1
|
Retter A, Griebler C, Nilsson RH, Haas J, Birk S, Breyer E, Baltar F, Karwautz C. Metabarcoding reveals ecologically distinct fungal assemblages in river and groundwater along an Austrian alpine to lowland gradient. FEMS Microbiol Ecol 2024; 100:fiae139. [PMID: 39390678 PMCID: PMC11523079 DOI: 10.1093/femsec/fiae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
Biodiversity, the source of origin, and ecological roles of fungi in groundwater are to this day a largely neglected field in fungal and freshwater ecology. We used DNA-based Illumina high-throughput sequence analysis of both fungal gene markers 5.8S and internal transcribed spacers region 2 (ITS2), improving taxonomic classification. This study focused on the groundwater and river mycobiome along an altitudinal and longitudinal transect of a pre-alpine valley in Austria in two seasons. Using Bayesian network modeling approaches, we identified patterns in fungal community assemblages that were mostly shaped by differences in landscape (climatic, topological, and geological) and environmental conditions. While river fungi were comparatively more diverse, unique fungal assemblages could be recovered from groundwater, including typical aquatic lineages such as Rozellomycota and Olpidiomycota. The most specious assemblages in groundwater were not linked to the input of organic material from the surface, and as such, seem to be sustained by characteristic groundwater conditions. Based on what is known from closely related fungi, our results suggest that the present fungal communities potentially contribute to mineral weathering, carbon cycling, and denitrification in groundwater. Furthermore, we were able to observe the effects of varying land cover due to agricultural practices on fungal biodiversity in groundwater ecosystems. This study contributes to improving our understanding of fungi in the subsurface aquatic biogeosphere.
Collapse
Affiliation(s)
- Alice Retter
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, IGB, Zur alten Fischerhuette 2, 16775 Neuglobsow, Germany
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - R Henrik Nilsson
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden
| | - Johannes Haas
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Steffen Birk
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Eva Breyer
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- College of Oceanography and Ecological Science, Shanghai Ocean University, 1104 Pingliang Rd, Yangpu District, 200082 Shanghai, China
| | - Clemens Karwautz
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
2
|
Zhao H, Nie Y, Huang B, Liu XY. Unveiling species diversity within early-diverging fungi from China I: three new species of Backusella (Backusellaceae, Mucoromycota). MycoKeys 2024; 109:285-304. [PMID: 39439597 PMCID: PMC11494212 DOI: 10.3897/mycokeys.109.126029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024] Open
Abstract
The species diversity of early-diverging fungi has long lagged behind that of higher fungi, posing a significant obstacle to our comprehensive understanding of the fungal kingdom. Our ongoing research endeavors aim to address this gap by exploring the species diversity of early-diverging fungi in China. In this study, we describe three novel species within the Backusella, namely B.elliptica sp. nov., B.fujianensis sp. nov., and B.variispora sp. nov., based on phylogenetic and morphological analyses. In the phylogenetic analysis of the ITS (internal transcribed spacer), LSU (large subunit of ribosomal RNA gene), and RPB1 (RNA polymerase II largest subunit gene) regions, the B.elliptica and B.fujianensis cluster closely with B.gigacellularis, B.ovalispora, and B.solicola, and the B.variispora is closely related to B.locustae and B.pernambucensis. Morphologically, B.elliptica is distinguished by elliptical sporangiospores, as well as cylindrical and hemispherical columellae. The B.fujianensis is characterized by elliptical sporangiospores, and various types of columellae such as hemispherical, subglobose, depressed globose and conical. The B.variispora is characterized by subglobose to globose sporangiospores, as well as hemispherical, subglobose to globose columellae. Additionally, the sporangiophores are long and monopodially branched in B.elliptica and B.fujianensis, while short and simple or sympodially branched in B.variispora. Physiologically, the maximum growth temperatures of B.elliptica (32 °C), B.fujianensis (35 °C), and B.variispora were (35 °C) were determined. With the inclusion of these newly described taxa, the total number of Backusella species known from China now stands at 12. Finally, we provide a key to facilitate the morphological identification of Backusella species from Asia.
Collapse
Affiliation(s)
- Heng Zhao
- College of Life Sciences, Shandong Normal University, Jinan 250358, ChinaShandong Normal UniversityJinanChina
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100081, ChinaBeijing Forestry UniversityBeijingChina
| | - Yong Nie
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243002, ChinaAnhui University of TechnologyMa'anshanChina
| | - Bo Huang
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei 230036, ChinaAnhui Agricultural UniversityHefeiChina
| | - Xiao-Yong Liu
- College of Life Sciences, Shandong Normal University, Jinan 250358, ChinaShandong Normal UniversityJinanChina
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, ChinaInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Gross M, Rajter Ľ, Mahé F, Bass D, Berney C, Henry N, de Vargas C, Dunthorn M. O short-branch Microsporidia, where art thou? Identifying diversity hotspots for future sampling. Eur J Protistol 2024; 96:126119. [PMID: 39396432 DOI: 10.1016/j.ejop.2024.126119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
Short-branch Microsporidia were previously shown to form a basal grade within the expanded Microsporidia clade and to branch near the classical, long-branch Microsporidia. Although they share simpler versions of some morphological characteristics, they do not show accelerated evolutionary rates, making them ideal candidates to study the evolutionary trajectories that have led to long-branch microsporidian unique characteristics. However, most sequences assigned to the short-branch Microsporidia are undescribed, novel environmental lineages for which the identification requires knowledge of where they can be found. To direct future isolation, we used the EukBank database of the global UniEuk initiative that contains the majority of the publicly available environmental V4 SSU rRNA gene sequences of protists. The curated OTU table and corresponding metadata were used to evaluate the occurrence of short-branch Microsporidia across freshwater, hypersaline, marine benthic, marine pelagic, and terrestrial environments. Presence-absence analyses infer that short-branch Microsporidia are most abundant in freshwater and terrestrial environments, and alpha- and beta-diversity measures indicate that focusing our sampling effort on these two environments would cover a large part of their overall diversity. These results can be used to coordinate future isolation and sampling campaigns to better understand the enigmatic evolution of microsporidians' unique characteristics.
Collapse
Affiliation(s)
- Megan Gross
- Natural History Museum, University of Oslo, 0562 Oslo, Norway; Department of Ecology, University of Kaiserslautern-Landau RPTU, 67663 Kaiserslautern, Germany.
| | - Ľubomír Rajter
- Institute for Zoology, University of Cologne, 50923 Cologne, Germany
| | - Frédéric Mahé
- CIRAD, UMR PHIM, 34398 Montpellier, France; PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, 34398 Montpellier, France
| | - David Bass
- Cefas, International Centre for Aquatic Animal Health, Weymouth, Dorset DT4 8UB, United Kingdom; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom; Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| | - Cédric Berney
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, 29680 Roscoff, France
| | - Nicolas Henry
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680 Roscoff, France; Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75016 Paris, France
| | - Colomban de Vargas
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680 Roscoff, France; Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144, ECOMAP, 29680 Roscoff, France
| | - Micah Dunthorn
- Natural History Museum, University of Oslo, 0562 Oslo, Norway
| |
Collapse
|
4
|
Thomé PC, Wolinska J, Van Den Wyngaert S, Reñé A, Ilicic D, Agha R, Grossart HP, Garcés E, Monaghan MT, Strassert JFH. Phylogenomics including new sequence data of phytoplankton-infecting chytrids reveals multiple independent lifestyle transitions across the phylum. Mol Phylogenet Evol 2024; 197:108103. [PMID: 38754710 DOI: 10.1016/j.ympev.2024.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/01/2023] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Parasitism is the most common lifestyle on Earth and has emerged many times independently across the eukaryotic tree of life. It is frequently found among chytrids (Chytridiomycota), which are early-branching unicellular fungi that feed osmotrophically via rhizoids as saprotrophs or parasites. Chytrids are abundant in most aquatic and terrestrial environments and fulfil important ecosystem functions. As parasites, they can have significant impacts on host populations. They cause global amphibian declines and influence the Earth's carbon cycle by terminating algal blooms. To date, the evolution of parasitism within the chytrid phylum remains unclear due to the low phylogenetic resolution of rRNA genes for the early diversification of fungi, and because few parasitic lineages have been cultured and genomic data for parasites is scarce. Here, we combine transcriptomics, culture-independent single-cell genomics and a phylogenomic approach to overcome these limitations. We newly sequenced 29 parasitic taxa and combined these with existing data to provide a robust backbone topology for the diversification of Chytridiomycota. Our analyses reveal multiple independent lifestyle transitions between parasitism and saprotrophy among chytrids and multiple host shifts by parasites. Based on these results and the parasitic lifestyle of other early-branching holomycotan lineages, we hypothesise that the chytrid last common ancestor was a parasite of phytoplankton.
Collapse
Affiliation(s)
- Pauline C Thomé
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Silke Van Den Wyngaert
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Department of Biology, University of Turku, Turku, Finland
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Barcelona, Spain
| | - Doris Ilicic
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Ramsy Agha
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Barcelona, Spain
| | - Michael T Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jürgen F H Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| |
Collapse
|
5
|
Lax C, Mondo SJ, Osorio-Concepción M, Muszewska A, Corrochano-Luque M, Gutiérrez G, Riley R, Lipzen A, Guo J, Hundley H, Amirebrahimi M, Ng V, Lorenzo-Gutiérrez D, Binder U, Yang J, Song Y, Cánovas D, Navarro E, Freitag M, Gabaldón T, Grigoriev IV, Corrochano LM, Nicolás FE, Garre V. Symmetric and asymmetric DNA N6-adenine methylation regulates different biological responses in Mucorales. Nat Commun 2024; 15:6066. [PMID: 39025853 PMCID: PMC11258239 DOI: 10.1038/s41467-024-50365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
DNA N6-adenine methylation (6mA) has recently gained importance as an epigenetic modification in eukaryotes. Its function in lineages with high levels, such as early-diverging fungi (EDF), is of particular interest. Here, we investigated the biological significance and evolutionary implications of 6mA in EDF, which exhibit divergent evolutionary patterns in 6mA usage. The analysis of two Mucorales species displaying extreme 6mA usage reveals that species with high 6mA levels show symmetric methylation enriched in highly expressed genes. In contrast, species with low 6mA levels show mostly asymmetric 6mA. Interestingly, transcriptomic regulation throughout development and in response to environmental cues is associated with changes in the 6mA landscape. Furthermore, we identify an EDF-specific methyltransferase, likely originated from endosymbiotic bacteria, as responsible for asymmetric methylation, while an MTA-70 methylation complex performs symmetric methylation. The distinct phenotypes observed in the corresponding mutants reinforced the critical role of both types of 6mA in EDF.
Collapse
Affiliation(s)
- Carlos Lax
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Stephen J Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Macario Osorio-Concepción
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | - Gabriel Gutiérrez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Robert Riley
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jie Guo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hope Hundley
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mojgan Amirebrahimi
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Damaris Lorenzo-Gutiérrez
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Ulrike Binder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Junhuan Yang
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, 524048, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China
| | - David Cánovas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Eusebio Navarro
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain.
| | - Francisco E Nicolás
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| | - Victoriano Garre
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
6
|
Hurdeal VG, Longcore JE, Jones EBG, Hyde KD, Gentekaki E. Diversity of Rhizophydiales (Chytridiomycota) in Thailand: unveiling the hidden gems of the Kingdom. IMA Fungus 2024; 15:17. [PMID: 38937805 PMCID: PMC11210171 DOI: 10.1186/s43008-024-00144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/28/2024] [Indexed: 06/29/2024] Open
Abstract
Chytrids, often overshadowed by their other fungal counterparts, take center stage as we unravel the mysteries surrounding new species within Rhizophydiales and explore their unique characteristics. In the broader spectrum of chytrids, their significance lies not only in their roles as decomposers but also as key players in nutrient cycling within aquatic ecosystems as parasites and saprobes. Baited soil and aquatic samples collected from various provinces of Thailand, yielded new species of the Rhizophydiales (Chytridiomycota), some of which expanded previously single species genera. Our investigation incorporated a combination of morphological and phylogenetic approaches, enabling us to identify these isolates as distinct taxa. The novel isolates possess distinguishing features, such as variations in size and shape of the sporangium and zoospores, that somewhat differentiate them from described taxa. To confirm the novelty of the species, we employed robust phylogenetic analyses using maximum likelihood and bayesian methods. The results provided strong support for the presence of eight distinct lineages within the Rhizophydiales, representing our newly discovered species. Furthermore, we employed Poisson Tree Processes to infer putative species boundaries and supplement evidence for the establishment of our new Rhizophydiales species. By meticulously exploring their morphological characteristics and genetic makeup, we expand the known catalogue of fungal diversity by describing Alphamyces thailandicus, Angulomyces ubonensis, Gorgonomyces aquaticus, G. chiangraiensis, G. limnicus, Pateramyces pingflumenensis, Terramyces aquatica, and T. flumenensis and also provide valuable insights into the intricacies of this order. This newfound knowledge not only enriches our understanding of Rhizophydiales but also contributes significantly to the broader field of mycology, addressing a critical gap in the documentation of fungal species. The identification and characterization of these eight novel species mark a noteworthy stride towards a more comprehensive comprehension of fungal ecosystems and their vital role.
Collapse
Affiliation(s)
- Vedprakash G Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, Orono, ME, 04469-5722, USA
| | - E B Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kevin D Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Eleni Gentekaki
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, Nicosia, 2414, Cyprus.
| |
Collapse
|
7
|
Nie Y, Yin Y, Zhao H, Liu X, Huang B. Unveiling species diversity within the family Conidiobolaceae (Entomophthorales) in China: Descriptions of two new species and reassessment of the taxonomic position of Conidioboluspolyspermus. MycoKeys 2024; 105:203-216. [PMID: 38818111 PMCID: PMC11137373 DOI: 10.3897/mycokeys.105.117871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
In the present study, two new Conidiobolus s.s. species were described relying on the morphological studies and phylogenetic analysis utilizing nuclear large subunit of rDNA (nucLSU), mitochondrial small subunit of rDNA (mtSSU), and elongation-factor-like gene (EFL) sequences. Conidiobolusjiangxiensissp. nov. is distinguished by its short primary conidiophores, a feature not commonly observed in other Conidiobolus s.s. species. Conversely, Conidiobolusmarcoconidiussp. nov. is characterized by larger primary conidia and the emergence of 2-5 secondary conidia from each branched secondary conidiophores. Additionally, the taxonomic reassessment of C.polyspermus confirms its distinct status within the genus Conidiobolus s.s. Moreover, molecular analyses, incorporating the nucLSU, mtSSU, and EFL sequences, provide robust support for the phylogenetic placement of the two newly described species and the taxonomic identity of C.polyspermus. This investigation contributes valuable insights into the species diversity of Conidiobolaceae in China, enhancing our understanding of the taxonomy within this fungal family.
Collapse
Affiliation(s)
- Yong Nie
- Anhui Provincial Key Laboratory for Microbial Pest Control, Anhui Agricultural University, Hefei 230036, ChinaAnhui University of TechnologyHefeiChina
| | - Ying Yin
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma,anshan 243002, ChinaAnhui Agricultural UniversityHefeiChina
| | - Heng Zhao
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - XiaoYong Liu
- College of Life Sciences, Shandong Normal University, Jinan 250014, ChinaShandong Normal UniversityJinanChina
| | - Bo Huang
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma,anshan 243002, ChinaAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
8
|
Barrs VR, Beczkowski PM, Talbot JJ, Hobi S, Teoh SN, Hernandez Muguiro D, Shubitz LF, Sandy J. Invasive Fungal Infections and Oomycoses in Cats: 1. Diagnostic approach. J Feline Med Surg 2024; 26:1098612X231219696. [PMID: 38189288 PMCID: PMC10949879 DOI: 10.1177/1098612x231219696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
CLINICAL RELEVANCE In contrast to superficial fungal infections, such as dermatophytosis, invasive fungal infections (IFIs) are characterised by penetration of tissues by fungal elements. Disease can spread locally within a region or can disseminate haematogenously or via the lymphatics. The environment is the most common reservoir of infection. Since fungal spores are airborne, indoor cats are also susceptible to IFIs. Some environmental fungi are ubiquitous and present globally, while others are endemic or hyperendemic within specific geographic regions. Zoonotic pathogens include Microsporum canis, Sporothrix schenckii and Sporothrix brasiliensis. AIM In the first of a two-part article series, the approach to the investigation of feline IFIs and oomycoses is reviewed. As well as tips for diagnosis, and information on the ecological niche and distribution of fungal pathogens, the review covers clinical presentation of the most common IFIs, including cryptococcosis, histoplasmosis, blastomycosis, coccidioidomycosis, sporotrichosis, phaeohyphomycosis, aspergillosis and dermatophytic pseudomycetoma, as well as the oomycoses pythiosis, lagenidiosis and paralagenidiosis. In Part 2, the spectrum of activity, mechanisms of action, pharmacokinetic and pharmacodynamic properties and adverse effects of antifungal drugs are reviewed, and the treatment and prognosis for specific IFIs and oomycoses are discussed. EVIDENCE BASE The review draws on published evidence and the authors' combined expertise in feline medicine, mycology, dermatology, clinical pathology and anatomical pathology.
Collapse
Affiliation(s)
- Vanessa R Barrs
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
- Centre for Animal Health and Welfare, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| | - Paweł M Beczkowski
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| | | | - Stefan Hobi
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| | - Shu Ning Teoh
- Veterinary Specialists Aotearoa, Henderson, Auckland, New Zealand
| | | | - Lisa F Shubitz
- Valley Fever Center for Excellence, The University of Arizona, AZ, USA
| | - Jeanine Sandy
- Department of Veterinary Clinical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR China
| |
Collapse
|
9
|
Radek R, Wurzbacher C, Strassert JFH. New nephridiophagid genera (Fungi, Chytridiomycota) in a mallow beetle and an earwig. MycoKeys 2023; 100:245-260. [PMID: 38162290 PMCID: PMC10757303 DOI: 10.3897/mycokeys.100.111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024] Open
Abstract
Nephridiophagids are unicellular fungi (Chytridiomycota) that infect the Malpighian tubules of insects. Most species have been found in cockroach hosts and belong to the genus Nephridiophaga. Three additional genera have been described from beetles and an earwig. Here, we characterise morphologically and molecular phylogenetically the nephridiophagids of the European earwig Forficulaauricularia and the mallow beetle Podagricamalvae. Their morphology and life cycle stages resemble those of other nephridiophagids, but their rRNA gene sequences support the existence of two additional genera. Whereas the earwig nephridiophagid (Nephridiochytriumforficulaegen. nov. et sp. nov.) forms a sister lineage of the Nephridiophaga cluster, the mallow beetle nephridiophagid (Malpighivincopodagricaegen. nov. et sp. nov.) represents the earliest divergent lineage within the nephridiophagids, being sister to all other species. Our results corroborate the hypothesis that different insect groups harbour distinct nephridiophagid lineages.
Collapse
Affiliation(s)
- Renate Radek
- Evolutionary Biology, Institute of Biology, Free University of Berlin, 14195 Berlin, GermanyFree University of BerlinBerlinGermany
| | - Christian Wurzbacher
- Chair of Urban Water Systems, Engineering, Technical University of Munich, 85748 Garching, GermanyTechnical University of MunichMünchenGermany
| | - Jürgen F. H. Strassert
- Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, GermanyEvolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland FisheriesBerlinGermany
| |
Collapse
|
10
|
Thomé PC, Irisarri I, Wolinska J, Monaghan MT, Strassert JFH. Single-cell genomics reveals new rozellid lineages and supports their sister relationship to Microsporidia. Biol Lett 2023; 19:20230398. [PMID: 38087939 PMCID: PMC10716661 DOI: 10.1098/rsbl.2023.0398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The phylum Rozellomycota has been proposed for a group of early-branching holomycotan lineages representing obligate parasites and hyperparasites of zoosporic fungi, oomycotes or phytoplankton. Given their predominantly intracellular lifestyle, rozellids are typically known from environmental ribosomal DNA data, except for the well-studied Rozella species. To date, the phylogenetic relationship between rozellids and microsporidians (Microsporidia) is not fully understood and most reliable hypotheses are based on phylogenomic analyses that incorporate the only publicly available rozellid genome of Rozella allomycis. Here, we provide genomic data of three new rozellid lineages obtained by single-cell sequencing from environmental samples and show with a phylogenomic approach that rozellids form a monophyletic group that is sister to microsporidians, corroborating the previously proposed phylum Rozellomycota. Whereas no mitochondrial genes coding for the respiratory Complex I could be found, we discovered a gene coding for a nucleotide phosphate transporter in one of the three draft genomes. The scattered absence of Complex I genes and scattered presence of nucleotide transporter genes across diverse microsporidian and rozellid lineages suggest that these adaptations to a parasitic lifestyle, which reduce the parasite's capability to synthesize ATP but enables it to steal ATP from its host, evolved independently in microsporidians and rozellids.
Collapse
Affiliation(s)
- Pauline C. Thomé
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Iker Irisarri
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature Hamburg, Hamburg, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Michael T. Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jürgen F. H. Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| |
Collapse
|
11
|
Rassbach J, Hilsberg N, Haensch VG, Dörner S, Gressler J, Sonnabend R, Semm C, Voigt K, Hertweck C, Gressler M. Non-canonical two-step biosynthesis of anti-oomycete indole alkaloids in Kickxellales. Fungal Biol Biotechnol 2023; 10:19. [PMID: 37670394 PMCID: PMC10478498 DOI: 10.1186/s40694-023-00166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/06/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Fungi are prolific producers of bioactive small molecules of pharmaceutical or agricultural interest. The secondary metabolism of higher fungi (Dikarya) has been well-investigated which led to > 39,000 described compounds. However, natural product researchers scarcely drew attention to early-diverging fungi (Mucoro- and Zoopagomycota) as they are considered to rarely produce secondary metabolites. Indeed, only 15 compounds have as yet been isolated from the entire phylum of the Zoopagomycota. RESULTS Here, we showcase eight species of the order Kickxellales (phylum Zoopagomycota) as potent producers of the indole-3-acetic acid (IAA)-derived compounds lindolins A and B. The compounds are produced both under laboratory conditions and in the natural soil habitat suggesting a specialized ecological function. Indeed, lindolin A is a selective agent against plant-pathogenic oomycetes such as Phytophthora sp. Lindolin biosynthesis was reconstituted in vitro and relies on the activity of two enzymes of dissimilar evolutionary origin: Whilst the IAA-CoA ligase LinA has evolved from fungal 4-coumaryl-CoA synthetases, the subsequently acting IAA-CoA:anthranilate N-indole-3-acetyltransferase LinB is a unique enzyme across all kingdoms of life. CONCLUSIONS This is the first report on bioactive secondary metabolites in the subphylum Kickxellomycotina and the first evidence for a non-clustered, two-step biosynthetic route of secondary metabolites in early-diverging fungi. Thus, the generally accepted "gene cluster hypothesis" for natural products needs to be reconsidered for early diverging fungi.
Collapse
Affiliation(s)
- Johannes Rassbach
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Nathalie Hilsberg
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Veit G Haensch
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Sebastian Dörner
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Julia Gressler
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Robin Sonnabend
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany
| | - Caroline Semm
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
- Jena Microbial Resource Collection (JMRC), Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Kerstin Voigt
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
- Jena Microbial Resource Collection (JMRC), Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
| | - Christian Hertweck
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Adolf-Reichwein-Strasse 23, 07745, Jena, Germany
- Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Markus Gressler
- Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
- Pharmaceutical Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Winzerlaer Strasse 2, 07745, Jena, Germany.
| |
Collapse
|
12
|
Seto K, Simmons DR, Quandt CA, Frenken T, Dirks AC, Clemons RA, McKindles KM, McKay RML, James TY. A combined microscopy and single-cell sequencing approach reveals the ecology, morphology, and phylogeny of uncultured lineages of zoosporic fungi. mBio 2023; 14:e0131323. [PMID: 37486265 PMCID: PMC10470594 DOI: 10.1128/mbio.01313-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Environmental DNA analyses of fungal communities typically reveal a much larger diversity than can be ascribed to known species. Much of this hidden diversity lies within undescribed fungal lineages, especially the early diverging fungi (EDF). Although these EDF often represent new lineages even at the phylum level, they have never been cultured, making their morphology and ecology uncertain. One of the methods to characterize these uncultured fungi is a single-cell DNA sequencing approach. In this study, we established a large data set of single-cell sequences of EDF by manually isolating and photographing parasitic fungi on various hosts such as algae, protists, and micro-invertebrates, combined with subsequent long-read sequencing of the ribosomal DNA locus (rDNA). We successfully obtained rDNA sequences of 127 parasitic fungal cells, which clustered into 71 phylogenetic lineages belonging to seven phylum-level clades of EDF: Blastocladiomycota, Chytridiomycota, Aphelidiomycota, Rozellomycota, and three unknown phylum-level clades. Most of our single cells yielded novel sequences distinguished from both described taxa and existing metabarcoding data, indicating an expansive and hidden diversity of parasitic taxa of EDF. We also revealed an unexpected diversity of endobiotic Olpidium-like chytrids and hyper-parasitic lineages. Overall, by combining photographs of parasitic fungi with phylogenetic analyses, we were able to better understand the ecological function and morphology of many of the branches on the fungal tree of life known only from DNA sequences. IMPORTANCE Much of the diversity of microbes from natural habitats, such as soil and freshwater, comprise species and lineages that have never been isolated into pure culture. In part, this stems from a bias of culturing in favor of saprotrophic microbes over the myriad symbiotic ones that include parasitic and mutualistic relationships with other taxa. In the present study, we aimed to shed light on the ecological function and morphology of the many undescribed lineages of aquatic fungi by individually isolating and sequencing molecular barcodes from 127 cells of host-associated fungi using single-cell sequencing. By adding these sequences and their photographs into the fungal tree, we were able to understand the morphology of reproductive and vegetative structures of these novel fungi and to provide a hypothesized ecological function for them. These individual host-fungal cells revealed themselves to be complex environments despite their small size; numerous samples were hyper-parasitized with other zoosporic fungal lineages such as Rozellomycota.
Collapse
Affiliation(s)
- Kensuke Seto
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - D. Rabern Simmons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - C. Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Thijs Frenken
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Cluster Nature and Society, HAS University of Applied Sciences, 's-Hertogenbosch, the Netherlands
| | - Alden C. Dirks
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca A. Clemons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Katelyn M. McKindles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - R. Michael L. McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Yang J, Yun J, Liu X, Du W, Xiang M. Niche and ecosystem preference of earliest diverging fungi in soils. Mycology 2023; 14:239-255. [PMID: 37583459 PMCID: PMC10424602 DOI: 10.1080/21501203.2023.2237047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
Within the supergroup Rotosphaeromycetes, or "Holomycota"/"Nucletmycea", there are several well-recognised unicellular clades in the earliest diverging fungi (EDF). However, we know little about their occurrence. Here, we investigated EDF in the rhizosphere and bulk soils from cropland, forest, orchard, and wetland ecosystems around the Beijing-Hebei area, China, to illustrate their niche and ecosystem preference. More than 500 new operational taxonomic units (OTUs) of EDF were detected based on the 18S rRNA genes. Microsporida and Aphelida constitute dominant groups, whereas Rozellosporida was quite rare. Although the EDF community was site-specific, the soil chemical characteristics, vegetation, and other eukaryotic microorganisms were the key factors driving the occurrence of EDF. Moreover, the stochastic process consisted the most of the EDF community assembly.
Collapse
Affiliation(s)
- Jiarui Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xingzhong Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenbin Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Corona Ramirez A, Bregnard D, Junier T, Cailleau G, Dorador C, Bindschedler S, Junier P. Assessment of fungal spores and spore-like diversity in environmental samples by targeted lysis. BMC Microbiol 2023; 23:68. [PMID: 36918804 PMCID: PMC10015814 DOI: 10.1186/s12866-023-02809-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
At particular stages during their life cycles, fungi use multiple strategies to form specialized structures to survive unfavorable environmental conditions. These strategies encompass sporulation, as well as cell-wall melanization, multicellular tissue formation or even dimorphism. The resulting structures are not only used to disperse to other environments, but also to survive long periods of time awaiting favorable growth conditions. As a result, these specialized fungal structures are part of the microbial seed bank, which is known to influence the microbial community composition and contribute to the maintenance of diversity. Despite the importance of the microbial seed bank in the environment, methods to study the diversity of fungal structures with improved resistance only target spores dispersing in the air, omitting the high diversity of these structures in terms of morphology and environmental distribution. In this study, we applied a separation method based on cell lysis to enrich lysis-resistant fungal structures (for instance, spores, sclerotia, melanized yeast) to obtain a proxy of the composition of the fungal seed bank. This approach was first evaluated in-vitro in selected species. The results obtained showed that DNA from fungal spores and from yeast was only obtained after the application of the enrichment method, while mycelium was always lysed. After validation, we compared the diversity of the total and lysis-resistant fractions in the polyextreme environment of the Salar de Huasco, a high-altitude athalassohaline wetland in the Chilean Altiplano. Environmental samples were collected from the salt flat and from microbial mats in small surrounding ponds. Both the lake sediments and microbial mats were dominated by Ascomycota and Basidiomycota, however, the diversity and composition of each environment differed at lower taxonomic ranks. Members of the phylum Chytridiomycota were enriched in the lysis-resistant fraction, while members of the phylum Rozellomycota were never detected in this fraction. Moreover, we show that the community composition of the lysis-resistant fraction reflects the diversity of life cycles and survival strategies developed by fungi in the environment. To the best of our knowledge this is the first time that the fungal diversity is explored in the Salar de Huasco. In addition, the method presented here provides a simple and culture independent approach to assess the diversity of fungal lysis-resistant cells in the environment.
Collapse
Affiliation(s)
- Andrea Corona Ramirez
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Danaé Bregnard
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Thomas Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Guillaume Cailleau
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Cristina Dorador
- Department of Biotechnology, University of Antofagasta, Antofagasta, Chile
| | - Saskia Bindschedler
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
15
|
Hurdeal VG, Longcore JE, Gareth Jones EB, Rabern Simmons D, Hyde KD, Gentekaki E. Integrative approach to species delimitation in Rhizophydiales: Novel species of Angulomyces, Gorgonomyces, and Terramyces from northern Thailand. Mol Phylogenet Evol 2023; 180:107706. [PMID: 36657624 DOI: 10.1016/j.ympev.2023.107706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
The Chytridiomycota is a phylum of zoosporic eufungi that inhabit terrestrial, freshwater, and oceanic habitats. Within the phylum, the Rhizophydiales contains several monotypic families theorized to hold a diverse assemblage of fungi yet to be discovered and properly described. Based on morphology alone, many species in this order are difficult or impossible to identify. In this study, we isolated three chytrids from northern Thailand. Phylogenetic analyses placed the isolates in three monotypic genera within Rhizophydiales. Intrageneric genetic distances in the internal transcribed spacer (ITS) ranged between 1.5 and 8.5%. Angulomyces solicola sp. nov. is characterized by larger sporangia, spores, and fewer discharge papilla than A.argentinensis; Gorgonomyces thailandicus sp. nov. has larger zoospores and fewer discharge papillae in culture compared to G. haynaldii; Terramyces chiangraiensis sp. nov. produces larger sporangia than T. subangulosum. We delimited species of Angulomyces, Gorgonomyces and Terramyces using a tripartite approach that employed phylogeny, ITS genetic distances and Poisson tree processes (PTP). Results of these approaches suggest more than one species in each genus. This study contributes to the knowledge of chytrids, an understudied group in Thailand and worldwide.
Collapse
Affiliation(s)
- Vedprakash G Hurdeal
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, Orono, ME 04469-5722, USA
| | - E B Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - D Rabern Simmons
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Eleni Gentekaki
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand.
| |
Collapse
|
16
|
Heterochromatin and RNAi act independently to ensure genome stability in Mucorales human fungal pathogens. Proc Natl Acad Sci U S A 2023; 120:e2220475120. [PMID: 36745785 PMCID: PMC9963178 DOI: 10.1073/pnas.2220475120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chromatin modifications play a fundamental role in controlling transcription and genome stability and yet despite their importance, are poorly understood in early-diverging fungi. We present a comprehensive study of histone lysine and DNA methyltransferases across the Mucoromycota, emphasizing heterochromatin formation pathways that rely on the Clr4 complex involved in H3K9-methylation, the Polycomb-repressive complex 2 driving H3K27-methylation, or DNMT1-like methyltransferases that catalyze 5mC DNA methylation. Our analysis uncovered H3K9-methylated heterochromatin as the major chromatin modification repressing transcription in these fungi, which lack both Polycomb silencing and cytosine methylation. Although small RNAs generated by RNA interference (RNAi) pathways facilitate the formation of heterochromatin in many eukaryotic organisms, we show that RNAi is not required to maintain either genomic or centromeric heterochromatin in Mucor. H3K9-methylation and RNAi act independently to control centromeric regions, suggesting a functional subspecialization. Whereas the H3K9 methyltransferase Clr4 and heterochromatin formation are essential for cell viability, RNAi is dispensable for viability yet acts as the main epigenetic, regulatory force repressing transposition of centromeric GremLINE1 elements. Mutations inactivating canonical RNAi lead to rampant transposition and insertional inactivation of targets resulting in antimicrobial drug resistance. This fine-tuned, Rdrp2-dependent RNAi activity is critical for genome stability, restricting GremLINE1 retroelements to the centromeres where they occupy long heterochromatic islands. Taken together, our results suggest that RNAi and heterochromatin formation are independent genome defense and regulatory mechanisms in the Mucorales, contributing to a paradigm shift from the cotranscriptional gene silencing observed in fission yeasts to models in which heterochromatin and RNAi operate independently in early-diverging fungi.
Collapse
|
17
|
Worobiec G, Erdei B. The first fossil record of the anamorphic genus Zygosporium Mont. from the Oligocene of Csolnok (N Hungary). Mycol Prog 2023. [DOI: 10.1007/s11557-022-01851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractRemains of a fungus with unique morphological characters were found on the leaf cuticle of a fossil leaf preserved in Oligocene deposits from Csolnok, Hungary. Vesicular conidiophores with characteristic, darkly pigmented, incurved vesicles were compared with those of the modern representatives of the anamorphic genus Zygosporium. Based on the fossil find, a new fossil-species, Zygosporium oligocenicum G. Worobiec sp. nov., having vesicular conidiophores that arise directly from the mycelium, was described. The fossil Zygosporium oligocenicum presumably preferred warm climate and, similarly to most modern members of the genus, was a saprophyte on fallen, decaying leaves.
Collapse
|
18
|
Dong QY, Wang Y, Wang ZQ, Liu YF, Yu H. Phylogeny and Systematics of the Genus Tolypocladium (Ophiocordycipitaceae, Hypocreales). J Fungi (Basel) 2022; 8:1158. [PMID: 36354925 PMCID: PMC9697939 DOI: 10.3390/jof8111158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 11/14/2023] Open
Abstract
The taxonomy and phylogeny of the genus Tolypocladium are herein revised based on the most comprehensive dataset to date. Two species-level phylogenies of Tolypocladium were constructed: a single-gene phylogeny (ITS) of 35 accepted species and a multigene phylogeny (nrSSU, nrLSU, tef-1α, rpb1, and rpb2) of 27 accepted species. Three new species, Tolypocladium pseudoalbum sp. nov., Tolypocladium subparadoxum sp. nov., and Tolypocladium yunnanense sp. nov., are described in the present study. The genetic divergences of four markers (ITS, tef-1α, rpb1 and rpb2) among Tolypocladium species are also reported. The results indicated that species of Tolypocladium were best delimited by rpb1 sequence data, followed by the sequence data for the rpb2, tef-1α, and ITS provided regions. Finally, a key to the 48 accepted species of Tolypocladium worldwide is provided.
Collapse
Affiliation(s)
- Quan-Ying Dong
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650504, China
| | - Yao Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
| | - Zhi-Qin Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650504, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650504, China
| | - Yan-Fang Liu
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650504, China
| | - Hong Yu
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming 650504, China
| |
Collapse
|
19
|
Two New Species of Backusella ( Mucorales, Mucoromycota) from Soil in an Upland Forest in Northeastern Brazil with an Identification Key of Backusella from the Americas. J Fungi (Basel) 2022; 8:jof8101038. [PMID: 36294603 PMCID: PMC9604803 DOI: 10.3390/jof8101038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
During a survey of Mucorales from a forest located in Pernambuco state, Brazil, two new Backusella species were discovered and described based on morphological and molecular data (internal transcribed spacer and large subunit ribosomal DNA sequences). Both species were characterized as unbranched sporangiophores and sporangia with columellae of varied shapes forming. Multispored sporangiola were frequent, whereas unispored sporangiola were rare. URM 8395 forms sporangiophores that may support hyaline, slightly curved or circinate pedicels with multispored sporangiola at their apical portion, and abundant giant cells and chlamydospores. Columellae of sporangia are hyaline, conical (majority), or ellipsoidal with a truncate base, globose to subglobose or subglobose to conical, and, rarely, with slight medial constriction. URM 8427 does not form sporangiola from pedicels, giant cells are not observed, and columellae of sporangia are globose to subglobose, cylindrical with a truncate base, some with a slight constriction, applanate, obovoid, ellipsoidal, or, rarely, conical. Some columellae may have one side more swollen than the other and some are arranged obliquely on the sporangiophores. Sterile sporangia may or may not be formed on short sporophores. The detailed description and illustration of both novel species as well as an identification key for Backusella from the Americas are provided.
Collapse
|
20
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
21
|
Xue Y, Shen R, Li Y, Sun Z, Sun X, Li F, Li X, Cheng Y, Zhu W. Anaerobic Fungi Isolated From Bactrian Camel Rumen Contents Have Strong Lignocellulosic Bioconversion Potential. Front Microbiol 2022; 13:888964. [PMID: 35928163 PMCID: PMC9345502 DOI: 10.3389/fmicb.2022.888964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/26/2022] [Indexed: 11/14/2022] Open
Abstract
This study aims to obtain anaerobic fungi from the rumen and fecal samples and investigates their potential for lignocellulosic bioconversion. Multiple anaerobic strains were isolated from rumen contents (CR1–CR21) and fecal samples (CF1–CF10) of Bactrian camel using the Hungate roll tube technique. After screening for fiber degradability, strains from rumen contents (Oontomyces sp. CR2) and feces (Piromyces sp. CF9) were compared with Pecoramyces sp. F1 (earlier isolated from goat rumen, having high CAZymes of GHs) for various fermentation and digestion parameters. The cultures were fermented with different substrates (reed, alfalfa stalk, Broussonetia papyrifera leaves, and Melilotus officinalis) at 39°C for 96 h. The Oontomyces sp. CR2 had the highest total gas and hydrogen production from most substrates in the in vitro rumen fermentation system and also had the highest digestion of dry matter, neutral detergent fiber, acid detergent fiber, and cellulose present in most substrates used. The isolated strains provided higher amounts of metabolites such as lactate, formate, acetate, and ethanol in the in vitro rumen fermentation system for use in various industrial applications. The results illustrated that anaerobic fungi isolated from Bactrian camel rumen contents (Oontomyces sp. CR2) have the highest lignocellulosic bioconversion potential, suggesting that the Bactrian camel rumen could be a good source for the isolation of anaerobic fungi for industrial applications.
Collapse
Affiliation(s)
- Yihan Xue
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Rui Shen
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Xiaoni Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Fengming Li
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Xiaobin Li
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yanfen Cheng,
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Strassert JFH, Monaghan MT. Phylogenomic insights into the early diversification of fungi. Curr Biol 2022; 32:3628-3635.e3. [PMID: 35830854 DOI: 10.1016/j.cub.2022.06.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/10/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Phylogenomic analyses have boosted our understanding of the evolutionary trajectories of all living forms by providing continuous improvements to the tree of life.1-5 Within this tree, fungi represent an ancient eukaryote group,6 having diverged from the animals ∼1.35 billion years ago.7 Estimates of the number of extant species range between 1.5 and 3.8 million.8,9 Recent reclassifications and the discovery of the deep-branching Sanchytriomycota lineage10 have brought the number of proposed phyla to 20,11 21 if the Microsporidia are included.12-14 Uncovering how the diverse and globally distributed fungi are related to each other is fundamental for understanding how their lifestyles, morphologies, and metabolic capacities evolved. To date, many of the proposed relationships among the phyla remain controversial and no phylogenomic study has examined the entire fungal tree using a taxonomically comprehensive dataset and suitable models of evolution. We assembled and curated a 299-protein dataset with a taxon sampling broad enough to encompass all recognized fungal diversity with available data, but selective enough to run computationally intensive analyses using best-fitting models. Using a range of reconstruction methods, we were able to resolve many contested nodes, such as a sister relationship of Chytridiomyceta to all other non-Opisthosporidia fungi (with Chytridiomycota being sister to Monoblepharomycota + Neocallimastigomycota), a branching of Blastocladiomycota + Sanchytriomycota after the Chytridiomyceta but before other non-Opisthosporidia fungi, and a branching of Glomeromycota as sister to the Dikarya. Our up-to-date fungal tree of life will serve as a springboard for future investigations on the early evolution of fungi.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.
| | - Michael T Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
23
|
Nguyen TTT, Lee HB. Discovery of Three New Mucor Species Associated with Cricket Insects in Korea. J Fungi (Basel) 2022; 8:jof8060601. [PMID: 35736084 PMCID: PMC9224827 DOI: 10.3390/jof8060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
Species in the genus Mucor have a worldwide distribution and are isolated from various substrata and hosts, including soil, dung, freshwater, and fruits. However, their diversity from insects is still much too little explored. The aim of this study was to characterize three new species of Mucor: Mucor grylli sp. nov., M. hyangburmii sp. nov., and M. kunryangriensis sp. nov., discovered in Kunryang-ri, Cheongyang in the Chungnam Province of Korea, during an investigation of Mucorales from cricket insects. The new species are described using morphological characters and molecular data including ITS and LSU rDNA regions. Mucor grylli is characterized by the highly variable shape of its columellae, which are subglobose to oblong, obovoid, strawberry-shaped, and sometimes slightly or strongly constricted in the center. Mucor hyangburmii is characterized by the production of azygospores and growth at 40 °C. Mucor kunryangriensis is characterized by the variable shape of its columellae, which are elongated-conical, obovoid, cylindrical ellipsoid, cylindrical, and production of abundant yeast-like cells on PDA, MEA, and SMA media. Based on the sequence analysis of two genetic markers, our phylogenic assessment strongly supported M. grylli, M. hyangburmii, and M. kunryangriensis as new species. Detailed descriptions, illustrations, and phylogenetic trees are provided.
Collapse
Affiliation(s)
- Thuong T T Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
24
|
F H Strassert J, Rodríguez-Rojas A, Kuropka B, Krahl J, Kaya C, Pulat HC, Nurel M, Saroukh F, Radek R. Nephridiophagids (Chytridiomycota) reduce the fitness of their host insects. J Invertebr Pathol 2022; 192:107769. [PMID: 35597279 DOI: 10.1016/j.jip.2022.107769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
Nephridiophagids are unicellular fungi (Chytridiomycota), which infect the Malpighian tubules of insects. While most life cycle features are known, the effects of these endobionts on their hosts remain poorly understood. Here, we present results on the influence of an infection of the cockroach Blattella germanica with Nephridiophaga blattellae (Ni = Nephridiophaga-infected) on physical, physiological, and reproductive fitness parameters. Since the gut nematode Blatticola blattae is a further common parasite of B. germanica, we included double infected cockroaches (N+Ni = nematode plus Ni) in selected experiments. Ni individuals had lower fat reserves and showed reduced mobility. The lifespan of adult hosts was only slightly affected in these individuals but significantly shortened when both Nephridiophaga and nematodes were present. Ni as well as N+Ni females produced considerably less offspring than parasite-free (P-free) females. Immune parameters such as the number of hemocytes and phenoloxidase activity were barely changed by Nephridiophaga and/or nematode infections, while the ability to detoxify pesticides decreased. Quantitative proteomics from hemolymph of P-free, Ni, and N+Ni populations revealed clear differences in the expression profiles. For Ni animals, for example, the down-regulation of fatty acid synthases corroborates our finding of reduced fat reserves. Our study clearly shows that an infection with Nephridiophaga (and nematodes) leads to an overall reduced host fitness.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Evolutionary and Integrative Ecology, Berlin, Germany.
| | - Alexandro Rodríguez-Rojas
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany; Internal Medicine - Vetmeduni Vienna, 1210 Vienna, Austria
| | - Benno Kuropka
- Protein Biochemistry, Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Joscha Krahl
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Cem Kaya
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Hakan-Can Pulat
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Mehmed Nurel
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Fatma Saroukh
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Renate Radek
- Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany.
| |
Collapse
|
25
|
Calabon MS, Hyde KD, Jones EBG, Luo ZL, Dong W, Hurdeal VG, Gentekaki E, Rossi W, Leonardi M, Thiyagaraja V, Lestari AS, Shen HW, Bao DF, Boonyuen N, Zeng M. Freshwater fungal numbers. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Zhang S, Wang S, Fang Z, Lang BF, Zhang YJ. Characterization of the mitogenome of Gongronella sp. w5 reveals substantial variation in Mucoromycota. Appl Microbiol Biotechnol 2022; 106:2587-2601. [PMID: 35318523 DOI: 10.1007/s00253-022-11880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/24/2022] [Accepted: 03/06/2022] [Indexed: 11/02/2022]
Abstract
Gongronella is a genus of fungi in Mucorales (Mucoromycota). Some of its members have important biotechnological applications, but until now, not a single mitogenome has been characterized in Gongronella. Here, we present the complete mitogenome assembly of Gongronella sp. w5, a soil isolate known to interact with plants and several fungi. Its 36,593-bp circular mitogenome encodes the large and small subunit rRNAs, 14 standard mitochondrial proteins, 24 tRNAs, three free-standing ORF proteins, and the RNA subunit of RNase P (rnpB). These genes arrange in an order novel to known fungal mitogenomes. Three group I introns are present in the cob, cox1, and nad5 genes, respectively, and they are probably acquired by horizontal gene transfer. Phylogenetic analysis based on mitochondrion-encoded proteins supports the grouping of Gongronella sp. w5 with Absidia glauca, forming the Cunninghamellaceae clade within Mucoromycota. Gongronella and most other Mucoromycota species are predicted to use the standard genetic code in mitochondrial translation, rather than code 4 assigned by GenBank. A comparison among seven publicly available mitogenomes in Mucoromycota reveals the presence of the same 14 typical protein-coding genes plus rnpB, yet substantial variation in mitogenome size, intron number, gene order, and orientation. In this comparison, the uniqueness of Gongronella is evident from similarly large differences to its closest phylogenetic neighbor, A. glauca. This study promotes our understanding of fungal evolution in Mucoromycota. KEY POINTS: • This study reports the first mitogenome in Gongronella, which presents a novel gene order. • Different Mucoromycota mitogenomes show substantial variation of gene organizations. • Most Mucoromycota species use the standard genetic code to translate mitochondrial genes.
Collapse
Affiliation(s)
- Shu Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Shuang Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - B Franz Lang
- Département de Biochimie, Centre Robert Cedergren, Université de Montréal, Montreal, Québec, H3T 1J4, Canada.
| | - Yong-Jie Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
27
|
Ilicic D, Grossart HP. Basal Parasitic Fungi in Marine Food Webs-A Mystery Yet to Unravel. J Fungi (Basel) 2022; 8:114. [PMID: 35205868 PMCID: PMC8874645 DOI: 10.3390/jof8020114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Although aquatic and parasitic fungi have been well known for more than 100 years, they have only recently received increased awareness due to their key roles in microbial food webs and biogeochemical cycles. There is growing evidence indicating that fungi inhabit a wide range of marine habitats, from the deep sea all the way to surface waters, and recent advances in molecular tools, in particular metagenome approaches, reveal that their diversity is much greater and their ecological roles more important than previously considered. Parasitism constitutes one of the most widespread ecological interactions in nature, occurring in almost all environments. Despite that, the diversity of fungal parasites, their ecological functions, and, in particular their interactions with other microorganisms remain largely speculative, unexplored and are often missing from current theoretical concepts in marine ecology and biogeochemistry. In this review, we summarize and discuss recent research avenues on parasitic fungi and their ecological potential in marine ecosystems, e.g., the fungal shunt, and emphasize the need for further research.
Collapse
Affiliation(s)
- Doris Ilicic
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany;
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Alte Fischerhütte 2, 16775 Stechlin, Germany;
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, 14469 Potsdam, Germany
| |
Collapse
|