1
|
Kiruthika K, Suganthi A, Johnson Thangaraj Edward YS, Anandham R, Renukadevi P, Murugan M, Bimal Kumar Sahoo, Mohammad Ikram, Kavitha PG, Jayakanthan M. Role of Lactic Acid Bacteria in Insecticide Residue Degradation. Probiotics Antimicrob Proteins 2025; 17:81-102. [PMID: 38819541 DOI: 10.1007/s12602-024-10298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Lactic acid bacteria are gaining global attention, especially due to their role as a probiotic. They are increasingly being used as a flavoring agent and food preservative. Besides their role in food processing, lactic acid bacteria also have a significant role in degrading insecticide residues in the environment. This review paper highlights the importance of lactic acid bacteria in degrading insecticide residues of various types, such as organochlorines, organophosphorus, synthetic pyrethroids, neonicotinoids, and diamides. The paper discusses the mechanisms employed by lactic acid bacteria to degrade these insecticides, as well as their potential applications in bioremediation. The key enzymes produced by lactic acid bacteria, such as phosphatase and esterase, play a vital role in breaking down insecticide molecules. Furthermore, the paper discusses the challenges and future directions in this field. However, more research is needed to optimize the utilization of lactic acid bacteria in insecticide residue degradation and to develop practical strategies for their implementation in real-world scenarios.
Collapse
Affiliation(s)
- K Kiruthika
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - A Suganthi
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | | | - R Anandham
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P Renukadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Bimal Kumar Sahoo
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Mohammad Ikram
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P G Kavitha
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - M Jayakanthan
- Department of Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
2
|
Hao F, Wang X, Ma F, Wang R, Dong F, Pan X, Wu X, Zheng Y, Xu J. Transfer of pesticides and metabolites in corn: Production, processing, and livestock dietary burden. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176932. [PMID: 39447904 DOI: 10.1016/j.scitotenv.2024.176932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Corn stover is widely used in livestock feed but has received limited attention regarding its potential risks. In this study, pesticide residues were monitored across 12 provinces in China, and terminal residues of four pesticides, chlorantraniliprole, thiamethoxam, epoxiconazole, and pyraclostrobin, were tested. In addition, the silage processing experiment was conducted. All processing factors (PF) were <1, indicating pesticide degradation. The physicochemical properties of pesticides, especially log P, were related to degradation efficiency. Pesticides with higher log P values showed higher PFs (0.43 to 0.85), indicating lower degradation efficiency. The dietary burden of livestock before and after silage processing was calculated using OECD livestock dietary burden calculator. Results showed that after silage fermentation, the dietary burden was reduced by 28.8 % to 79.2 %. Throughout the entire production and processing process, the fastest degradation of all pesticides in whole corn was primarily observed from the pesticide application time to the harvest time, with some pesticides also showing accelerated degradation during subsequent processing stages. Therefore, in actual production, especially for pesticides which are difficult to degrade, appropriate extension of the safety interval or selection of suitable processing methods can be taken to further reduce pesticide residues in agricultural products.
Collapse
Affiliation(s)
- Fengjiao Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feixiang Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
3
|
Yuan S, Yu H, Guo Y, Xie Y, Cheng Y, Qian H, Yao W. Recent advance in probiotics for the elimination of pesticide residues in food and feed: mechanisms, product toxicity, and reinforcement strategies. Crit Rev Food Sci Nutr 2024; 64:12025-12039. [PMID: 37584269 DOI: 10.1080/10408398.2023.2246545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The extensive utilization of pesticides in agriculture has resulted in the presence of pesticide residues in food and feed, which poses a significant threat to human health. Various physical and chemical methods have been proposed to remove pesticides, but most of these methods are either costly or susceptible to secondary contamination. Consequently, the utilization of microorganisms, such as probiotics, for eliminating pesticides, has emerged as a promising alternative. Probiotics, including lactic acid bacteria, yeasts, and fungi, have demonstrated remarkable efficiency and convenience in eliminating pesticide residues from food or feed. To promote the application of probiotic decontamination, this review examines the current research status on the utilization of probiotics for pesticide reduction. The mechanisms involved in microbial decontamination are discussed, along with the toxicity and potential health risks of degradation products. Furthermore, the review explores strategies to enhance probiotic detoxification and outlines prospects for future development.
Collapse
Affiliation(s)
- Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Khani N, Noorkhajavi G, Reziabad RH, Rad AH, Ziavand M. Postbiotics as Potential Detoxification Tools for Mitigation of Pesticides. Probiotics Antimicrob Proteins 2024; 16:1427-1439. [PMID: 37934379 DOI: 10.1007/s12602-023-10184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Pesticides possess a pivotal role in the realm of agriculture and food manufacturing, as they effectively manage the proliferation of weeds, insects, plant pathogens, and microbial contaminations. They are valuable in some ways, but if misused, they can cause health issues like cancer, reproductive toxicity, neurological illnesses, and endocrine system disturbances. In this regard, practical methods for reducing pesticide residue in food should be used. For reducing pesticide residue in food processing, some strategies have been suggested. Recent research has been done on detoxification processes, including microorganisms like probiotics and their metabolites. The term "postbiotics" describes soluble substances, such as peptides, enzymes, teichoic acids, muropeptides generated from peptidoglycans, polysaccharides, proteins, and organic acids that are secreted by living bacteria or released after bacterial lysis. Due to their distinct chemical makeup, safe dosage guidelines, lengthy shelf lives, and presence of various signaling molecules that may have antioxidant, anti-inflammatory, anti-obesogenic, immunomodulatory, anti-hypertensive, and immunomodulatory effects, these postbiotics have attracted interest. They also can detoxify heavy metals, mycotoxins, and pesticides. Hydrolytic enzymes have been proposed as a potential mechanism for pesticide degradation. Postbiotics can also reduce reactive oxygen species production, enhance gastrointestinal barrier function, reduce inflammation, and modulate host xenobiotic metabolism. This review highlights pesticide residues in food products, definitions and safety aspect of postbiotics, as well as their biological role in detoxification of pesticides and the protective role of these compounds against the adverse effects of pesticides.
Collapse
Affiliation(s)
- Nader Khani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran
| | - Ghasem Noorkhajavi
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Hazrati Reziabad
- Student Research Committee, Department of Food Science and Technology., National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran.
| | - Mohammadreza Ziavand
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran
| |
Collapse
|
5
|
Manikandan SK, Pallavi P, Shetty K, Bhattacharjee D, Giannakoudakis DA, Katsoyiannis IA, Nair V. Effective Usage of Biochar and Microorganisms for the Removal of Heavy Metal Ions and Pesticides. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020719. [PMID: 36677777 PMCID: PMC9862088 DOI: 10.3390/molecules28020719] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
The bioremediation of heavy metal ions and pesticides is both cost-effective and environmentally friendly. Microbial remediation is considered superior to conventional abiotic remediation processes, due to its cost-effectiveness, decrement of biological and chemical sludge, selectivity toward specific metal ions, and high removal efficiency in dilute effluents. Immobilization technology using biochar as a carrier is one important approach for advancing microbial remediation. This article provides an overview of biochar-based materials, including their design and production strategies, physicochemical properties, and applications as adsorbents and support for microorganisms. Microorganisms that can cope with the various heavy metal ions and/or pesticides that enter the environment are also outlined in this review. Pesticide and heavy metal bioremediation can be influenced by microbial activity, pollutant bioavailability, and environmental factors, such as pH and temperature. Furthermore, by elucidating the interaction mechanisms, this paper summarizes the microbe-mediated remediation of heavy metals and pesticides. In this review, we also compile and discuss those works focusing on the study of various bioremediation strategies utilizing biochar and microorganisms and how the immobilized bacteria on biochar contribute to the improvement of bioremediation strategies. There is also a summary of the sources and harmful effects of pesticides and heavy metals. Finally, based on the research described above, this study outlines the future scope of this field.
Collapse
Affiliation(s)
- Soumya K. Manikandan
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
| | - Pratyasha Pallavi
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
| | - Krishan Shetty
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
| | | | - Dimitrios A. Giannakoudakis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (D.A.G.); (V.N.)
| | - Ioannis A. Katsoyiannis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vaishakh Nair
- Department of Chemical Engineering, National Institute of Technology Karnataka (NITK), Mangalore 575025, India
- Correspondence: (D.A.G.); (V.N.)
| |
Collapse
|
6
|
Petrova P, Arsov A, Tsvetanova F, Parvanova-Mancheva T, Vasileva E, Tsigoriyna L, Petrov K. The Complex Role of Lactic Acid Bacteria in Food Detoxification. Nutrients 2022; 14:2038. [PMID: 35631179 PMCID: PMC9147554 DOI: 10.3390/nu14102038] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
Toxic ingredients in food can lead to serious food-related diseases. Such compounds are bacterial toxins (Shiga-toxin, listeriolysin, Botulinum toxin), mycotoxins (aflatoxin, ochratoxin, zearalenone, fumonisin), pesticides of different classes (organochlorine, organophosphate, synthetic pyrethroids), heavy metals, and natural antinutrients such as phytates, oxalates, and cyanide-generating glycosides. The generally regarded safe (GRAS) status and long history of lactic acid bacteria (LAB) as essential ingredients of fermented foods and probiotics make them a major biological tool against a great variety of food-related toxins. This state-of-the-art review aims to summarize and discuss the data revealing the involvement of LAB in the detoxification of foods from hazardous agents of microbial and chemical nature. It is focused on the specific properties that allow LAB to counteract toxins and destroy them, as well as on the mechanisms of microbial antagonism toward toxigenic producers. Toxins of microbial origin are either adsorbed or degraded, toxic chemicals are hydrolyzed and then used as a carbon source, while heavy metals are bound and accumulated. Based on these comprehensive data, the prospects for developing new combinations of probiotic starters for food detoxification are considered.
Collapse
Affiliation(s)
- Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.P.); (A.A.)
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (P.P.); (A.A.)
| | - Flora Tsvetanova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Tsvetomila Parvanova-Mancheva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Evgenia Vasileva
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (F.T.); (T.P.-M.); (E.V.); (L.T.)
| |
Collapse
|
7
|
Functional Properties and Antimicrobial Activity from Lactic Acid Bacteria as Resources to Improve the Health and Welfare of Honey Bees. INSECTS 2022; 13:insects13030308. [PMID: 35323606 PMCID: PMC8953987 DOI: 10.3390/insects13030308] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Honey bees play a pivotal role in the sustainability of ecosystems and biodiversity. Many factors including parasites, pathogens, pesticide residues, forage losses, and poor nutrition have been proposed to explain honey bee colony losses. Lactic acid bacteria (LAB) are normal inhabitants of the gastrointestinal tract of honey bees and their role has been consistently reported in the literature. In recent years, there have been numerous scientific evidence that the intestinal microbiota plays an essential role in honey bee health. Management strategies, based on supplementation of the gut microbiota with probiotics, may be important to increase stress tolerance and disease resistance. In this review, recent scientific advances on the use of LABs as microbial supplements in the diet of honey bees are summarized and discussed. Abstract Honey bees (Apis mellifera) are agriculturally important pollinators. Over the past decades, significant losses of wild and domestic bees have been reported in many parts of the world. Several biotic and abiotic factors, such as change in land use over time, intensive land management, use of pesticides, climate change, beekeeper’s management practices, lack of forage (nectar and pollen), and infection by parasites and pathogens, negatively affect the honey bee’s well-being and survival. The gut microbiota is important for honey bee growth and development, immune function, protection against pathogen invasion; moreover, a well-balanced microbiota is fundamental to support honey bee health and vigor. In fact, the structure of the bee’s intestinal bacterial community can become an indicator of the honey bee’s health status. Lactic acid bacteria are normal inhabitants of the gastrointestinal tract of many insects, and their presence in the honey bee intestinal tract has been consistently reported in the literature. In the first section of this review, recent scientific advances in the use of LABs as probiotic supplements in the diet of honey bees are summarized and discussed. The second section discusses some of the mechanisms by which LABs carry out their antimicrobial activity against pathogens. Afterward, individual paragraphs are dedicated to Chalkbrood, American foulbrood, European foulbrood, Nosemosis, and Varroosis as well as to the potentiality of LABs for their biological control.
Collapse
|
8
|
Liu F, Bai J, Huang W, Li F, Ke W, Zhang Y, Xie D, Zhang B, Guo X. Characterization of a novel beta-cypermethrin-degrading strain of Lactobacillus pentosus 3-27 and its effects on bioremediation and the bacterial community of contaminated alfalfa silage. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127101. [PMID: 34488094 DOI: 10.1016/j.jhazmat.2021.127101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
In this study, a novel beta-cypermethrin (beta-cyp)-degrading strain Lactobacillus pentosus 3-27 (LP3-27) was screened from beta-cyp-contaminated silage. The strain could degrade 96% of beta-cyp (50 mg/L) in MSM medium after 4 d of culture, while the strain lost its degradation ability when the beta-cyp concentration reached 250 mg/L. The effects of LP 3-27 on fermentation, bacterial community, and bioremediation of contaminated alfalfa silage at two dry matter (DM) contents were studied. The results showed that inoculation with LP3-27 not only degraded beta-cyp, but also improved the fermentation quality of alfalfa silage after 60 d of ensiling. Meanwhile, L. pentosus dominated the bacterial community during ensiling in LP3-27 inoculated silages, whereas Pediococcus acidilactici was the dominant species in the control silage. LP3-27 inoculation also simplified the bacterial interaction networks of ensiled alfalfa. Beta-cyp degradation was positively correlated with L. pentosus in LP- inoculated silages, which confirmed the function of beta-cyp degradation by L. pentosus. In addition, higher beta-cyp degradation was observed in silage with 35% versus 43% DM. In summary, strain LP3-27 could be used as a candidate inoculum for bioremediation of beta-cyp-contaminated silage and to produce safe silage for animal production.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, China
| | - Jie Bai
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China; State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, China
| | - Wenkang Huang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, China
| | - Fuhou Li
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, China
| | - Wencan Ke
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, China
| | - Yixin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, China
| | - Dongmei Xie
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, China
| | - Bo Zhang
- Animal Husbandry and Veterinary Bureau of Dingxi City, Dingxi 743000, China
| | - Xusheng Guo
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China; Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Azar İ, Kumral NA. Validation of LC-MS/MS method for simultaneous determination of chlorpyrifos, deltamethrin, imidacloprid and some of their metabolites in maize silage. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2022; 57:125-132. [PMID: 35060839 DOI: 10.1080/03601234.2022.2029275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In this study, a validation of a multi-residue analysis method was performed for the simultaneous analysis of chlorpyrifos (CHL), deltamethrin (DEL) and Imidacloprid (IMI) residues and some of their metabolites in maize silage, by LC MS/MS. Extraction was conducted with acetonitrile acidified with 1% acetic acid. To avoid the matrix effect, a matrix matched calibration was used. The method was validated according to the SANTE/12682/2019 Guidelines. Selectivity, linearity, limit of detection (LOD), limit of quantification (LOQ), trueness (recovery %) and precision (intra-day and inter-day) parameters were evaluated in line with the SANTE document. The linearities of all compounds were quite confident (R2≥ 0.98) and no interference was observed. The LOD and LOQ values were between 2.76 µg kg-1 to 53.61 µg kg-1 and 9.19 µg kg-1 to 178.71 µg kg-1, respectively. The recovery, repeatability RDSr and reproducibility RDSR values of compounds were calculated between 93.7-109.2%, 1-15%, and 1-13%, respectively. Consequently, results obtained with the evaluation of all parameters were found to be compatible with the SANTE validation criteria, so the method was reliable, effective and easy to use for the detection of insecticides and metabolites in maize silage with LC MS/MS.
Collapse
Affiliation(s)
- İsmail Azar
- Central Research Institute for Food and Feed Control, Bursa, Turkey
- Division of Plant Protection, Graduate School of Natural and Applied Science, Bursa Uludag University, Bursa, Turkey
| | - Nabi Alper Kumral
- Department of Plant Protection, Faculty of Agriculture, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
10
|
Bose S, Kumar PS, Vo DVN. A review on the microbial degradation of chlorpyrifos and its metabolite TCP. CHEMOSPHERE 2021; 283:131447. [PMID: 34467951 DOI: 10.1016/j.chemosphere.2021.131447] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Chlorpyrifos (CPF) falls under the category of organophosphorus pesticides which are in huge demand in the agricultural sector. Overuse of this pesticide has led to the degradation of the quality of terrestrial and aquatic life. The chemical is moderately persistent in the environment but its primary metabolite 3,5,6-trichloro-2-pyridinol (TCP) is comparatively highly persistent. Thus, it is important to degrade the chemical and there are many proposed techniques of degradation. Out of which bioremediation is considered to be highly cost-effective and efficient. Many previous studies have attempted to isolate appropriate microbial strains to degrade CPF which established the fact that chlorine atoms released while mineralising TCP inhibits further proliferation of microorganisms. Thus, it has been increasingly important to experiment with strains that can simultaneously degrade both CPF and TCP. In this review paper, the need for degrading CPF specifically the problems related to it has been discussed elaborately. Alongside these, the metabolism pathways undertaken by different kinds of microorganisms have been included. This paper also gives a detailed insight into the potential strains of microorganisms which has been confirmed through experiments conducted previously. It can be concluded that a wide range of microorganisms has to be studied to understand the possibility of applying bioremediation in wastewater treatment to remove pesticide residues. In addition to this, in the case of recalcitrant pesticides, options of treating it with hybrid techniques like bioremediation clubbed with photocatalytic biodegradation can be attempted.
Collapse
Affiliation(s)
- Sanchali Bose
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
11
|
|
12
|
Cai SS, Zhou Y, Ye BC. Reducing the reproductive toxicity activity of Lactiplantibacillus plantarum: a review of mechanisms and prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36927-36941. [PMID: 34036511 DOI: 10.1007/s11356-021-14403-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Food pollution can cause a variety of negative effects on human health, especially reproductive toxicity. Common food contaminants include biological contaminants, chemical contaminants, and physical contaminants, among which endocrine disruptors, pesticides, and heavy metals have the greatest reproductive toxicity in chemical contaminants. Humans mainly solve food pollution through three aspects: decreasing the pollution of food raw materials, lowering the pollution in food processing, and reducing the harm to the human body after food pollutants enter the human body. With more and more research on probiotics, not only beneficial effects, but also the ability to reduce the toxicity of food contaminants is found. Thus, microbial treatment has been proved to be a more effective way to deal with food pollution. Recent research shows that several strains of Lactiplantibacillus plantarum can adsorb or degrade some chemical pollutants and relieve inflammation and oxidative stress caused by them. This review summarized the research to explore the possible role of Lactiplantibacillus plantarum in protecting human reproductive ability and maintaining food safety.
Collapse
Affiliation(s)
- Shu-Shan Cai
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China
| | - Ying Zhou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong RD, Shanghai, 200237, China.
| |
Collapse
|
13
|
Yuan S, Li C, Yu H, Xie Y, Guo Y, Yao W. Screening of lactic acid bacteria for degrading organophosphorus pesticides and their potential protective effects against pesticide toxicity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Selective uptake determines the variation in degradation of organophosphorus pesticides by Lactobacillus plantarum. Food Chem 2021; 360:130106. [PMID: 34034058 DOI: 10.1016/j.foodchem.2021.130106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 01/10/2023]
Abstract
Organophosphorus pesticides (OPPs) are widely used worldwide, leading to varying degrees of residues in food. Lactic acid bacteria (LAB) can degrade OPPs by producing phosphatase. This study explored the reasons for the variation in the degradation of different OPPs by Lactobacillus plantarum. The results showed that the degradation effects of OPPs by L. plantarum (intact cells) varied greatly, the degradation rate constant of phoxim was 1.65-fold higher than that of dichlorvos. However, the phosphatase extracted from L. plantarum had no degradation selectivity for OPPs in vitro. It was speculated that the selective uptake of cells determines this degradation selectivity. The results of molecular docking supported this hypothesis because there was no difference in the binding energies between phosphatase and OPPs, while the binding energies between phosphate-binding protein and pesticides were different, and they were negatively correlated with the degradation rate constants of the eight OPPs by L. plantarum.
Collapse
|
15
|
Hamoud NEH, Sifour M. Biodegradation of chlorpyrifos by a Weissella confusa strain and evaluation of some probiotic traits. Arch Microbiol 2021; 203:3615-3621. [PMID: 33978770 DOI: 10.1007/s00203-021-02353-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/02/2023]
Abstract
Pesticides play an important role in agriculture; however, their excessive use causes several problems such as pollution of ecosystems and risks to human health. The presence of microorganisms able to degrade these pollutants can reduce their negative effect. The objective of this study was to test the capacity of Weissella confusa Lb.Con to tolerate or to degrade the chlorpyrifos pesticide. The results showed the capacity of the strain to tolerate a concentration of 200 μg/ml of chlorpyrifos. The strain Lb.Con has a remarkable capacity to grow in glucose-free MRS medium which contains different concentrations of chlorpyrifos. HPLC analysis showed that this strain was able to remove about 25% of chlorpyrifos. The evaluation of some probiotic properties showed that the strain Lb.Con had a remarkable resistance to the gastrointestinal conditions and a good antibacterial activity towards the pathogenic bacteria. The probiotic potential was evaluated to verify the possible use of W. confusa Lb.Con to detoxify harmful chlorpyrifos contained in food.
Collapse
Affiliation(s)
- Nour-El-Houda Hamoud
- Department of Environmental and Agricultural Sciences, Faculty of Nature and Life Sciences, University Mohamed Seddik Benyahia of Jijel, Jijel, Algeria.
| | - Mohamed Sifour
- Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University Mohamed Seddik Benyahia of Jijel, Jijel, Algeria
| |
Collapse
|
16
|
He NX, Bayen S. An overview of chemical contaminants and other undesirable chemicals in alcoholic beverages and strategies for analysis. Compr Rev Food Sci Food Saf 2020; 19:3916-3950. [PMID: 33337040 DOI: 10.1111/1541-4337.12649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022]
Abstract
The presence of chemical contaminant in alcoholic beverages is a widespread and notable problem with potential implications for human health. With the complexity and wide variation in the raw materials, production processes, and contact materials involved, there are a multitude of opportunities for a diverse host of undesirable compounds to make their way into the final product-some of which may currently remain unidentified and undetected. This review provides an overview of the notable contaminants (including pesticides, environmental contaminants, mycotoxins, process-induced contaminants, residues of food contact material [FCM], and illegal additives) that have been detected in alcoholic products thus far based on prior reviews and findings in the literature, and will additionally consider the potential sources for contamination, and finally discuss and identify gaps in current analytical strategies. The findings of this review highlight a need for further investigation into unwanted substances in alcoholic beverages, particularly concerning chemical migrants from FCMs, as well as a need for comprehensive nontargeted analytical techniques capable of determining unanticipated contaminants.
Collapse
Affiliation(s)
- Nancy Xiaohe He
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
17
|
Mohammadi M, Shadnoush M, Sohrabvandi S, Yousefi M, Khorshidian N, Mortazavian AM. Probiotics as potential detoxification tools for mitigation of pesticides: a mini review. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mehrdad Mohammadi
- Department of Food Technology Research National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt) Semnan University of Medical Sciences Semnan Iran
| | - Nasim Khorshidian
- Food Safety Research Center (Salt) Semnan University of Medical Sciences Semnan Iran
| | - Amir M. Mortazavian
- Food Safety Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
18
|
Zhai Z, Yang Y, Wang H, Wang G, Ren F, Li Z, Hao Y. Global transcriptomic analysis of Lactobacillus plantarum CAUH2 in response to hydrogen peroxide stress. Food Microbiol 2020; 87:103389. [DOI: 10.1016/j.fm.2019.103389] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/27/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022]
|
19
|
Chmiel JA, Daisley BA, Pitek AP, Thompson GJ, Reid G. Understanding the Effects of Sublethal Pesticide Exposure on Honey Bees: A Role for Probiotics as Mediators of Environmental Stress. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00022] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
20
|
Pinto G, Castro I, Miguel M, Koblitz M. Lactic acid bacteria - Promising technology for organophosphate degradation in food: A pilot study. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Complete genome sequencing of Lactobacillus plantarum CAUH2 reveals a novel plasmid pCAUH203 associated with oxidative stress tolerance. 3 Biotech 2019; 9:116. [PMID: 30854276 DOI: 10.1007/s13205-019-1653-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/25/2019] [Indexed: 10/27/2022] Open
Abstract
Lactobacillus plantarum is remarkably adaptable to diverse habitats and is widely used in food industry. In this study, the genome sequence of L. plantarum CAUH2 was analyzed and compared with other L. plantarum genome sequences. A comparison of the genome sequence of CAUH2 to L. plantarum ST-III reveals that the similarity of these two genomes reached up to 99% identity with 98% coverage, but the plasmid profiles of CAUH2 and ST-III are different. Notably, plasmid pCAUH203 in L. plantarum CAUH2 harbors seven genes involved in oxidative stress response, such as genes encoding thioredoxin-disulfide reductase, thioredoxin and DNA protection protein. Due to plasmid pCAUH203, the thioredoxin reductase activity of CAUH2 was 2.1-fold higher than that of ST-III. When exposed to 5 mM H2O2, this activity was further increased to 9.87 ± 1.60 mU per mg protein in CAUH2, which was 2.7-fold higher than that of ST-III, indicating that thioredoxin antioxidant system encoded by pCAUH203 might contribute to the H2O2 resistance. This hypothesis was further confirmed by survival assay under 10 mM H2O2 stress. The survival rate of CAUH2 was 12-fold higher than that of ST-III. Therefore, the complete genome sequencing of L. plantarum CAUH2 provides new insights into the molecular mechanism of its oxidative stress resistance.
Collapse
|
22
|
Adebo OA, Kayitesi E, Tugizimana F, Njobeh PB. Differential metabolic signatures in naturally and lactic acid bacteria (LAB) fermented ting (a Southern African food) with different tannin content, as revealed by gas chromatography mass spectrometry (GC-MS)-based metabolomics. Food Res Int 2019; 121:326-335. [PMID: 31108755 DOI: 10.1016/j.foodres.2019.03.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/20/2019] [Accepted: 03/23/2019] [Indexed: 01/03/2023]
Abstract
Fermented whole grain (WG) sorghum food products including WG-ting can be obtained from different sample sources and fermentation conditions, leading subsequently to variations in the molecular composition of the products. There is however, a lack of detailed understanding and description of differential molecular profiles of these food products. Thus, the current study is a nontargeted gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach to descriptively elucidate metabolic profiles of two WG-sorghum types [high tannin (HT) and low tannin (LT)] and their derived WG-ting products obtained via fermentation. Metabolites were extracted with 80% aqueous methanol and analyzed on a gas chromatography high resolution time of flight mass spectrometry (GC-HRTOF-MS) system. Chemometric methods such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to mine the generated data. Our results showed that tannin contents influenced the composition of the raw sorghum and derived WG-ting samples. Metabolite signatures that differentiated raw HT- and LT-sorghum included cyclic compounds, pesticides, 2,4-di-tert-butylphenol, fatty acid esters, and sugar derivatives. Furthermore, fermentation of the HT- and LT-sorghum into WG-ting led to an increase in the levels of fatty acids, fatty acid esters and some other compounds which are vital from a dietary and health context. Equally observed were reduction of some phenols, cyclic compounds, a pesticide and ketone. Thus, the results demonstrated that the inherent metabolic composition of raw sorghum would lead to differential metabolic changes in the fermented products such as WG-ting, with subsequent dietary and health implications. Fermenting ting with Lactobacillus fermentum FUA 3321 was most desirable as relevant metabolites were observed in both HT- and LT-ting samples. Furthermore, the study highlights the applicability of GC-MS metabolomics in understanding WG-ting fermentation.
Collapse
Affiliation(s)
- Oluwafemi Ayodeji Adebo
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, South Africa.
| | - Eugenie Kayitesi
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, South Africa
| | - Fidele Tugizimana
- Research Centre for Plant Metabolomics, Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Campus, P.O. Box 524, Gauteng, South Africa; International R&D, Omnia Group, Ltd, P.O.Box 69888, Gauteng, South Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, P.O. Box 17011, Gauteng, South Africa
| |
Collapse
|
23
|
Li C, Ma Y, Mi Z, Huo R, Zhou T, Hai H, Kwok LY, Sun Z, Chen Y, Zhang H. Screening for Lactobacillus plantarum Strains That Possess Organophosphorus Pesticide-Degrading Activity and Metabolomic Analysis of Phorate Degradation. Front Microbiol 2018; 9:2048. [PMID: 30233531 PMCID: PMC6130228 DOI: 10.3389/fmicb.2018.02048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
This work performed a large scale assessment for organophosphorus pesticides (OPPs) degradation activity of 121 Lactobacillus (L.) plantarum strains. Six L. plantarum strains (P9, IMAU80110, IMAU40100, IMAU10585, IMAU10209, and IMAU80070) were found to possess high capacity of degrading three commonly used OPPs, namely dimethoate, phorate, and omethoate; and they were selected for more detailed characterization. Moreover, the three OPPs were mainly detected in the culture supernatants but not in the cell extracts, further confirming that the OPPs were degraded rather than absorbed by the cells. Among the six selected strains, P9 was most tolerant to gastrointestinal juices and bile. We thus used ultra-high performance liquid chromatography electron spray ionization coupled with time-of-flight mass spectrometry (UPLC/ESI-Q-TOF/MS) to generate the metabolomic profiles of the strain P9 growing in MRS medium with and without containing phorate. By using orthogonal partial least squares discriminant analysis, we identified some potential phorate-derived degradative products. This work has identified novel lactic acid bacteria resources for application in pesticide degradation. Our results also shed light on the phorate degradation mechanism by L. plantarum P9.
Collapse
Affiliation(s)
- Changkun Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Yuzhu Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
| | - Zhihui Mi
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Rui Huo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Tingting Zhou
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Huricha Hai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Lai-yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| |
Collapse
|
24
|
Chiocchetti GM, Jadán-Piedra C, Monedero V, Zúñiga M, Vélez D, Devesa V. Use of lactic acid bacteria and yeasts to reduce exposure to chemical food contaminants and toxicity. Crit Rev Food Sci Nutr 2018; 59:1534-1545. [PMID: 29337587 DOI: 10.1080/10408398.2017.1421521] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Chemical contaminants that are present in food pose a health problem and their levels are controlled by national and international food safety organizations. Despite increasing regulation, foods that exceed legal limits reach the market. In Europe, the number of notifications of chemical contamination due to pesticide residues, mycotoxins and metals is particularly high. Moreover, in many parts of the world, drinking water contains high levels of chemical contaminants owing to geogenic or anthropogenic causes. Elimination of chemical contaminants from water and especially from food is quite complex. Drastic treatments are usually required, which can modify the food matrix or involve changes in the forms of cultivation and production of the food products. These modifications often make these treatments unfeasible. In recent years, efforts have been made to develop strategies based on the use of components of natural origin to reduce the quantity of contaminants in foods and drinking water, and to reduce the quantity that reaches the bloodstream after ingestion, and thus, their toxicity. This review provides a summary of the existing literature on strategies based on the use of lactic acid bacteria or yeasts belonging to the genus Saccharomyces that are employed in food industry or for dietary purposes.
Collapse
Affiliation(s)
- Gabriela Matuoka Chiocchetti
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Carlos Jadán-Piedra
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Vicente Monedero
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Manuel Zúñiga
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Dinoraz Vélez
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| | - Vicenta Devesa
- a Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , C/ Agustín Escardino 7 - Paterna (Valencia) , Spain
| |
Collapse
|
25
|
Shi K, Chen Z, Liu F, Li L, Yuan L. Influence of lactic acid bacteria on stereoselective degradation of theta-cypermethrin. Chirality 2018; 30:310-318. [PMID: 29290088 DOI: 10.1002/chir.22807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 01/31/2023]
Abstract
The purpose of this study was to investigate the influence of four kinds of Lactic acid bacteria (LAB) on stereoselective degradation of theta-cypermethrin (CYP), including Lactobacillus plantarum, Lactobacillus casei, Lactobacillus delbrueckii, and Streptococcus thermophilus. An effective analytical method for (±)-theta-CYP in medium was developed by high-performance liquid chromatography with cellulose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase. theta-Cypermethrin was spiked to LAB medium with different inoculation rates and sampled at 0, 2, 8, 24, 36, 48, 72, 120, 168, and 240 hours. The results showed that LAB influenced the half-lives and enantiomer fractions of theta-CYP enantiomers, which lead a closer degradation rate between the 2 stereoisomers, and no obvious difference was found among 4 LABs. Besides, the stereoselective degradation of theta-CYP was closely related to pH. The lower the pH (pH of 3, 5, 7, and 9), the lower the enantiomer fraction (from 4.88 to 6.69). At pH of 3, 7, and 9, significant differences of half-lives between enantiomers were observed. (-)-theta-Cypermethrin decreased faster than (+)-theta-CYP under pH of 3, while opposite results were indicated under pH of 7 and 9. Moreover, the acidic condition contributed to the higher chiral configuration stability of (±)-theta-CYP. (+)-Enantiomer was influenced by pH in a greater degree than (-)-enantiomer.
Collapse
Affiliation(s)
- Kaiwei Shi
- College of Science, China Agricultural University, Beijing, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zenglong Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fengmao Liu
- College of Science, China Agricultural University, Beijing, China
| | - Li Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Longfei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|