1
|
Fan X, Liu Y, Chen X, Xu Y, Wu W, Li F, Liu G, Chen X, Zhang C, Zhou Y. Synergies between diabetes and hyperhomocysteinaemia: New insights to predict and prevent adverse cardiovascular effects. Diabetes Obes Metab 2024; 26:5776-5785. [PMID: 39434446 DOI: 10.1111/dom.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
AIM To explore the association of hyperhomocysteinaemia (HHcy) and diabetes synergies with cardiovascular events in the adult population of northern China. METHODS Data were collected from the Asymptomatic Polyvascular Abnomalities Community study for 2010 to 2019. Serum homocysteine (Hcy) levels were determined by enzyme-linked immunosorbent assay. The participants were categorized into four groups based on their Hcy levels and diabetes status: non-diabetes/non-HHcy, non-diabetes/HHcy, diabetes/non-HHcy and diabetes/HHcy. The composite endpoint consisted of the occurrence of first-ever stroke, myocardial infraction (MI) or all-cause mortality. Cox regression analyses were performed to evaluate the associations of diabetes and HHcy with cardiovascular disease (CVD) events. RESULTS In total, 5278 participants were eligible (average age 55.1 years, 60% male). Over a follow-up of 9.1 years, 618 events were identified, 202 stroke, 52 MI and 406 all-cause deaths. Compared with the non-diabetes/non-HHcy group, hazard ratios with 95% confidence intervals in the diabetes/HHcy group for stroke, MI, major adverse cardiovascular event (MACE), all-cause death and composite endpoint were 1.85 (1.12-3.04), 1.33 (0.42-4.23), 1.78 (1.13-2.80), 2.24 (1.56-3.23) and 1.97 (1.47-2.65), respectively. Significant interactions between HHcy and diabetes status were found for stroke, MI and MACE (P for interaction = .002, .027 and .044, respectively). In addition, the association of diabetes/HHcy with stroke was modified by age (< 60 and ≥ 60 years; P for interaction = .016). CONCLUSIONS The findings highlight the synergistic impact of diabetes and HHcy on CVD. Joint assessments of diabetes and Hcy levels should be emphasized for risk stratification and primary prevention of CVD.
Collapse
Affiliation(s)
- Xue Fan
- Department of Research Center for Cardiovascular and Cerebrovascular Disease, Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhe Liu
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Xueyu Chen
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuehao Xu
- Department of Research Center for Cardiovascular and Cerebrovascular Disease, Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqian Wu
- Department of Research Center for Cardiovascular and Cerebrovascular Disease, Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengchang Li
- Department of Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute for Nutrition and Health, Chinese Academy of sciences, Shanghai, China
| | - Gang Liu
- Department of Internal Medicine, Tangshan, China
| | - Xiaoli Chen
- Department of Internal Medicine, Tangshan, China
| | - Caiping Zhang
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yong Zhou
- Department of Research Center for Cardiovascular and Cerebrovascular Disease, Clinical Research Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Dvorska D, Mazurakova A, Lackova L, Sebova D, Kajo K, Samec M, Brany D, Svajdlenka E, Treml J, Mersakova S, Strnadel J, Adamkov M, Lasabova Z, Biringer K, Mojzis J, Büsselberg D, Smejkal K, Kello M, Kubatka P. Aronia melanocarpa L. fruit peels show anti-cancer effects in preclinical models of breast carcinoma: The perspectives in the chemoprevention and therapy modulation. Front Oncol 2024; 14:1463656. [PMID: 39435289 PMCID: PMC11491292 DOI: 10.3389/fonc.2024.1463656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Within oncology research, there is a high effort for new approaches to prevent and treat cancer as a life-threatening disease. Specific plant species that adapt to harsh conditions may possess unique properties that may be utilized in the management of cancer. Hypothesis Chokeberry fruit is rich in secondary metabolites with anti-cancer activities potentially useful in cancer prevention and treatment. Aims of the study and Methods Based on mentioned hypothesis, the main goal of our study was to evaluate the antitumor effects of dietary administered Aronia melanocarpa L. fruit peels (in two concentrations of 0.3 and 3% [w/w]) in the therapeutic syngeneic 4T1 mouse adenocarcinoma model, the chemopreventive model of chemically induced mammary carcinogenesis in rats, a cell antioxidant assay, and robust in vitro analyses using MCF-7 and MDA-MB-231 cancer cells. Results The dominant metabolites in the A. melanocarpa fruit peel extract tested were phenolic derivatives classified as anthocyanins and procyanidins. In a therapeutic model, aronia significantly reduced the volume of 4T1 tumors at both higher and lower doses. In the same tumors, we noted a significant dose-dependent decrease in the mitotic activity index compared to the control. In the chemopreventive model, the expression of Bax was significantly increased by aronia at both doses. Additionally, aronia decreased Bcl-2 and VEGF levels, increasing the Bax/Bcl-2 ratio compared to the control group. The cytoplasmic expression of caspase-3 was significantly enhanced when aronia was administered at a higher dosage, in contrast to both the control group and the aronia group treated with a lower dosage. Furthermore, the higher dosage of aronia exhibited a significant reduction in the expression of the tumor stem cell marker CD133 compared to the control group. In addition, the examination of aronia`s epigenetic impact on tumor tissue through in vivo analyses revealed significant alterations in histone chemical modifications, specifically H3K4m3 and H3K9m3, miRNAs expression (miR155, miR210, and miR34a) and methylation status of tumor suppressor genes (PTEN and TIMP3). In vitro studies utilizing a methanolic extract of A.melanocarpa demonstrated significant anti-cancer properties in the MCF-7 and MDA-MB-231 cell lines. Various analyses, including Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential, were conducted in this regard. Additionally, the aronia extract enhanced the responsiveness to epirubicin in both cancer cell lines. Conclusion This study is the first to analyze the antitumor effect of A. melanocarpa in selected models of experimental breast carcinoma in vivo and in vitro. The utilization of the antitumor effects of aronia in clinical practice is still minimal and requires precise and long-term clinical evaluations. Individualized cancer-type profiling and patient stratification are crucial for effectively implementing plant nutraceuticals within targeted anti-cancer strategies in clinical oncology.
Collapse
Affiliation(s)
- Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Lackova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dominika Sebova
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, Bratislava, Slovakia
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Brany
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Emil Svajdlenka
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Jakub Treml
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Sandra Mersakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
3
|
Lv JL, Tan YJ, Ren YS, Ma R, Wang X, Wang SY, Liu WQ, Zheng QS, Yao JC, Tian J, Li J. Procyanidin C1 inhibits tumor growth and metastasis in colon cancer via modulating miR-501-3p/HIGD1A axis. J Adv Res 2024; 60:215-231. [PMID: 37479180 PMCID: PMC11156609 DOI: 10.1016/j.jare.2023.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
INTRODUCTION Although colon (COAD) and rectal adenocarcinoma (READ) combined to refer to colorectal cancer (CRC), substantial clinical evidence urged that CRC should be treated as two different cancers due to compared with READ, COAD showed higher morbidity and worse 5-year survival. OBJECTIVES This study has tried to screen for the crucial gene that caused the worse prognosis and investigate its mechanism for mediating tumor growth and metastases in COAD. Meanwhile, the potential anti-COAD compound implicated in this mechanism was identified and testified from 1,855 food-borne chemical kits. This study aims to bring a new perspective to the development of new anti-COAD drugs and personalized medicine for patients with COAD. METHODS AND RESULTS The survival-related hub genes in COAD and READ were screened out from The Cancer Genome Atlas (TCGA) database and the results showed that HIGD1A, lower expressed in COAD than in READ, was associated with poor prognosis in COAD patients, but not in READ. Over-expressed HIGD1A suppressed CRC cell proliferation, invasion, and migration in vitro and in vivo. Meanwhile, the different expressed microRNA profiles between COAD and READ showed that miR-501-3p was highly expressed in COAD and inhibited HIGD1A expression by targeting 3'UTR of HIGD1A. MiR-501-3p mimics promoted cell proliferation and metastasis in CRC cells. In addition, Procyanidin C1 (PCC1), a kind of natural polyphenol has been verified as a potential miR-501-3p inhibitor. In vitro and in vivo, PCC1 promoted HIGD1A expression by suppressing miR-501-3p and resulted in inhibited tumor growth and metastasis. CONCLUSION The present study verified that miR-501-3p/HIGD1A axis mediated tumor growth and metastasis in COAD. PCC1, a flavonoid that riched in food exerts anti-COAD effects by inhibiting miR-501-3p and results in the latter losing the ability to suppress HIGD1A expression. Subsequently, unfettered HIGD1A inhibited tumor growth and metastasis in COAD.
Collapse
Affiliation(s)
- Jun-Lin Lv
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003 Yantai, China
| | - Yu-Jun Tan
- School of Life Science, Jiangsu Normal University, 221116 Xuzhou, China
| | - Yu-Shan Ren
- Department of Immunology, Medicine & Pharmacy Research Center, Binzhou Medical University, 264003 Yantai, China
| | - Ru Ma
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003 Yantai, China
| | - Xiao Wang
- Department of Immunology, Medicine & Pharmacy Research Center, Binzhou Medical University, 264003 Yantai, China
| | - Shu-Yan Wang
- Department of Immunology, Medicine & Pharmacy Research Center, Binzhou Medical University, 264003 Yantai, China
| | - Wan-Qing Liu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003 Yantai, China
| | - Qiu-Sheng Zheng
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003 Yantai, China
| | - Jing-Chun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd, 276000 Linyi, China.
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, 221116 Xuzhou, China.
| | - Jie Li
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003 Yantai, China.
| |
Collapse
|
4
|
Sharman Moser S, Apter L, Livnat I, Ginsburg R, Yarden A, Drori M, Drizon A, Chodick G, Siegelmann-Danieli N. Clinical Outcomes of Patients with HER2 Positive Metastatic Breast Cancer to the Brain, with First-Line Trastuzumab, Pertuzumab and Chemotherapy, in a Real-World Setting. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:105-116. [PMID: 38464505 PMCID: PMC10924843 DOI: 10.2147/bctt.s439158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 03/12/2024]
Abstract
Background In this observational study, we analyzed the treatment patterns and clinical outcomes of patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer (mBC) who developed brain metastases during their disease in a 2.7 million-member public health-provider in Israel. Methods Newly diagnosed patients with mBC who initiated first-line treatment between January 2013 and June 2021 were identified. Time on treatment (ToT) and overall survival (OS) were assessed at a minimum of 6 months follow-up (cutoff: December 2021). Results We identified a total of 61 patients: 98.4% females, median age 50 years (IQR = 44-63), 85% invasive ductal tumors, 44% hormone receptor positive, 51% performance status 0-1. The median duration of follow-up was 6.2 years. All patients initiated a combination treatment of trastuzumab, pertuzumab, and chemotherapy (TPC), and 72% moved to second-line treatment during the study follow-up period (82% ado-trastuzumab emtansine). The median ToT for first-line and second-line treatments were 16.9 months (95% CI = 13.9-27.7) and 7.9 months (95% CI = 5.6-10.9), respectively. The median overall survival (OS) was 45.5 months (95% CI = 35.4-71.2) from the initiation of first-line treatment. When considering the timing of brain metastases, the median OS was 36.3 months (95% CI = 10.0-NR) for those diagnosed upfront (n = 15, 25%), 59.1 months (95% CI = 32.5-NR) for those diagnosed while on TPC (n = 25, 41%), and 40.8 months (95% CI = 35.4-NR) for those diagnosed at a later stage (n = 21, 34%). The median OS from brain metastases diagnosis was 25.1 months (95% CI = 17.0-34.6). Conclusion Patients with upfront brain involvement at the time of mBC diagnosis had shorter survival compared to those who started TPC without brain metastases. Nonetheless, the overall results from this study compare favorably with previous studies and contribute to understanding the value of traditional treatment options, which will serve as a baseline for future treatment strategies in the real-world setting.
Collapse
Affiliation(s)
- Sarah Sharman Moser
- Maccabi Institute for Research and Innovation (Maccabitech), Maccabi Healthcare Services, Tel Aviv, Israel
| | - Lior Apter
- Maccabi Institute for Research and Innovation (Maccabitech), Maccabi Healthcare Services, Tel Aviv, Israel
- Department of Health Systems Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Idit Livnat
- Medical Affairs, AstraZeneca, Kefar Sava, Israel
| | | | - Adva Yarden
- Medical Affairs, AstraZeneca, Kefar Sava, Israel
| | - Michal Drori
- Maccabi Institute for Research and Innovation (Maccabitech), Maccabi Healthcare Services, Tel Aviv, Israel
| | - Anat Drizon
- Maccabi Institute for Research and Innovation (Maccabitech), Maccabi Healthcare Services, Tel Aviv, Israel
| | - Gabriel Chodick
- Maccabi Institute for Research and Innovation (Maccabitech), Maccabi Healthcare Services, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nava Siegelmann-Danieli
- Maccabi Institute for Research and Innovation (Maccabitech), Maccabi Healthcare Services, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Fang J, Wu J, Hong G, Zheng L, Yu L, Liu X, Lin P, Yu Z, Chen D, Lin Q, Jing C, Zhang Q, Wang C, Zhao J, Yuan X, Wu C, Zhang Z, Guo M, Zhang J, Zheng J, Lei A, Zhang T, Lan Q, Kong L, Wang X, Wang Z, Ma Q. Cancer screening in hospitalized ischemic stroke patients: a multicenter study focused on multiparametric analysis to improve management of occult cancers. EPMA J 2024; 15:53-66. [PMID: 38463627 PMCID: PMC10923752 DOI: 10.1007/s13167-024-00354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024]
Abstract
Background/aims The reciprocal promotion of cancer and stroke occurs due to changes in shared risk factors, such as metabolic pathways and molecular targets, creating a "vicious cycle." Cancer plays a direct or indirect role in the pathogenesis of ischemic stroke (IS), along with the reactive medical approach used in the treatment and clinical management of IS patients, resulting in clinical challenges associated with occult cancer in these patients. The lack of reliable and simple tools hinders the effectiveness of the predictive, preventive, and personalized medicine (PPPM/3PM) approach. Therefore, we conducted a multicenter study that focused on multiparametric analysis to facilitate early diagnosis of occult cancer and personalized treatment for stroke associated with cancer. Methods Admission routine clinical examination indicators of IS patients were retrospectively collated from the electronic medical records. The training dataset comprised 136 IS patients with concurrent cancer, matched at a 1:1 ratio with a control group. The risk of occult cancer in IS patients was assessed through logistic regression and five alternative machine-learning models. Subsequently, select the model with the highest predictive efficacy to create a nomogram, which is a quantitative tool for predicting diagnosis in clinical practice. Internal validation employed a ten-fold cross-validation, while external validation involved 239 IS patients from six centers. Validation encompassed receiver operating characteristic (ROC) curves, calibration curves, decision curve analysis (DCA), and comparison with models from prior research. Results The ultimate prediction model was based on logistic regression and incorporated the following variables: regions of ischemic lesions, multiple vascular territories, hypertension, D-dimer, fibrinogen (FIB), and hemoglobin (Hb). The area under the ROC curve (AUC) for the nomogram was 0.871 in the training dataset and 0.834 in the external test dataset. Both calibration curves and DCA underscored the nomogram's strong performance. Conclusions The nomogram enables early occult cancer diagnosis in hospitalized IS patients and helps to accurately identify the cause of IS, while the promotion of IS stratification makes personalized treatment feasible. The online nomogram based on routine clinical examination indicators of IS patients offered a cost-effective platform for secondary care in the framework of PPPM. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00354-8.
Collapse
Affiliation(s)
- Jie Fang
- Department of Neurology and Department of Neuroscience, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Jielong Wu
- Department of Neurology and Department of Neuroscience, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 China
- School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Ganji Hong
- Cerebrovascular Interventional Department, Zhangzhou Hospital of Fujian Province, Zhangzhou, China
| | - Liangcheng Zheng
- Department of Neurology and Department of Neuroscience, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Lu Yu
- Department of Neurology, Changxing People’s Hospital, Huzhou, China
| | - Xiuping Liu
- Department of Neurology, The Jilin Center Hospital, Jilin, China
| | - Pan Lin
- Department of Neurology, The Second Hospital of Longyan City, Longyan, China
| | - Zhenzhen Yu
- Department of Neurology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Dan Chen
- Department of Neurology, Xiamen Haicang Hospital, Xiamen, China
| | - Qing Lin
- Department of Neurology and Department of Neuroscience, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Chuya Jing
- Department of Neurology and Department of Neuroscience, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Qiuhong Zhang
- Department of Neurology and Department of Neuroscience, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Chen Wang
- Department of Neurology and Department of Neuroscience, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | - Jiedong Zhao
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Xiaodong Yuan
- Department of Gynecology of Xiamen Maternal and Child Health Care Hospital, Xiamen, China
| | - Chunfang Wu
- Department of Neurology, Huaihe Hospital, Henan University, Huaihe, China
| | - Zhaojie Zhang
- Department of Neurology, Kaifeng Hospital of Traditional Chinese Medicine, Kaifeng, China
| | - Mingwei Guo
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Gannan, China
| | - Junde Zhang
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Gannan, China
| | - Jingjing Zheng
- Department of Neurology, Ningde Municipal Hospital of Ningde Normal University, Ningde, China
| | - Aidi Lei
- Department of Neurology, The Fifth Hospital of Xiamen, Xiamen, China
| | - Tengkun Zhang
- Department of Neurology, The Fifth Hospital of Xiamen, Xiamen, China
| | - Quan Lan
- Department of Neurology and Department of Neuroscience, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
| | | | - Xinrui Wang
- NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate (Fujian Maternity and Child Health Hospital), No. 19 Jinjishan Road, Jin’an District, Fuzhou, 350013 China
- Medical Research Center, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Maternityand Child Health Hospital, Fujian Medical University, Fuzhou, China
| | - Zhanxiang Wang
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
- Department of Neurosurgery and Department of Neuroscience, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 China
| | - Qilin Ma
- Department of Neurology and Department of Neuroscience, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, 55 Zhenhai Road, Xiamen, 361003 China
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen, China
- Xiamen Key Laboratory of Brain Center, Xiamen, China
- Xiamen Medical Quality Control Center for Neurology, Xiamen, China
- Fujian Provincial Clinical Research Center for Brain Diseases, Xiamen, China
- Xiamen Clinical Research Center for Neurological Diseases, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Yang J, Ouedraogo SY, Wang J, Li Z, Feng X, Ye Z, Zheng S, Li N, Zhan X. Clinically relevant stratification of lung squamous carcinoma patients based on ubiquitinated proteasome genes for 3P medical approach. EPMA J 2024; 15:67-97. [PMID: 38463626 PMCID: PMC10923771 DOI: 10.1007/s13167-024-00352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Relevance The proteasome is a crucial mechanism that regulates protein fate and eliminates misfolded proteins, playing a significant role in cellular processes. In the context of lung cancer, the proteasome's regulatory function is closely associated with the disease's pathophysiology, revealing multiple connections within the cell. Therefore, studying proteasome inhibitors as a means to identify potential pathways in carcinogenesis and metastatic progression is crucial in in-depth insight into its molecular mechanism and discovery of new therapeutic target to improve its therapy, and establishing effective biomarkers for patient stratification, predictive diagnosis, prognostic assessment, and personalized treatment for lung squamous carcinoma in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Methods This study identified differentially expressed proteasome genes (DEPGs) in lung squamous carcinoma (LUSC) and developed a gene signature validated through Kaplan-Meier analysis and ROC curves. The study used WGCNA analysis to identify proteasome co-expression gene modules and their interactions with the immune system. NMF analysis delineated distinct LUSC subtypes based on proteasome gene expression patterns, while ssGSEA analysis quantified immune gene-set abundance and classified immune subtypes within LUSC samples. Furthermore, the study examined correlations between clinicopathological attributes, immune checkpoints, immune scores, immune cell composition, and mutation status across different risk score groups, NMF clusters, and immunity clusters. Results This study utilized DEPGs to develop an eleven-proteasome gene-signature prognostic model for LUSC, which divided samples into high-risk and low-risk groups with significant overall survival differences. NMF analysis identified six distinct LUSC clusters associated with overall survival. Additionally, ssGSEA analysis classified LUSC samples into four immune subtypes based on the abundance of immune cell infiltration with clinical relevance. A total of 145 DEGs were identified between high-risk and low-risk score groups, which had significant biological effects. Moreover, PSMD11 was found to promote LUSC progression by depending on the ubiquitin-proteasome system for degradation. Conclusions Ubiquitinated proteasome genes were effective in developing a prognostic model for LUSC patients. The study emphasized the critical role of proteasomes in LUSC processes, such as drug sensitivity, immune microenvironment, and mutation status. These data will contribute to the clinically relevant stratification of LUSC patients for personalized 3P medical approach. Further, we also recommend the application of the ubiquitinated proteasome system in multi-level diagnostics including multi-omics, liquid biopsy, prediction and targeted prevention of chronic inflammation and metastatic disease, and mitochondrial health-related biomarkers, for LUSC 3PM practice. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00352-w.
Collapse
Affiliation(s)
- Jingru Yang
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Serge Yannick Ouedraogo
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Jingjing Wang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Zhijun Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Xiaoxia Feng
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Zhen Ye
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
- School of Basic Medicine, Shandong First Medical University, 6699 Qingdao Road, Jinan, Shandong 250117 People's Republic of China
| | - Shu Zheng
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Na Li
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong 250117 People's Republic of China
| |
Collapse
|
7
|
Yang M, Li T, Guo S, Song K, Gong C, Huang N, Pang D, Xiao H. CVD phenotyping in oncologic disorders: cardio-miRNAs as a potential target to improve individual outcomes in revers cardio-oncology. J Transl Med 2024; 22:50. [PMID: 38216965 PMCID: PMC10787510 DOI: 10.1186/s12967-023-04680-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/28/2023] [Indexed: 01/14/2024] Open
Abstract
With the increase of aging population and prevalence of obesity, the incidence of cardiovascular disease (CVD) and cancer has also presented an increasing tendency. These two different diseases, which share some common risk factors. Relevant studies in the field of reversing Cardio-Oncology have shown that the phenotype of CVD has a significant adverse effect on tumor prognosis, which is mainly manifested by a positive correlation between CVD and malignant progression of concomitant tumors. This distal crosstalk and the link between different diseases makes us aware of the importance of diagnosis, prediction, management and personalized treatment of systemic diseases. The circulatory system bridges the interaction between CVD and cancer, which suggests that we need to fully consider the systemic and holistic characteristics of these two diseases in the process of clinical treatment. The circulating exosome-miRNAs has been intrinsically associated with CVD -related regulation, which has become one of the focuses on clinical and basic research (as biomarker). The changes in the expression profiles of cardiovascular disease-associated miRNAs (Cardio-miRNAs) may adversely affect concomitant tumors. In this article, we sorted and screened CVD and tumor-related miRNA data based on literature, then summarized their commonalities and characteristics (several important pathways), and further discussed the conclusions of Cardio-Oncology related experimental studies. We take a holistic approach to considering CVD as a risk factor for tumor malignancy, which provides an in-depth analysis of the various regulatory mechanisms or pathways involved in the dual attribute miRNAs (Cardio-/Onco-miRNAs). These mechanisms will be key to revealing the systemic effects of CVD on tumors and highlight the holistic nature of different diseases. Therefore, the Cardio-miRNAs should be given great attention from researchers in the field of CVD and tumors, which might become new targets for tumor treatment. Meanwhile, based on the principles of precision medicine (such as the predictive preventive personalized medicine, 3PM) and reverse Cardio-oncology to better improve individual outcomes, we should consider developing personalized medicine and systemic therapy for cancer from the perspective of protecting cardiovascular function.
Collapse
Affiliation(s)
- Ming Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tiepeng Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shujin Guo
- Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kangping Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Huang
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Dejiang Pang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China.
| | - Hengyi Xiao
- The Lab of Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Kaye DR, Khilfeh I, Muser E, Morrison L, Kinkead F, Lefebvre P, Pilon D, George D. Characterizing the real-world economic burden of metastatic castration-sensitive prostate cancer in the United States. J Med Econ 2024; 27:381-391. [PMID: 38420699 DOI: 10.1080/13696998.2024.2323901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
AIMS To describe healthcare resource utilization (HRU) and costs of patients with metastatic castration-sensitive prostate cancer (mCSPC). METHODS Linked data from Flatiron Metastatic PC Core Registry and Komodo's Healthcare Map were evaluated (01/2016-12/2021). Patients with chart-confirmed diagnoses for metastatic PC without confirmed castration resistance in Flatiron who initiated androgen deprivation therapy (ADT) monotherapy or advanced therapy for mCSPC in 2017 or later (index date) with a corresponding pharmacy or medical claim in Komodo Health were included. Advanced therapies considered were androgen-receptor signaling inhibitors, chemotherapies, estrogens, immunotherapies, poly ADP-ribose polymerase inhibitors, and radiopharmaceuticals. Patients with <12 months of continuous insurance eligibility before index were excluded. Per-patient-per-month (PPPM) all-cause and PC-related HRU and costs (medical and pharmacy; from a payer's perspective in 2022 $USD) were described in the 12-month baseline period and follow-up period (from the index date to castration resistance, end of continuous insurance eligibility, end of data availability, or death). RESULTS Of 871 patients included (mean age: 70.6 years), 52% initiated ADT monotherapy as their index treatment without documented advanced therapy use. During baseline, 31% of patients had a PC-related inpatient admission and 94% had a PC-related outpatient visit; mean all-cause costs were $2551 PPPM and PC-related costs were $839 PPPM with $787 PPPM attributable to medical costs. Patients had a mean follow-up of 15 months, during which 38% had a PC-related inpatient admission and 98% had a PC-related outpatient visit; mean all-cause costs were $5950 PPPM with PC-related total costs of $4363 PPPM, including medical costs of $2012 PPPM. LIMITATIONS All analyses were descriptive; statistical testing was not performed. Treatment effectiveness and clinical outcomes were not assessed. CONCLUSION This real-world study demonstrated a significant economic burden in mCSPC patients, and a propensity to use ADT monotherapy in clinical practice despite the availability and guideline recommendations of advanced life-prolonging therapies.
Collapse
Affiliation(s)
| | - Ibrahim Khilfeh
- Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Horsham, PA, USA
| | - Erik Muser
- Janssen Scientific Affairs, LLC, a Johnson & Johnson company, Horsham, PA, USA
| | | | | | | | | | | |
Collapse
|
9
|
Zhang W, Zeng S, Gong L, Zhang D, Hu X. Gene methylation status in focus of advanced prostate cancer diagnostics and improved individual outcomes. Transl Androl Urol 2023; 12:1813-1826. [PMID: 38196695 PMCID: PMC10772650 DOI: 10.21037/tau-23-405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/03/2023] [Indexed: 01/11/2024] Open
Abstract
Background Prostate cancer (PCa) is the most prevalent type of male genitourinary tumor, remains the second leading cause of deaths due to cancer in the United States in men. The aim of this study was to perform an integrative epigenetic analysis to explore the epigenetic abnormalities involved in the development and progression of PCa, and present advanced diagnostics and improved individual outcomes. Methods Genome-wide DNA methylation profiles obtained from The Cancer Genome Atlas (TCGA) were analyzed and a diagnostic model was constructed. For validation, we employed profiles from the Gene Expression Omnibus (GEO) and methylation data derived from clinical samples. Gene set enrichment analysis (GSEA) and the Tumor Immune Estimation Resource (TIMER) were employed for GSEA and to assess immune cell infiltration, respectively. Results An accurate diagnostic method for PCa was established based on the methylation level of Cyclin-D2 (CCND2) and glutathione S-transferase pi-1 (GSTP1), with an impressive area under the curve (AUC) value of 0.937. The model's reliability was further confirmed through validation using four GEO datasets GSE76938 (AUC =0.930), GSE26126 (AUC =0.906), GSE112047 (AUC =1.000), GSE84749 (AUC =0.938) and clinical samples (AUC =0.980). Notably, the TIMER analysis indicated that hypermethylation of CCND2 and GSTP1 was associated with reduced immune cell infiltration, higher tumor purity, and an increased risk of tumor progression. Conclusions In conclusion, our study provides a robust and reliable methylation-based diagnostic model for PCa. This model holds promise as an improved approach for screening and diagnosing PCa, potentially enhancing early detection and patient outcomes, as well as for an advanced clinical management for PCa in the framework of predictive, preventive and personalised medicine.
Collapse
Affiliation(s)
- Weixun Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Song Zeng
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Lian Gong
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Di Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Mei W, Dong Y, Gu Y, Kapoor A, Lin X, Su Y, Vega Neira S, Tang D. IQGAP3 is relevant to prostate cancer: A detailed presentation of potential pathomechanisms. J Adv Res 2023; 54:195-210. [PMID: 36681115 DOI: 10.1016/j.jare.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/12/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION IQGAP3 possesses oncogenic actions; its impact on prostate cancer (PC) remains unclear. OBJECTIVE We will investigate IQGAP3's association with PC progression, key mechanisms, prognosis, and immune evasion. METHODS IQGAP3 expression in PC was examined by immunohistochemistry and using multiple datasets. IQGAP3 network was analyzed for pathway alterations and used to construct a multigene signature (SigIQGAP3NW). SigIQGAP3NW was characterized using LNCaP cell-derived castration-resistant PCs (CRPCs), analyzed for prognostic value in 26 human cancer types, and studied for association with immune evasion. RESULTS Increases in IQGAP3 expression associated with PC tumorigenesis, tumor grade, metastasis, and p53 mutation. IQGAP3 correlative genes were dominantly involved in mitosis. IQGAP3 correlated with PLK1 and TOP2A expression at Spearman correlation/R = 0.89 (p ≤ 3.069e-169). Both correlations were enriched in advanced PCs and Taxane-treated CRPCs and occurred at high levels (R > 0.8) in multiple cancer types. SigIQGAP3NW effectively predicted cancer recurrence and poor prognosis in independent PC cohorts and across 26 cancer types. SigIQGAP3NW stratified PC recurrence after adjustment for age at diagnosis, grade, stage, and surgical margin. SigIQGAP3NW component genes were upregulated in PC, metastasis, LNCaP cell-produced CRPC, and showed an association with p53 mutation. SigIQGAP3NW correlated with immune cell infiltration, including Treg in PC and other cancers. RELT, a SigIQGAP3NW component gene, was associated with elevations of multiple immune checkpoints and the infiltration of Treg and myeloid-derived suppressor cells in PC and across cancer types. RELT and SigIQGAP3NW predict response to immune checkpoint blockade (ICB) therapy. CONCLUSIONS In multiple cancers, IQGAP3 robustly correlates with PLK1 and TOP2A expression, and SigIQGAP3NW and/or RELT effectively predict mortality risk and/or resistance to ICB therapy. PLK1 and TOP2A inhibitors should be investigated for treating cancers with elevated IQGAP3 expression. SigIQGAP3NW and/or RELT can be developed for clinical applications in risk stratification and management of ICB therapy.
Collapse
Affiliation(s)
- Wenjuan Mei
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Jiangxi, China; Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| | - Ying Dong
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yan Gu
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Anil Kapoor
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Xiaozeng Lin
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yingying Su
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Sandra Vega Neira
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Damu Tang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| |
Collapse
|
11
|
Barbagallo C, Stella M, Di Mauro S, Scamporrino A, Filippello A, Scionti F, Di Martino MT, Purrello M, Ragusa M, Purrello F, Piro S. An Uncharacterised lncRNA Coded by the ASAP1 Locus Is Downregulated in Serum of Type 2 Diabetes Mellitus Patients. Int J Mol Sci 2023; 24:13485. [PMID: 37686290 PMCID: PMC10488254 DOI: 10.3390/ijms241713485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetes mellitus (DM) is a complex and multifactorial disease characterised by high blood glucose. Type 2 Diabetes (T2D), the most frequent clinical condition accounting for about 90% of all DM cases worldwide, is a chronic disease with slow development usually affecting middle-aged or elderly individuals. T2D represents a significant problem of public health today because its incidence is constantly growing among both children and adults. It is also estimated that underdiagnosis prevalence would strongly further increase the real incidence of the disease, with about half of T2D patients being undiagnosed. Therefore, it is important to increase diagnosis accuracy. The current interest in RNA molecules (both protein- and non-protein-coding) as potential biomarkers for diagnosis, prognosis, and treatment lies in the ease and low cost of isolation and quantification with basic molecular biology techniques. In the present study, we analysed the transcriptome in serum samples collected from T2D patients and unaffected individuals to identify potential RNA-based biomarkers. Microarray-based profiling and subsequent validation using Real-Time PCR identified an uncharacterised long non-coding RNA (lncRNA) transcribed from the ASAP1 locus as a potential diagnostic biomarker. ROC curve analysis showed that a molecular signature including the lncRNA and the clinicopathological parameters of T2D patients as well as unaffected individuals showed a better diagnostic performance compared with the glycated haemoglobin test (HbA1c). This result suggests that the application of this biomarker in clinical practice would help to improve the diagnosis, and therefore the clinical management, of T2D patients. The proposed biomarker would be useful in the context of predictive, preventive, and personalised medicine (3PM/PPPM).
Collapse
Affiliation(s)
- Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.P.)
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.P.)
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Alessandra Scamporrino
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Agnese Filippello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Francesca Scionti
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.S.); (M.T.D.M.)
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (F.S.); (M.T.D.M.)
| | - Michele Purrello
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.P.)
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.P.)
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, Internal Medicine, Garibaldi-Nesima Hospital, University of Catania, 95122 Catania, Italy; (S.D.M.); (A.S.); (A.F.); (F.P.); (S.P.)
| |
Collapse
|
12
|
Kapinova A, Mazurakova A, Halasova E, Dankova Z, Büsselberg D, Costigliola V, Golubnitschaja O, Kubatka P. Underexplored reciprocity between genome-wide methylation status and long non-coding RNA expression reflected in breast cancer research: potential impacts for the disease management in the framework of 3P medicine. EPMA J 2023; 14:249-273. [PMID: 37275549 PMCID: PMC10236066 DOI: 10.1007/s13167-023-00323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Breast cancer (BC) is the most common female malignancy reaching a pandemic scale worldwide. A comprehensive interplay between genetic alterations and shifted epigenetic regions synergistically leads to disease development and progression into metastatic BC. DNA and histones methylations, as the most studied epigenetic modifications, represent frequent and early events in the process of carcinogenesis. To this end, long non-coding RNAs (lncRNAs) are recognized as potent epigenetic modulators in pathomechanisms of BC by contributing to the regulation of DNA, RNA, and histones' methylation. In turn, the methylation status of DNA, RNA, and histones can affect the level of lncRNAs expression demonstrating the reciprocity of mechanisms involved. Furthermore, lncRNAs might undergo methylation in response to actual medical conditions such as tumor development and treated malignancies. The reciprocity between genome-wide methylation status and long non-coding RNA expression levels in BC remains largely unexplored. Since the bio/medical research in the area is, per evidence, strongly fragmented, the relevance of this reciprocity for BC development and progression has not yet been systematically analyzed. Contextually, the article aims at:consolidating the accumulated knowledge on both-the genome-wide methylation status and corresponding lncRNA expression patterns in BC andhighlighting the potential benefits of this consolidated multi-professional approach for advanced BC management. Based on a big data analysis and machine learning for individualized data interpretation, the proposed approach demonstrates a great potential to promote predictive diagnostics and targeted prevention in the cost-effective primary healthcare (sub-optimal health conditions and protection against the health-to-disease transition) as well as advanced treatment algorithms tailored to the individualized patient profiles in secondary BC care (effective protection against metastatic disease). Clinically relevant examples are provided, including mitochondrial health control and epigenetic regulatory mechanisms involved.
Collapse
Affiliation(s)
- Andrea Kapinova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Erika Halasova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | | | - Olga Golubnitschaja
- Predictive, Preventive, and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
13
|
Samec M, Mazurakova A, Lucansky V, Koklesova L, Pecova R, Pec M, Golubnitschaja O, Al-Ishaq RK, Caprnda M, Gaspar L, Prosecky R, Gazdikova K, Adamek M, Büsselberg D, Kruzliak P, Kubatka P. Flavonoids attenuate cancer metabolism by modulating Lipid metabolism, amino acids, ketone bodies and redox state mediated by Nrf2. Eur J Pharmacol 2023; 949:175655. [PMID: 36921709 DOI: 10.1016/j.ejphar.2023.175655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Metabolic reprogramming of cancer cells is a common hallmark of malignant transformation. The preference for aerobic glycolysis over oxidative phosphorylation in tumors is a well-studied phenomenon known as the Warburg effect. Importantly, metabolic transformation of cancer cells also involves alterations in signaling cascades contributing to lipid metabolism, amino acid flux and synthesis, and utilization of ketone bodies. Also, redox regulation interacts with metabolic reprogramming during malignant transformation. Flavonoids, widely distributed phytochemicals in plants, exert various beneficial effects on human health through modulating molecular cascades altered in the pathological cancer phenotype. Recent evidence has identified numerous flavonoids as modulators of critical components of cancer metabolism and associated pathways interacting with metabolic cascades such as redox balance. Flavonoids affect lipid metabolism by regulating fatty acid synthase, redox balance by modulating nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activity, or amino acid flux and synthesis by phosphoglycerate mutase 1. Here, we discuss recent preclinical evidence evaluating the impact of flavonoids on cancer metabolism, focusing on lipid and amino acid metabolic cascades, redox balance, and ketone bodies.
Collapse
Affiliation(s)
- Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Comenius University in Bratislava, Martin, Slovakia
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01, Martin, Slovakia
| | - Renata Pecova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Martin Caprnda
- 1(st) Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Ludovit Gaspar
- Faculty of Health Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Robert Prosecky
- 2(nd) Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic; International Clinical Research Centre, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovakia; Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia.
| | - Mariusz Adamek
- Department of Thoracic Surgery, Medical University of Silesia, Katowice, Poland
| | | | - Peter Kruzliak
- 2(nd) Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
| |
Collapse
|
14
|
Styk J, Pös Z, Pös O, Radvanszky J, Turnova EH, Buglyó G, Klimova D, Budis J, Repiska V, Nagy B, Szemes T. Microsatellite instability assessment is instrumental for Predictive, Preventive and Personalised Medicine: status quo and outlook. EPMA J 2023; 14:143-165. [PMID: 36866160 PMCID: PMC9971410 DOI: 10.1007/s13167-023-00312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
A form of genomic alteration called microsatellite instability (MSI) occurs in a class of tandem repeats (TRs) called microsatellites (MSs) or short tandem repeats (STRs) due to the failure of a post-replicative DNA mismatch repair (MMR) system. Traditionally, the strategies for determining MSI events have been low-throughput procedures that typically require assessment of tumours as well as healthy samples. On the other hand, recent large-scale pan-tumour studies have consistently highlighted the potential of massively parallel sequencing (MPS) on the MSI scale. As a result of recent innovations, minimally invasive methods show a high potential to be integrated into the clinical routine and delivery of adapted medical care to all patients. Along with advances in sequencing technologies and their ever-increasing cost-effectiveness, they may bring about a new era of Predictive, Preventive and Personalised Medicine (3PM). In this paper, we offered a comprehensive analysis of high-throughput strategies and computational tools for the calling and assessment of MSI events, including whole-genome, whole-exome and targeted sequencing approaches. We also discussed in detail the detection of MSI status by current MPS blood-based methods and we hypothesised how they may contribute to the shift from conventional medicine to predictive diagnosis, targeted prevention and personalised medical services. Increasing the efficacy of patient stratification based on MSI status is crucial for tailored decision-making. Contextually, this paper highlights drawbacks both at the technical level and those embedded deeper in cellular/molecular processes and future applications in routine clinical testing.
Collapse
Affiliation(s)
- Jakub Styk
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia ,Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia
| | - Zuzana Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia ,Institute of Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia
| | - Jan Radvanszky
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Institute of Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia ,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia
| | - Evelina Hrckova Turnova
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Slovgen Ltd, 841 04 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Daniela Klimova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Jaroslav Budis
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia ,Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia ,Medirex Group Academy, NPO, 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia ,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia
| |
Collapse
|
15
|
Baumann V, Athanasiou AT, Faridani OR, Schwerdtfeger AR, Wallner B, Steinborn R. Identification of extremely GC-rich micro RNAs for RT-qPCR data normalization in human plasma. Front Genet 2023; 13:1058668. [PMID: 36685854 PMCID: PMC9846067 DOI: 10.3389/fgene.2022.1058668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023] Open
Abstract
We aimed at extending the repertoire of high-quality miRNA normalizers for reverse transcription-quantitative PCR (RT-qPCR) of human plasma with special emphasis on the extremely guanine-cytosine-rich portion of the miRNome. For high-throughput selection of stable candidates, microarray technology was preferred over small-RNA sequencing (sRNA-seq) since the latter underrepresented miRNAs with a guanine-cytosine (GC) content of at least 75% (p = 0.0002, n = 2). miRNA abundances measured on the microarray were ranked for consistency and uniformity using nine normalization approaches. The eleven most stable sequences included miRNAs of moderate, but also extreme GC content (45%-65%: miR-320d, miR-425-5p, miR-185-5p, miR-486-5p; 80%-95%: miR-1915-3p, miR-3656-5p, miR-3665-5p, miR-3960-5p, miR-4488-5p, miR-4497 and miR-4787-5p). In contrast, the seven extremely GC-rich miRNAs were not found in the two plasma miRNomes screened by sRNA-seq. Stem-loop RT-qPCR was employed for stability verification in 32 plasma samples of healthy male Caucasians (age range: 18-55 years). In general, inter-individual variance of miRNA abundance was low or very low as indicated by coefficient of variation (CV) values of 0.6%-8.2%. miR-3665 and miR-1915-3p outperformed in this analysis (CVs: 0.6 and 2.4%, respectively). The eight most stable sequences included four extremely GC-rich miRNAs (miR-1915-3p, miR-3665, miR-4787-5p and miR-4497). The best-performing duo normalization factor (NF) for the condition of human plasma, miR-320d and miR-4787-5p, also included a GC-extreme miRNA. In summary, the identification of extremely guanine-cytosine-rich plasma normalizers will help to increase accuracy of PCR-based miRNA quantification, thus raise the potential that miRNAs become markers for psychological stress reactions or early and precise diagnosis of clinical phenotypes. The novel miRNAs might also be useful for orthologous contexts considering their conservation in related animal genomes.
Collapse
Affiliation(s)
- Volker Baumann
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria
| | | | - Omid R. Faridani
- Garvan Institute of Medical Research, Sydney, NSW, Australia,Lowy Cancer Research Centre, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Bernard Wallner
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Ralf Steinborn
- Genomics Core Facility, VetCore, University of Veterinary Medicine, Vienna, Austria,Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria,*Correspondence: Ralf Steinborn,
| |
Collapse
|
16
|
Zheng YZ, Li JY, Ning LW, Xie N. Predictive and Prognostic Value of TRIM58 Protein Expression in Patients with Breast Cancer Receiving Neoadjuvant Chemotherapy. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:475-487. [PMID: 36578908 PMCID: PMC9790805 DOI: 10.2147/bctt.s387209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Introduction Tripartite motif-containing protein (TRIM) family members play crucial roles in carcinogenesis and chemotherapy resistance. In this study, we aimed to determine whether TRIM58 protein expression is related to patient responses to neoadjuvant therapy (NAT) and their survival outcome. Methods Immunohistochemistry was performed on female breast cancer samples from biopsies before NAT in Shenzhen Second People's Hospital. Univariate and multivariate logistic regression tests were used to analyze the association between TRIM58 protein expression and pathological complete response (pCR). The Cox proportional hazards model was used to calculate the adjusted hazard ratio (HR) with a 95% confidence interval (95% CI). The Kaplan-Meier plotter database was used to analyze the prognostic value of TRIM58. Results High TRIM58 expression was associated with small tumor size in all the patients (n = 58). Multivariate analysis suggested that low TRIM58 expression was an independent predictive factor for higher pCR (odds ratio = 0.06, 95% CI 0.005-0.741, P = 0.028). The Kaplan-Meier Plotter dataset suggested that the TRIM58 high-expression group showed a worse 5-year overall survival than the low-expression group (HR = 1.34, 95% CI 1.07-1.67, P = 0.01). Pathway analysis revealed the potential mechanisms of TRIM58 in chemoresistance. Discussion Our study suggests that TRIM58 is a promising biomarker for both neoadjuvant chemosensitivity and long-term clinical outcomes in breast cancer. It may also help to identify candidate responders and determine treatment strategies.
Collapse
Affiliation(s)
- Yi-Zi Zheng
- Department of Thyroid and Breast Surgery, Shenzhen Breast Tumor Research Center for Diagnosis and Treatment, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Jia-Ying Li
- Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China,Biobank, First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Lv-Wen Ning
- Biobank, First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China
| | - Ni Xie
- Biobank, First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, Shenzhen, Guangdong, People’s Republic of China,Correspondence: Ni Xie, Biobank, First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen University, 3002 Sungang West Road, Shenzhen, 518035, Guangdong, People’s Republic of China, Tel +86-13501580802, Fax +86-0755-83003435, Email
| |
Collapse
|
17
|
Lin Z, Song Y, Qiu Y, Shi P, Zeng M, Cao Y, Zhu X. Serum CYR61 as a potential biomarker to improve breast cancer diagnostics. Biomark Med 2022; 16:1121-1128. [PMID: 36606458 DOI: 10.2217/bmm-2022-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose: To investigate the role of serum CYR61 as a biomarker for the diagnosis of breast cancer and to analyze the association between serum CYR61 levels and the clinicopathological features in breast cancer patients. Methods: Serum CYR61 was measured in breast cancer patients and healthy controls by ELISA. Results: The serum levels of CYR61 in breast cancer patients were higher than those in healthy controls. The area under the receiver operating characteristic curve for CYR61 was higher than that for carcinoembryonic antigen and carbohydrate antigen 15-3. The increased CYR61 levels were correlated with menopausal status and Ki67 expression. Conclusion: Serum CYR61 might be a novel biomarker to assist the diagnosis and clinicopathological status assessment of breast cancer.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Yanfang Song
- Department of Clinical Laboratory, Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, 602 Bayiqi Road, Fuzhou, Fujian 350001, China
| | - Yaling Qiu
- Department of Pathology, 900 Hospital of the Joint Logistics Team, Fuzhou, Fujian 350025, China
| | - Pengchong Shi
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Menglu Zeng
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Xianjin Zhu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| |
Collapse
|
18
|
Evsevieva M, Sergeeva O, Mazurakova A, Koklesova L, Prokhorenko-Kolomoytseva I, Shchetinin E, Birkenbihl C, Costigliola V, Kubatka P, Golubnitschaja O. Pre-pregnancy check-up of maternal vascular status and associated phenotype is crucial for the health of mother and offspring. EPMA J 2022; 13:351-366. [PMID: 36061831 PMCID: PMC9437153 DOI: 10.1007/s13167-022-00294-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022]
Abstract
Abstract Cardiovascular disease remains the leading cause of disease burden globally with far-reaching consequences including enormous socio-economic burden to healthcare and society at large. Cardiovascular health is decisive for reproductive function, healthy pregnancy and postpartum. During pregnancy, maternal cardiovascular system is exposed to highly increased haemodynamic stress that significantly impacts health status of the mother and offspring. Resulting from sub-optimal maternal health conditions overlooked in pre-pregnancy time, progressive abnormalities can be expected during pregnancy and postpartum. Contextually, there are two main concepts to follow in the framework of predictive, preventive and personalised medicine, namely to develop: 1. advanced screening of sub-optimal health conditions in young populations to predict and prevent individual health risks prior to planned pregnancies 2. in-depth companion diagnostics during pregnancy to predict and prevent long-lasting postpartum health risks of the mother and offspring. Data collected in the current study demonstrate group-specific complications to health of the mother and offspring and clinical relevance of the related phenotyping in pre-pregnant mothers. Diagnostic approach proposed in this study revealed its great clinical utility demonstrating important synergies between cardiovascular maladaptation and connective tissue dysfunction. Co-diagnosed pre-pregnancy low BMI of the mother, connective tissue dysfunction, increased stiffness of peripheral vessels and decreased blood pressure are considered a highly specific maternal phenotype useful for innovative screening programmes in young populations to predict and prevent severe risks to health of the mother and offspring. This crucial discovery brings together systemic effects characteristic, for example, for individuals with Flammer syndrome predisposed to the phenotype-specific primary vascular dysregulation, pregnancy-associated risks, normal tension glaucoma, ischemic stroke at young age, impaired wound healing and associated disorders. Proposed maternal phenotyping is crucial to predict and effectively protect both the mother and offspring against health-to-disease transition. Pre-pregnancy check-up focused on sub-optimal health and utilising here described phenotypes is pivotal for advanced health policy. Plain English abstract Cardiovascular health is decisive for reproductive function and healthy pregnancy. During pregnancy, maternal cardiovascular system may demonstrate health-to-disease transition relevant for the affected mother and offspring. Overlooked in pre-pregnancy time, progressive abnormalities can be expected during pregnancy and lifelong. Here we co-diagnosed maternal pre-pregnancy low bodyweight with systemic effects which may increase risks of pregnancy, eye and heart disorders and ischemic stroke at young age, amongst others. Innovative screening programmes focused on sub-optimal health in young populations to predict and to mitigate individual health risks prior to pregnancy is an essential innovation for health policy proposed.
Collapse
Affiliation(s)
- Maria Evsevieva
- Stavropol State Medical University, Stavropol, Russian Federation
| | - Oksana Sergeeva
- Stavropol State Medical University, Stavropol, Russian Federation
| | - Alena Mazurakova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | | | | | | | | | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
19
|
Hammash D, Mahfood M, Khoder G, Ahmed M, Tlili A, Hamoudi R, Harati R. miR-623 Targets Metalloproteinase-1 and Attenuates Extravasation of Brain Metastatic Triple-Negative Breast Cancer Cells. BREAST CANCER: TARGETS AND THERAPY 2022; 14:187-198. [PMID: 35936987 PMCID: PMC9354772 DOI: 10.2147/bctt.s372083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Background Most breast cancer-related deaths result from metastasis. Understanding the molecular basis of metastasis is needed for the development of effective targeted and preventive strategies. Matrix metalloproteinase-1 (MMP1) plays an important role in brain metastasis (BM) of triple-negative breast cancer (TNBC) by promoting extravasation of cancer cells across the brain endothelium (BE). MMP1 expression is controlled by endogenous microRNAs. Preliminary bioinformatics analysis has revealed that miR-623, known to target the 3ʹUTR of MMP1, is significantly downregulated in brain metastatic tumors compared to primary BC tumors. However, the involvement of miR-623 in MMP1 upregulation in breast cancer brain metastatic cells (BCBMC) remains unexplored. Here, we investigated the role of miR-623 in MMP1 regulation and its impact on the extravasation of TNBC cells through the BE in vitro. Materials and Methods A loss-and-gain of function method was employed to address the effect of miR-623 modulation on MMP1 expression. MMP1 regulation by miR-623 was investigated by real-time PCR, western blot, luciferase and transwell migration assays using an in vitro human BE model. Results Our results confirmed that brain metastatic TNBC cells express lower levels of miR-623 compared with cells having low propensity to spread toward the brain. miR-623 binds to the 3′-untranslated region of MMP1 transcript and downregulates its expression. Restoring miR-623 expression significantly decreased MMP1 expression, preserved the endothelial barrier integrity, and attenuated transmigration of BCBMC through the BE. Conclusion Our study elucidates, for the first time, the crucial role of miR-623 as MMP1 direct regulator in BCBMC and sheds light on miR-623 as a novel therapeutic target that can be exploited to predict and prevent brain metastasis in TNBC. Importantly, the presents study helps in unraveling a brain metastasis-specific microRNA signature in TNBC that can be used as a guide to personalized metastasis prediction and preventive approach with better therapeutic outcome.
Collapse
Affiliation(s)
- Dua Hammash
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mona Mahfood
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ghalia Khoder
- Department of Pharmaceutics and Pharmaceutical Technologies, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Correspondence: Rania Harati, Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates, Tel +971 6 505 7438, Fax +971 6 558 5812, Email
| |
Collapse
|
20
|
Yang SP, Zhou P, Lian CL, He ZY, Wu SG. The Predictive Effect of the 8th AJCC Pathological Prognostic Staging on the Benefit of Postmastectomy Radiotherapy in N2/N3 Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:133-144. [PMID: 35592354 PMCID: PMC9113554 DOI: 10.2147/bctt.s362355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 01/16/2023]
Abstract
Background The role of the 8th American Joint Committee on Cancer (AJCC) pathological prognostic staging (PPS) on treatment-decision making of breast cancer (BC) remains unclear. This study aimed to investigate the predictive effect of the 8th AJCC PPS on the benefit of postmastectomy radiotherapy (PMRT) in N2/N3 BC. Methods We included women with stage N2/3 BC diagnosed between 2010 and 2018 from the Surveillance, Epidemiology, and End Results database. The effect of PMRT on breast cancer-specific survival (BCSS) was evaluated using the multivariate Cox proportional-hazards models. Results A total of 13,445 patients were identified, including 10,547 (78.4%) patients treated with PMRT. All patients had reassigned stages based on the 8th AJCC PPS. There were 7102 patients (52.8%) that had stage changed, including 1160 patients (8.6%) were upstaged and 5942 patients (44.2%) were downstaged from the 7th AJCC anatomical staging (AS) to the 8th AJCC PPS. Regarding the 7th AJCC AS, 7603 (56.5%), 948 (7.1%), and 4895 (36.4%) were stage IIIA, IIIB, and IIIC diseases, respectively. Using the 8th AJCC PPS, 3525 (26.2%), 460 (3.4%), 1335 (9.9%), 3457 (25.7%), 2169 (19.1%), and 2100 (15.6%) patients were restaged as IB, IIA, IIB, IIIA, IIIB, and IIIC diseases, respectively. The PPS displayed increased prognostic accuracy and improved model fit with respect to BCSS compared to the 7th AS (C-index, 0.731 vs 0.605, P < 0.001; Akaike Information Criterion, 42141 vs 43118). Regarding the AS, the receipt of PMRT was associated with a better BCSS in those with stage IIIA (P = 0.004), IIIB (P = 0.003), and IIIC (P < 0.001) diseases. Using the PPS, the receipt of PMRT was not associated with a better BCSS among patients with stage IB (P = 0.446), IIA (P = 0.140), and IIB (P = 0.248) disease, while the receipt of PMRT was associated with a better BCSS for those with stage IIIA (P = 0.009), IIIB (P < 0.001), and IIIC (P < 0.001) disease. Conclusion The 8th AJCC staging provides superior risk stratification and a better tool to predict the benefit of PMRT in N2/3 BC.
Collapse
Affiliation(s)
- Shi-Ping Yang
- Department of Radiation Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, People’s Republic of China
| | - Ping Zhou
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People’s Republic of China
| | - Chen-Lu Lian
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People’s Republic of China
| | - Zhen-Yu He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, People’s Republic of China
| | - San-Gang Wu
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, People’s Republic of China
| |
Collapse
|
21
|
Mazurakova A, Koklesova L, Samec M, Kudela E, Kajo K, Skuciova V, Csizmár SH, Mestanova V, Pec M, Adamkov M, Al-Ishaq RK, Smejkal K, Giordano FA, Büsselberg D, Biringer K, Golubnitschaja O, Kubatka P. Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care. EPMA J 2022; 13:315-334. [PMID: 35437454 PMCID: PMC9008621 DOI: 10.1007/s13167-022-00277-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer incidence is actually the highest one among all cancers. Overall breast cancer management is associated with challenges considering risk assessment and predictive diagnostics, targeted prevention of metastatic disease, appropriate treatment options, and cost-effectiveness of approaches applied. Accumulated research evidence indicates promising anti-cancer effects of phytochemicals protecting cells against malignant transformation, inhibiting carcinogenesis and metastatic spread, supporting immune system and increasing effectiveness of conventional anti-cancer therapies, among others. Molecular and sub-/cellular mechanisms are highly complex affecting several pathways considered potent targets for advanced diagnostics and cost-effective treatments. Demonstrated anti-cancer affects, therefore, are clinically relevant for improving individual outcomes and might be applicable to the primary (protection against initial cancer development), secondary (protection against potential metastatic disease development), and tertiary (towards cascading complications) care. However, a detailed data analysis is essential to adapt treatment algorithms to individuals’ and patients’ needs. Consequently, advanced concepts of patient stratification, predictive diagnostics, targeted prevention, and treatments tailored to the individualized patient profile are instrumental for the cost-effective application of natural anti-cancer substances to improve overall breast cancer management benefiting affected individuals and the society at large.
Collapse
|
22
|
Prostate cancer treatment costs increase more rapidly than for any other cancer—how to reverse the trend? EPMA J 2022; 13:1-7. [PMID: 35251382 PMCID: PMC8886338 DOI: 10.1007/s13167-022-00276-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 02/08/2023]
Abstract
According to GLOBOCAN, about 1.41 million new prostate cancer (PCa) cases were registered in the year 2020 globally. The corresponding socio-economic burden is enormous. Anti-cancer mRNA-based therapy is a promising approach, the principle of which is currently applied for anti-COVID-19 vaccination, undergoing a detailed investigation in populations considering its short- and long-term effectiveness and potential side effects. Pragmatically considered, it will take years or even decades to make mRNA therapy working for any type of cancers, and if possible, for individual malignancy sub-types which are many specifically for the PCa. Actually, the costs of treating PCa are increasing more rapidly than those of any other cancer. The trend has to be reversed now, not in a couple of years. In general, two main components are making currently applied reactive (management of clinically manifested disease) PCa treatment particularly expensive. On one hand, it is rapidly increasing incidence of the disease and metastatic PCa as its subtype. To this end, rapidly increasing PCa incidence rates in young and middle-aged male sub-populations should be taken into account as a long-term contributor to the metastatic disease potentially developed later on in life. On the other hand, patient stratification to differentiate between non-metastatic PCa (no need for an extensive and costly treatment) and particularly aggressive cancer subtypes requiring personalised treatment algorithms is challenging. Considering current statistics, it becomes obvious that reactive medicine got at its limit in PCa management. Multi-professional expertise is unavoidable to create and implement anti-PCa programmes in the population. In our strategic paper, we exemplify challenging PCa management by providing detailed expert recommendations for primary (health risk assessment), secondary (prediction and prevention of metastatic disease in PCa) and tertiary (making palliative care to the management of chronic disease) care in the framework of predictive, preventive and personalised medicine.
Collapse
|
23
|
Systemic Effects Reflected in Specific Biomarker Patterns Are Instrumental for the Paradigm Change in Prostate Cancer Management: A Strategic Paper. Cancers (Basel) 2022; 14:cancers14030675. [PMID: 35158943 PMCID: PMC8833369 DOI: 10.3390/cancers14030675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is reported as the most common malignancy and second leading cause of death in America. In Europe, PCa is considered the leading type of tumour in 28 European countries. The costs of treating PCa are currently increasing more rapidly than those of any other cancer. Corresponding economic burden is enormous, due to an overtreatment of slowly developing disease on one hand and underestimation/therapy resistance of particularly aggressive PCa subtypes on the other hand. The incidence of metastatic PCa is rapidly increasing that is particularly characteristic for young adults. PCa is a systemic multi-factorial disease resulting from an imbalanced interplay between risks and protective factors. Sub-optimal behavioural patterns, abnormal stress reactions, imbalanced antioxidant defence, systemic ischemia and inflammation, mitochondriopathies, aberrant metabolic pathways, gene methylation and damage to DNA, amongst others, are synergistically involved in pathomechanisms of PCa development and progression. To this end, PCa-relevant systemic effects are reflected in liquid biopsies such as blood patterns which are instrumental for predictive diagnostics, targeted prevention and personalisation of medical services (PPPM/3P medicine) as a new paradigm in the overall PCa management. This strategic review article highlights systemic effects in prostate cancer development and progression, demonstrates evident challenges in PCa management and provides expert recommendations in the framework of 3P medicine.
Collapse
|
24
|
Kadamkulam Syriac A, Nandu NS, Leone JP. Central Nervous System Metastases from Triple-Negative Breast Cancer: Current Treatments and Future Prospective. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:1-13. [PMID: 35046721 PMCID: PMC8760391 DOI: 10.2147/bctt.s274514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022]
Abstract
It is estimated that approximately one-third of patients with triple-negative breast cancer (TNBC) will develop brain metastases. The prognosis for patients with breast cancer brain metastasis has improved in the recent past, especially for hormone receptor and human epidermal growth factor receptor 2 (HER) positive subtypes. However, the overall survival rate for patients with triple-negative subtype remains poor. The development of newer treatment options, including antibody-drug conjugates such as Sacituzumab govitecan, is particularly encouraging. This article reviews the clinical outcomes, challenges, and current approach to the treatment of brain metastasis in TNBC. We have also briefly discussed newer treatment options and ongoing clinical trials. The development of brain metastasis significantly decreases the quality of life of patients with TNBC, and newer treatment strategies and therapeutics are the need of the hour for this disease subgroup.
Collapse
Affiliation(s)
| | - Nitish Singh Nandu
- Department of Hospice and Palliative Medicine, Montefiore Medical Center/ Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jose Pablo Leone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| |
Collapse
|
25
|
Scerri J, Scerri C, Schäfer-Ruoff F, Fink S, Templin M, Grech G. PKC-mediated phosphorylation and activation of the MEK/ERK pathway as a mechanism of acquired trastuzumab resistance in HER2-positive breast cancer. Front Endocrinol (Lausanne) 2022; 13:1010092. [PMID: 36329884 PMCID: PMC9623415 DOI: 10.3389/fendo.2022.1010092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Protein expression, activation and stability are regulated through inter-connected signal transduction pathways resulting in specific cellular states. This study sought to differentiate between the complex mechanisms of intrinsic and acquired trastuzumab resistance, by quantifying changes in expression and activity of proteins (phospho-protein profile) in key signal transduction pathways, in breast cancer cellular models of trastuzumab resistance. To this effect, we utilized a multiplex, bead-based protein assay, DigiWest®, to measure around 100 proteins and protein modifications using specific antibodies. The main advantage of this methodology is the quantification of multiple analytes in one sample, utilising input volumes of a normal western blot. The intrinsically trastuzumab-resistant cell line JIMT-1 showed the largest number of concurrent resistance mechanisms, including PI3K/Akt and RAS/RAF/MEK/ERK activation, β catenin stabilization by inhibitory phosphorylation of GSK3β, cell cycle progression by Rb suppression, and CREB-mediated cell survival. MAPK (ERK) pathway activation was common to both intrinsic and acquired resistance cellular models. The overexpression of upstream RAS/RAF, however, was confined to JIMT 1; meanwhile, in a cellular model of acquired trastuzumab resistance generated in this study (T15), entry into the ERK pathway seemed to be mostly mediated by PKCα activation. This is a novel observation and merits further investigation that can lead to new therapeutic combinations in HER2-positive breast cancer with acquired therapeutic resistance.
Collapse
Affiliation(s)
- Jeanesse Scerri
- Department of Physiology & Biochemistry, University of Malta, Msida, Malta
| | - Christian Scerri
- Department of Physiology & Biochemistry, University of Malta, Msida, Malta
| | - Felix Schäfer-Ruoff
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Simon Fink
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Markus Templin
- NMI Natural and Medical Sciences Institute, University of Tübingen, Reutlingen, Germany
| | - Godfrey Grech
- Department of Pathology, University of Malta, Msida, Malta
- *Correspondence: Godfrey Grech,
| |
Collapse
|
26
|
CIRCULATING CELL-FREE DNA IS A BIOMARKER OF PREMATURE BIRTH AND COVID-19 AND PREDICTS PRENATAL CEREBRAL ISCHEMIA IN NEWBORNS. WORLD OF MEDICINE AND BIOLOGY 2022. [DOI: 10.26724/2079-8334-2022-1-79-79-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Circulating tumor DNA as a prognostic indicator of colorectal cancer recurrence-a systematic review and meta-analysis. Int J Colorectal Dis 2022; 37:1021-1027. [PMID: 35384496 PMCID: PMC8983807 DOI: 10.1007/s00384-022-04144-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. After resection, patients need extensive follow-up to detect asymptomatic recurrences as early as possible to obtain optimal treatment. This study evaluated the prognostic value of circulating tumor DNA (ctDNA) for CRC recurrence. METHODS Two investigators independently conducted a systematic literature search of peer-reviewed studies that investigated the prognostic value of ctDNA in CRC. Fixed effects or random effects models were applied for all analyses based on the assessment of heterogeneity. RESULTS A total of 189 studies were initially retrieved from all databases; ultimately, eight studies with 879 CRC patients were included in this analysis. The pooled median recurrence-free survival was 11.36 months for ctDNA-positive patients. Meta-analysis of hazard ratio (HR) suggested that postoperative ctDNA-positive patients were more likely to experience cancer recurrence than ctDNA-negative patients (pooled HR: 5.41; 95% confidence interval (CI): 2.37-8.45). CONCLUSIONS Successive monitoring of ctDNA status and follow-up with postoperative computed tomography (CT)/magnetic resonance imaging (MRI) are useful tools to detect early recurrence in postoperative ctDNA-positive patients.
Collapse
|
28
|
Wang W, Yan Y, Guo Z, Hou H, Garcia M, Tan X, Anto EO, Mahara G, Zheng Y, Li B, Kang T, Zhong Z, Wang Y, Guo X, Golubnitschaja O. All around suboptimal health - a joint position paper of the Suboptimal Health Study Consortium and European Association for Predictive, Preventive and Personalised Medicine. EPMA J 2021; 12:403-433. [PMID: 34539937 PMCID: PMC8435766 DOI: 10.1007/s13167-021-00253-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
First two decades of the twenty-first century are characterised by epidemics of non-communicable diseases such as many hundreds of millions of patients diagnosed with cardiovascular diseases and the type 2 diabetes mellitus, breast, lung, liver and prostate malignancies, neurological, sleep, mood and eye disorders, amongst others. Consequent socio-economic burden is tremendous. Unprecedented decrease in age of maladaptive individuals has been reported. The absolute majority of expanding non-communicable disorders carry a chronic character, over a couple of years progressing from reversible suboptimal health conditions to irreversible severe pathologies and cascading collateral complications. The time-frame between onset of SHS and clinical manifestation of associated disorders is the operational area for an application of reliable risk assessment tools and predictive diagnostics followed by the cost-effective targeted prevention and treatments tailored to the person. This article demonstrates advanced strategies in bio/medical sciences and healthcare focused on suboptimal health conditions in the frame-work of Predictive, Preventive and Personalised Medicine (3PM/PPPM). Potential benefits in healthcare systems and for society at large include but are not restricted to an improved life-quality of major populations and socio-economical groups, advanced professionalism of healthcare-givers and sustainable healthcare economy. Amongst others, following medical areas are proposed to strongly benefit from PPPM strategies applied to the identification and treatment of suboptimal health conditions:Stress overload associated pathologiesMale and female healthPlanned pregnanciesPeriodontal healthEye disordersInflammatory disorders, wound healing and pain management with associated complicationsMetabolic disorders and suboptimal body weightCardiovascular pathologiesCancersStroke, particularly of unknown aetiology and in young individualsSleep medicineSports medicineImproved individual outcomes under pandemic conditions such as COVID-19.
Collapse
Affiliation(s)
- Wei Wang
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Yuxiang Yan
- Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Zheng Guo
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Haifeng Hou
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Monique Garcia
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Xuerui Tan
- First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Enoch Odame Anto
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
- Department of Medical Diagnostics, College of Health Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Gehendra Mahara
- First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Yulu Zheng
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Bo Li
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
- School of Nursing and Health, Henan University, Kaifeng, China
| | - Timothy Kang
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
- Institute of Chinese Acuology, Perth, Australia
| | - Zhaohua Zhong
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
- School of Basic Medicine, Harbin Medical University, Harbin, China
| | - Youxin Wang
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- Department of Medical Diagnostics, College of Health Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Xiuhua Guo
- Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
| | - Olga Golubnitschaja
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - On Behalf of Suboptimal Health Study Consortium and European Association for Predictive, Preventive and Personalised Medicine
- Centre for Precision Health, Edith Cowan University, Perth, Australia
- Beijing Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing, China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Suboptimal Health Study Consortium, Kumasi, Ghana
- Suboptimal Health Study Consortium, Perth, Australia
- Suboptimal Health Study Consortium, Beijing, China
- Suboptimal Health Study Consortium, Bonn, Germany
- European Association for Predictive, Preventive and Personalised, Medicine, Brussels, Belgium
- Department of Medical Diagnostics, College of Health Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- School of Nursing and Health, Henan University, Kaifeng, China
- Institute of Chinese Acuology, Perth, Australia
- School of Basic Medicine, Harbin Medical University, Harbin, China
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
29
|
Zhang JT, Chen J, Ruan HC, Li FX, Pang S, Xu YJ, Huang DL, Wu XH. Microribonucleic Acid-15a-5p Alters Adriamycin Resistance in Breast Cancer Cells by Targeting Cell Division Cycle-Associated Protein 4. Cancer Manag Res 2021; 13:8425-8434. [PMID: 34785950 PMCID: PMC8590962 DOI: 10.2147/cmar.s333830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/23/2021] [Indexed: 12/17/2022] Open
Abstract
Objective Although chemotherapy is one of the first line clinical treatment of tumors, the efficacy of chemotherapy has been severely restricted by the frequent occurrence of drug resistance phenomenon. Multiple studies found that miRNAs can regulate the chemosensitivity of tumor cells. Here, this study aimed to assess the potential role of the miR-15a-5p/cell division cycle-related protein 4 (CDCA4) axis in breast cancer (BC) resistance to Adriamycin. Methods In the present study, the relative expression of miRNA-15a-5p in MCF-7/ADR, MCF-7 and Hs578Bst was measured by qRT-PCR. MCF-7/ADR cells underwent transfection with an miR-15a-5p mimic and inhibitor, respectively. Transwell assays, flow cytometry and CCK8 were performed to examine the potential effects of the abnormal expression of miR-15a-5p. The association of aberrant miR-15a-5p expression with Adriamycin resistance in BC was determined in cultured MCF-7/ADR cells. Bioinformatics was employed to predict the genes targeted by miR-15a-5p. Moreover, the correlation between miR-15a-5p and its target gene, CDCA4, was evaluated based on qRT-PCR data. Results The expression of miR-15a-5p was significantly downregulated in MCF/ADR cells compared with MCF-7 and Hs578Bst cell lines. In the presence of Adriamycin, miR-15a-5p overexpression significantly increased cell chemosensitivity, as well as MCF-7/ADR cell proliferation, invasion, and migration, while promoting apoptosis and inducing cell-cycle arrest in the synthesis phase. CDCA4 RNA interference enhanced these effects as shown in our previous study. Bioinformatics identified CDCA4 as an miR-15a-5p target gene. qRT-PCR further demonstrated that CDCA4 and miR-15a-5p expression levels were inversely correlated. Conclusion Adriamycin resistance in BC cells was, at least in part, altered by mRNA-15a-5p via regulation of its target gene, CDCA4, by controlling the cell cycle, which may provide some novel ideas for BC chemotherapy in the future.
Collapse
Affiliation(s)
- Jiang-Tao Zhang
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jun Chen
- Department of Thyroid and Breast Surgery, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong Province, People's Republic of China
| | - Hui-Chao Ruan
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Feng-Xi Li
- Department of Gastrointestinal Surgery, Guangxi International Zhuang Medicine Hospital, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Sen Pang
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yu-Ju Xu
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dao-Lai Huang
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiang-Hua Wu
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
30
|
Meijer SE, Klebanov-Akopyn O, Pavlov V, Laks S, Hazzan D, Nissan A, Zippel D. Detection of Minimal Residual Disease in the Peripheral Blood of Breast Cancer Patients, with a Multi Marker (MGB-1, MGB-2, CK-19 and NY-BR-1) Assay. BREAST CANCER: TARGETS AND THERAPY 2021; 13:617-624. [PMID: 34815711 PMCID: PMC8605792 DOI: 10.2147/bctt.s337075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022]
Abstract
Purpose Minimal residual disease (MRD) refers to micrometastases that are undetectable by conventional means and is a potential source of disease relapse. This study aimed to detect the presence of breast cancer (BC) biomarkers (MGB-1, MGB-2, CK-19, NY-BR-1) using real-time polymerase chain reaction (RT-PCR) in peripheral blood mononuclear cells (PBMC) of BC patients and the impact of a positive assay on clinical outcome. Patients and Methods Patients in the analysis included females >18 years of age with biopsy-proven carcinoma of the breast. A 10 mL sample of venous blood was obtained from 10 healthy controls and 25 breast cancer patients. Comparisons of peripheral blood markers were made with clinicopathological variables. Results High-quality RNA was extracted from all samples with a mean RNA concentration of 224.8±155.3 ng/µL. Each of the molecular markers examined was highly expressed in the primary breast tumors (n = 3, positive controls) with none of the markers detected in healthy negative controls. The NY-BR-1 marker was expressed in one (4%) patient with metastatic disease with no MGB-1 and MGB-2 detected in any sample derived from the study patients. The CK-19 marker was detected in 16 (64%) of the BC cases. No correlation was found between CK-19 expression and tumor stage (P = 0.07) or nodal status (P = 0.32). No correlation was identified in the BC patients between CK-19 expression and receptor status in the BC primary tumor. Conclusion This study showed high expression of all 4 markers NY-BR-1, MGB-1, MGB-2 and CK-19 in the PBMCs derived from breast cancer patients. CK-19 was detected in 64% of the stage I–III cases operated with curative intent, the only recurrent events occurring in the CK-19-positive cases. Our data confirm the need to enhance techniques for detection of MRD, which may better predict patients at risk for relapse.
Collapse
Affiliation(s)
- Suzy E Meijer
- Department of Infectious Disease, Sourasky Medical Center, Tel Aviv, Israel
- The Surgical Oncology Laboratory, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| | - Olga Klebanov-Akopyn
- The Surgical Oncology Laboratory, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Vera Pavlov
- The Surgical Oncology Laboratory, Hadassah-Hebrew University Hospital, Jerusalem, Israel
- The Surgical Oncology Laboratory, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Shachar Laks
- Department of General and Oncological Surgery – Surgery C, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - David Hazzan
- Department of General and Oncological Surgery – Surgery C, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Aviram Nissan
- The Surgical Oncology Laboratory, Hadassah-Hebrew University Hospital, Jerusalem, Israel
- The Surgical Oncology Laboratory, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of General and Oncological Surgery – Surgery C, The Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Douglas Zippel
- The Surgical Oncology Laboratory, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of General and Oncological Surgery – Surgery C, The Chaim Sheba Medical Center, Ramat Gan, Israel
- Correspondence: Douglas Zippel Department of General & Oncological Surgery-Surgery C, The Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, IsraelTel +972-3-530-2714Fax +972-3-5341562 Email
| |
Collapse
|
31
|
Differential Expression of the Sphingolipid Pathway Is Associated with Sensitivity to the PP2A Activator FTY720 in Colorectal Cancer Cell Lines. J Clin Med 2021; 10:jcm10214999. [PMID: 34768523 PMCID: PMC8584763 DOI: 10.3390/jcm10214999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a ubiquitously expressed intracellular serine/threonine phosphatase. Deregulation of PP2A is a common event associated with adenocarcinomas of the colon and rectum. We have previously shown that breast cancer cell lines are sensitive to the PP2A activator FTY720, and that sensitivity is predicted by high Aurora kinase A (AURKA) mRNA expression. In this study, we hypothesized that high relative AURKA expression could predict sensitivity to FTY720-induced apoptosis in colorectal cancer (CRC). The CRC cell lines NCI H716, COLO320DM, DLD-1, SW480, and HT-29 show a high relative AURKA expression as compared to LS411N, T84, HCT116, SW48, and LOVO. Following viability assays, LS411N, T84, HCT116, and SW480 were shown to be sensitive to FTY720, whereas DLD-1 and HT-29 were non-sensitive. Hence, AURKA mRNA expression does not predict sensitivity to FTY720 in CRC cell lines. Differentially expressed genes (DEGs) were obtained by comparing the sensitive CRC cell lines (LS411N and HCT116) against the non-sensitive (HT-29 and DLD-1). We found that 253 genes were significantly altered in expression, and upregulation of CERS4, PPP2R2C, GNAZ, PRKCG, BCL2, MAPK12, and MAPK11 suggests the involvement of the sphingolipid signaling pathway, known to be activated by phosphorylated-FTY720. In conclusion, although AURKA expression did not predict sensitivity to FTY720, it is evident that specific CRC cell lines are sensitive to 5 µM FTY720, potentially because of the differential expression of genes involved in the sphingolipid pathway.
Collapse
|
32
|
The Association of Anti-Inflammatory Diet Ingredients and Lifestyle Exercise with Inflammaging. Nutrients 2021; 13:nu13113696. [PMID: 34835952 PMCID: PMC8621229 DOI: 10.3390/nu13113696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022] Open
Abstract
One of the latest theories on ageing focuses on immune response, and considers the activation of subclinical and chronic inflammation. The study was designed to explain whether anti-inflammatory diet and lifestyle exercise affect an inflammatory profile in the Polish elderly population. Sixty individuals (80.2 ± 7.9 years) were allocated to a low-grade inflammation (LGI n = 33) or high-grade inflammation (HGI n = 27) group, based on C-reactive protein concentration (<3 or ≥3 mg/L) as a conventional marker of systemic inflammation. Diet analysis focused on vitamins D, C, E, A, β-carotene, n-3 and n-6 PUFA using single 24-h dietary recall. LGI demonstrated a lower n-6/n-3 PUFA but higher vitamin D intake than HGI. Physical performance based on 6-min walk test (6MWT) classified the elderly as physically inactive, whereby LGI demonstrated a significantly higher gait speed (1.09 ± 0.26 m/s) than HGI (0.72 ± 0.28 m/s). Circulating interleukins IL-1β, IL-6, IL-13, TNFα and cfDNA demonstrated high concentrations in the elderly with low 6MWT, confirming an impairment of physical performance by persistent systemic inflammation. These findings reveal that increased intake of anti-inflammatory diet ingredients and physical activity sustained throughout life attenuate progression of inflammaging in the elderly and indicate potential therapeutic strategies to counteract pathophysiological effects of ageing.
Collapse
|
33
|
Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways. EPMA J 2021; 12:559-587. [PMID: 34950252 PMCID: PMC8648878 DOI: 10.1007/s13167-021-00257-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022]
Abstract
AbstractInflammation is an essential pillar of the immune defense. On the other hand, chronic inflammation is considered a hallmark of cancer initiation and progression. Chronic inflammation demonstrates a potential to induce complex changes at molecular, cellular, and organ levels including but not restricted to the stagnation and impairment of healing processes, uncontrolled production of aggressive ROS/RNS, triggered DNA mutations and damage, compromised efficacy of the DNA repair machinery, significantly upregulated cytokine/chemokine release and associated patho-physiologic protein synthesis, activated signaling pathways involved in carcinogenesis and tumor progression, abnormal tissue remodeling, and created pre-metastatic niches, among others. The anti-inflammatory activities of flavonoids demonstrate clinically relevant potential as preventive and therapeutic agents to improve individual outcomes in diseases linked to the low-grade systemic and chronic inflammation, including cancers. To this end, flavonoids are potent modulators of pro-inflammatory gene expression being, therefore, of great interest as agents selectively suppressing molecular targets within pro-inflammatory pathways. This paper provides in-depth analysis of anti-inflammatory properties of flavonoids, highlights corresponding mechanisms and targeted molecular pathways, and proposes potential treatment models for multi-level cancer prevention in the framework of predictive, preventive, and personalized medicine (PPPM / 3PM). To this end, individualized profiling and patient stratification are essential for implementing targeted anti-inflammatory approaches. Most prominent examples are presented for the proposed application of flavonoid-conducted anti-inflammatory treatments in overall cancer management.
Collapse
|
34
|
Golubnitschaja O, Liskova A, Koklesova L, Samec M, Biringer K, Büsselberg D, Podbielska H, Kunin AA, Evsevyeva ME, Shapira N, Paul F, Erb C, Dietrich DE, Felbel D, Karabatsiakis A, Bubnov R, Polivka J, Polivka J, Birkenbihl C, Fröhlich H, Hofmann-Apitius M, Kubatka P. Caution, "normal" BMI: health risks associated with potentially masked individual underweight-EPMA Position Paper 2021. EPMA J 2021; 12:243-264. [PMID: 34422142 PMCID: PMC8368050 DOI: 10.1007/s13167-021-00251-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
An increasing interest in a healthy lifestyle raises questions about optimal body weight. Evidently, it should be clearly discriminated between the standardised "normal" body weight and individually optimal weight. To this end, the basic principle of personalised medicine "one size does not fit all" has to be applied. Contextually, "normal" but e.g. borderline body mass index might be optimal for one person but apparently suboptimal for another one strongly depending on the individual genetic predisposition, geographic origin, cultural and nutritional habits and relevant lifestyle parameters-all included into comprehensive individual patient profile. Even if only slightly deviant, both overweight and underweight are acknowledged risk factors for a shifted metabolism which, if being not optimised, may strongly contribute to the development and progression of severe pathologies. Development of innovative screening programmes is essential to promote population health by application of health risks assessment, individualised patient profiling and multi-parametric analysis, further used for cost-effective targeted prevention and treatments tailored to the person. The following healthcare areas are considered to be potentially strongly benefiting from the above proposed measures: suboptimal health conditions, sports medicine, stress overload and associated complications, planned pregnancies, periodontal health and dentistry, sleep medicine, eye health and disorders, inflammatory disorders, healing and pain management, metabolic disorders, cardiovascular disease, cancers, psychiatric and neurologic disorders, stroke of known and unknown aetiology, improved individual and population outcomes under pandemic conditions such as COVID-19. In a long-term way, a significantly improved healthcare economy is one of benefits of the proposed paradigm shift from reactive to Predictive, Preventive and Personalised Medicine (PPPM/3PM). A tight collaboration between all stakeholders including scientific community, healthcare givers, patient organisations, policy-makers and educators is essential for the smooth implementation of 3PM concepts in daily practice.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Alena Liskova
- Clinic of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University, in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University, in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Clinic of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University, in Bratislava, 03601 Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynaecology, Jessenius Faculty of Medicine, Comenius University, in Bratislava, 03601 Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Halina Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Anatolij A. Kunin
- Departments of Maxillofacial Surgery and Hospital Dentistry, Voronezh N.N. Burdenko State Medical University, Voronezh, Russian Federation
| | | | - Niva Shapira
- Nutrition Department, Ashkelon Academic College, Ashkelon, Tel Aviv, Israel
| | - Friedemann Paul
- NeuroCure Clinical Research Centre, Experimental and Clinical Research Centre, Max Delbrueck Centre for Molecular Medicine and Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Carl Erb
- Private Institute of Applied Ophthalmology, Berlin, Germany
| | - Detlef E. Dietrich
- European Depression Association, Brussels, Belgium
- AMEOS Clinical Centre for Psychiatry and Psychotherapy, 31135 Hildesheim, Germany
| | - Dieter Felbel
- Fachklinik Kinder und Jugendliche Psychiatrie, AMEOS Klinikum Hildesheim, Akademisches Lehrkrankenhaus für Pflege der FOM Hochschule Essen, Hildesheim, Germany
| | - Alexander Karabatsiakis
- Institute of Psychology, Department of Clinical Psychology II, University of Innsbruck, Innsbruck, Austria
| | - Rostyslav Bubnov
- Ultrasound Department, Clinical Hospital “Pheophania”, Kyiv, Ukraine
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Jiri Polivka
- Department of Neurology, Faculty of Medicine in Pilsen, Charles University and University Hospital Pilsen, Pilsen, Czech Republic
| | - Jiri Polivka
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Staré Město, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Staré Město, Czech Republic
| | - Colin Birkenbihl
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Centre for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Centre for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
- UCB Biosciences GmbH, Alfred-Nobel Str. 10, 40789 Monheim am Rhein, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Centre for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
35
|
Liskova A, Koklesova L, Samec M, Abdellatif B, Zhai K, Siddiqui M, Šudomová M, Hassan ST, Kudela E, Biringer K, Giordano FA, Büsselberg D, Golubnitschaja O, Kubatka P. Targeting phytoprotection in the COVID-19-induced lung damage and associated systemic effects-the evidence-based 3PM proposition to mitigate individual risks. EPMA J 2021; 12:325-347. [PMID: 34367380 PMCID: PMC8329620 DOI: 10.1007/s13167-021-00249-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023]
Abstract
The risks related to the COVID-19 are multi-faceted including but by far not restricted to the following: direct health risks by poorly understood effects of COVID-19 infection, overloaded capacities of healthcare units, restricted and slowed down care of patients with non-communicable disorders such as cancer, neurologic and cardiovascular pathologies, among others; social risks-restricted and broken social contacts, isolation, professional disruption, explosion of aggression in the society, violence in the familial environment; mental risks-loneliness, helplessness, defenceless, depressions; and economic risks-slowed down industrial productivity, broken delivery chains, unemployment, bankrupted SMEs, inflation, decreased capacity of the state to perform socially important programs and to support socio-economically weak subgroups in the population. Directly or indirectly, the above listed risks will get reflected in a healthcare occupation and workload which is a tremendous long-term challenge for the healthcare capacity and robustness. The article does not pretend to provide solutions for all kind of health risks. However, it aims to present the scientific evidence of great clinical utility for primary, secondary, and tertiary care to protect affected individuals in a cost-effective manner. To this end, due to pronounced antimicrobial, antioxidant, anti-inflammatory, and antiviral properties, naturally occurring plant substances are capable to protect affected individuals against COVID-19-associated life-threatening complications such as lung damage. Furthermore, they can be highly effective, if being applied to secondary and tertiary care of noncommunicable diseases under pandemic condition. Thus, the stratification of patients evaluating specific health conditions such as sleep quality, periodontitis, smoking, chronic inflammation and diseases, metabolic disorders and obesity, vascular dysfunction, and cancers would enable effective managemenet of COVID-19-associated complications in primary, secondary, and tertiary care in the context of predictive, preventive, and personalized medicine (3PM).
Collapse
Affiliation(s)
- Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Basma Abdellatif
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Kevin Zhai
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Manaal Siddiqui
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461, Rajhrad, Czech Republic
| | - Sherif T.S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Erik Kudela
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, 24144 Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
36
|
Blouin AG, Ye F, Williams J, Askar M. A practical guide to chimerism analysis: Review of the literature and testing practices worldwide. Hum Immunol 2021; 82:838-849. [PMID: 34404545 DOI: 10.1016/j.humimm.2021.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Currently there are no widely accepted guidelines for chimerism analysis testing in hematopoietic cell transplantation (HCT) patients. The objective of this review is to provide a practical guide to address key aspects of performing and utilizing chimerism testing results. In developing this guide, we conducted a survey of testing practices among laboratories that are accredited for performing engraftment monitoring/chimerism analysis by either the American Society for Histocompatibility & Immunogenetics (ASHI) and/or the European Federation of Immunogenetics (EFI). We interpreted the survey results in the light of pertinent literature as well as the experience in the laboratories of the authors. RECENT DEVELOPMENTS In recent years there has been significant advances in high throughput molecular methods such as next generation sequencing (NGS) as well as growing access to these technologies in histocompatibility and immunogenetics laboratories. These methods have the potential to improve the performance of chimerism testing in terms of sensitivity, availability of informative genetic markers that distinguish donors from recipients as well as cost. SUMMARY The results of the survey revealed a great deal of heterogeneity in chimerism testing practices among participating laboratories. The most consistent response indicated monitoring of engraftment within the first 30 days. These responses are reflective of published literature. Additional clinical indications included early detection of impending relapse as well as identification of cases of HLA-loss relapse.
Collapse
Affiliation(s)
- Amanda G Blouin
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Fei Ye
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jenifer Williams
- Department of Pathology & Laboratory Medicine, Baylor University Medical Center, Dallas, TX, United States
| | - Medhat Askar
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Pathology & Laboratory Medicine, Baylor University Medical Center, Dallas, TX, United States; Department of Pathology and Laboratory Medicine, Texas A&M Health Science Center College of Medicine, United States.
| |
Collapse
|
37
|
Koklesova L, Liskova A, Samec M, Zhai K, AL-Ishaq RK, Bugos O, Šudomová M, Biringer K, Pec M, Adamkov M, Hassan STS, Saso L, Giordano FA, Büsselberg D, Kubatka P, Golubnitschaja O. Protective Effects of Flavonoids Against Mitochondriopathies and Associated Pathologies: Focus on the Predictive Approach and Personalized Prevention. Int J Mol Sci 2021; 22:ijms22168649. [PMID: 34445360 PMCID: PMC8395457 DOI: 10.3390/ijms22168649] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Multi-factorial mitochondrial damage exhibits a “vicious circle” that leads to a progression of mitochondrial dysfunction and multi-organ adverse effects. Mitochondrial impairments (mitochondriopathies) are associated with severe pathologies including but not restricted to cancers, cardiovascular diseases, and neurodegeneration. However, the type and level of cascading pathologies are highly individual. Consequently, patient stratification, risk assessment, and mitigating measures are instrumental for cost-effective individualized protection. Therefore, the paradigm shift from reactive to predictive, preventive, and personalized medicine (3PM) is unavoidable in advanced healthcare. Flavonoids demonstrate evident antioxidant and scavenging activity are of great therapeutic utility against mitochondrial damage and cascading pathologies. In the context of 3PM, this review focuses on preclinical and clinical research data evaluating the efficacy of flavonoids as a potent protector against mitochondriopathies and associated pathologies.
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
| | - Raghad Khalid AL-Ishaq
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
| | | | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 664 61 Rajhrad, Czech Republic;
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (L.K.); (A.L.); (M.S.); (K.B.)
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (R.K.A.-I.)
- Correspondence: (D.B.); (P.K.); (O.G.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1150 Brussels, Belgium
- Correspondence: (D.B.); (P.K.); (O.G.)
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1150 Brussels, Belgium
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
- Correspondence: (D.B.); (P.K.); (O.G.)
| |
Collapse
|
38
|
Samec M, Liskova A, Koklesova L, Zhai K, Varghese E, Samuel SM, Šudomová M, Lucansky V, Kassayova M, Pec M, Biringer K, Brockmueller A, Kajo K, Hassan STS, Shakibaei M, Golubnitschaja O, Büsselberg D, Kubatka P. Metabolic Anti-Cancer Effects of Melatonin: Clinically Relevant Prospects. Cancers (Basel) 2021; 13:3018. [PMID: 34208645 PMCID: PMC8234897 DOI: 10.3390/cancers13123018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming characterized by alterations in nutrient uptake and critical molecular pathways associated with cancer cell metabolism represents a fundamental process of malignant transformation. Melatonin (N-acetyl-5-methoxytryptamine) is a hormone secreted by the pineal gland. Melatonin primarily regulates circadian rhythms but also exerts anti-inflammatory, anti-depressant, antioxidant and anti-tumor activities. Concerning cancer metabolism, melatonin displays significant anticancer effects via the regulation of key components of aerobic glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP) and lipid metabolism. Melatonin treatment affects glucose transporter (GLUT) expression, glucose-6-phosphate dehydrogenase (G6PDH) activity, lactate production and other metabolic contributors. Moreover, melatonin modulates critical players in cancer development, such as HIF-1 and p53. Taken together, melatonin has notable anti-cancer effects at malignancy initiation, progression and metastasing. Further investigations of melatonin impacts relevant for cancer metabolism are expected to create innovative approaches supportive for the effective prevention and targeted therapy of cancers.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (K.B.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (K.B.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (K.B.)
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (K.Z.); (E.V.); (S.M.S.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (K.Z.); (E.V.); (S.M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (K.Z.); (E.V.); (S.M.S.)
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klašter 1, 66461 Rajhrad, Czech Republic;
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 036 01 Martin, Slovakia;
| | - Monika Kassayova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafarik University, 04001 Košice, Slovakia;
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.); (K.B.)
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
- Biomedical Research Centre, Slovak Academy of Sciences, 81439 Bratislava, Slovakia
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Olga Golubnitschaja
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium;
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar; (K.Z.); (E.V.); (S.M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium;
| |
Collapse
|
39
|
Richter K, Kellner S, Hillemacher T, Golubnitschaja O. Sleep quality and COVID-19 outcomes: the evidence-based lessons in the framework of predictive, preventive and personalised (3P) medicine. EPMA J 2021; 12:221-241. [PMID: 34122671 PMCID: PMC8185312 DOI: 10.1007/s13167-021-00245-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/08/2023]
Abstract
Sleep quality and duration play a pivotal role in maintaining physical and mental health. In turn, sleep shortage, deprivation and disorders are per evidence the risk factors and facilitators of a broad spectrum of disorders, amongst others including depression, stroke, chronic inflammation, cancers, immune defence insufficiency and individual predisposition to infection diseases with poor outcomes, for example, related to the COVID-19 pandemic. Keeping in mind that COVID-19-related global infection distribution is neither the first nor the last pandemic severely affecting societies around the globe to the costs of human lives accompanied with enormous economic burden, lessons by predictive, preventive and personalised (3P) medical approach are essential to learn and to follow being better prepared to defend against global pandemics. To this end, under extreme conditions such as the current COVID-19 pandemic, the reciprocal interrelationship between the sleep quality and individual outcomes becomes evident, namely, at the levels of disease predisposition, severe versus mild disease progression, development of disease complications, poor outcomes and related mortality for both - population and healthcare givers. The latter is the prominent example clearly demonstrating the causality of severe outcomes, when the long-lasting work overload and shift work rhythm evidently lead to the sleep shortage and/or deprivation that in turn causes immune response insufficiency and strong predisposition to the acute infection with complications. This article highlights and provides an in-depth analysis of the concerted risk factors related to the sleep disturbances under the COVID-19 pandemic followed by the evidence-based recommendations in the framework of predictive, preventive and personalised medical approach.
Collapse
Affiliation(s)
- Kneginja Richter
- Outpatient Clinic for Sleep Disorders, University Clinic for Psychiatry and Psychotherapy, Paracelsus Medical University Nuremberg, 90419 Nuremberg, Germany
- Faculty for Social Work, Technical University of Applied Sciences Nuremberg Georg Simon Ohm, 90489 Nuremberg, Germany
- Faculty for Medical Sciences, University Goce Delcev Stip, 2000 Stip, North Macedonia
| | - Stefanie Kellner
- Faculty for Social Work, Technical University of Applied Sciences Nuremberg Georg Simon Ohm, 90489 Nuremberg, Germany
| | - Thomas Hillemacher
- Outpatient Clinic for Sleep Disorders, University Clinic for Psychiatry and Psychotherapy, Paracelsus Medical University Nuremberg, 90419 Nuremberg, Germany
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
40
|
Seong E, Bose S, Han SY, Song EJ, Lee M, Nam YD, Kim H. Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial. EPMA J 2021; 12:177-197. [PMID: 34194584 DOI: 10.1007/s13167-021-00243-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/19/2022]
Abstract
Background Ginseng, a traditional herbal medicine, has been used for thousands of years to treat various diseases including metabolic syndrome (MS). However, the underlying mechanism(s) of such beneficial actions of ginseng against MS is poorly understood. Emerging evidence indicates a close association of the host gut microbiota with MS. The present study was conducted to examine, whether the beneficial effects of Korean red ginseng (KRG) against MS could be influenced by gut microbial population and whether gut microbial profile could be considered a valuable biomarker for targeted treatment strategy for MS in compliance with the predictive, preventive, and personalized medicine (PPPM / 3PM). Methods This clinical study was a randomized, double-blind, placebo-controlled trial evaluating the effects of KRG treatment for 8 weeks on patients with MS. The anthropometric parameters, vital signs, metabolic biomarkers, and gut microbial composition through 16S rRNA gene sequencing were assessed at the baseline and endpoint. The impact of KRG was also evaluated after categorizing the subjects into responders and non-responders, as well as enterotypes 1 and 2 based on their gut microbial profile at the baseline. Results Fifty out of 60 subjects who meet the MS criteria completed the trial without showing adverse reactions. The KRG treatment caused a significant decrease in systolic blood pressure (SBP). Microbial analysis revealed a decrease in Firmicutes, Proteobacteria, and an increase in Bacteroidetes in response to KRG. In patient stratification analysis, the responders showing marked improvement in the serum levels of lipid metabolic biomarkers TC and LDL due to the KRG treatment exhibited higher population of both the family Lachnospiraceae and order Clostridiales compared to the non-responders. The homeostasis model assessment-insulin resistance (HOMA-IR) and insulin level were decreased in enterotype 1 (Bacteroides-abundant group) and increased in enterotype 2 (prevotella-abundant group) following the KRG treatment. Conclusion In this study, the effects of KRG on the glucose metabolism in MS patients were influenced by the relative abundances of gut microbial population and differed according to the individual enterotype. Therefore, the analysis of enterotype categories is considered to be helpful in predicting the effectiveness of KRG on glucose homeostasis of MS patients individually. This will further help to decide on the appropriate treatment strategy for MS, in compliance with the perspective of PPPM.
Collapse
Affiliation(s)
- Eunhak Seong
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Shambhunath Bose
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Song-Yi Han
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Eun-Ji Song
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Myeongjong Lee
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, Gyeonggi-do 10326, Republic of Korea
| |
Collapse
|
41
|
Kudela E, Liskova A, Samec M, Koklesova L, Holubekova V, Rokos T, Kozubik E, Pribulova T, Zhai K, Busselberg D, Kubatka P, Biringer K. The interplay between the vaginal microbiome and innate immunity in the focus of predictive, preventive, and personalized medical approach to combat HPV-induced cervical cancer. EPMA J 2021; 12:199-220. [PMID: 34194585 PMCID: PMC8192654 DOI: 10.1007/s13167-021-00244-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022]
Abstract
HPVs representing the most common sexually transmitted disease are a group of carcinogenic viruses with different oncogenic potential. The immune system and the vaginal microbiome represent the modifiable and important risk factors in HPV-induced carcinogenesis. HPV infection significantly increases vaginal microbiome diversity, leading to gradual increases in the abundance of anaerobic bacteria and consequently the severity of cervical dysplasia. Delineation of the exact composition of the vaginal microbiome and immune environment before HPV acquisition, during persistent/progressive infections and after clearance, provides insights into the complex mechanisms of cervical carcinogenesis. It gives hints regarding the prediction of malignant potential. Relative high HPV prevalence in the general population is a challenge for modern and personalized diagnostics and therapeutic guidelines. Identifying the dominant microbial biomarkers of high-grade and low-grade dysplasia could help us to triage the patients with marked chances of lesion regression or progression. Any unnecessary surgical treatment of cervical dysplasia could negatively affect obstetrical outcomes and sexual life. Therefore, understanding the effect and role of microbiome-based therapies is a breaking point in the conservative management of HPV-associated precanceroses. The detailed evaluation of HPV capabilities to evade immune mechanisms from various biofluids (vaginal swabs, cervicovaginal lavage/secretions, or blood) could promote the identification of new immunological targets for novel individualized diagnostics and therapy. Qualitative and quantitative assessment of local immune and microbial environment and associated risk factors constitutes the critical background for preventive, predictive, and personalized medicine that is essential for improving state-of-the-art medical care in patients with cervical precanceroses and cervical cancer. The review article focuses on the influence and potential diagnostic and therapeutic applications of the local innate immune system and the microbial markers in HPV-related cancers in the context of 3P medicine.
Collapse
Affiliation(s)
- Erik Kudela
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Veronika Holubekova
- Jessenius Faculty of Medicine, Biomedical Centre Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Tomas Rokos
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Erik Kozubik
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Terezia Pribulova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Dietrich Busselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- European Association for Predictive, Preventive and Personalised Medicine, EPMA, 1160 Brussels, Belgium
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollarova 2, 036 01 Martin, Slovakia
| |
Collapse
|
42
|
Liskova A, Samec M, Koklesova L, Brockmueller A, Zhai K, Abdellatif B, Siddiqui M, Biringer K, Kudela E, Pec M, Gadanec LK, Šudomová M, Hassan STS, Zulli A, Shakibaei M, Giordano FA, Büsselberg D, Golubnitschaja O, Kubatka P. Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles. EPMA J 2021; 12:155-176. [PMID: 34025826 PMCID: PMC8126506 DOI: 10.1007/s13167-021-00242-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
Cost-efficacy of currently applied treatments is an issue in overall cancer management challenging healthcare and causing tremendous economic burden to societies around the world. Consequently, complex treatment models presenting concepts of predictive diagnostics followed by targeted prevention and treatments tailored to the personal patient profiles earn global appreciation as benefiting the patient, healthcare economy, and the society at large. In this context, application of flavonoids as a spectrum of compounds and their nano-technologically created derivatives is extensively under consideration, due to their multi-faceted anti-cancer effects applicable to the overall cost-effective cancer management, primary, secondary, and even tertiary prevention. This article analyzes most recently updated data focused on the potent capacity of flavonoids to promote anti-cancer therapeutic effects and interprets all the collected research achievements in the frame-work of predictive, preventive, and personalized (3P) medicine. Main pillars considered are: - Predictable anti-neoplastic, immune-modulating, drug-sensitizing effects; - Targeted molecular pathways to improve therapeutic outcomes by increasing sensitivity of cancer cells and reversing their resistance towards currently applied therapeutic modalities.
Collapse
Affiliation(s)
- Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Kevin Zhai
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Basma Abdellatif
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Manaal Siddiqui
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Erik Kudela
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, 3030 Australia
| | - Miroslava Šudomová
- Museum of Literature in Moravia, Klášter 1, 66461 Rajhrad, Czech Republic
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, 3030 Australia
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Dietrich Büsselberg
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, 24144 Doha, Qatar
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
43
|
Okuda Y, Aoike F, Matsuzaki J, Shiraishi S, Sugiyama S, Yoshida T, Kitamura E, Nishida F, Tanaka N, Sugiyama Y, Enami T, Yanagihara T. Functional recoveries of patients with branch atheromatous disease after rehabilitation: Comparison with other types of cerebral infarction and importance of stratification by clinical categories. Restor Neurol Neurosci 2021; 39:139-147. [PMID: 33967074 DOI: 10.3233/rnn-211163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Functional recoveries after rehabilitation of patients with branch atheromatous disease (BAD) have not been well investigated, however, clinical category of cerebral infarction including BAD itself could be a potential predictive factor for functional outcome. OBJECTIVE To describe characteristics of functional recoveries of patients with BAD through comparison with other types of cerebral infarction. METHODS We retrospectively compared outcomes of patients with BAD (N = 222), cardioembolic cerebral infarction (CE: N = 177) and atherothrombotic cerebral infarction (AT: N = 219) by using functional independence measure (FIM) and FIM effectiveness (the proportion of potential for improvement achieved). RESULTS Univariate analysis showed that FIM on discharge was comparable among three types of cerebral infarction, but that FIM effectiveness in patients with BAD was significantly higher than those with CE or AT. Stratified analysis revealed higher FIM effectiveness in patients with BAD compared to patients with CE or AT, if they were male, younger (≤72 years) or had supratentorial brain lesions. Multiple regression analysis demonstrated that location of the brain lesion (supratentorial vs infratentorial) and gender (male vs female) were significantly associated with FIM on discharge, and that cognitive function on admission as well as gender were significantly associated with FIM effectiveness in patients with BAD, but not in patients with CE or AT. CONCLUSIONS Outcomes after rehabilitation of patients with BAD may be characterized by better functional improvement, especially if patients are male, relatively younger or with supratentorial lesions. The impact and the type of factors related to functional recoveries of patients with BAD may be different from other types of stroke. The present study suggested that clinical category of stroke should be taken into consideration in prediction of outcomes and planning of rehabilitation management.
Collapse
Affiliation(s)
| | | | - Jo Matsuzaki
- Department of Neurology, Tane General Hospital, Osaka, Japan
| | | | | | - Tomoko Yoshida
- Department of Neurology, Tane General Hospital, Osaka, Japan
| | - Emi Kitamura
- Department of Neurology, Tane General Hospital, Osaka, Japan
| | - Fukuko Nishida
- Department of Neurology, Tane General Hospital, Osaka, Japan
| | - Natsuki Tanaka
- Department of Neurology, Tane General Hospital, Osaka, Japan
| | - Yasuko Sugiyama
- Department of Neurology, Tane General Hospital, Osaka, Japan
| | - Tomomi Enami
- Department of Neurology, Tane General Hospital, Osaka, Japan
| | | |
Collapse
|
44
|
Chen MY, Gillanders WE. Staging of the Axilla in Breast Cancer and the Evolving Role of Axillary Ultrasound. BREAST CANCER (DOVE MEDICAL PRESS) 2021; 13:311-323. [PMID: 34040436 PMCID: PMC8139849 DOI: 10.2147/bctt.s273039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Axillary lymph nodes have long been recognized as a route for breast cancer to spread systemically. As a result, staging of the axilla has always played a central role in the treatment of breast cancer. Anatomic staging was believed to be important for two reasons: 1) it predicts prognosis and guides medical therapy, and 2) it is a potential therapy for removal of disease in the axilla. This paradigm has now been called into question. Prognostic information is driven increasingly by tumor biology, and trials such as the ACOSOG Z0011 demonstrates removal of axillary disease is not therapeutic. Staging of the axilla has undergone a dramatic de-escalation; however, sentinel lymph node biopsy (SLNB) is still an invasive surgery and represents a large economic burden on the healthcare system. In this review, we outline the changing paradigms of axillary staging in breast cancer from emphasis on anatomic staging to tumor biology, and the evolving role of axillary ultrasound, bringing patients less invasive and more personalized therapy.
Collapse
Affiliation(s)
- Michael Y Chen
- Department of Surgery, Washington University, St Louis, MS, USA
| | - William E Gillanders
- Department of Surgery, Washington University, St Louis, MS, USA
- Siteman Cancer Center in St. Louis, St Louis, MS, USA
| |
Collapse
|
45
|
Moss EL, Morgan G, Martin A, Sarhanis P, Ind T. Economic evaluation of different routes of surgery for the management of endometrial cancer: a retrospective cohort study. BMJ Open 2021; 11:e045888. [PMID: 33986058 PMCID: PMC8126289 DOI: 10.1136/bmjopen-2020-045888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES The benefits of minimally invasive surgery (MIS) for endometrial carcinoma (EC) are well established although the financial impact of robotic-assisted hysterectomy (RH) compared with laparoscopic hysterectomy (LH) is disputed. DESIGN Retrospective cohort study. SETTING English National Health Service hospitals 2011-2017/2018. PARTICIPANTS 35 304 women having a hysterectomy for EC identified from Hospital Episode Statistics. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome was the association between route of surgery on cost at intervention, 30, 90 and 365 days for women undergoing an open hysterectomy (OH) or MIS (LH/RH) for EC in England. The average marginal effect was calculated to compare RH versus OH and RH versus LH which adjusted for any differences in the characteristics of the surgical approaches. Secondary outcomes were to analyse costing data for each surgical approach by age, Charlson Comorbidity Index (CCI) and hospital MIS rate classification. RESULTS A total of 35 304 procedures were performed, 20 405 (57.8%) were MIS (LH: 18 604 and RH: 1801), 14 291 (40.5%) OH. Mean cost for LH was significantly less than RH, whereas RH was significantly less than OH at intervention, 30, 90 and 365 days (p<0.001). Over time, patients who underwent RH had increasing CCI scores and by the 2015/2016 year had a higher average CCI than LH. Comparing the cost of LH and RH against CCI score identified that the costs closely reflected the patients' CCI. Increasing disparity was also seen between the MIS and OH costs with rising age. When exploring the association between provider volume, MIS rate and surgical costs, there was an association with the higher the MIS rate the lower the average cost. CONCLUSIONS Further research is needed to investigate costs in matched patient cohorts to determine the optimum surgical modality in different populations.
Collapse
Affiliation(s)
- Esther L Moss
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
- Department of Gynaecological Oncology, University Hospitals of Leicester, Leicester, UK
| | | | | | - Panos Sarhanis
- Department of Gynaecology, North West London Hospitals NHS Trust, London, UK
| | - Thomas Ind
- Department of Gynaecological Oncology, Royal Marsden Hospital, London, UK
- Department of Gynaecology, St George's University of London, London, UK
| |
Collapse
|
46
|
Chyr J, Zhang Z, Chen X, Zhou X. PredTAD: A machine learning framework that models 3D chromatin organization alterations leading to oncogene dysregulation in breast cancer cell lines. Comput Struct Biotechnol J 2021; 19:2870-2880. [PMID: 34093998 PMCID: PMC8142020 DOI: 10.1016/j.csbj.2021.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 10/26/2022] Open
Abstract
Topologically associating domains, or TADs, play important roles in genome organization and gene regulation; however, they are often altered in diseases. High-throughput chromatin conformation capturing assays, such as Hi-C, can capture domains of increased interactions, and TADs and boundaries can be identified using well-established analytical tools. However, generating Hi-C data is expensive. In our study, we addressed the relationship between multi-omics data and higher-order chromatin structures using a newly developed machine-learning model called PredTAD. Our tool uses already-available and cost-effective datatypes such as transcription factor and histone modification ChIPseq data. Specifically, PredTAD utilizes both epigenetic and genetic features as well as neighboring information to classify the entire human genome as boundary or non-boundary regions. Our tool can predict boundary changes between normal and breast cancer genomes. Among the most important features for predicting boundary alterations were CTCF, subunits of cohesin (RAD21 and SMC3), and chromosome number, suggesting their roles in conserved and dynamic boundaries formation. Upon further analysis, we observed that genes near altered TAD boundaries were found to be involved in several important breast cancer signaling pathways such as Ras, Jak-STAT, and estrogen signaling pathways. We also discovered a TAD boundary alteration that contributes to RET oncogene overexpression. PredTAD can also successfully predict TAD boundary changes in other conditions and diseases. In conclusion, our newly developed machine learning tool allowed for a more complete understanding of the dynamic 3D chromatin structures involved in signaling pathway activation, altered gene expression, and disease state in breast cancer cells.
Collapse
Affiliation(s)
- Jacqueline Chyr
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Zhigang Zhang
- School of Information Management and Statistics, Hubei University of Economics, Wuhan, Hubei 430205 China
| | - Xi Chen
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77054, USA
| | - Xiaobo Zhou
- School of Biomedical Informatics, University of Texas Health Science Center, Houston, TX 77054, USA
| |
Collapse
|
47
|
Dong W, Liu X, Yang C, Wang D, Xue Y, Ruan X, Zhang M, Song J, Cai H, Zheng J, Liu Y. Glioma glycolipid metabolism: MSI2-SNORD12B-FIP1L1-ZBTB4 feedback loop as a potential treatment target. Clin Transl Med 2021; 11:e411. [PMID: 34047477 PMCID: PMC8114150 DOI: 10.1002/ctm2.411] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
Abnormal energy metabolism, including enhanced aerobic glycolysis and lipid synthesis, is a well-established feature of glioblastoma (GBM) cells. Thus, targeting the cellular glycolipid metabolism can be a feasible therapeutic strategy for GBM. This study aimed to evaluate the roles of MSI2, SNORD12B, and ZBTB4 in regulating the glycolipid metabolism and proliferation of GBM cells. MSI2 and SNORD12B expression was significantly upregulated and ZBTB4 expression was significantly low in GBM tissues and cells. Knockdown of MSI2 or SNORD12B or overexpression of ZBTB4 inhibited GBM cell glycolipid metabolism and proliferation. MSI2 may improve SNORD12B expression by increasing its stability. Importantly, SNORD12B increased utilization of the ZBTB4 mRNA transcript distal polyadenylation signal in alternative polyadenylation processing by competitively combining with FIP1L1, which decreased ZBTB4 expression because of the increased proportion of the 3' untranslated region long transcript. ZBTB4 transcriptionally suppressed the expression of HK2 and ACLY by binding directly to the promoter regions. Additionally, ZBTB4 bound the MSI promoter region to transcriptionally suppress MSI2 expression, thereby forming an MSI2/SNORD12B/FIP1L1/ZBTB4 feedback loop to regulate the glycolipid metabolism and proliferation of GBM cells. In conclusion, MSI2 increased the stability of SNORD12B, which regulated ZBTB4 alternative polyadenylation processing by competitively binding to FIP1L1. Thus, the MSI2/SNORD12B/FIP1L1/ZBTB4 positive feedback loop plays a crucial role in regulating the glycolipid metabolism of GBM cells and provides a potential drug target for glioma treatment.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Xiaobai Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Chunqing Yang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Di Wang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Yixue Xue
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Xuelei Ruan
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Mengyang Zhang
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
- Key Laboratory of Cell Biology, Ministry of Public Health of ChinaChina Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaChina Medical UniversityShenyangChina
| | - Jian Song
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Heng Cai
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Jian Zheng
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Yunhui Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Province Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| |
Collapse
|
48
|
ctDNA-Based Liquid Biopsy of Cerebrospinal Fluid in Brain Cancer. Cancers (Basel) 2021; 13:cancers13091989. [PMID: 33919036 PMCID: PMC8122255 DOI: 10.3390/cancers13091989] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
The correct characterisation of central nervous system (CNS) malignancies is crucial for accurate diagnosis and prognosis and also the identification of actionable genomic alterations that can guide the therapeutic strategy. Surgical biopsies are performed to characterise the tumour; however, these procedures are invasive and are not always feasible for all patients. Moreover, they only provide a static snapshot and can miss tumour heterogeneity. Currently, monitoring of CNS cancer is performed by conventional imaging techniques and, in some cases, cytology analysis of the cerebrospinal fluid (CSF); however, these techniques have limited sensitivity. To overcome these limitations, a liquid biopsy of the CSF can be used to obtain information about the tumour in a less invasive manner. The CSF is a source of cell-free circulating tumour DNA (ctDNA), and the analysis of this biomarker can characterise and monitor brain cancer. Recent studies have shown that ctDNA is more abundant in the CSF than plasma for CNS malignancies and that it can be sequenced to reveal tumour heterogeneity and provide diagnostic and prognostic information. Furthermore, analysis of longitudinal samples can aid patient monitoring by detecting residual disease or even tracking tumour evolution at relapse and, therefore, tailoring the therapeutic strategy. In this review, we provide an overview of the potential clinical applications of the analysis of CSF ctDNA and the challenges that need to be overcome in order to translate research findings into a tool for clinical practice.
Collapse
|
49
|
Tachalov VV, Orekhova LY, Kudryavtseva TV, Loboda ES, Pachkoriia MG, Berezkina IV, Golubnitschaja O. Making a complex dental care tailored to the person: population health in focus of predictive, preventive and personalised (3P) medical approach. EPMA J 2021; 12:129-140. [PMID: 33897916 PMCID: PMC8053896 DOI: 10.1007/s13167-021-00240-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
An evident underestimation of the targeted prevention of dental diseases is strongly supported by alarming epidemiologic statistics globally. For example, epidemiologists demonstrated 100% prevalence of dental caries in the Russian population followed by clinical manifestation of periodontal diseases. Inadequately provided oral health services in populations are caused by multi-factorial deficits including but not limited to low socio-economic status of affected individuals, lack of insurance in sub-populations, insufficient density of dedicated medical units. Another important aspect is the “participatory” medicine based on the active participation of population in maintaining oral health: healthcare will remain insufficient as long as the patient is not motivated and does not feel responsible for their oral health. To this end, nearly half of chronically diseased people do not comply with adequate medical services suffering from severely progressing pathologies. Noteworthy, the prominent risk factors and comorbidities linked to the severe disease course and poor outcomes in COVID-19-infected individuals, such as elderly, diabetes mellitus, hypertension and cardiovascular disease, are frequently associated with significantly altered oral microbiome profiles, systemic inflammatory processes and poor oral health. Suggested pathomechanisms consider potential preferences in the interaction between the viral particles and the host microbiota including oral cavity, the respiratory and gastrointestinal tracts. Since an aspiration of periodontopathic bacteria induces the expression of angiotensin-converting enzyme 2, the receptor for SARS-CoV-2, and production of inflammatory cytokines in the lower respiratory tract, poor oral hygiene and periodontal disease have been proposed as leading to COVID-19 aggravation. Consequently, the issue-dedicated expert recommendations are focused on the optimal oral hygiene as being crucial for improved individual outcomes and reduced morbidity under the COVID-19 pandemic condition. Current study demonstrated that age, gender, socio-economic status, quality of environment and life-style, oral hygiene quality, regularity of dental services requested, level of motivation and responsibility for own health status and corresponding behavioural patterns are the key parameters for the patient stratification considering person-tailored approach in a complex dental care in the population. Consequently, innovative screening programmes and adapted treatment schemes are crucial for the complex person-tailored dental care to improve individual outcomes and healthcare provided to the population.
Collapse
Affiliation(s)
- V. V. Tachalov
- Therapeutic Dentistry and Periodontology Department, Pavlov First Saint Petersburg State Medical University, 6/8 Lva Tolstogo Street, St. Petersburg, Russia
| | - L. Y. Orekhova
- Therapeutic Dentistry and Periodontology Department, Pavlov First Saint Petersburg State Medical University, 6/8 Lva Tolstogo Street, St. Petersburg, Russia
- City Periodontology Centre, “PAKS”, Dobrolubova prospect, 27, St. Petersburg, Russia
| | - T. V. Kudryavtseva
- Therapeutic Dentistry and Periodontology Department, Pavlov First Saint Petersburg State Medical University, 6/8 Lva Tolstogo Street, St. Petersburg, Russia
| | - E. S. Loboda
- City Periodontology Centre, “PAKS”, Dobrolubova prospect, 27, St. Petersburg, Russia
| | - M. G. Pachkoriia
- Therapeutic Dentistry and Periodontology Department, Pavlov First Saint Petersburg State Medical University, 6/8 Lva Tolstogo Street, St. Petersburg, Russia
| | - I. V. Berezkina
- Therapeutic Dentistry and Periodontology Department, Pavlov First Saint Petersburg State Medical University, 6/8 Lva Tolstogo Street, St. Petersburg, Russia
| | - O. Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
50
|
Huo L, Tan Y, Wang S, Geng C, Li Y, Ma X, Wang B, He Y, Yao C, Ouyang T. Machine Learning Models to Improve the Differentiation Between Benign and Malignant Breast Lesions on Ultrasound: A Multicenter External Validation Study. Cancer Manag Res 2021; 13:3367-3379. [PMID: 33889025 PMCID: PMC8057795 DOI: 10.2147/cmar.s297794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/23/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to establish and evaluate the usefulness of a simple, practical, and easy-to-promote machine learning model based on ultrasound imaging features for diagnosing breast cancer (BC). Materials and Methods Logistic regression, random forest, extra trees, support vector, multilayer perceptron, and XG Boost models were developed. The modeling data set of 1345 cases was from a tertiary class A hospital in China. The external validation data set of 1965 cases were from 3 tertiary class A hospitals and 2 primary hospitals. The area under the receiver operating characteristic curve (AUC) was used as the main evaluation index, and pathological biopsy was used as the gold standard for evaluating each model. Diagnostic capability was also compared with that of clinicians. Results Among the six models, the logistic model showed superior diagnostic efficiency, with an AUC of 0.771 and 0.906 and Brier scores of 0.181 and 0.165 in the test and validation sets, respectively. The AUCs of the clinician diagnosis and the logistic model were 0.913 and 0.906. Their AUCs in the tertiary class A hospitals were 0.915 and 0.915, respectively, and were 0.894 and 0.873 in primary hospitals, respectively. Conclusion The externally validated logical model can be used to distinguish between malignant and benign breast lesions in ultrasound images. Compared with clinician diagnosis, the logistic model has better diagnostic efficiency, making it potentially useful to assist in screening, particularly in lower level medical institutions. Trial Registration http://www.clinicaltrials.gov. ClinicalTrials.gov ID: NCT03080623.
Collapse
Affiliation(s)
- Ling Huo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Yao Tan
- Department of Biostatistics, Peking University First Hospital, Beijing, People's Republic of China
| | - Shu Wang
- Department of Breast Center, Peking University People's Hospital, Beijing, People's Republic of China
| | - Cuizhi Geng
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yi Li
- Shunyi District Health Care Hospital for Women and Children of Beijing, Beijing, People's Republic of China
| | - XiangJun Ma
- Haidian Maternal and Child Health Hospital, Beijing, People's Republic of China
| | - Bin Wang
- Department of Biostatistics, Peking University First Hospital, Beijing, People's Republic of China
| | - YingJian He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Chen Yao
- Department of Biostatistics, Peking University First Hospital, Beijing, People's Republic of China.,Peking University Clinical Research Institute, Peking University Health Science Center, Beijing, People's Republic of China
| | - Tao Ouyang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Breast Center, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| |
Collapse
|