/biomedicines10061236] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Oligodendrocytes are cells fundamental for brain functions as they form the myelin sheath and feed axons. They perform these critical functions thanks to the cooperation with other glial cells, mainly astrocytes. The astrocyte/oligodendrocyte crosstalk needs numerous mediators and receptors, such as peroxisome proliferator-activated receptors (PPARs). PPAR agonists promote oligodendrocyte precursor cells (OPCs) maturation in myelinating oligodendrocytes. In the Alzheimer's disease brain, deposition of beta-amyloid (Aβ) has been linked to several alterations, including astrogliosis and changes in OPCs maturation. However, very little is known about the molecular mechanisms. Here, we investigated for the first time the maturation of OPCs co-cultured with astrocytes in an in vitro model of Aβ1-42 toxicity. We also tested the potential beneficial effect of the anti-inflammatory and neuroprotective composite palmitoylethanolamide and luteolin (co-ultra PEALut), which is known to engage the isoform alfa of the PPARs. Our results show that Aβ1-42 triggers astrocyte reactivity and inflammation and reduces the levels of growth factors important for OPCs maturation. Oligodendrocytes indeed show low cell surface area and few arborizations. Co-ultra PEALut counteracts the Aβ1-42-induced inflammation and astrocyte reactivity preserving the morphology of co-cultured oligodendrocytes through a mechanism that in some cases involves PPAR-α. This is the first evidence of the negative effects exerted by Aβ1-42 on astrocyte/oligodendrocyte crosstalk and discloses a never-explored co-ultra PEALut ability in restoring oligodendrocyte homeostasis.
Collapse
Affiliation(s)
- Roberta Facchinetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | - Marta Valenza
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | | | - Giulia Federica Mancini
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Università Telematica Giustino Fortunato, 82100 Benevento, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| |
Collapse
|
19
|
Zhou G, Fu X, Wang L, Cao Y, Zhuang J, Hu J, Li Y, Xu C, Gao S, Shao A, Wang L. Palmitoylethanolamide ameliorates neuroinflammation via modulating PPAR-α to promote the functional outcome after intracerebral hemorrhage. Neurosci Lett 2022; 781:136648. [DOI: 10.1016/j.neulet.2022.136648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 01/23/2023]
|
20
|
Li R, Zhou Y, Zhang S, Li J, Zheng Y, Fan X. The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke. Eur J Pharmacol 2022; 914:174660. [PMID: 34863710 DOI: 10.1016/j.ejphar.2021.174660] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Increasing evidences suggest that inflammation plays a key role in the pathogenesis of stroke, a devastating disease second only to cardiac ischemia as a cause of death worldwide. Microglia are the first non-neuronal cells on the scene during the innate immune response to acute ischemic stroke. Microglia respond to acute brain injury by activating and developing classic M1-like (pro-inflammatory) or alternative M2-like (anti-inflammatory) phenotypes. M1 microglia produce pro-inflammatory cytokines to exacerbate neural death, astrocyte apoptosis, and blood brain barrier (BBB) disruption, while M2 microglia play the opposite role. NF-κB, a central regulator of the inflammatory response, was responsible for microglia M1 and M2 polarization. NF-κB p65 and p50 form a heterodimer to initiate a pro-inflammatory cytokine response, which enhances M1 activation and impair M2 response of microglia. TLR4, expressed on the surface of microglia, plays an important role in activating NF-κB, ultimately causing the M1 response of microglia. Therefore, modulation of microglial phenotypes via TLR4/NF-κB signaling pathway may be a promising therapeutic approach for ischemic stroke. Dietary (poly)phenols are present in various foods, which have shown promising protective effects on ischemic stroke. In vivo studies strongly suggest that many (poly)phenols have a pronounced impact on ischemic stroke, as demonstrated by lower neuroinflammation. Thus, this review focuses on the anti-inflammatory properties of dietary (poly)phenols and discusses their effects on the polarization of microglia through modulating TLR4/NF-κB signaling pathway in the ischemic stroke.
Collapse
Affiliation(s)
- Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jieying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yingyi Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
21
|
Colizzi M, Bortoletto R, Colli C, Bonomo E, Pagliaro D, Maso E, Di Gennaro G, Balestrieri M. Therapeutic effect of palmitoylethanolamide in cognitive decline: A systematic review and preliminary meta-analysis of preclinical and clinical evidence. Front Psychiatry 2022; 13:1038122. [PMID: 36387000 PMCID: PMC9650099 DOI: 10.3389/fpsyt.2022.1038122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive decline is believed to be associated with neurodegenerative processes involving excitotoxicity, oxidative damage, inflammation, and microvascular and blood-brain barrier dysfunction. Interestingly, research evidence suggests upregulated synthesis of lipid signaling molecules as an endogenous attempt to contrast such neurodegeneration-related pathophysiological mechanisms, restore homeostatic balance, and prevent further damage. Among these naturally occurring molecules, palmitoylethanolamide (PEA) has been independently associated with neuroprotective and anti-inflammatory properties, raising interest into the possibility that its supplementation might represent a novel therapeutic approach in supporting the body-own regulation of many pathophysiological processes potentially contributing to neurocognitive disorders. Here, we systematically reviewed all human and animal studies examining PEA and its biobehavioral correlates in neurocognitive disorders, finding 33 eligible outputs. Studies conducted in animal models of neurodegeneration indicate that PEA improves neurobehavioral functions, including memory and learning, by reducing oxidative stress and pro-inflammatory and astrocyte marker expression as well as rebalancing glutamatergic transmission. PEA was found to promote neurogenesis, especially in the hippocampus, neuronal viability and survival, and microtubule-associated protein 2 and brain-derived neurotrophic factor expression, while inhibiting mast cell infiltration/degranulation and astrocyte activation. It also demonstrated to mitigate β-amyloid-induced astrogliosis, by modulating lipid peroxidation, protein nytrosylation, inducible nitric oxide synthase induction, reactive oxygen species production, caspase3 activation, amyloidogenesis, and tau protein hyperphosphorylation. Such effects were related to PEA ability to indirectly activate cannabinoid receptors and modulate proliferator-activated receptor-α (PPAR-α) activity. Importantly, preclinical evidence suggests that PEA may act as a disease-modifying-drug in the early stage of a neurocognitive disorder, while its protective effect in the frank disorder may be less relevant. Limited human research suggests that PEA supplementation reduces fatigue and cognitive impairment, the latter being also meta-analytically confirmed in 3 eligible studies. PEA improved global executive function, working memory, language deficits, daily living activities, possibly by modulating cortical oscillatory activity and GABAergic transmission. There is currently no established cure for neurocognitive disorders but only treatments to temporarily reduce symptom severity. In the search for compounds able to protect against the pathophysiological mechanisms leading to neurocognitive disorders, PEA may represent a valid therapeutic option to prevent neurodegeneration and support endogenous repair processes against disease progression.
Collapse
Affiliation(s)
- Marco Colizzi
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Riccardo Bortoletto
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Chiara Colli
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Enrico Bonomo
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Daniele Pagliaro
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Elisa Maso
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianfranco Di Gennaro
- Department of Health Sciences, School of Medicine, University of Catanzaro Magna Graecia, Catanzaro, Italy
| | - Matteo Balestrieri
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
22
|
Dong R, Huang R, Shi X, Xu Z, Mang J. Exploration of the mechanism of luteolin against ischemic stroke based on network pharmacology, molecular docking and experimental verification. Bioengineered 2021; 12:12274-12293. [PMID: 34898370 PMCID: PMC8810201 DOI: 10.1080/21655979.2021.2006966] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 11/06/2022] Open
Abstract
Stroke is a leading cause of morbidity and mortality worldwide. As the most common type of stroke cases, treatment effectiveness is still limited despite intensive research. Recently, traditional Chinese medicine has attracted attention because of potential benefits for stroke treatment. Among these, luteolin, a natural plant flavonoid compound, offers neuroprotection following against ischemic stroke, although the specific mechanisms are unknown. Here we used network pharmacology, molecular docking, and experimental verification to explore the mechanisms whereby luteolin can benefit stroke recovery. The pharmacological and molecular properties of luteolin were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform. The potential targets of luteolin and ischemic stroke were collected from interrogating public databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed by Funrich and Database for Annotation, Visualization and Integrated Discovery respectively, a luteolin-target-pathway network constructed using Cytoscape, Autodock vina was used for molecular docking simulation with Discovery Studio was used to visualize and analyze the docked conformations. Lastly, we employed an in vitro model of stroke injury to evaluate the effects of luteolin on cell survival and expression of the putative targets. From 95 candidate luteolin target genes, our analysis identified six core targets . KEGG analysis of the candidate targets identified that luteolin provides therapeutic effects on stroke through TNF signaling and other pathways. Our experimental analyses confirmed the conclusions analyzed above. In summary, the molecular and pharmacological mechanisms of luteolin against stroke are indicated in our study from a systematic perspective.
Collapse
Affiliation(s)
- Rui Dong
- Department of Neurology, China-Japan Union Hospital of Jilin University
| | - Renxuan Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University
| | - Xiaohua Shi
- Department of Neurology, China-Japan Union Hospital of Jilin University
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University
| |
Collapse
|
23
|
Zhang T, Zhang S, Peng Y, Wang Y, Gao P, Hu Y, Wang Z, Noda M, Hiramatsu M, Liu J, Long J. Safflower leaf ameliorates cognitive impairment through moderating excessive astrocyte activation in APP/PS1 mice. Food Funct 2021; 12:11704-11716. [PMID: 34730571 DOI: 10.1039/d1fo01755a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In addition to beta-amyloid (Aβ) plaques and neurofibrillary tangles, Alzheimer's disease (AD) is typically triggered or accompanied by abnormal inflammation, oxidative stress and astrocyte activation. Safflower (Carthamus tinctorius L.) leaf, featuring functional ingredients, is a commonly consumed leafy vegetable. Whether and how dietary safflower leaf powder (SLP) ameliorates cognitive function in an AD mouse model has remained minimally explored. Therefore, we orally administered SLP to APP/PS1 transgenic mice to explore the neuroprotective effects of SLP in preventing AD progression. We found that SLP markedly improved cognitive impairment in APP/PS1 mice, as indicated by the water maze test. We further demonstrated that SLP treatment ameliorated inflammation, oxidative stress and excessive astrocyte activation. Further investigation indicated that SLP decreased the Aβ burden in APP/PS1 mice by mediating excessive astrocyte activation. Our study suggests that safflower leaf is possibly a promising, cognitively beneficial food for preventing and alleviating AD-related dementia.
Collapse
Affiliation(s)
- Tiantian Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Shuangxi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Yunhua Peng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Yongyao Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Peipei Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Yachong Hu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Midori Hiramatsu
- Tohoku University of Community Service and Science, 3-5-1 Iimoriyama, Sakata, Yamageta 998-8580, Japan
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
24
|
Brotini S. Palmitoylethanolamide/Luteolin as Adjuvant Therapy to Improve an Unusual Case of Camptocormia in a Patient with Parkinson's Disease: A Case Report. INNOVATIONS IN CLINICAL NEUROSCIENCE 2021; 18:12-14. [PMID: 35096476 PMCID: PMC8794485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Camptocormia is a complication in which the spine bends forward while walking or standing. This axial postural deformity is common in Parkinson's disease (PD), with prevalence ranging from 3 to 18 percent; it is generally associated with a more severe disease and longer duration of symptoms. Camptocormia in PD typically responds poorly to levodopa. Other treatment options are limited and are often not effective. CASE PRESENTATION We describe an unusual case of PD presenting with camptocormia that only emerged during the "off" state of PD. The patient was treated with classical dopaminergic anti-Parkinson's therapy plus a new formulation of palmitoylethanolamide co-ultramicronized with luteolin (Lut) termed um-PEALut. We observed that the addition of um-PEALut to acute treatment with carbidopa/levodopa resulted in improved dyskinesia and reduced camptocormia. The patient continued treatment for four months, resulting in a complete resolution of leg and trunk dyskinesia and a marked reduction in the onset of camptocormia during the "off" states. CONCLUSION um-PEALut shows potential as an efficacious adjuvant therapy for patients with PD receiving carbidopa/levodopa to treat both dyskinesia and camptocormia in acute and chronic fashion.
Collapse
Affiliation(s)
- Stefania Brotini
- Dr. Brotini is with the Movement Disorder Center, Department of Neurology, San Giuseppe Hospital in Empoli, Florence, Italy
| |
Collapse
|
25
|
Successful and Unsuccessful Brain Aging in Pets: Pathophysiological Mechanisms behind Clinical Signs and Potential Benefits from Palmitoylethanolamide Nutritional Intervention. Animals (Basel) 2021; 11:ani11092584. [PMID: 34573549 PMCID: PMC8470385 DOI: 10.3390/ani11092584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Cognitive dysfunction syndrome is a common yet underreported neurodegenerative disorder of elderly dogs and cats and a natural model of human Alzheimer’s disease. The increasingly expanding life expectancy means a larger proportion of affected animals in the coming decades. Although far from being curative, available treatments are more effective the sooner they are started. Educating veterinary practitioners and owners in the early recognition of age-related cognitive dysfunction is thus mandatory. By shedding light on the mechanism underlying the disease, novel and more effective approaches might be developed. Emerging evidence shows that successful and unsuccessful brain aging share a common underlying mechanism that is neuroinflammation. This process involves astrocytes, microglia, and mast cells and has a restorative homeostatic intent. However, for reasons not fully elucidated yet, neuroinflammation can also exert detrimental consequences substantially contributing to neurodegeneration. Here we summarize the evidence accumulated so far on the pathogenic role of neuroinflammation in the onset and progression of age-related neurodegenerative disorders, such as Alzheimer’s disease. The potential benefit of palmitoylethanolamide dietary intervention in rebalancing neuroinflammation and exerting neuroprotection is also discussed. Abstract Canine and feline cognitive dysfunction syndrome is a common neurodegenerative disorder of old age and a natural model of human Alzheimer’s disease. With the unavoidable expanding life expectancy, an increasing number of small animals will be affected. Although there is no cure, early detection and intervention are vitally important to delay cognitive decline. Knowledge of cellular and molecular mechanisms underlying disease onset and progression is an equally decisive factor for developing effective approaches. Uncontrolled neuroinflammation, orchestrated in the central nervous system mainly by astrocytes, microglia, and resident mast cells, is currently acknowledged as a hallmark of neurodegeneration. This has prompted scientists to find a way to rebalance the altered crosstalk between these cells. In this context, great emphasis has been given to the role played by the expanded endocannabinoid system, i.e., endocannabinoidome, because of its prominent role in physiological and pathological neuroinflammation. Within the endocannabinoidome, great attention has been paid to palmitoylethanolamide due to its safe and pro-homeostatic effects. The availability of new ultramicronized formulations highly improved the oral bioavailability of palmitoylethanolamide, paving the way to its dietary use. Ultramicronized palmitoylethanolamide has been repeatedly tested in animal models of age-related neurodegeneration with promising results. Data accumulated so far suggest that supplementation with ultramicronized palmitoylethanolamide helps to accomplish successful brain aging.
Collapse
|
26
|
Campolo M, Crupi R, Cordaro M, Cardali SM, Ardizzone A, Casili G, Scuderi SA, Siracusa R, Esposito E, Conti A, Cuzzocrea S. Co-Ultra PEALut Enhances Endogenous Repair Response Following Moderate Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22168717. [PMID: 34445417 PMCID: PMC8395716 DOI: 10.3390/ijms22168717] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to assess the neuro-regenerative properties of co-ultramicronized PEALut (Glialia®), composed of palmitoylethanolamide (PEA) and the flavonoid luteolin (Lut), in an in vivo model of traumatic brain injury (TBI) and patients affected by moderate TBI. An increase in neurogenesis was seen in the mice at 72 h and 7 d after TBI. The co-ultra PEALut treatment helped the neuronal reconstitution process to restore the basal level of both novel and mature neurons; moreover, it induced a significant upregulation of the neurotrophic factors, which ultimately led to progress in terms of memory recall during behavioral testing. Moreover, our preliminary findings in a clinical trial suggested that Glialia® treatment facilitated neural recovery on working memory. Thus, co-ultra PEALut (Glialia®) could represent a valuable therapeutic agent for intensifying the endogenous repair response in order to better treat TBI.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | | | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Alfredo Conti
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO 63104, USA
- Correspondence: ; Tel.: +39-090-6765208
| |
Collapse
|
27
|
Facci L, Barbierato M, Fusco M, Giusti P, Zusso M. Co-Ultramicronized Palmitoylethanolamide/Luteolin-Induced Oligodendrocyte Precursor Cell Differentiation is Associated With Tyro3 Receptor Upregulation. Front Pharmacol 2021; 12:698133. [PMID: 34276381 PMCID: PMC8277943 DOI: 10.3389/fphar.2021.698133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Remyelination in patients with multiple sclerosis frequently fails, especially in the chronic phase of the disease promoting axonal and neuronal degeneration and progressive disease disability. Drug-based therapies able to promote endogenous remyelination capability of oligodendrocytes are thus emerging as primary approaches to multiple sclerosis. We have recently reported that the co-ultramicronized composite of palmitoylethanolamide and the flavonoid luteolin (PEALut) promotes oligodendrocyte precursor cell (OPC) maturation without affecting proliferation. Since TAM receptor signaling has been reported to be important modulator of oligodendrocyte survival, we here evaluated the eventual involvement of TAM receptors in PEALut-induced OPC maturation. The mRNAs related to TAM receptors -Tyro3, Axl, and Mertk- were all present at day 2 in vitro. However, while Tyro3 gene expression significantly increased upon cell differentiation, Axl and Mertk did not change during the first week in vitro. Tyro3 gene expression developmental pattern resembled that of MBP myelin protein. In OPCs treated with PEALut the developmental increase of Tyro3 mRNA was significantly higher as compared to vehicle while was reduced gene expression related to Axl and Mertk. Rapamycin, an inhibitor of mTOR, prevented oligodendrocyte growth differentiation and myelination. PEALut, administered to the cultures 30 min after rapamycin, prevented the alteration of mRNA basal expression of the TAM receptors as well as the expression of myelin proteins MBP and CNPase. Altogether, data obtained confirm that PEALut promotes oligodendrocyte differentiation as shown by the increase of MBP and CNPase and Tyro3 mRNAs as well as CNPase and Tyro3 immunostainings. The finding that these effects are reduced when OPCs are exposed to rapamycin suggests an involvement of mTOR signaling in PEALut effects.
Collapse
Affiliation(s)
- Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Mariella Fusco
- Scientific Information and Documentation Center, Epitech Group SpA, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.,IRCCS San Camillo Hospital, Venice, Italy
| |
Collapse
|
28
|
Kasatkina LA, Rittchen S, Sturm EM. Neuroprotective and Immunomodulatory Action of the Endocannabinoid System under Neuroinflammation. Int J Mol Sci 2021; 22:ijms22115431. [PMID: 34063947 PMCID: PMC8196612 DOI: 10.3390/ijms22115431] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Endocannabinoids (eCBs) are lipid-based retrograde messengers with a relatively short half-life that are produced endogenously and, upon binding to the primary cannabinoid receptors CB1/2, mediate multiple mechanisms of intercellular communication within the body. Endocannabinoid signaling is implicated in brain development, memory formation, learning, mood, anxiety, depression, feeding behavior, analgesia, and drug addiction. It is now recognized that the endocannabinoid system mediates not only neuronal communications but also governs the crosstalk between neurons, glia, and immune cells, and thus represents an important player within the neuroimmune interface. Generation of primary endocannabinoids is accompanied by the production of their congeners, the N-acylethanolamines (NAEs), which together with N-acylneurotransmitters, lipoamino acids and primary fatty acid amides comprise expanded endocannabinoid/endovanilloid signaling systems. Most of these compounds do not bind CB1/2, but signal via several other pathways involving the transient receptor potential cation channel subfamily V member 1 (TRPV1), peroxisome proliferator-activated receptor (PPAR)-α and non-cannabinoid G-protein coupled receptors (GPRs) to mediate anti-inflammatory, immunomodulatory and neuroprotective activities. In vivo generation of the cannabinoid compounds is triggered by physiological and pathological stimuli and, specifically in the brain, mediates fine regulation of synaptic strength, neuroprotection, and resolution of neuroinflammation. Here, we review the role of the endocannabinoid system in intrinsic neuroprotective mechanisms and its therapeutic potential for the treatment of neuroinflammation and associated synaptopathy.
Collapse
Affiliation(s)
- Ludmila A. Kasatkina
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Sonja Rittchen
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
| | - Eva M. Sturm
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (L.A.K.); (S.R.)
- Correspondence:
| |
Collapse
|
29
|
Clayton P, Hill M, Bogoda N, Subah S, Venkatesh R. Palmitoylethanolamide: A Natural Compound for Health Management. Int J Mol Sci 2021; 22:5305. [PMID: 34069940 PMCID: PMC8157570 DOI: 10.3390/ijms22105305] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023] Open
Abstract
All nations which have undergone a nutrition transition have experienced increased frequency and falling latency of chronic degenerative diseases, which are largely driven by chronic inflammatory stress. Dietary supplementation is a valid strategy to reduce the risk and severity of such disorders. Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator with extensively documented anti-inflammatory, analgesic, antimicrobial, immunomodulatory and neuroprotective effects. It is well tolerated and devoid of side effects in animals and humans. PEA's actions on multiple molecular targets while modulating multiple inflammatory mediators provide therapeutic benefits in many applications, including immunity, brain health, allergy, pain modulation, joint health, sleep and recovery. PEA's poor oral bioavailability, a major obstacle in early research, has been overcome by advanced delivery systems now licensed as food supplements. This review summarizes the functionality of PEA, supporting its use as an important dietary supplement for lifestyle management.
Collapse
Affiliation(s)
- Paul Clayton
- Institute of Food, Brain and Behaviour, Beaver House, 23-28 Hythe Bridge Street, Oxford OX1 2EP, UK
| | - Mariko Hill
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | - Nathasha Bogoda
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | - Silma Subah
- Gencor Pacific Limited, Discovery Bay, Lantau Island, New Territories, Hong Kong, China; (M.H.); (N.B.); (S.S.)
| | | |
Collapse
|
30
|
Alternative Targets to Fight Alzheimer's Disease: Focus on Astrocytes. Biomolecules 2021; 11:biom11040600. [PMID: 33921556 PMCID: PMC8073475 DOI: 10.3390/biom11040600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/18/2022] Open
Abstract
The available treatments for patients affected by Alzheimer’s disease (AD) are not curative. Numerous clinical trials have failed during the past decades. Therefore, scientists need to explore new avenues to tackle this disease. In the present review, we briefly summarize the pathological mechanisms of AD known so far, based on which different therapeutic tools have been designed. Then, we focus on a specific approach that is targeting astrocytes. Indeed, these non-neuronal brain cells respond to any insult, injury, or disease of the brain, including AD. The study of astrocytes is complicated by the fact that they exert a plethora of homeostatic functions, and their disease-induced changes could be context-, time-, and disease specific. However, this complex but fervent area of research has produced a large amount of data targeting different astrocytic functions using pharmacological approaches. Here, we review the most recent literature findings that have been published in the last five years to stimulate new hypotheses and ideas to work on, highlighting the peculiar ability of palmitoylethanolamide to modulate astrocytes according to their morpho-functional state, which ultimately suggests a possible potential disease-modifying therapeutic approach for AD.
Collapse
|
31
|
della Rocca G, Gamba D. Chronic Pain in Dogs and Cats: Is There Place for Dietary Intervention with Micro-Palmitoylethanolamide? Animals (Basel) 2021; 11:952. [PMID: 33805489 PMCID: PMC8065429 DOI: 10.3390/ani11040952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
The management of chronic pain is an integral challenge of small animal veterinary practitioners. Multiple pharmacological agents are usually employed to treat maladaptive pain including opiates, non-steroidal anti-inflammatory drugs, anticonvulsants, antidepressants, and others. In order to limit adverse effects and tolerance development, they are often combined with non-pharmacologic measures such as acupuncture and dietary interventions. Accumulating evidence suggests that non-neuronal cells such as mast cells and microglia play active roles in the pathogenesis of maladaptive pain. Accordingly, these cells are currently viewed as potential new targets for managing chronic pain. Palmitoylethanolamide is an endocannabinoid-like compound found in several food sources and considered a body's own analgesic. The receptor-dependent control of non-neuronal cells mediates the pain-relieving effect of palmitoylethanolamide. Accumulating evidence shows the anti-hyperalgesic effect of supplemented palmitoylethanolamide, especially in the micronized and co-micronized formulations (i.e., micro-palmitoylethanolamide), which allow for higher bioavailability. In the present paper, the role of non-neuronal cells in pain signaling is discussed and a large number of studies on the effect of palmitoylethanolamide in inflammatory and neuropathic chronic pain are reviewed. Overall, available evidence suggests that there is place for micro-palmitoylethanolamide in the dietary management of chronic pain in dogs and cats.
Collapse
Affiliation(s)
- Giorgia della Rocca
- Department of Veterinary Medicine, Centro di Ricerca sul Dolore Animale (CeRiDA), Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Davide Gamba
- Operational Unit of Anesthesia, Centro Veterinario Gregorio VII, 00165 Roma, Italy;
- Freelance, DG Vet Pain Therapy, 24124 Bergamo, Italy
| |
Collapse
|
32
|
Kempuraj D, Thangavel R, Kempuraj DD, Ahmed ME, Selvakumar GP, Raikwar SP, Zaheer SA, Iyer SS, Govindarajan R, Chandrasekaran PN, Zaheer A. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. Biofactors 2021; 47:190-197. [PMID: 33098588 DOI: 10.1002/biof.1687] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022]
Abstract
Neuroinflammation leads to neurodegeneration, cognitive defects, and neurodegenerative disorders. Neurotrauma/traumatic brain injury (TBI) can cause activation of glial cells, neurons, and neuroimmune cells in the brain to release neuroinflammatory mediators. Neurotrauma leads to immediate primary brain damage (direct damage), neuroinflammatory responses, neuroinflammation, and late secondary brain damage (indirect) through neuroinflammatory mechanism. Secondary brain damage leads to chronic inflammation and the onset and progression of neurodegenerative diseases. Currently, there are no effective and specific therapeutic options to treat these brain damages or neurodegenerative diseases. Flavone luteolin is an important natural polyphenol present in several plants that show anti-inflammatory, antioxidant, anticancer, cytoprotective, and macrophage polarization effects. In this short review article, we have reviewed the neuroprotective effects of luteolin in neurotrauma and neurodegenerative disorders and pathways involved in this mechanism. We have collected data for this study from publications in the PubMed using the keywords luteolin and mast cells, neuroinflammation, neurodegenerative diseases, and TBI. Recent reports suggest that luteolin suppresses systemic and neuroinflammatory responses in Coronavirus disease 2019 (COVID-19). Studies have shown that luteolin exhibits neuroprotective effects through various mechanisms, including suppressing immune cell activation, such as mast cells, and inflammatory mediators released from these cells. In addition, luteolin can suppress neuroinflammatory response, activation of microglia and astrocytes, oxidative stress, neuroinflammation, and the severity of neuroinflammatory diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and TBI pathogenesis. In conclusion, luteolin can improve cognitive decline and enhance neuroprotection in neurodegenerative diseases, TBI, and stroke.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, Missouri, USA
| | - Ramasamy Thangavel
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, Missouri, USA
| | - Deepak D Kempuraj
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- David H. Hickman High School, Columbia Public Schools, Columbia, Missouri, USA
| | - Mohammad Ejaz Ahmed
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, Missouri, USA
| | - Govindhasamy Pushpavathi Selvakumar
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, Missouri, USA
| | - Sudhanshu P Raikwar
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, Missouri, USA
| | - Smita A Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | - Shankar S Iyer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, Missouri, USA
| | - Raghav Govindarajan
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
| | | | - Asgar Zaheer
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- The Center for Translational Neuroscience, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Harry S. Truman Memorial Veterans Hospital, U.S. Department of Veterans Affairs, Columbia, Missouri, USA
| |
Collapse
|
33
|
Parrella E, Gussago C, Porrini V, Benarese M, Pizzi M. From Preclinical Stroke Models to Humans: Polyphenols in the Prevention and Treatment of Stroke. Nutrients 2020; 13:nu13010085. [PMID: 33383852 PMCID: PMC7823436 DOI: 10.3390/nu13010085] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Polyphenols are an important family of molecules of vegetal origin present in many medicinal and edible plants, which represent important alimentary sources in the human diet. Polyphenols are known for their beneficial health effects and have been investigated for their potential protective role against various pathologies, including cancer, brain dysfunctions, cardiovascular diseases and stroke. The prevention of stroke promoted by polyphenols relies mainly on their effect on cardio- and cerebrovascular systems. However, a growing body of evidence from preclinical models of stroke points out a neuroprotective role of these molecules. Notably, in many preclinical studies, the polyphenolic compounds were effective also when administered after the stroke onset, suggesting their possible use in promoting recovery of patients suffering from stroke. Here, we review the effects of the major polyphenols in cellular and in vivo models of both ischemic and hemorrhagic stroke in immature and adult brains. The results from human studies are also reported.
Collapse
|
34
|
Limanaqi F, Biagioni F, Mastroiacovo F, Polzella M, Lazzeri G, Fornai F. Merging the Multi-Target Effects of Phytochemicals in Neurodegeneration: From Oxidative Stress to Protein Aggregation and Inflammation. Antioxidants (Basel) 2020; 9:antiox9101022. [PMID: 33092300 PMCID: PMC7589770 DOI: 10.3390/antiox9101022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Wide experimental evidence has been provided in the last decade concerning the neuroprotective effects of phytochemicals in a variety of neurodegenerative disorders. Generally, the neuroprotective effects of bioactive compounds belonging to different phytochemical classes are attributed to antioxidant, anti-aggregation, and anti-inflammatory activity along with the restoration of mitochondrial homeostasis and targeting alterations of cell-clearing systems. Far from being independent, these multi-target effects represent interconnected events that are commonly implicated in the pathogenesis of most neurodegenerative diseases, independently of etiology, nosography, and the specific misfolded proteins being involved. Nonetheless, the increasing amount of data applying to a variety of neurodegenerative disorders joined with the multiple effects exerted by the wide variety of plant-derived neuroprotective agents may rather confound the reader. The present review is an attempt to provide a general guideline about the most relevant mechanisms through which naturally occurring agents may counteract neurodegeneration. With such an aim, we focus on some popular phytochemical classes and bioactive compounds as representative examples to design a sort of main highway aimed at deciphering the most relevant protective mechanisms which make phytochemicals potentially useful in counteracting neurodegeneration. In this frame, we emphasize the potential role of the cell-clearing machinery as a kernel in the antioxidant, anti-aggregation, anti-inflammatory, and mitochondrial protecting effects of phytochemicals.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
| | - Federica Mastroiacovo
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
| | - Maico Polzella
- Aliveda Laboratories, Viale Karol Wojtyla 19, 56042 Crespina Lorenzana, Italy;
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Correspondence: (G.L.); (F.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
- Correspondence: (G.L.); (F.F.)
| |
Collapse
|
35
|
Lunardelli ML, Crupi R, Siracusa R, Cocuzza G, Cordaro M, Martini E, Impellizzeri D, Di Paola R, Cuzzocrea S. Co-ultraPEALut: Role in Preclinical and Clinical Delirium Manifestations. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:530-554. [PMID: 31244434 DOI: 10.2174/1871527318666190617162041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Delirium is a disorder in awareness, attention and cognition. Pathophysiologically it is a response to stress. Postoperative delirium (POD) is a usual complication in aged patients following hip fracture surgery. Neuroinflammation is an important factor linked with the progress of POD. Though there are no efficient cures for delirium the endocannabinoid system may have a role in neuropsychiatric disorders. OBJECTIVE Therefore, we examined the effects of co-ultramicronized PEALut (co-ultraPEALut) in the LPS murine model of delirium and in elderly hip fractured patients. METHODS In the preclinical study, mice were injected intraperitoneally (i.p.) with Escherichia coli LPS (10 mg/kg). Co-ultraPEALut (1 mg/kg o.s.) was administered 1h before LPS injection or 1h and 6h after LPS injection or 1h before LPS injection and 1h and 6h after LPS. In the clinical study, the effects of Glialia® (co-ultramicronized 700 mg PEA + 70 mg luteolin) administration was evaluated in elderly hip fractured patients with an interventional, randomized, single-blind, monocentric study. RESULTS Administration of co-ultraPEALut to LPS-challenged mice ameliorated cognitive dysfunctions and locomotor activity; moreover, it reduced inflammation and apoptosis, while stimulating antioxidant response and limiting the loss of neurotrophins. In the clinical study, the results obtained demonstrated that administration of Glialia® to these surgical patients prevented the onset of POD and attenuated symptom intensity and their duration. CONCLUSION Therefore, the results obtained enhanced the idea that co-ultraPEALut may be a potential treatment to control cognitive impairment and the inflammatory and oxidative processes associated with delirium.
Collapse
Affiliation(s)
- Maria Lia Lunardelli
- Geriatric Unit - Orthogeriatric Ward, Universitary Sant'Orsola Policlinic Bologna, Bologna, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Giorgio Cocuzza
- Geriatric Unit - Orthogeriatric Ward, Universitary Sant'Orsola Policlinic Bologna, Bologna, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Emilio Martini
- Geriatric Unit - Orthogeriatric Ward, Universitary Sant'Orsola Policlinic Bologna, Bologna, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy.,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
36
|
Looking for a Treatment for the Early Stage of Alzheimer's Disease: Preclinical Evidence with Co-Ultramicronized Palmitoylethanolamide and Luteolin. Int J Mol Sci 2020; 21:ijms21113802. [PMID: 32471239 PMCID: PMC7312730 DOI: 10.3390/ijms21113802] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND At the earliest stage of Alzheimer's disease (AD), although patients are still asymptomatic, cerebral alterations have already been triggered. In addition to beta amyloid (Aβ) accumulation, both glial alterations and neuroinflammation have been documented at this stage. Starting treatment at this prodromal AD stage could be a valuable therapeutic strategy. AD requires long-term care; therefore, only compounds with a high safety profile can be used, such as the new formulation containing palmitoylethanolamide and luteolin (co-ultra PEALut) already approved for human use. Therefore, we investigated it in an in vivo pharmacological study that focused on the prodromal stage of AD. METHODS We tested the anti-inflammatory and neuroprotective effects of co-ultra PEALut (5 mg/Kg) administered for 14 days in rats that received once, 5 µg Aβ(1-42) into the hippocampus. RESULTS Glial activation and elevated levels of proinflammatory mediators were observed in Aβ-infused rats. Early administration of co-ultra PEALut prevented the Aβ-induced astrogliosis and microgliosis, the upregulation in gene expression of pro-inflammatory cytokines and enzymes, as well as the reduction of mRNA levels BDNF and GDNF. Our findings also highlight an important neuroprotective effect of co-ultra PEALut treatment, which promoted neuronal survival. CONCLUSIONS Our results reveal the presence of cellular and molecular modifications in the prodromal stage of AD. Moreover, the data presented here demonstrate the ability of co-ultra PEALut to normalize such Aβ-induced alterations, suggesting it as a valuable therapeutic strategy.
Collapse
|
37
|
Crupi R, Cordaro M, Cuzzocrea S, Impellizzeri D. Management of Traumatic Brain Injury: From Present to Future. Antioxidants (Basel) 2020; 9:antiox9040297. [PMID: 32252390 PMCID: PMC7222188 DOI: 10.3390/antiox9040297] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
TBI (traumatic brain injury) is a major cause of death among youth in industrialized societies. Brain damage following traumatic injury is a result of direct and indirect mechanisms; indirect or secondary injury involves the initiation of an acute inflammatory response, including the breakdown of the blood–brain barrier (BBB), brain edema, infiltration of peripheral blood cells, and activation of resident immunocompetent cells, as well as the release of numerous immune mediators such as interleukins and chemotactic factors. TBI can cause changes in molecular signaling and cellular functions and structures, in addition to tissue damage, such as hemorrhage, diffuse axonal damages, and contusions. TBI typically disturbs brain functions such as executive actions, cognitive grade, attention, memory data processing, and language abilities. Animal models have been developed to reproduce the different features of human TBI, better understand its pathophysiology, and discover potential new treatments. For many years, the first approach to manage TBI has been treatment of the injured tissue with interventions designed to reduce the complex secondary-injury cascade. Several studies in the literature have stressed the importance of more closely examining injuries, including endothelial, microglia, astroglia, oligodendroglia, and precursor cells. Significant effort has been invested in developing neuroprotective agents. The aim of this work is to review TBI pathophysiology and existing and potential new therapeutic strategies in the management of inflammatory events and behavioral deficits associated with TBI.
Collapse
Affiliation(s)
- Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy;
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98100 Messina, Italy;
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, Messina University, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy;
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO 63104, USA
- Correspondence: ; Tel.: +390-906-765-208
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, Messina University, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
38
|
Cordaro M, Cuzzocrea S, Crupi R. An Update of Palmitoylethanolamide and Luteolin Effects in Preclinical and Clinical Studies of Neuroinflammatory Events. Antioxidants (Basel) 2020; 9:antiox9030216. [PMID: 32150935 PMCID: PMC7139331 DOI: 10.3390/antiox9030216] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
The inflammation process represents of a dynamic series of phenomena that manifest themselves with an intense vascular reaction. Neuroinflammation is a reply from the central nervous system (CNS) and the peripheral nervous system (PNS) to a changed homeostasis. There are two cell systems that mediate this process: the glia of the CNS and the lymphocites, monocytes, and macrophages of the hematopoietic system. In both the peripheral and central nervous systems, neuroinflammation plays an important role in the pathogenesis of neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases, and in neuropsychiatric illnesses, such as depression and autism spectrum disorders. The resolution of neuroinflammation is a process that allows for inflamed tissues to return to homeostasis. In this process the important players are represented by lipid mediators. Among the naturally occurring lipid signaling molecules, a prominent role is played by the N-acylethanolamines, namely N-arachidonoylethanolamine and its congener N-palmitoylethanolamine, which is also named palmitoylethanolamide or PEA. PEA possesses a powerful neuroprotective and anti-inflammatory power but has no antioxidant effects per se. For this reason, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treating neuroinflammation. The aim of this review is to discuss the role of ultramicronized PEA and co-ultramicronized PEA with luteolin in several neurological diseases using preclinical and clinical approaches.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98100 Messina, Italy;
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy;
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO 63103, USA
- Correspondence: ; Tel.: +390-906-765-208
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via F. Stagno D’Alcontres 31, 98166 Messina, Italy;
| |
Collapse
|
39
|
Tan X, Yang Y, Xu J, Zhang P, Deng R, Mao Y, He J, Chen Y, Zhang Y, Ding J, Li H, Shen H, Li X, Dong W, Chen G. Luteolin Exerts Neuroprotection via Modulation of the p62/Keap1/Nrf2 Pathway in Intracerebral Hemorrhage. Front Pharmacol 2020; 10:1551. [PMID: 32038239 PMCID: PMC6985769 DOI: 10.3389/fphar.2019.01551] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Upregulation of neuronal oxidative stress is involved in the progression of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). In this study, we investigated the potential effects and underlying mechanisms of luteolin on ICH-induced SBI. Autologous blood and oxyhemoglobin (OxyHb) were used to establish in vivo and in vitro models of ICH, respectively. Luteolin treatment effectively alleviated brain edema and ameliorated neurobehavioral dysfunction and memory loss in vivo. Also, in vivo, we found that luteolin promoted the activation of the sequestosome 1 (p62)/kelch‐like enoyl-coenzyme A hydratase (ECH)‐associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by enhancing autophagy and increasing the translocation of Nrf2 to the nucleus. Meanwhile, luteolin inhibited the ubiquitination of Nrf2 and increased the expression levels of downstream antioxidant proteins, such as heme oxygenase-1 (HO-1) and reduced nicotinamide adenine dinucleotide phosphate (NADPH): quinine oxidoreductase 1 (NQO1). This effect of luteolin was also confirmed in vitro, which was reversed by the autophagy inhibitor, chloroquine (CQ). Additionally, we found that luteolin inhibited the production of neuronal mitochondrial superoxides (MitoSOX) and alleviated neuronal mitochondrial injury in vitro, as indicated via tetrachloro-tetraethylbenzimidazol carbocyanine-iodide (JC-1) staining and MitoSOX staining. Taken together, our findings demonstrate that luteolin enhances autophagy and anti-oxidative processes in both in vivo and in vitro models of ICH, and that activation of the p62-Keap1-Nrf2 pathway, is involved in such luteolin-induced neuroprotection. Hence, luteolin may represent a promising candidate for the treatment of ICH-induced SBI.
Collapse
Affiliation(s)
- Xin Tan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Yang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianguo Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiguang Mao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia He
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yibin Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
40
|
Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 2019; 16:9-29. [DOI: 10.1038/s41582-019-0284-z] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
|
41
|
Chen Y, Zhang L, Gong X, Gong H, Cheng R, Qiu F, Zhong X, Huang Z. Iridoid glycosides from Radix Scrophulariae attenuates focal cerebral ischemia‑reperfusion injury via inhibiting endoplasmic reticulum stress‑mediated neuronal apoptosis in rats. Mol Med Rep 2019; 21:131-140. [PMID: 31746404 PMCID: PMC6896402 DOI: 10.3892/mmr.2019.10833] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Iridoid glycosides of Radix Scrophulariae (IGRS) are a group of the major bioactive components from Radix Scrophulariae with extensive pharmacological activities. The present study investigated the effects of IGRS on cerebral ischemia‑reperfusion injury (CIRI) and explored its potential mechanisms of action. A CIRI model in rats was established by occlusion of the right middle cerebral artery for 90 min, followed by 24 h of reperfusion. Prior to surgery, 30, 60 or 120 mg/kg IGRS was administered to the rats once a day for 7 days. Then, the neurological scores, brain edema and volume of the cerebral infarction were measured. The apoptosis index was determined by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling. The effects of IGRS on the histopathology of the cortex in brain tissues and the endoplasmic reticulum ultrastructure in the hippocampus were analyzed. Finally, the expression of endoplasmic reticulum stress (ERS)‑regulating mediators, endoplasmic reticulum chaperone BiP (GRP78), DNA damage‑inducible transcript 3 protein (CHOP) and caspase‑12, were detected by reverse transcription quantitative polymerase chain reaction (RT‑qPCR) and western blot analysis. The volume of cerebral infarction and brain water content in the IGRS‑treated groups treated at doses of 60 and 120 mg/kg were decreased significantly compared with the Model group. The neurological scores were also significantly decreased in the IGRS‑treated groups. IGRS treatment effectively decreased neuronal apoptosis resulting from CIRI‑induced neuron injury. In addition, the histopathological damage and the endoplasmic reticulum ultrastructure injury were partially improved in CIRI rats following IGRS treatment. RT‑qPCR and western blot analysis data indicated that IGRS significantly decreased the expression levels of GRP78, CHOP and caspase‑12 at both mRNA and protein levels. The results of the present study demonstrated that IGRS exerted a protective effect against CIRI in brain tissue via the inhibition of apoptosis and ERS.
Collapse
Affiliation(s)
- Yanyue Chen
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Lei Zhang
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Xueyuan Gong
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Hengpei Gong
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Rubin Cheng
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Fengmei Qiu
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Xiaoming Zhong
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| | - Zhen Huang
- Institute of Traditional Chinese Medicine Resources, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P.R. China
| |
Collapse
|
42
|
Calabrò RS, Naro A. How effective is current pharmacotherapy for motor recovery after stroke? Expert Opin Pharmacother 2019; 20:1917-1919. [DOI: 10.1080/14656566.2019.1657092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rocco Salvatore Calabrò
- Neurorobotic and Cognitive Rehabilitation Laboratory, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Antonino Naro
- Neurorobotic and Cognitive Rehabilitation Laboratory, IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
43
|
N-Palmitoylethanolamide-Oxazoline Protects against Middle Cerebral Artery Occlusion Injury in Diabetic Rats by Regulating the SIRT1 Pathway. Int J Mol Sci 2019; 20:ijms20194845. [PMID: 31569558 PMCID: PMC6801841 DOI: 10.3390/ijms20194845] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
Diabetes causes various macrovascular and microvascular alterations, often culminating in major clinical complications (first of all, stroke) that lack an effective therapeutic intervention. N-palmitoylethanolamide-oxazoline (PEA-OXA) possesses anti-inflammatory and potent neuroprotective effects. Although recent studies have explained the neuroprotective properties of PEA-OXA, nothing is known about its effects in treating cerebral ischemia. Methods: Focal cerebral ischemia was induced by transient middle cerebral artery occlusion (MCAo) in the right hemisphere. Middle cerebral artery (MCA) occlusion was provided by introducing a 4–0 nylon monofilament (Ethilon; Johnson & Johnson, Somerville, NJ, USA) precoated with silicone via the external carotid artery into the internal carotid artery to occlude the MCA. Results: A neurological severity score and infarct volumes were carried out to assess the neuroprotective effects of PEA-OXA. Moreover, we observed PEA-OXA-mediated improvements in tissue histology shown by a reduction in lesion size and an improvement in apoptosis level (assessed by caspases, Bax, and Bcl-2 modulation and a TUNEL assay), which further supported the efficacy of PEA-OXA therapy. We also found that PEA-OXA treatment was able to reduce mast cell degranulation and reduce the MCAo-induced expression of NF-κB pathways, cytokines, and neurotrophic factors. Conclusions: based on these findings, we propose that PEA-OXA could be useful in decreasing the risk of impairment or improving function in ischemia/reperfusion brain injury-related disorders.
Collapse
|
44
|
Peritore AF, Siracusa R, Crupi R, Cuzzocrea S. Therapeutic Efficacy of Palmitoylethanolamide and Its New Formulations in Synergy with Different Antioxidant Molecules Present in Diets. Nutrients 2019; 11:E2175. [PMID: 31514292 PMCID: PMC6769461 DOI: 10.3390/nu11092175] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022] Open
Abstract
The use of a complete nutritional approach seems increasingly promising to combat chronic inflammation. The choice of healthy sources of carbohydrates, fats, and proteins, associated with regular physical activity and avoidance of smoking is essential to fight the war against chronic diseases. At the base of the analgesic, anti-inflammatory, or antioxidant action of the diets, there are numerous molecules, among which some of a lipidic nature very active in the inflammatory pathway. One class of molecules found in diets with anti-inflammatory actions are ALIAmides. Among all, one is particularly known for its ability to counteract the inflammatory cascade, the Palmitoylethanolamide (PEA). PEA is a molecular that is present in nature, in numerous foods, and is endogenously produced by our body, which acts as a balancer of inflammatory processes, also known as endocannabionoid-like. PEA is often used in the treatment of both acute and chronic inflammatory pathologies, either alone or in association with other molecules with properties, such as antioxidants or analgesics. This review aims to illustrate an overview of the different diets that are involved in the process of opposition to the inflammatory cascade, focusing on capacity of PEA and new formulations in synergy with other molecules.
Collapse
Affiliation(s)
- Alessio Filippo Peritore
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalia Crupi
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
- Department of Pharmacological and Physiological Sciences, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
45
|
Contarini G, Franceschini D, Facci L, Barbierato M, Giusti P, Zusso M. A co-ultramicronized palmitoylethanolamide/luteolin composite mitigates clinical score and disease-relevant molecular markers in a mouse model of experimental autoimmune encephalomyelitis. J Neuroinflammation 2019; 16:126. [PMID: 31221190 PMCID: PMC6587257 DOI: 10.1186/s12974-019-1514-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/04/2019] [Indexed: 01/31/2023] Open
Abstract
Background Persistent and/or recurrent inflammatory processes are the main factor leading to multiple sclerosis (MS) lesions. The composite ultramicronized palmitoylethanolamide, an endogenous N-acylethanolamine, combined with the flavonoid luteolin, PEALut, have been found to exert neuroprotective activities in experimental models of spinal and brain injury and Alzheimer disease, as well as a clinical improvement in human stroke patients. Furthermore, PEALut enhances the expression of different myelin proteins in oligodendrocyte progenitor cells suggesting that this composite might have protective effects in MS experimental models. Methods The mouse model of experimental autoimmune encephalomyelitis (EAE) based on active immunization with a fragment of myelin oligodendrocyte glycoprotein (MOG35-55) was used. The daily assessment of clinical score and the expression of serum amyloid A (SAA1), proinflammatory cytokines TNF-α, IL-1β, IFN-γ, and NLRP3 inflammasome, as well as TLR2, Fpr2, CD137, CD3-γ, and TCR-ζ chain, heterodimers that form T cell surface glycoprotein (TCR), and cannabinoid receptors CB1, CB2, and MBP, were evaluated in the brainstem and cerebellum at different postimmunization days (PIDs). Results Vehicle-MOG35-55-immunized (MOG35-55) mice developed ascending paralysis which peaked several days later and persisted until the end of the experiment. PEALut, given intraperitoneally daily starting on day 11 post-immunization, dose-dependently improved clinical score over the range 0.1–5 mg/kg. The mRNA expression of SAA1, TNF-α, IL-1β, IFN-γ, and NLRP3 were significantly increased in MOG35-55 mice at 14 PID. In MOG35-55 mice treated with 5 mg /kg PEALut, the increase of SAA1, TNF- α, IL-1β, and IFN-γ transcripts at 14 PID was statistically downregulated as compared to vehicle-MOG35-55 mice (p < 0.05). The expression of TLR2, Fpr2, CD137, CD3-γ, TCR-ζ chain, and CB2 receptors showed a significant upregulation in vehicle-MOG35-55 mice at 14 PID. Instead, CB1 and MBP transcripts have not changed in expression at any time. In MOG/PEALut-treated mice, TLR2, Fpr2, CD137, CD3-γ, TCR-ζ chain, and CB2 mRNAs were significantly downregulated as compared to vehicle MOG35-55 mice. Conclusions The present results demonstrate that the intraperitoneal administration of the composite PEALut significantly reduces the development of clinical signs in the MOG35-55 model of EAE. The dose-dependent improvement of clinical score induced by PEALut was associated with a reduction in transcript expression of the acute-phase protein SAA1, TNF-α, IL-1β, IFN-γ, and NLRP3 proinflammatory proteins and TLR2, Fpr2, CD137, CD3-γ, TCR-ζ chain, and CB2 receptors.
Collapse
Affiliation(s)
- Gabriella Contarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, 2, 35131, Padua, Italy
| | - Davide Franceschini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, 2, 35131, Padua, Italy.,Present address: Selvita S.A. Park Life Science ul., Bobrzyńskiego, 14 30-348, Kraków, Poland
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, 2, 35131, Padua, Italy
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, 2, 35131, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, 2, 35131, Padua, Italy.
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, 2, 35131, Padua, Italy
| |
Collapse
|
46
|
Lange KW, Nakamura Y, Chen N, Guo J, Kanaya S, Lange KM, Li S. Diet and medical foods in Parkinson’s disease. FOOD SCIENCE AND HUMAN WELLNESS 2019. [DOI: 10.1016/j.fshw.2019.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Davis MP, Behm B, Mehta Z, Fernandez C. The Potential Benefits of Palmitoylethanolamide in Palliation: A Qualitative Systematic Review. Am J Hosp Palliat Care 2019; 36:1134-1154. [PMID: 31113223 DOI: 10.1177/1049909119850807] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Palmitoylethanolamide (PEA) is a nutraceutical endocannabinoid that was retrospectively discovered in egg yolks. Feeding poor children with known streptococcal infections prevented rheumatic fever. Subsequently, it was found to alter the course of influenza. Unfortunately, there is little known about its pharmacokinetics. Palmitoylethanolamide targets nonclassical cannabinoid receptors rather than CB1 and CB2 receptors. Palmitoylethanolamide will only indirectly activate classical cannabinoid receptors by an entourage effect. There are a significant number of prospective and randomized trials demonstrating the pain-relieving effects of PEA. There is lesser evidence of benefit in patients with nonpain symptoms related to depression, Parkinson disease, strokes, and autism. There are no reported drug-drug interactions and very few reported adverse effects from PEA. Further research is needed to define the palliative benefits to PEA.
Collapse
|
48
|
Parrella E, Porrini V, Benarese M, Pizzi M. The Role of Mast Cells in Stroke. Cells 2019; 8:cells8050437. [PMID: 31083342 PMCID: PMC6562540 DOI: 10.3390/cells8050437] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Mast cells (MCs) are densely granulated perivascular resident cells of hematopoietic origin. Through the release of preformed mediators stored in their granules and newly synthesized molecules, they are able to initiate, modulate, and prolong the immune response upon activation. Their presence in the central nervous system (CNS) has been documented for more than a century. Over the years, MCs have been associated with various neuroinflammatory conditions of CNS, including stroke. They can exacerbate CNS damage in models of ischemic and hemorrhagic stroke by amplifying the inflammatory responses and promoting brain–blood barrier disruption, brain edema, extravasation, and hemorrhage. Here, we review the role of these peculiar cells in the pathophysiology of stroke, in both immature and adult brain. Further, we discuss the role of MCs as potential targets for the treatment of stroke and the compounds potentially active as MCs modulators.
Collapse
Affiliation(s)
- Edoardo Parrella
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Vanessa Porrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Benarese
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
49
|
Skaper SD, Barbierato M, Facci L, Borri M, Contarini G, Zusso M, Giusti P. Co-Ultramicronized Palmitoylethanolamide/Luteolin Facilitates the Development of Differentiating and Undifferentiated Rat Oligodendrocyte Progenitor Cells. Mol Neurobiol 2019; 55:103-114. [PMID: 28822061 DOI: 10.1007/s12035-017-0722-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oligodendrocytes, the myelin-producing cells of the central nervous system (CNS), have limited capability to bring about repair in chronic CNS neuroinflammatory demyelinating disorders such as multiple sclerosis (MS). MS lesions are characterized by a compromised pool of undifferentiated oligodendrocyte progenitor cells (OPCs) unable to mature into myelin-producing oligodendrocytes. An attractive strategy may be to replace lost OLs and/or promote their maturation. N-palmitoylethanolamine (PEA) is an endogenous fatty acid amide signaling molecule with anti-inflammatory and neuroprotective actions. Recent studies show a co-ultramicronized composite of PEA and the flavonoid luteolin (co-ultraPEALut) to be more efficacious than PEA in improving outcome in CNS injury models. Here, we examined the effects of co-ultraPEALut on development of OPCs from newborn rat cortex cultured under conditions favoring either differentiation (Sato medium) or proliferation (fibroblast growth factor-2 and platelet-derived growth factor (PDGF)-AA-supplemented serum-free medium ("SFM")). OPCs in SFM displayed high expression of PDGF receptor alpha gene and the proliferation marker Ki-67. In Sato medium, in contrast, OPCs showed rapid decreases in PDGF receptor alpha and Ki-67 expression with a concomitant rise in myelin basic protein (MBP) expression. In these conditions, co-ultraPEALut (10 μM) enhanced OPC morphological complexity and expression of MBP and the transcription factor TCF7l2. Surprisingly, co-ultraPEALut also up-regulated MBP mRNA expression in OPCs in SFM. MBP expression in all cases was sensitive to inhibition of mammalian target of rapamycin. Within the context of strategies to promote endogenous remyelination in MS which focus on enhancing long-term survival of OPCs and stimulating their differentiation into remyelinating oligodendrocytes, co-ultraPEALut may represent a novel pharmacological approach.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy.
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy
| | - Mila Borri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy
| | - Gabriella Contarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo "Egidio Meneghetti" 2, 35131, Padua, Italy
| |
Collapse
|
50
|
Onesti E, Frasca V, Ceccanti M, Tartaglia G, Gori MC, Cambieri C, Libonati L, Palma E, Inghilleri M. Short-Term Ultramicronized Palmitoylethanolamide Therapy in Patients with Myasthenia Gravis: a Pilot Study to Possible Future Implications of Treatment. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:232-238. [DOI: 10.2174/1871527318666190131121827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 12/14/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022]
Abstract
Background: The cannabinoid system may be involved in the humoral mechanisms at the
neuromuscular junction. Ultramicronized-palmitoylethanolamide (μm-PEA) has recently been
shown to reduce the desensitization of Acetylcholine (ACh)-evoked currents in denervated patients
modifying the stability of ACh receptor (AChR) function.
<p>
Objective: To analyze the possible beneficial effects of μm-PEA in patients with myasthenia gravis
(MG) on muscular fatigue and neurophysiological changes.
<p>
Method: The duration of this open pilot study, which included an intra-individual control, was three
weeks. Each patient was assigned to a 1-week treatment period with μm-PEA 600 mg twice a day. A
neurophysiological examination based on repetitive nerve stimulation (RNS) of the masseteric and the
axillary nerves was performed, and the quantitative MG (QMG) score was calculated in 22 MG patients
every week in a three-week follow-up period. AChR antibody titer was investigated to analyze a
possible immunomodulatory effect of PEA in MG patients.
<p>
Results: PEA had a significant effect on the QMG score (p=0.03418) and on RNS of the masseteric
nerve (p=0.01763), thus indicating that PEA reduces the level of disability and decremental muscle response.
Antibody titers did not change significantly after treatment.
<p>
Conclusion: According to our observations, μm-PEA as an add-on therapy could improve muscular
response to fatigue in MG. The possible modulation of AChR currents as a means of eliciting a direct
effect from PEA on the conformation of ACh receptors should be investigated. The co-role of cytokines
also warrants an analysis. Given the rapidity and reversibility of the response, we suppose that
PEA acts directly on AChR, though further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Emanuela Onesti
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Vittorio Frasca
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Marco Ceccanti
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Giorgio Tartaglia
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Maria Cristina Gori
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Chiara Cambieri
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Laura Libonati
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Institute Pasteur- Fondazione Cenci Bolognetti, University of Rome Sapienza, Rome, Italy
| | - Maurizio Inghilleri
- Rare Neuromuscular Diseases Centre, Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|