1
|
Patil TD, Ghosh S, Agarwal A, Patel SKS, Tripathi AD, Mahato DK, Kumar P, Slama P, Pavlik A, Haque S. Production, optimization, scale up and characterization of polyhydoxyalkanoates copolymers utilizing dairy processing waste. Sci Rep 2024; 14:1620. [PMID: 38238404 PMCID: PMC10796949 DOI: 10.1038/s41598-024-52098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/13/2024] [Indexed: 01/22/2024] Open
Abstract
The microbial biotransformation using low-cost feedstock to produce biopolymers (degradable), an alternative to petrochemical-based synthesis plastics (non-degradable), can be a beneficial approach towards sustainable development. In this study, the dairy industry processes waste (whey) is used in polyhydroxyalkanoate (PHA) copolymer production. Initial screening suggested that Ralstonia eutropha produced higher PHA as compared to Bacillus megaterium. A central composite rotatable design-based optimization using two process variables (amino acid and tween-80) concentration remarkably influenced PHA co-polymer production under physiological conditions of pH (7), temperature (37 °C), and agitation rate of 150 rpm. High polyhydroxybutyrate (PHB) mass fraction yield of 69.3% was observed as compared to predicted yield of 62.8% from deproteinized whey as feed. The combination of tryptophan (50 mg L-1) and tween-80 (3 mL-1) enhanced R. eutropha mass gain to 6.80 g L-1 with PHB contents of 4.71 g L-1. Further, characterization of PHA and its copolymers was done by ESI-MS, FTIR, and TEM. On upscaling up to 3.0 L, the PHA contents and yields were noted as quite similar by R. eutropha. This study demonstrates that dairy waste processing waste can be potentially utilized as inexpensive feed for producing high content of biopolymers to develop a sustainable system of waste management.
Collapse
Affiliation(s)
- Tejaswini Dhanaji Patil
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Saptaneel Ghosh
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Aparna Agarwal
- Department of Food and Nutrition Science, Lady Irwin College, Delhi University, New Delhi, 110001, India
| | | | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Dipendra Kumar Mahato
- School of Exercise and Nutrition Sciences, CASS Food Research Centre, Deakin University, Burwood, VIC, 3125, Australia
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300, Brno, Czech Republic
| | - Ales Pavlik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300, Brno, Czech Republic
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut-1102 2801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman-13306, United Arab Emirates
| |
Collapse
|
2
|
Galasso C, Ruocco N, Mutalipassi M, Barra L, Costa V, Giommi C, Dinoi A, Genovese M, Pica D, Romano C, Greco S, Pennesi C. Marine polysaccharides, proteins, lipids, and silica for drug delivery systems: A review. Int J Biol Macromol 2023; 253:127145. [PMID: 37778590 DOI: 10.1016/j.ijbiomac.2023.127145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Marine environments represent an incredible source of biopolymers with potential biomedical applications. Recently, drug delivery studies have received great attention for the increasing need to improve site specificity, therapeutic value, and bioavailability, reducing off-target effects. Marine polymers, such as alginate, carrageenan, collagen, chitosan, and silica, have reported unique biochemical features, allowing an efficient binding with drugs, and a controlled release to the target tissue, also obtainable through "green processes". In the present review, we i) analysed the last ten years of scientific peer-reviewed literature; ii) divided the articles based on the achieved experimental phases, tagged as chemistry, drug release, and drug delivery, and iii) compared the best performances among marine polymers extracted from micro- and macro-organisms. Many reviews describe drug carriers from marine organisms, focusing on a single biopolymer or a chemical class. Our study is a groundbreaking literature collection, representing the first thorough investigation of all marine biopolymers described. Most articles report experimental results on the chemical characterisation of marine biopolymers and their in vitro behaviour as drug carriers, although development processes and commercial applications are still in the early stages. Hence, the next efforts should be focused on the sustainable production of marine polymers and final product development.
Collapse
Affiliation(s)
- Christian Galasso
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| | - Nadia Ruocco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| | - Mirko Mutalipassi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Lucia Barra
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Valentina Costa
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Giommi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Alessia Dinoi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Martina Genovese
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Daniela Pica
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Romano
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II, 9, 12042 Pollenzo, Bra CN, Italy
| | - Silvestro Greco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Pennesi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| |
Collapse
|
3
|
Yootoum A, Jantanasakulwong K, Rachtanapun P, Moukamnerd C, Chaiyaso T, Pumas C, Tanadchangsaeng N, Watanabe M, Fukui T, Insomphun C. Characterization of newly isolated thermotolerant bacterium Cupriavidus sp. CB15 from composting and its ability to produce polyhydroxyalkanoate from glycerol. Microb Cell Fact 2023; 22:68. [PMID: 37046250 PMCID: PMC10091600 DOI: 10.1186/s12934-023-02059-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/09/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND This study aimed to isolate a novel thermotolerant bacterium that is capable of synthesizing polyhydroxyalkanoate from glycerol under high temperature conditions. RESULTS A newly thermotolerant polyhydroxyalkanoate (PHA) producing bacterium, Cupriavidus sp. strain CB15, was isolated from corncob compost. The potential ability to synthesize PHA was confirmed by detection of PHA synthase (phaC) gene in the genome. This strain could produce poly(3-hydroxybutyrate) [P(3HB)] with 0.95 g/L (PHA content 75.3 wt% of dry cell weight 1.24 g/L) using glycerol as a carbon source. The concentration of PHA was enhanced and optimized based on one-factor-at-a-time (OFAT) experiments and response surface methodology (RSM). The optimum conditions for growth and PHA biosynthesis were 10 g/L glycerol, 0.78 g/L NH4Cl, shaking speed at 175 rpm, temperature at 45 °C, and cultivation time at 72 h. Under the optimized conditions, PHA production was enhanced to 2.09 g/L (PHA content of 74.4 wt% and dry cell weight of 2.81 g/L), which is 2.12-fold compared with non-optimized conditions. Nuclear magnetic resonance (NMR) analysis confirmed that the extracted PHA was a homopolyester of 3-hydyoxybutyrate. CONCLUSION Cupriavidus sp. strain CB15 exhibited potential for cost-effective production of PHA from glycerol.
Collapse
Affiliation(s)
- Anuyut Yootoum
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kittisak Jantanasakulwong
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, 155 Mae Hia, Mueang, Chiang Mai, 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Pornchai Rachtanapun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, 155 Mae Hia, Mueang, Chiang Mai, 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Churairat Moukamnerd
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, 155 Mae Hia, Mueang, Chiang Mai, 50100, Thailand
| | - Thanongsak Chaiyaso
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, 155 Mae Hia, Mueang, Chiang Mai, 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, 239 Huaykaew Road, Suthep, Mueang, Chiang Mai, 50200, Thailand
| | - Nuttapol Tanadchangsaeng
- College of Biomedical Engineering, Rangsit University, 52/347 Lak-Hok, Pathumthani, 12000, Thailand
| | - Masanori Watanabe
- Graduate School of Agriculture, Yamagata University, 1-23 Wakaba-Machi, Tsuruoka, Yamagata, 997-8555, Japan
| | - Toshiaki Fukui
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-Ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Chayatip Insomphun
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, 155 Mae Hia, Mueang, Chiang Mai, 50100, Thailand.
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
4
|
Li HF, Tian L, Lian G, Fan LH, Li ZJ. Engineering Vibrio alginolyticus as a novel chassis for PHB production from starch. Front Bioeng Biotechnol 2023; 11:1130368. [PMID: 36824353 PMCID: PMC9941669 DOI: 10.3389/fbioe.2023.1130368] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Vibrio alginolyticus LHF01 was engineered to efficiently produce poly-3-hydroxybutyrate (PHB) from starch in this study. Firstly, the ability of Vibrio alginolyticus LHF01 to directly accumulate PHB using soluble starch as the carbon source was explored, and the highest PHB titer of 2.06 g/L was obtained in 18 h shake flask cultivation. Then, with the analysis of genomic information of V. alginolyticus LHF01, the PHB synthesis operon and amylase genes were identified. Subsequently, the effects of overexpressing PHB synthesis operon and amylase on PHB production were studied. Especially, with the co-expression of PHB synthesis operon and amylase, the starch consumption rate was improved and the PHB titer was more than doubled. The addition of 20 g/L insoluble corn starch could be exhausted in 6-7 h cultivation, and the PHB titer was 4.32 g/L. To the best of our knowledge, V. alginolyticus was firstly engineered to produce PHB with the direct utilization of starch, and this stain can be considered as a novel host to produce PHB using starch as the raw material.
Collapse
Affiliation(s)
- Hong-Fei Li
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China,Qingyuan Innovation Laboratory, Quanzhou, China
| | - Linyue Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Guoli Lian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China,Qingyuan Innovation Laboratory, Quanzhou, China,*Correspondence: Li-Hai Fan, ; Zheng-Jun Li,
| | - Zheng-Jun Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China,*Correspondence: Li-Hai Fan, ; Zheng-Jun Li,
| |
Collapse
|
5
|
Adnan M, Siddiqui AJ, Ashraf SA, Snoussi M, Badraoui R, Alreshidi M, Elasbali AM, Al-Soud WA, Alharethi SH, Sachidanandan M, Patel M. Polyhydroxybutyrate (PHB)-Based Biodegradable Polymer from Agromyces indicus: Enhanced Production, Characterization, and Optimization. Polymers (Basel) 2022; 14:polym14193982. [PMID: 36235929 PMCID: PMC9571180 DOI: 10.3390/polym14193982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/23/2022] Open
Abstract
Recently, there has been significant interest in bio-based degradable plastics owing to their potential as a green and sustainable alternative to synthetic plastics due to their biodegradable properties. Polyhydroxybutyrate (PHB) is a biodegradable polymer that is produced by bacteria and archaea as carbon and energy reserves. Due to its rapid degradation in natural environments, it can be considered a biodegradable plastic alternative. In the present study, a dye-based procedure was used to screen PHB-producing bacteria isolated from mangrove soil samples. Among the seven isolates, Agromyces indicus (A. indicus), identified by means of 16S rRNA analysis, accumulated the highest amount of PHB. The extracted polymer was characterized by a UV–Vis spectrophotometer, Fourier-transform infrared (FTIR) spectroscopy, and for the presence of the phbB gene, which confirmed the structure of the polymer as PHB. The maximum PHB production by A. indicus was achieved after 96 h of incubation at a pH of 8.0 and 35 °C in the presence of 2% NaCl, with glucose and peptone as the carbon and nitrogen sources, respectively. The strain was found to be capable of accumulating PHB when various cheap agricultural wastes, such as rice, barley, corn, and wheat bran, were used as the carbon sources. The response surface methodology (RSM) through the central composite design (CCD) for optimizing the PHB synthesis was found to be highly efficient at augmenting the polymer yields. As a result of the optimum conditions obtained from the RSM, this strain can increase the PHB content by approximately 1.4-fold when compared with an unoptimized medium, which would substantially lower the production cost. Therefore, the isolate A. indicus strain B2 may be regarded as one of the best candidates for the industrial production of PHB from agricultural wastes, and it can remove the environmental concerns associated with synthetic plastic.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran P.O. Box 1998, Saudi Arabia
| | - Manojkumar Sachidanandan
- Department of Oral Radiology, College of Dentistry, University of Hail, Hail P.O. Box 2440, Saudi Arabia
| | - Mitesh Patel
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India
- Correspondence:
| |
Collapse
|
6
|
Wang J, Huang J, Xiao X, Zhang D, Zhang Z, Zhou Z, Liu S. (R)−3-hydroxybutyrate production by Burkholderia cepacia in the cathode chamber of ethanol-producing microbial fuel cells. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Polyhydroxybutyrate biosynthesis from different waste materials, degradation, and analytic methods: a short review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Production and optimization of polyhydroxyalkanoates (PHAs) from paraburkholderia sp. PFN 29 under submerged fermentation. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Li HF, Wang MR, Tian LY, Li ZJ. Production of Polyhydroxyalkanoates (PHAs) by Vibrio alginolyticus Strains Isolated from Salt Fields. Molecules 2021; 26:molecules26206283. [PMID: 34684864 PMCID: PMC8537743 DOI: 10.3390/molecules26206283] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Vibrio alginolyticus is a halophilic organism usually found in marine environments. It has attracted attention as an opportunistic pathogen of aquatic animals and humans, but there are very few reports on polyhydroxyalkanoate (PHA) production using V. alginolyticus as the host. In this study, two V. alginolyticus strains, LHF01 and LHF02, isolated from water samples collected from salt fields were found to produce poly(3-hydroxybutyrate) (PHB) from a variety of sugars and organic acids. Glycerol was the best carbon source and yielded the highest PHB titer in both strains. Further optimization of the NaCl concentration and culture temperature improved the PHB titer from 1.87 to 5.08 g/L in V. alginolyticus LHF01. In addition, the use of propionate as a secondary carbon source resulted in the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). V. alginolyticus LHF01 may be a promising host for PHA production using cheap waste glycerol from biodiesel refining.
Collapse
|
10
|
Production of eco-friendly PHB-based bioplastics by Pseudomonas aeruginosa CWS2020 isolate using poultry (chicken feather) waste. Biol Futur 2021; 72:497-508. [PMID: 34606079 DOI: 10.1007/s42977-021-00099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Nowadays, the accumulation of non-degradable plastics and other disposed wastes leads to environmental pollution across the world. The production of eco-friendly and cost-effective poly-β-hydroxybutyrate (PHB) could be a better alternative to conventional petroleum-based plastics and prevent environmental pollution. Besides, the area in and around Namakkal, Tamil Nadu, India is well known for poultries, currently facing the number of environmental issues due to the accumulation of chicken feather waste. This study focused on the production of eco-friendly PHB by recycling poultry (chicken feather) waste as the substrate. The native PHB producers were screened from the chicken waste disposal site in Namakkal by Sudan black B staining method. Further, the potent bacterial isolate was identified as Pseudomonas aeruginosa (NCBI accession MF18889) by phenotypic and genotypic characteristics. The PHB production media with chicken feather waste was statistically optimized by response surface methodology. The dry weight of PHB produced under optimized condition (15.96 g/L chicken feather waste, 37 °C temperature, 19.8 g/L glucose and 6.85 pH) was found to be 4.8 g/L. Besides, PHB was characterized and confirmed by thin-layer chromatography, Fourier-transform infrared spectroscopy and Gas chromatography-mass spectrometry analysis. Thus, this study concludes that poultry waste could be a complex nitrogen source for improving the growth of PHB producers and substantially increasing the yield of PHB, and it will be an eco-friendly and low-cost production in bioprocess technology.
Collapse
|
11
|
Zhao J, Cui YW, Zhang HY, Gao ZL. Carbon Source Applied in Enrichment Stage of Mixed Microbial Cultures Limits the Substrate Adaptability for PHA Fermentation Using the Renewable Carbon. Appl Biochem Biotechnol 2021; 193:3253-3270. [PMID: 34117629 DOI: 10.1007/s12010-021-03587-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/28/2021] [Indexed: 01/19/2023]
Abstract
Suitability of different substrates for enriched mixed microbial cultures (MMCs) is of importance to the polyhydroxyalkanoate (PHA) fermentation using renewable carbon. In this study, three enriched MMCs were evaluated for their fermentation features and kinetics with different carbon sources (sodium acetate, glucose, or starch). The results showed that the highly specific bacterial community composition was developed depending on the applied carbon source. Correspondence analysis suggested that the genus affiliated in Gammaproteobacteria_unclassified was related to 3-hydroxybutyrate (HB) synthesis in acetate-fed MMC (relative abundance of 38%) and glucose-fed MMC (relative abundance of 76.7%), whereas Vibrio genus was related to 3-hydroxyvalerate (HV) production in glucose-fed MMC (relative abundance of 0.4%) and starch-fed MMC (relative abundance of 94.6%). The acetate-fed MMC could not use glucose and starch as fermentation carbon sources, showing the limitation of microbial species developed with the specific metabolic substrate. Glucose-fed MMC produced the highest PHA cell content of 64.2% cell dry weight when using sodium acetate as the fermentation carbon. Glucose-fed MMC showed wide resilience and adaptation to various carbon sources. When actual landfill leachate was used for fermentation by glucose-fed MMC, maximum PHA cell content of 45.5% cell dry weight and the PHA volumetric productivity of 0.265 g PHA/(L·h) were obtained. This study suggested carbon sources applied in the MMC enrichment stage had a significant influence on utilization of carbon in the fermentation stage.
Collapse
Affiliation(s)
- Jin Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China.
| | - Hong-Yu Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| | - Ze-Liang Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
12
|
Mohanrasu K, Guru Raj Rao R, Dinesh GH, Zhang K, Sudhakar M, Pugazhendhi A, Jeyakanthan J, Ponnuchamy K, Govarthanan M, Arun A. Production and characterization of biodegradable polyhydroxybutyrate by Micrococcus luteus isolated from marine environment. Int J Biol Macromol 2021; 186:125-134. [PMID: 34246666 DOI: 10.1016/j.ijbiomac.2021.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 11/26/2022]
Abstract
Marine microorganisms are reported to produce polyhydroxybutyrate (PHB) that has wide range of medical and industrial applications with the advantage of biodegradability. PHBs are synthesized as an energy and carbon storage element under metabolic pressure. The scope of this work is enhancing PHB production using marine microbial isolate, Micrococcus luteus by selectively optimizing various growth conditions such as different media components and growth parameters that influence the cell growth and PHB production were sampled. Micrococcus luteus produced 7.54 g/L of PHB utilizing glucose as a carbon source and ammonium sulphate as a nitrogen source with maximum efficiency. The same optimized operational conditions were further employed in batch fermentation over a time span of 72 h. Interestingly higher cell dry weight of 21.52 g/L with PHB yield of 12.18 g/L and 56.59% polymer content was observed in batch fermentation studies at 64 h. The chemical nature of the extracted polymer was validated with physio-chemical experiments and was at par with the commercially available PHB. This study will spotlight M. luteus as a potential source for large-scale industrial production of PHB with reducing environmental pollutions.
Collapse
Affiliation(s)
- K Mohanrasu
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - R Guru Raj Rao
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - G H Dinesh
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Kunyu Zhang
- School of Chemical Engineering and Technology, Tianjin University, China
| | - Muniyasamy Sudhakar
- CSIR Chemical Cluster, Advanced Polymers and Composites Research, Pretoria, South Africa; Dept of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - A Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - J Jeyakanthan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630 004, Tamil Nadu, India
| | - Kumar Ponnuchamy
- Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea.
| | - A Arun
- Department of Microbiology, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
13
|
Narayanan M, Kandasamy S, Kumarasamy S, Gnanavel K, Ranganathan M, Kandasamy G. Screening of polyhydroxybutyrate producing indigenous bacteria from polluted lake soil. Heliyon 2020; 6:e05381. [PMID: 33163664 PMCID: PMC7610324 DOI: 10.1016/j.heliyon.2020.e05381] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022] Open
Abstract
The prime aim of this study was to enumerate predominant bacteria from polluted lake soil samples, which possess polyhydroxybutyrate (PHB) fabricating potential and identify the suitable growth conditions and nutritional factors for PHB fabrication. From several numbers of bacterial cultures, one culture has the competence to yield PHB, and it was endorsed through Sudan Black B stain, Nile red staining, SEM analysis, and growth in PHB selective media. Under the microscopic observation, the fluorescent cells and polymeric granules were observed in the fluorescent microscope and SEM, respectively. This PHB fabricating isolate was recognized as Bacillus cereus NDRMN001 through 16S rRNA partial sequence analysis. The structural characteristics of PHB produced by B. cereus NDRMN001 were studied through FT-IR, 1H NMR, and 13C NMR analysis. The peak observed at 1759.27 cm-1 on FT-IR analysis is corresponding to the signal band of PHB. In 1H NMR peaks were noticed at 1.67, 2.37 to 2.71, and 3.38 to 7.68 which corresponding to -CH3, -CH2, and -CH protons of PHB. About 4 notable peaks were noticed in 13C NMR analysis at 19.62, 68.27, 40.68, and 169.11 ppm which appeared close to the carboxyl group of PHB. About 10% of inoculum, pH 7.5, 2 g L of yeast extract, 20 g L of rice bran, 35 °C, and 2 days of incubation were recognized as optimal growth conditions for B. cereus NDRMN001 to produce PHB. The identified B. cereus NDRMN001 has the potential to yield 91.48% of PHB as 33.19 g L of PHB from 36.26 g L of culture biomass. The complete results conclude that the B. cereus NDRMN001 screened from polluted lake soil has the competence to produce fine quality and quantity of PHB in a short duration of fabrication process under favorable conditions with the utilization of cheap nutritional factors.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| | | | - Suresh Kumarasamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| | - Keerthana Gnanavel
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| | - Muthusamy Ranganathan
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| | - Gajendiran Kandasamy
- Department of Microbiology, MGR College, Adhiyamaan Educational Research Institute, Hosur, Krishnagiri, Tamilnadu, India
| |
Collapse
|
14
|
Suzuki M, Tachibana Y, Kasuya KI. Biodegradability of poly(3-hydroxyalkanoate) and poly(ε-caprolactone) via biological carbon cycles in marine environments. Polym J 2020. [DOI: 10.1038/s41428-020-00396-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractApproximately 4.8–12.7 million tons of plastic waste has been estimated to be discharged into marine environments annually by wind and river currents. The Ellen MacArthur Foundation warns that the total weight of plastic waste in the oceans will exceed the total weight of fish in 2050 if the environmental runoff of plastic continues at the current rate. Hence, biodegradable plastics are attracting attention as a solution to the problems caused by plastic waste. Among biodegradable plastics, polyhydroxyalkanoates (PHAs) and poly(ε-caprolactone) (PCL) are particularly noteworthy because of their excellent marine biodegradability. In this review, the biosynthesis of PHA and cutin, a natural analog of PCL, and the biodegradation of PHA and PCL in carbon cycles in marine ecosystems are discussed. PHA is biosynthesized and biodegraded by various marine microbes in a wide range of marine environments, including coastal, shallow-water, and deep-sea environments. Marine cutin is biosynthesized by marine plants or obtained from terrestrial environments, and PCL and cutin are biodegraded by cutin hydrolytic enzyme-producing microbes in broad marine environments. Thus, biological carbon cycles for PHA and PCL exist in the marine environment, which would allow materials made of PHA and PCL to be quickly mineralized in marine environments.
Collapse
|
15
|
Mostafa YS, Alrumman SA, Alamri SA, Otaif KA, Mostafa MS, Alfaify AM. Bioplastic (poly-3-hydroxybutyrate) production by the marine bacterium Pseudodonghicola xiamenensis through date syrup valorization and structural assessment of the biopolymer. Sci Rep 2020; 10:8815. [PMID: 32483188 PMCID: PMC7264318 DOI: 10.1038/s41598-020-65858-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/11/2020] [Indexed: 01/02/2023] Open
Abstract
Biobased degradable plastics have received significant attention owing to their potential application as a green alternative to synthetic plastics. A dye-based procedure was used to screen poly-3-hydroxybutyrate (PHB)-producing marine bacteria isolated from the Red Sea, Saudi Arabia. Among the 56 bacterial isolates, Pseudodonghicola xiamenensis, identified using 16S rRNA gene analyses, accumulated the highest amount of PHB. The highest PHB production by P. xiamenensis was achieved after 96 h of incubation at pH 7.5 and 35 °C in the presence of 4% NaCl, and peptone was the preferred nitrogen source. The use of date syrup at 4% (w/v) resulted in a PHB concentration of 15.54 g/L and a PHB yield of 38.85% of the date syrup, with a productivity rate of 0.162 g/L/h, which could substantially improve the production cost. Structural assessment of the bioplastic by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy revealed the presence of methyl, hydroxyl, methine, methylene, and ester carbonyl groups in the extracted polymer. The derivative products of butanoic acid estimated by gas chromatography-mass spectrometry [butanoic acid, 2-amino-4-(methylseleno), hexanoic acid, 4-methyl-, methyl ester, and hexanedioic acid, monomethyl ester] confirmed the structure of PHB. The present results are the first report on the production of a bioplastic by P. xiamenensis, suggesting that Red Sea habitats are a potential biological reservoir for novel bioplastic-producing bacteria.
Collapse
Affiliation(s)
- Yasser S Mostafa
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Sulaiman A Alrumman
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Saad A Alamri
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Prince Sultan Bin Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, Abha, Saudi Arabia
| | - Kholod A Otaif
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Mohamed S Mostafa
- Department of Chemistry, Faculty of Science, Jazan University, P.O. Box 114, Jazan, 45142, Saudi Arabia
| | - Abdulkhaleg M Alfaify
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| |
Collapse
|
16
|
Mostafa YS, Alrumman SA, Otaif KA, Alamri SA, Mostafa MS, Sahlabji T. Production and Characterization of Bioplastic by Polyhydroxybutyrate Accumulating Erythrobacter aquimaris Isolated from Mangrove Rhizosphere. Molecules 2020; 25:E179. [PMID: 31906348 PMCID: PMC6983239 DOI: 10.3390/molecules25010179] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/31/2019] [Indexed: 01/12/2023] Open
Abstract
The synthesis of bioplastic from marine microbes has a great attendance in the realm of biotechnological applications for sustainable eco-management. This study aims to isolate novel strains of poly-β-hydroxybutyrate (PHB)-producing bacteria from the mangrove rhizosphere, Red Sea, Saudi Arabia, and to characterize the extracted polymer. The efficient marine bacterial isolates were identified by the phylogenetic analysis of the 16S rRNA genes as Tamlana crocina, Bacillus aquimaris, Erythrobacter aquimaris, and Halomonas halophila. The optimization of PHB accumulation by E. aquimaris was achieved at 120 h, pH 8.0, 35 °C, and 2% NaCl, using glucose and peptone as the best carbon and nitrogen sources at a C:N ratio of 9.2:1. The characterization of the extracted biopolymer by Fourier-transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR), and Gas chromatography-mass spectrometry (GC-MS) proves the presence of hydroxyl, methyl, methylene, methine, and ester carbonyl groups, as well as derivative products of butanoic acid, that confirmed the structure of the polymer as PHB. This is the first report on E. aquimaris as a PHB producer, which promoted the hypothesis that marine rhizospheric bacteria were a new area of research for the production of biopolymers of commercial value.
Collapse
Affiliation(s)
- Yasser S. Mostafa
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (K.A.O.); (S.A.A.)
| | - Sulaiman A. Alrumman
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (K.A.O.); (S.A.A.)
| | - Kholod A. Otaif
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (K.A.O.); (S.A.A.)
| | - Saad A. Alamri
- Department of Biology, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.A.A.); (K.A.O.); (S.A.A.)
- Prince Sultan Bin Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohamed S. Mostafa
- Department of Chemistry, Faculty of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia;
| | - Taher Sahlabji
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| |
Collapse
|
17
|
Wang P, Chen XT, Qiu YQ, Liang XF, Cheng MM, Wang YJ, Ren LH. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source. Biotechnol Appl Biochem 2019; 67:307-316. [PMID: 31702835 DOI: 10.1002/bab.1848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/05/2019] [Indexed: 12/29/2022]
Abstract
In this study, a halotolerant strain was isolated from high salinity leachate and identified as Bacillus cereus NT-3. It can produce a high concentration of polyhydroxyalkanoates (PHAs) with no significant changes when NaCl concentration is up to 50 g/L. FTIR and NMR spectra of PHAs synthesized by Bacillus cereus NT-3 were similar to the standard or previous results. Effluent from acidogenic fermentation of food waste and pure volatile fatty acids (VFAs) mixture was used as carbon source to check the effect of non-VFAs compounds of the effluent on PHAs production. The maximum PHAs production was 0.42 g/L for effluent fermentation, whereas it was 0.34 g/L for pure VFAs fermentation, indicating that bacteria could use actual effluent in a better way. Furthermore, a mathematical model was established for describing kinetic behavior of bacteria using different carbon sources. These results provided a promising approach for PHAs biosynthesis with a low-cost carbon source.
Collapse
Affiliation(s)
- Pan Wang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xi Teng Chen
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Yin Quan Qiu
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China.,Beijing Municipal Solid Waste and Chemical Management Center, Beijing, China
| | - Xiao Fei Liang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Meng Meng Cheng
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Yong Jing Wang
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Lian Hai Ren
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
18
|
Integrating Molecular Network and Culture Media Variation to Explore the Production of Bioactive Metabolites by Vibrio diabolicus A1SM3. Mar Drugs 2019; 17:md17040196. [PMID: 30934741 PMCID: PMC6520778 DOI: 10.3390/md17040196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Vibrio diabolicus A1SM3 strain was isolated from a sediment sample from Manaure Solar Saltern in La Guajira and the produced crude extracts have shown antibacterial activity against methicillin-resistant Staphylococcus aureus and cytotoxic activity against human lung cell line. Thus, the aim of this research was to identify the main compound responsible for the biological activity observed and to systematically study how each carbon and nitrogen source in the growth media, and variation of the salinity, affect its production. For the characterization of the bioactive metabolites, 15 fractions obtained from Vibrio diabolicus A1SM3 crude extract were analyzed by HPLC-MS/MS and their activity was established. The bioactive fractions were dereplicated with Antibase and Marinlit databases, which combined with nuclear magnetic resonance (NMR) spectra and fragmentation by MS/MS, led to the identification of 2,2-di(3-indolyl)-3-indolone (isotrisindoline), an indole-derivative antibiotic, previously isolated from marine organisms. The influence of the variations of the culture media in isotrisindoline production was established by molecular network and MZmine showing that the media containing starch and peptone at 7% NaCl was the best culture media to produce it. Also, polyhydroxybutyrates (PHB) identification was established by MS/MS mainly in casamino acids media, contributing to the first report on PHB production by this strain.
Collapse
|
19
|
Sabapathy PC, Devaraj S, Parthiban A, Kathirvel P. Bioprocess optimization of PHB homopolymer and copolymer P3 (HB-co-HV) by Acinetobacter junii BP25 utilizing rice mill effluent as sustainable substrate. ENVIRONMENTAL TECHNOLOGY 2018; 39:1430-1441. [PMID: 28511586 DOI: 10.1080/09593330.2017.1330902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
The potential use of parboiled rice mill effluent as a cheap substrate for the production of homopolymer and copolymer of Polyhydroxyalkanoates (PHAs) by Acinetobacter junii BP 25 was investigated for the first time. Process optimization by one factor at a time led to homopolymer polyhydroxybutyrate (PHB) production of 2.64 ± 0.18 g/l with 94.28% PHB content using a two-stage batch cultivation mode. BP 25 furthermore produced polyhydroxybutyrate-co-hydroxyvalerate (P3 (HB-co-HV)), with the addition of valeric acid as an additive to the substrate, yielding (2.56 ± 0.12 g/l dry biomass, 2.20 ± 0.15 g/l PHA) a copolymer content of 85.93%. Thus, rice mill effluent can be an effective and relatively low-cost alternative for the production of PHA, replacing the pure substrates.
Collapse
Affiliation(s)
| | - Sabarinathan Devaraj
- a Department of Microbial Biotechnology , Bharathiar University , Coimbatore , India
| | - Anburajan Parthiban
- b Department of Civil Engineering, Sustainable Environmental Process Research Institute , Daegu University , Gyeongsan , South Korea
| | - Preethi Kathirvel
- a Department of Microbial Biotechnology , Bharathiar University , Coimbatore , India
| |
Collapse
|
20
|
Mohandas S, Balan L, Lekshmi N, Cubelio S, Philip R, Bright Singh I. Production and characterization of polyhydroxybutyrate fromVibrio harveyiMCCB 284 utilizing glycerol as carbon source. J Appl Microbiol 2016; 122:698-707. [DOI: 10.1111/jam.13359] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/07/2016] [Accepted: 11/08/2016] [Indexed: 11/27/2022]
Affiliation(s)
- S.P. Mohandas
- National Centre for Aquatic Animal Health; Cochin University of Science and Technology; Kochi Kerala India
| | - L. Balan
- National Centre for Aquatic Animal Health; Cochin University of Science and Technology; Kochi Kerala India
| | - N. Lekshmi
- National Centre for Aquatic Animal Health; Cochin University of Science and Technology; Kochi Kerala India
| | - S.S. Cubelio
- Centre for Marine Living Resources and Ecology; Kakkanad Kochi Kerala India
| | - R. Philip
- Department of Marine Biology, Microbiology and Biochemistry; Cochin University of Science and Technology; Kochi Kerala India
| | - I.S. Bright Singh
- National Centre for Aquatic Animal Health; Cochin University of Science and Technology; Kochi Kerala India
| |
Collapse
|
21
|
Sathiyanarayanan G, Saibaba G, Kiran GS, Yang YH, Selvin J. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates. Crit Rev Microbiol 2016; 43:294-312. [DOI: 10.1080/1040841x.2016.1206060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ganesan Sathiyanarayanan
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Ganesan Saibaba
- Centre for Pheromone Technology, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Kalapet, India
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
- Microbial Carbohydrate Resource Bank, Konkuk University, Seoul, South Korea
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, India
| |
Collapse
|