1
|
Lok S, Lau TNH, Trost B, Tong AHY, Paton T, Wintle RF, Engstrom MD, Gunn A, Scherer SW. Chromosomal-level reference genome assembly of muskox (Ovibos moschatus) from Banks Island in the Canadian Arctic, a resource for conservation genomics. Sci Rep 2024; 14:21023. [PMID: 39284808 PMCID: PMC11405533 DOI: 10.1038/s41598-024-67270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/09/2024] [Indexed: 09/20/2024] Open
Abstract
The muskox (Ovibos moschatus), an integral component and iconic symbol of arctic biocultural diversity, is under threat by rapid environmental disruptions from climate change. We report a chromosomal-level haploid genome assembly of a muskox from Banks Island in the Canadian Arctic Archipelago. The assembly has a contig N50 of 44.7 Mbp, a scaffold N50 of 112.3 Mbp, a complete representation (100%) of the BUSCO v5.2.2 set of 9225 mammalian marker genes and is anchored to the 24 chromosomes of the muskox. Tabulation of heterozygous single nucleotide variants in our specimen revealed a very low level of genetic diversity, which is consistent with recent reports of the muskox having the lowest genome-wide heterozygosity among the ungulates. While muskox populations are currently showing no overt signs of inbreeding depression, environmental disruptions are expected to strain the genomic resilience of the species. One notable impact of rapid climate change in the Arctic is the spread of emerging infectious and parasitic diseases in the muskox, as exemplified by the range expansion of muskox lungworms, and the recent fatal outbreaks of Erysipelothrix rhusiopathiae, a pathogen normally associated with domestic swine and poultry. As a genomics resource for conservation management of the muskox against existing and emerging disease modalities, we annotated the genes of the major histocompatibility complex on chromosome 2 and performed an initial assessment of the genetic diversity of this complex. This resource is further supported by the annotation of the principal genes of the innate immunity system, genes that are rapidly evolving and under positive selection in the muskox, genes associated with environmental adaptations, and the genes associated with socioeconomic benefits for Arctic communities such as wool (qiviut) attributes. These annotations will benefit muskox management and conservation.
Collapse
Affiliation(s)
- Si Lok
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada.
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| | - Timothy N H Lau
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Amy H Y Tong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Tara Paton
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Mark D Engstrom
- Department of Natural History, Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada
| | | | - Stephen W Scherer
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Rm 13.9713, Suite 03-6577, Toronto, ON, M5G 0A4, Canada.
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- McLaughlin Centre, University of Toronto, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
2
|
Deng X, Cheng L, Qiao Y, Liu X, Zhou Y, Liu H, Wang L. Rutin ameliorates HCD-induced cholesterol metabolism disorder in zebrafish larvae revealed by transcriptome and metabolome analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156058. [PMID: 39341124 DOI: 10.1016/j.phymed.2024.156058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Changes in modern lifestyles have led to an increase in obesity rates. Excessive lipid accumulation leads to abnormal cholesterol metabolism, and maintaining a balanced cholesterol metabolism is essential for the normal functioning of cells and the body. Rutin belongs to the group of flavonoids with hypolipidemic, anti-inflammatory and antioxidant effects. The aim of this study was to investigate the role of rutin in cholesterol metabolism disorders induced by a high cholesterol diet in zebrafish larvae. The trial was divided into five groups: Normal diet (ND), 5 % high cholesterol diet (HCD), 5 % high cholesterol diet with 80 μg/g ezetimibe diet (EZE), 5 % high cholesterol diet with 5 % rutin diet (RL-HCD), and 5 % high cholesterol diet with 10 % rutin diet (RH-HCD). Zebrafish larvae at 5 dpf were randomly divided into five groups and continuously fed different diets for 10 days, after 10 days zebrafish samples were collected for subsequent experiments. Body length, body width, oil red O, and Nile red staining were measured to detect biochemical indexes, analyze inflammatory response and lipid accumulation. Vascular endothelial injury was assessed by stereofluorescence microscopy and ELISA. In order to study the protective effect of rutin in zebrafish with cholesterol metabolism disorder induced by HCD, RNA-seq and LC-MS/MS nontargeted metabolomics were employed. The results indicate that HCD led to an increase in the body length and width of zebrafish. The HCD group induced an increase in body length and width, lipid accumulation, and exacerbated inflammation. Additionally, vascular damage and abnormal expression of endothelial cell markers were observed. Rutin lowered lipid levels in zebrafish fed an HCD, reduced inflammation, and protected endothelial cells. The RNA-seq and metabolomic analysis combined demonstrated that rutin effectively ameliorates the disorder of cholesterol metabolism in vivo by reducing cholesterol synthesis and promoting cholesterol transport.
Collapse
Affiliation(s)
- Xinxin Deng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Lin Cheng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Ying Qiao
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Xuan Liu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Yongbing Zhou
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Hui Liu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China.
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China.
| |
Collapse
|
3
|
Luo W, Cai W, Cheng A, Wang M, Chen S, Huang J, Yang Q, Wu Y, Sun D, Zhu D, Liu M, Zhao X, Zhang S, Ou X, Tian B, Yin Z, Jia R. N-myc and STAT interactor degrades interferon regulatory factor 7 mediated type I interferon signaling to promote duck Tembusu virus replication. Poult Sci 2024; 103:104269. [PMID: 39270481 PMCID: PMC11416583 DOI: 10.1016/j.psj.2024.104269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/04/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
N-myc and STAT interactor (NMI) is an interferon-induced protein, which plays a variety of biological functions by participating in signal transduction and transcriptional activation, it has been reported to regulate antiviral response of different viruses in many species. However, the role of NMI in ducks during Duck Tembusu Virus (DTMUV) infection is completely unknown. In order to reveal whether duck NMI (duNMI) is involved in the antiviral response in the process of DTMUV infection and its role, we cloned and identified duNMI gene, and conducted sequence analysis of duNMI, the open reading frame region of duNMI gene is 1,137 bp, encoding 378 amino acid residues (aa), including 3 domains, Coiled-coil domain (22-126aa), NMI/IFP 35 domain 1 (NID1) domain (174-261aa) and NMI/IFP 35 domain 2 (NID2) domain (272-360aa). Analysis of tissue distribution of duNMI in 7-day-old ducks shows that the expression of duNMI is the highest in harderian gland, followed by small intestine and pancreas. Subsequently, we found that mRNA level of duNMI increases significantly after DTMUV stimulation, and overexpression of duNMI inhibits DTMUV replication in a dose-dependent manner. Besides, duNMI inhibits the transcriptional activity of IFN-I related cytokines. Specifically, we confirmed that duNMI interacts with duck regulatory factor 7 (duIRF7) through NID1 and NID2 domains and inhibit its expression and activated-IFN-β. These results support that duNMI is an inhibitor of antiviral innate immune response in the process of DTMUV infection, which will provide a theoretical basis for the prevention of DTMUV infection.
Collapse
Affiliation(s)
- Wanshuang Luo
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu, Sichuan, 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
4
|
Landau LM, Chaudhary N, Tien YC, Rogozinska M, Joshi S, Yao C, Crowley J, Hullahalli K, Campbell IW, Waldor MK, Haigis M, Kagan JC. pLxIS-containing domains are biochemically flexible regulators of interferons and metabolism. Mol Cell 2024; 84:2436-2454.e10. [PMID: 38925114 PMCID: PMC11282577 DOI: 10.1016/j.molcel.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Signal transduction proteins containing a pLxIS motif induce interferon (IFN) responses central to antiviral immunity. Apart from their established roles in activating the IFN regulator factor (IRF) transcription factors, the existence of additional pathways and functions associated with the pLxIS motif is unknown. Using a synthetic biology-based platform, we identified two orphan pLxIS-containing proteins that stimulate IFN responses independent of all known pattern-recognition receptor pathways. We further uncovered a diversity of pLxIS signaling mechanisms, where the pLxIS motif represents one component of a multi-motif signaling entity, which has variable functions in activating IRF3, the TRAF6 ubiquitin ligase, IκB kinases, mitogen-activated protein kinases, and metabolic activities. The most diverse pLxIS signaling mechanisms were associated with the highest antiviral activities in human cells. The flexibility of domains that regulate IFN signaling may explain their prevalence in nature.
Collapse
Affiliation(s)
- Lauren M Landau
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Neha Chaudhary
- Cambridge Research Center, AbbVie, Inc., Cambridge, MA, USA
| | - Yun Chen Tien
- Cambridge Research Center, AbbVie, Inc., Cambridge, MA, USA
| | | | - Shakchhi Joshi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Conghui Yao
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joseph Crowley
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Karthik Hullahalli
- Division of Infectious Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ian W Campbell
- Division of Infectious Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham & Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcia Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Zhang L, Tang R, Liang D, Wang W, Min K, Luo T, Li X. Uncovering the Interaction between TRAF1 and MAVS in the RIG-I Pathway to Enhance the Upregulation of IRF1/ISG15 during Classical Swine Fever Virus Infection. Cells 2024; 13:1165. [PMID: 38995016 PMCID: PMC11240745 DOI: 10.3390/cells13131165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024] Open
Abstract
Classical swine fever (CSF) is caused by the classical swine fever virus (CSFV), which poses a threat to swine production. The activation of host innate immunity through linker proteins such as tumor necrosis factor receptor (TNF-R)-associated factor (TRAF) is crucial for the induction of the NF-κB pathway. Recent research has revealed the involvement of mitochondrial antiviral-signaling protein (MAVS) in the interaction with TRAF2, 3, 5, and 6 to activate both the NF-κB and IRF3 pathways. This study revealed that CSFV infection led to the upregulation of TRAF1 mRNA and protein levels; moreover, TRAF1 overexpression inhibited CSFV replication, while TRAF1 knockdown promoted replication, highlighting its importance in the host response to CSFV infection. Additionally, the expression of RIG-I, MAVS, TRAF1, IRF1, and ISG15 were detected in PK-15 cells infected with CSFV, revealing that TRAF1 plays a role in regulating IRF1 and ISG15 within the RIG-I pathway. Furthermore, Co-IP, GST pull-down, and IFA analyses demonstrated that TRAF1 interacted with MAVS and co-localized in the cytoplasm during CSFV infection. Ultimately, TRAF1 acted as a novel member of the TRAF family, bound to MAVS as a linker molecule, and functioned as a mediator downstream of MAVS in the RIG-I/MAVS pathway against CSFV replication.
Collapse
Affiliation(s)
- Liyuan Zhang
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Rongze Tang
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Dongli Liang
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Wenfeng Wang
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Kaijun Min
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Tingrong Luo
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Guaxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Xiaoning Li
- College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning 530004, China; (L.Z.); (R.T.); (D.L.); (W.W.); (K.M.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- Guaxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| |
Collapse
|
6
|
Ying Q, Rong J, Hong M, Heng Z, Zhang Z, Xu Y. The emerging role of adaptor proteins in regulating innate immunity of sepsis. Pharmacol Res 2024; 205:107223. [PMID: 38797359 DOI: 10.1016/j.phrs.2024.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Sepsis is a life-threatening syndrome caused by a dysregulated immune response. A large number of adaptor proteins have been found to play a pivotal role in sepsis via protein-protein interactions, thus participating in inflammatory cascades, leading to the generation of numerous inflammatory cytokines, as well as oxidative stress and regulated cell death. Although available strategies for the diagnosis and management of sepsis have improved, effective and specific treatments are lacking. This review focuses on the emerging role of adaptor proteins in regulating the innate immunity of sepsis and evaluates the potential value of adaptor protein-associated therapeutic strategy for sepsis.
Collapse
Affiliation(s)
- Qiaoyu Ying
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiabing Rong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Min Hong
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zetao Heng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhaocai Zhang
- Department of Intensive Care Unit, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yinchuan Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
7
|
Taraschenko O, Fox HS, Eldridge E, Heliso P, Al-Saleem F, Dessain S, Casale G, Willcockson G, Anderson K, Wang W, Dingledine R. MyD88-mediated signaling is critical for the generation of seizure responses and cognitive impairment in a model of anti-N-methyl-D-aspartate receptor encephalitis. Epilepsia 2024; 65:1475-1487. [PMID: 38470097 PMCID: PMC11087204 DOI: 10.1111/epi.17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVE We previously demonstrated that interleukin-1 receptor-mediated immune activation contributes to seizure severity and memory loss in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. In the present study, we assessed the role of the myeloid differentiation primary response gene 88 (MyD88), an adaptor protein in Toll-like receptor signaling, in the key phenotypic characteristics of anti-NMDAR encephalitis. METHODS Monoclonal anti-NMDAR antibodies or control antibodies were infused into the lateral ventricle of MyD88 knockout mice (MyD88-/-) and control C56BL/6J mice (wild type [WT]) via osmotic minipumps for 2 weeks. Seizure responses were measured by electroencephalography. Upon completion of the infusion, the motor, anxiety, and memory functions of the mice were assessed. Astrocytic (glial fibrillary acidic protein [GFAP]) and microglial (ionized calcium-binding adaptor molecule 1 [Iba-1]) activation and transcriptional activation for the principal inflammatory mediators involved in seizures were determined using immunohistochemistry and quantitative real-time polymerase chain reaction, respectively. RESULTS As shown before, 80% of WT mice infused with anti-NMDAR antibodies (n = 10) developed seizures (median = 11, interquartile range [IQR] = 3-25 in 2 weeks). In contrast, only three of 14 MyD88-/- mice (21.4%) had seizures (0, IQR = 0-.25, p = .01). The WT mice treated with antibodies also developed memory loss in the novel object recognition test, whereas such memory deficits were not apparent in MyD88-/- mice treated with anti-NMDAR antibodies (p = .03) or control antibodies (p = .04). Furthermore, in contrast to the WT mice exposed to anti-NMDAR antibodies, the MyD88-/- mice had a significantly lower induction of chemokine (C-C motif) ligand 2 (CCL2) in the hippocampus (p = .0001, Sidak tests). There were no significant changes in the expression of GFAP and Iba-1 in the MyD88-/- mice treated with anti-NMDAR or control antibodies. SIGNIFICANCE These findings suggest that MyD88-mediated signaling contributes to the seizure and memory phenotype in anti-NMDAR encephalitis and that CCL2 activation may participate in the expression of these features. The removal of MyD88 inflammation may be protective and therapeutically relevant.
Collapse
Affiliation(s)
- Olga Taraschenko
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Howard S. Fox
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Ember Eldridge
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Priscilla Heliso
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | | | - Scott Dessain
- Lankenau Institute for Medical Research, Wynnewood, PA
| | - George Casale
- Department of Surgery, Division of Vascular Surgery, University of Nebraska Medical Center, Omaha, NE
| | | | - Kayley Anderson
- Department of Neurological Sciences, Division of Epilepsy, University of Nebraska Medical Center, Omaha, NE
| | - Wenyi Wang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
8
|
Vu GT, Awad V, Norberto MF, Bowman TV, Trompouki E. Nucleic acid-induced inflammation on hematopoietic stem cells. Exp Hematol 2024; 131:104148. [PMID: 38151171 PMCID: PMC11061806 DOI: 10.1016/j.exphem.2023.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Hematopoiesis, the process of generating blood cells, starts during development with the primitive, pro-definitive, and definitive hematopoietic waves. The first two waves will generate erythrocytes and myeloid cells, although the definitive wave will give rise to hematopoietic stem cells (HSCs) that are multipotent and can produce most of the blood cells in an adult. Although HSCs are highly proliferative during development, during adulthood they remain quiescent in the bone marrow. Inflammatory signaling in the form of interferons, interleukins, tumor necrosis factors, and others is well-established to influence both developmental and adult hematopoiesis. Here we discuss the role of specific inflammatory pathways that are induced by sensing nucleic acids. We discuss the role of RNA-sensing members of the Toll-like, Rig-I-like, nucleotide-binding oligomerization domain (NOD)-like, and AIM2-like protein kinase receptors and the DNA-sensing receptors, DEAD-Box helicase 41 (DDX41) and cGAS. The main downstream pathways of these receptors are discussed, as well as their influence on developmental and adult hematopoiesis, including hematopoietic pathologies.
Collapse
Affiliation(s)
- Giang To Vu
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France
| | - Valerie Awad
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY
| | - Maria Feliz Norberto
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology and Gottesman Institute of Stem Cell Biology and Regenerative Medicine Bronx, Albert Einstein College of Medicine, NY; Department of Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY.
| | - Eirini Trompouki
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, CNRS UMR 7284, Université Côte d'Azur, Nice, France.
| |
Collapse
|
9
|
Liu N, Yan X, Lv B, Wu Y, Hu X, Zheng C, Tao S, Deng R, Dou J, Zeng B, Jiang G. A study on the association between gut microbiota, inflammation, and type 2 diabetes. Appl Microbiol Biotechnol 2024; 108:213. [PMID: 38358546 PMCID: PMC10869376 DOI: 10.1007/s00253-024-13041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/16/2024]
Abstract
Type 2 diabetes mellitus (T2DM) was reported to be associated with impaired immune response and alterations in microbial composition and function. However, the underlying mechanism remains elusive. To investigate the association among retinoic acid-inducible gene-I-like receptors (RLRs) signaling pathway, intestinal bacterial microbiome, microbial tryptophan metabolites, inflammation, and a longer course of T2DM, 14 patients with T2DM and 7 healthy controls were enrolled. 16S rRNA amplicon sequencing and untargeted metabolomics were utilized to analyze the stool samples. RNA sequencing (RNA-seq) was carried out on the peripheral blood samples. Additionally, C57BL/6J specific pathogen-free (SPF) mice were used. It was found that the longer course of T2DM could lead to a decrease in the abundance of probiotics in the intestinal microbiome. In addition, the production of microbial tryptophan derivative skatole declined as a consequence of the reduced abundance of related intestinal microbes. Furthermore, low abundances of probiotics, such as Bacteroides and Faecalibacterium, could trigger the inflammatory response by activating the RLRs signaling pathway. The increased level of the member of TNF receptor-associated factors (TRAF) family, nuclear factor kappa-B (NF-κB) activator (TANK), in the animal colon activated nuclear factor kappa B subunit 2 (NFκB2), resulting in inflammatory damage. In summary, it was revealed that the low abundances of probiotics could activate the RLR signaling pathway, which could in turn activate its downstream signaling pathway, NF-κB, highlighting a relationship among gut microbes, inflammation, and a longer course of T2DM. KEY POINTS: Hyperglycemia may suppress tryptophanase activity. The low abundance of Bacteroides combined with the decrease of Dopa decarboxylase (DDC) activity may lead to the decrease of the production of tryptophan microbial derivative skatole, and the low abundance of Bacteroides or reduced skatole may further lead to the increase of blood glucose by downregulating the expression of glucagon-like peptide-1 (GLP1). A low abundance of anti-inflammatory bacteria may induce an inflammatory response by triggering the RLR signaling pathway and then activating its downstream NF-κB signaling pathway in prolonged T2DM.
Collapse
Affiliation(s)
- Nannan Liu
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Xuehua Yan
- College of Traditional Chinese Medicine, Xinjiang Medical University, No.393 Xin Medical Road, Urumqi, 830011, Xinjiang, China
| | - Bohan Lv
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Yanxiang Wu
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Xuehong Hu
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Chunyan Zheng
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Siyu Tao
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Ruxue Deng
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Jinfang Dou
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China
| | - Binfang Zeng
- College of Traditional Chinese Medicine, Xinjiang Medical University, No.393 Xin Medical Road, Urumqi, 830011, Xinjiang, China
| | - Guangjian Jiang
- Laboratory of Diabetes Research Center, College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Beijing, 100029, Chaoyang District, China.
| |
Collapse
|
10
|
Zheng H, Wu X, Guo L, Liu J. MyD88 signaling pathways: role in breast cancer. Front Oncol 2024; 14:1336696. [PMID: 38347830 PMCID: PMC10859757 DOI: 10.3389/fonc.2024.1336696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
MyD88 plays a central role in breast cancer, exerting a multitude of effects that carry substantial implications. Elevated MyD88 expression is closely associated with aggressive tumor characteristics, suggesting its potential as a valuable prognostic marker and therapeutic target. MyD88 exerts influence over several critical aspects of breast cancer, including metastasis, recurrence, drug resistance, and the regulation of cancer stem cell properties. Furthermore, MyD88 modulates the release of inflammatory and chemotactic factors, thereby shaping the tumor's immune microenvironment. Its role in immune response modulation underscores its potential in influencing the dynamic interplay between tumors and the immune system. MyD88 primarily exerts intricate effects on tumor progression through pathways such as Phosphoinositide 3-kinases/Protein kinase B (PI3K/Akt), Toll-like Receptor/Nuclear Factor Kappa B (TLR/NF-κB), and others. Nevertheless, in-depth research is essential to unveil the precise mechanisms underlying the diverse roles of MyD88 in breast cancer. The translation of these findings into clinical applications holds great promise for advancing precision medicine approaches for breast cancer patients, ultimately enhancing prognosis and enabling the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Xinhong Wu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| | - Liantao Guo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianhua Liu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Clinical Research Center for Breast Cancer, Wuhan Clinical Research Center for Breast Cancer, Wuhan, Hubei, China
| |
Collapse
|
11
|
Lee JY, Kang JH, Jung YR, Kang CH. Lactobacillus gasseri MG4247 and Lacticaseibacillus paracasei MG4272 and MG4577 Modulate Allergic Inflammatory Response in RAW 264.7 and RBL-2H3 cells. Probiotics Antimicrob Proteins 2023; 15:1092-1101. [PMID: 35639267 PMCID: PMC9153226 DOI: 10.1007/s12602-022-09950-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
Allergic inflammation refers to a hyperimmune reaction that causes hypersensitivity responses such as hives, itchiness, runny nose, and cough due to specific allergens. Allergic diseases are known to be influenced by the diversity and distribution of intestinal microbiota, and Lactobacill is known to relieve allergic symptoms by modulating cytokines secreted by T helper type 1 (Th1)/Th2 cells. This study was designed to investigate the effects of Lactobacillus gasseri MG4247 and Lacticaseibacillus paracasei MG4272, MG4577, and MG4657 on levels of pro-inflammatory cytokines and proteins associated with allergic symptoms in RAW 264.7 macrophages, and RBL-2H3 mast cells, as well as their probiotic properties. MG4247, MG4272, and MG4577 significantly reduced tumor necrosis factor-α and interleukin (IL)-6 levels in LPS-induced RAW 264.7 macrophages, and markedly decreased IL-4, IL-5, and IL-13 levels and STAT6 phosphorylation in DNP-IgE/HSA sensitized RBL-2H3 mast cells. Furthermore, MG4247, MG4272, and MG4577 tolerated the acidic condition with pepsin and basic condition with bile salt, and showed a high adhesion rate (≥ 73.9%). In safety evaluation, MG4247, MG4272, and MG4577 showed no hemolytic or bile salt hydrolase activity and no cytotoxicity to HT-29 cells (≥ 96.7%). Hence, MG4272, MG4272, and MG4577 can be used as candidate probiotic strains to relieve cytokines associated with allergic inflammation.
Collapse
Affiliation(s)
- Ji Yeon Lee
- MEDIOGEN, Co., Ltd, Biovalley 1-ro, Jecheon-si, 27159, Republic of Korea
| | - Ju-Hui Kang
- Department of Applied Life Sciences, Graduate School, Konkuk University, BK21 Program, Chungju, 27478, Republic of Korea
| | - Ye-Rin Jung
- Department of Applied Life Sciences, Graduate School, Konkuk University, BK21 Program, Chungju, 27478, Republic of Korea
| | - Chang-Ho Kang
- MEDIOGEN, Co., Ltd, Biovalley 1-ro, Jecheon-si, 27159, Republic of Korea.
| |
Collapse
|
12
|
Zhang K, Zhang J, Wang L, Liang Q, Niu Y, Gu L, Wei Y, Li J. Integrative Transcriptomics and Proteomics Analysis Reveals Immune Response Process in Bovine Viral Diarrhea Virus-1-Infected Peripheral Blood Mononuclear Cells. Vet Sci 2023; 10:596. [PMID: 37888548 PMCID: PMC10611041 DOI: 10.3390/vetsci10100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) causes bovine viral diarrhea-mucosal disease, inflicting substantial economic losses upon the global cattle industry. Peripheral blood mononuclear cells (PBMCs) are the central hub for immune responses during host-virus infection and have been recognized as crucial targets for BVDV infection. In order to elucidate the dynamics of host-BVDV-1 interaction, this study harnessed RNA-seq and iTRAQ methods to acquire an extensive dataset of transcriptomics and proteomics data from samples of BVDV-1-infected PBMCs at the 12-h post-infection mark. When compared to mock-infected PBMCs, we identified 344 differentially expressed genes (DEGs: a total of 234 genes with downregulated expression and 110 genes with upregulated expression) and 446 differentially expressed proteins (DEPs: a total of 224 proteins with downregulated expression and 222 proteins with upregulated expression). Selected DEGs and DEPs were validated through quantitative reverse transcriptase-polymerase chain reaction and parallel reaction monitoring. Gene ontology annotation and KEGG enrichment analysis underscored the significant enrichment of DEGs and DEPs in various immunity-related signaling pathways, including antigen processing and presentation, complement and coagulation cascades, cytokine-cytokine receptor interaction, and the NOD-like receptor signaling pathway, among others. Further analysis unveiled that those DEGs and DEPs with downregulated expression were predominantly associated with pathways such as complement and coagulation cascades, the interleukin-17 signaling pathway, cytokine-cytokine receptor interaction, the PI3K-Akt signaling pathway, the tumor necrosis factor signaling pathway, and the NOD-like receptor signaling pathway. Conversely, upregulated DEGs and DEPs were chiefly linked to metabolic pathways, oxidative phosphorylation, complement and coagulation cascades, and the RIG-I-like receptor signaling pathway. These altered genes and proteins shed light on the intense host-virus conflict within the immune realm. Our transcriptomics and proteomics data constitute a significant foundation for delving further into the interaction mechanism between BVDV and its host.
Collapse
Affiliation(s)
- Kang Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.Z.); (L.W.)
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jingyan Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Lei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.Z.); (L.W.)
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Qiang Liang
- College of Veterinary Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
| | - Yuhui Niu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.Z.); (L.W.)
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Linlin Gu
- Shenzhen Bioeasy Biotechnology Co., Ltd., Shenzhen 518100, China;
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (K.Z.); (L.W.)
| | - Jianxi Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
13
|
Anzaghe M, Niles MA, Korotkova E, Dominguez M, Kronhart S, Ortega Iannazzo S, Bechmann I, Bachmann M, Mühl H, Kochs G, Waibler Z. Interleukin-36γ is causative for liver damage upon infection with Rift Valley fever virus in type I interferon receptor-deficient mice. Front Immunol 2023; 14:1194733. [PMID: 37720217 PMCID: PMC10502725 DOI: 10.3389/fimmu.2023.1194733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Type I interferons (IFN) are pro-inflammatory cytokines which can also exert anti-inflammatory effects via the regulation of interleukin (IL)-1 family members. Several studies showed that interferon receptor (IFNAR)-deficient mice develop severe liver damage upon treatment with artificial agonists such as acetaminophen or polyinosinic:polycytidylic acid. In order to investigate if these mechanisms also play a role in an acute viral infection, experiments with the Bunyaviridae family member Rift Valley fever virus (RVFV) were performed. Upon RVFV clone (cl)13 infection, IFNAR-deficient mice develop a severe liver injury as indicated by high activity of serum alanine aminotransferase (ALT) and histological analyses. Infected IFNAR-/- mice expressed high amounts of IL-36γ within the liver, which was not observed in infected wildtype (WT) animals. In line with this, treatment of WT mice with recombinant IL-36γ induced ALT activity. Furthermore, administration of an IL-36 receptor antagonist prior to infection prevented the formation of liver injury in IFNAR-/- mice, indicating that IL-36γ is causative for the observed liver damage. Mice deficient for adaptor molecules of certain pattern recognition receptors indicated that IL-36γ induction was dependent on mitochondrial antiviral-signaling protein and the retinoic acid-inducible gene-I-like receptor. Consequently, cell type-specific IFNAR knockouts revealed that type I IFN signaling in myeloid cells is critical in order to prevent IL-36γ expression and liver injury upon viral infection. Our data demonstrate an anti-inflammatory role of type I IFN in a model for virus-induced hepatitis by preventing the expression of the novel IL-1 family member IL-36γ.
Collapse
Affiliation(s)
- Martina Anzaghe
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | - Marc A. Niles
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | | | | | - Ingo Bechmann
- Medical Faculty, Institute for Anatomy, University Leipzig, Leipzig, Germany
| | - Malte Bachmann
- Pharmazentrum Frankfurt/ZAFES, University Hospital Frankfurt, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Heiko Mühl
- Pharmazentrum Frankfurt/ZAFES, University Hospital Frankfurt, Goethe-University Frankfurt am Main, Frankfurt am Main, Germany
| | - Georg Kochs
- Institute of Virology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Zoe Waibler
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
14
|
Ruffaner-Hanson CD, Fernandez-Oropeza AK, Sun MS, Caldwell KK, Allan AM, Savage DD, Valenzuela CF, Noor S, Milligan ED. Prenatal alcohol exposure alters mRNA expression for stress peptides, glucocorticoid receptor function and immune factors in acutely stressed neonatal brain. Front Neurosci 2023; 17:1203557. [PMID: 37425005 PMCID: PMC10326286 DOI: 10.3389/fnins.2023.1203557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
Background The amygdala, hippocampus and hypothalamus are critical stress regulatory areas that undergo functional maturation for stress responding initially established during gestational and early postnatal brain development. Fetal alcohol spectrum disorder (FASD), a consequence of prenatal alcohol exposure (PAE), results in cognitive, mood and behavioral disorders. Prenatal alcohol exposure negatively impacts components of the brain stress response system, including stress-associated brain neuropeptides and glucocorticoid receptors in the amygdala, hippocampus and hypothalamus. While PAE generates a unique brain cytokine expression pattern, little is known about the role of Toll-like receptor 4 (TLR4) and related proinflammatory signaling factors, as well as anti-inflammatory cytokines in PAE brain stress-responsive regions. We hypothesized that PAE sensitizes the early brain stress response system resulting in dysregulated neuroendocrine and neuroimmune activation. Methods A single, 4-h exposure of maternal separation stress in male and female postnatal day 10 (PND10) C57Bl/6 offspring was utilized. Offspring were from either prenatal control exposure (saccharin) or a limited access (4 h) drinking-in-the-dark model of PAE. Immediately after stress on PND10, the hippocampus, amygdala and hypothalamus were collected, and mRNA expression was analyzed for stress-associated factors (CRH and AVP), glucocorticoid receptor signaling regulators (GAS5, FKBP51 and FKBP52), astrocyte and microglial activation, and factors associated with TLR4 activation including proinflammatory interleukin-1β (IL-1β), along with additional pro- and anti-inflammatory cytokines. Select protein expression analysis of CRH, FKBP and factors associated with the TLR4 signaling cascade from male and female amygdala was conducted. Results The female amygdala revealed increased mRNA expression in stress-associated factors, glucocorticoid receptor signaling regulators and all of the factors critical in the TLR4 activation cascade, while the hypothalamus revealed blunted mRNA expression of all of these factors in PAE following stress. Conversely, far fewer mRNA changes were observed in males, notably in the hippocampus and hypothalamus, but not the amygdala. Statistically significant increases in CRH protein, and a strong trend in increased IL-1β were observed in male offspring with PAE independent of stressor exposure. Conclusion Prenatal alcohol exposure creates stress-related factors and TLR-4 neuroimmune pathway sensitization observed predominantly in females, that is unmasked in early postnatal life by a stress challenge.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Erin D. Milligan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
15
|
Chen XX, Qiao S, Li R, Wang J, Li X, Zhang G. Evasion strategies of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1140449. [PMID: 37007469 PMCID: PMC10063791 DOI: 10.3389/fmicb.2023.1140449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
During the co-evolution of viruses and their hosts, viruses have developed various strategies for overcoming host immunological defenses so that they can proliferate efficiently. Porcine reproductive and respiratory syndrome virus (PRRSV), a significant virus to the swine industry across the world, typically establishes prolonged infection via diverse and complicated mechanisms, which is one of the biggest obstacles for controlling the associated disease, porcine reproductive and respiratory syndrome (PRRS). In this review, we summarize the latest research on how PRRSV circumvents host antiviral responses from both the innate and adaptive immune systems and how this virus utilizes other evasion mechanisms, such as the manipulation of host apoptosis and microRNA. A thorough understanding of the exact mechanisms of PRRSV immune evasion will help with the development of novel antiviral strategies against PRRSV.
Collapse
Affiliation(s)
- Xin-Xin Chen
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Jing Wang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xuewu Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Gaiping Zhang
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
16
|
Wang C, Wu W, Pang Z, Liu J, Qiu J, Luan T, Deng J, Fang Z. Polystyrene microplastics significantly facilitate influenza A virus infection of host cells. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130617. [PMID: 36623344 DOI: 10.1016/j.jhazmat.2022.130617] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) are emerging pollutants which exist in various environments and pose a potential threat to human health. However, the effect of MP on respiratory pathogens-infected organisms is unknown. In order to explore the effect of MP on respiratory pathogen infection, we studied the effect of polystyrene microplastics (PS) on influenza A virus (IAV)-infected A549 cells. Western blot, qPCR, and viral plaque assay demonstrated that PS could promote IAV infection. Further study by bioluminescence imaging showed that a large number of IAV could be enriched on PS and entered cells through endocytosis. Meanwhile, the expression of IFITM3 in cells was significantly reduced. In addition, our results showed that PS down-regulated IRF3 and its active form P-IRF3 by down-regulating RIG-I and inhibiting TBK1 phosphorylation activation, which then significantly reduced IFN-β expression and affected the cellular innate antiviral immune system. Taken together, our results indicate the potential threat of MPs to respiratory diseases caused by IAV and provide new insights into human health protection.
Collapse
Affiliation(s)
- Chao Wang
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Wenjiao Wu
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Zefen Pang
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, Guangdong, China
| | - Jiaxin Liu
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Jianxiang Qiu
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China
| | - Tiangang Luan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, Guangdong, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory 7 (Rongjiang Laboratory), Jieyang 515200, Guangdong, China
| | - Jiewei Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, Guangdong, China.
| | - Zhixin Fang
- Guangdong Second Provincial General Hospital, 466 Middle Xingang Road, Guangzhou 510317, Guangdong, China.
| |
Collapse
|
17
|
Kumar L, Brenner N, Sledzieski S, Olaosebikan M, Roger LM, Lynn-Goin M, Klein-Seetharaman R, Berger B, Putnam H, Yang J, Lewinski NA, Singh R, Daniels NM, Cowen L, Klein-Seetharaman J. Transfer of knowledge from model organisms to evolutionarily distant non-model organisms: The coral Pocillopora damicornis membrane signaling receptome. PLoS One 2023; 18:e0270965. [PMID: 36735673 PMCID: PMC9897584 DOI: 10.1371/journal.pone.0270965] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
With the ease of gene sequencing and the technology available to study and manipulate non-model organisms, the extension of the methodological toolbox required to translate our understanding of model organisms to non-model organisms has become an urgent problem. For example, mining of large coral and their symbiont sequence data is a challenge, but also provides an opportunity for understanding functionality and evolution of these and other non-model organisms. Much more information than for any other eukaryotic species is available for humans, especially related to signal transduction and diseases. However, the coral cnidarian host and human have diverged over 700 million years ago and homologies between proteins in the two species are therefore often in the gray zone, or at least often undetectable with traditional BLAST searches. We introduce a two-stage approach to identifying putative coral homologues of human proteins. First, through remote homology detection using Hidden Markov Models, we identify candidate human homologues in the cnidarian genome. However, for many proteins, the human genome alone contains multiple family members with similar or even more divergence in sequence. In the second stage, therefore, we filter the remote homology results based on the functional and structural plausibility of each coral candidate, shortlisting the coral proteins likely to have conserved some of the functions of the human proteins. We demonstrate our approach with a pipeline for mapping membrane receptors in humans to membrane receptors in corals, with specific focus on the stony coral, P. damicornis. More than 1000 human membrane receptors mapped to 335 coral receptors, including 151 G protein coupled receptors (GPCRs). To validate specific sub-families, we chose opsin proteins, representative GPCRs that confer light sensitivity, and Toll-like receptors, representative non-GPCRs, which function in the immune response, and their ability to communicate with microorganisms. Through detailed structure-function analysis of their ligand-binding pockets and downstream signaling cascades, we selected those candidate remote homologues likely to carry out related functions in the corals. This pipeline may prove generally useful for other non-model organisms, such as to support the growing field of synthetic biology.
Collapse
Affiliation(s)
- Lokender Kumar
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States of America
| | - Nathanael Brenner
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States of America
| | - Samuel Sledzieski
- MIT Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Monsurat Olaosebikan
- Department of Computer Science, Tufts University, Medford, MA, United States of America
| | - Liza M. Roger
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Matthew Lynn-Goin
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States of America
| | | | - Bonnie Berger
- MIT Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Hollie Putnam
- Department of Biological Sciences, University of Rhode Island, South Kingstown, RI, United States of America
| | - Jinkyu Yang
- Department of Department of Aeronautics & Astronautics, University of Washington, Seattle, WA, United States of America
| | - Nastassja A. Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rohit Singh
- MIT Computer Science & Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Noah M. Daniels
- Department of Computer Science and Statistics, University of Rhode Island, South Kingstown, RI, United States of America
| | - Lenore Cowen
- Department of Computer Science, Tufts University, Medford, MA, United States of America
| | - Judith Klein-Seetharaman
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States of America
- * E-mail:
| |
Collapse
|
18
|
Sun Y, Cao Z, Zhang P, Wei C, Li J, Wu Y, Zhou Y. IFN regulatory factor 3 of golden pompano and its NLS domain are involved in antibacterial innate immunity and regulate the expression of type I interferon (IFNa3). Front Immunol 2023; 14:1128196. [PMID: 36817435 PMCID: PMC9933344 DOI: 10.3389/fimmu.2023.1128196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction The transcription factor interferon regulatory factor 3 (IRF3) plays an important role in host defence against viral infections. However, its role during bacterial infection in teleosts remains unclear. In the present study, we evaluated the antibacterial effects of Trachinotus ovatus IRF3 (TroIRF3) and how it regulates type I interferon (IFN). Methods Subcellular localisation experiments, overexpression, and quantitative real-time PCR (qRT-PCR) were performed to examine the nuclear localisation signal (NLS) of TroIRF3 and its role in the antibacterial regulatory function of TroIRF3. We assessed the binding activity of TroIRF3 to the IFNa3 promoter by luciferase reporter assay. Results and Discussion The results showed that TroIRF3 was constitutively expressed at high levels in the gill and liver. TroIRF3 was significantly upregulated and transferred from the cytoplasm to the nucleus after Vibrio harveyi infection. By overexpressing TroIRF3, the fish were able to inhibit the replication of V. harveyi, whereas knocking it down increased bacterial replication. Moreover, the overexpression of TroIRF3 increased type I interferon (IFNa3) production and the IFN signalling molecules. The NLS, which is from the 64-127 amino acids of TroIRF3, contains the basic amino acids KR74/75 and RK82/84. The results proved that NLS is required for the efficient nuclear import of TroIRF3 and that the NLS domain of TroIRF3 consists of the key amino acids KR74/75 and RK82/84. The findings also showed that NLS plays a key role in the antibacterial immunity and upregulation of TroIFNa3 induced by TroIRF3. Moreover, TroIRF3 induces TroIFNa3 promoter activity, whereas these effects are inhibited when the NLS domain is deficient. Overall, our results suggested that TroIRF3 is involved in the antibacterial immunity and regulation of type I IFN in T. ovatus and that the NLS of TroIRF3 is vital for IRF3-mediated antibacterial responses, which will aid in understanding the immune role of fish IRF3.
Collapse
Affiliation(s)
- Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Panpan Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Caoying Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China
| | - Jianlong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China
| | - Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, Haikou, China,*Correspondence: Ying Wu, ; Yongcan Zhou,
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China,Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou, China,*Correspondence: Ying Wu, ; Yongcan Zhou,
| |
Collapse
|
19
|
Yan LS, Cui S, Cheng BCY, Yin XB, Wang YW, Qiu XY, Nima CR, Zhang Y, Zhang SF. Sichen Formula Ameliorates Lipopolysaccharide-Induced Acute Lung Injury via Blocking the TLR4 Signaling Pathways. Drug Des Devel Ther 2023; 17:297-312. [PMID: 36756190 PMCID: PMC9901480 DOI: 10.2147/dddt.s372981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023] Open
Abstract
Purpose Sichen (SC) formula is a classic prescription of Tibetan medicine. Due to its potential anti-inflammatory effect, the SC formula has been clinically used to treat respiratory diseases for many years in the Chinese Tibet region. The present study aimed to investigate the anti-inflammatory effect of SC and explore the underlying mechanisms. Methods SC formula was characterized by HPLC analysis. The acute lung injury (ALI) mouse model was induced by direct intratracheal lipopolysaccharide (LPS) instillation, and bronchoalveolar lavage fluid (BALF) and lung tissues were collected. Meanwhile, RAW264.7 macrophages were stimulated by LPS. The contents of inflammatory mediators in the culture medium were determined by ELISA. Protein levels were determined by immunohistochemical staining or Western blotting. Nuclear localization of NF-κB, AP-1, and IRF3 was performed using immunofluorescence and Western blotting. Results In the LPS-induced ALI mouse model, SC treatment suppressed the secretion of inflammatory mediators (TNF-α, IL-6, IL-1β, MCP-1, MIP-1α, and RANTES) in BALF. SC treatment hindered the recruitment of macrophages. SC treatment also inhibited the expression of CD68, p-p65, and TLR4 in the lung tissue. In the LPS-exposed RAW264.7 cells, the cell viability was not changed up to 400 μg/mL of SC. SC concentration-dependently suppressed the production of nitric oxide, prostaglandin E2, TNF-α, IL-6, MCP-1, MIP-1α, and RANTES in LPS-challenged RAW264.7 cells. The expression levels of iNOS, COX-2, p-p38, p-JNK, p-ERK, p-TBK1, p-IKKα/β, p-IκB, p-p65, p-c-Jun, and p-IRF3 were decreased after SC treatment. Moreover, the nuclear translocation of p65, c-Jun, and IRF3 was also blocked by SC treatment. Conclusion SC treatment inhibited the inflammatory responses in LPS-induced ALI mouse model/RAW264.7 macrophages. The underlying mechanism of this action may be closely associated with the suppression of TLR4 signaling pathways. These research findings provide further pharmacological justifications for the medicinal use of SC in the management of respiratory diseases.
Collapse
Affiliation(s)
- Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shuang Cui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University, Hong Kong, People’s Republic of China
| | - Xing-Bin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Xin-Yu Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Ci-Ren Nima
- Tibetan Traditional Medical College, Lhasa, Tibet, People’s Republic of China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shuo-Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China,Correspondence: Shuo-Feng Zhang; Yi Zhang, School of Chinese Materia Medica, Beijing University of Chinese Medicine, No. 11, Bei San Huan Dong Lu, Chaoyang District, Beijing, 100029, People’s Republic of China, Tel/Fax +86-10-53912122, Email ;
| |
Collapse
|
20
|
Yao XP, Ye J, Feng T, Jiang FC, Zhou P, Wang F, Chen JG, Wu PF. Adaptor protein MyD88 confers the susceptibility to stress via amplifying immune danger signals. Brain Behav Immun 2023; 108:204-220. [PMID: 36496170 PMCID: PMC9726649 DOI: 10.1016/j.bbi.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence supports the pathogenic role of neuroinflammation in psychiatric diseases, including major depressive disorder (MDD) and neuropsychiatric symptoms of Coronavirus disease 2019 (COVID-19); however, the precise mechanism and therapeutic strategy are poorly understood. Here, we report that myeloid differentiation factor 88 (MyD88), a pivotal adaptor that bridges toll-like receptors to their downstream signaling by recruiting the signaling complex called 'myddosome', was up-regulated in the medial prefrontal cortex (mPFC) after exposure to chronic social defeat stress (CSDS) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. The inducible expression of MyD88 in the mPFC primed neuroinflammation and conferred stress susceptibility via amplifying immune danger signals, such as high-mobility group box 1 and SARS-CoV-2 spike protein. Overexpression of MyD88 aggravated, whereas knockout or pharmacological inhibition of MyD88 ameliorated CSDS-induced depressive-like behavior. Notably, TJ-M2010-5, a novel synthesized targeting inhibitor of MyD88 dimerization, alleviated both CSDS- and SARS-CoV-2 spike protein-induced depressive-like behavior. Taken together, our findings indicate that inhibiting MyD88 signaling represents a promising therapeutic strategy for stress-related mental disorders, such as MDD and COVID-19-related neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Xia-Ping Yao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Ye
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng-Chao Jiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| | - Peng-Fei Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China; Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan, China.
| |
Collapse
|
21
|
Cytokine Receptor-Like Factor 3 Negatively Regulates Antiviral Immunity by Promoting the Degradation of TBK1 in Teleost Fish. J Virol 2023; 97:e0179222. [PMID: 36515543 PMCID: PMC9888201 DOI: 10.1128/jvi.01792-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cytokine receptor-like factor 3 (Crlf3) belongs to the orphan class I cytokine receptors and is identified as a neuroprotective erythropoietin receptor. In previous studies of Crlf3, few focused on its role in innate immunity. Therefore, this study explored the regulatory role of Crlf3 in innate immunity. TANK-binding kinase 1 (TBK1) is a vital adaptor protein for the activation of the RLRs-MVAS-IRF3 antiviral signaling axis; thus, its expression and activity must be tightly regulated to maintain immune homeostasis and avoid undesirable effects. Here, we report that Crlf3 is a negative regulator of type I interferon production. The expression of Crlf3 is induced by poly(I·C) or Siniperca chuatsi rhabdovirus (SCRV) treatment. Silencing of Crlf3 enhanced poly(I·C)- and SCRV-induced type I interferon production, whereas overexpression of Crlf3 suppressed type I interferon production. Mechanistically, Crlf3 interacted with TBK1 via its N domain and then inhibited type I interferon production by promoting TBK1 proteasomal degradation through K48-linked polyubiquitination. Our study shows that Crlf3 is a key factor for viral escape from innate antiviral immunity in fish and provides a new perspective on mammalian resistance to viral invasion. IMPORTANCE The expression of Crlf3 was upregulated with SCRV invasion, which proved that Crlf3 was involved in the regulation of the antiviral immune response. In this study, we found that the existence of Crlf3 promoted the replication of SCRV. Therefore, it is reasonable to believe that SCRV evades innate immune attack with the assistance of Crlf3. In addition, we report that Crlf3 negatively regulates interferon (IFN) induction by promoting the degradation of TBK1 in fish. We showed that Crlf3 is evenly distributed in the cytoplasm and interacts with TBK1. Further studies showed that Crlf3 specifically mediates K48-linked ubiquitination of TBK1 and promotes TBK1 degradation, resulting in a marked inhibition of retinoic acid-inducible gene I (RIG-I) downstream signaling.
Collapse
|
22
|
Li Y, Xue Y, Peng Z, Zhang L. Immune diversity in lophotrochozoans, with a focus on recognition and effector systems. Comput Struct Biotechnol J 2023; 21:2262-2275. [PMID: 37035545 PMCID: PMC10073891 DOI: 10.1016/j.csbj.2023.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Lophotrochozoa is one of the most species-rich but immunologically poorly explored phyla. Although lack of acquired response in a narrow sense, lophotrochozoans possess various genetic mechanisms that enhance the diversity and specificity of innate immune system. Here, we review the recent advances of comparative immunology studies in lophotrochozoans with focus on immune recognition and effector systems. Haemocytes and coelomocytes are general important yet understudied player. Comparative genomics studies suggest expansion and functional divergence of lophotrochozoan immune reorganization systems is not as "homogeneous and simple" as we thought including the large-scale expansion and molecular divergence of pattern recognition receptors (PRRs) (TLRs, RLRs, lectins, etc.) and signaling adapters (MyD88s etc.), significant domain recombination of immune receptors (RLR, NLRs, lectins, etc.), extensive somatic recombination of fibrinogenrelated proteins (FREPs) in snails. Furthermore, there are repeatedly identified molecular mechanisms that generate immune effector diversity, including high polymorphism of antimicrobial peptides and proteins (AMPs), reactive oxygen and nitrogen species (RONS) and cytokines. Finally, we argue that the next generation omics tools and the recently emerged genome editing technicism will revolutionize our understanding of innate immune system in a comparative immunology perspective.
Collapse
Affiliation(s)
- Yongnan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Zhangjie Peng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author at: CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
23
|
Wu Y, Du H, Zhu L, Zhao N, Zhang S, Cao Z, Zhou Y, Sun Y. Bactericidal permeability-increasing protein/LPS-binding protein (BPI/LBP) enhances resistance of golden pompano Trachinotus ovatus against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:872-880. [PMID: 36347416 DOI: 10.1016/j.fsi.2022.10.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Antimicrobial peptides are crucial components of innate immunity against microbial invasions. As a kind of antimicrobial peptides, bactericidal permeability-increasing protein (BPI)/lipopolysaccharide-binding protein (LBP) play vital roles in defending the host against gram-negative bacteria. In the current study, a novel BPI/LBP from Trachinotus ovatus (TroBPI/LBP) was characterized. The full length of TroBPI/LBP cDNA sequence is 1434 bp, which contained 477 amino acids. Multiple amino acid alignments of TroBPI/LBP shows 34.07%-84.49% identity with other fish BPI/LBP. Similar to other BPI/LBP, TroBPI/LBP also possesses an N-terminal signal peptide, a BPI/LBP/CETP N-terminal domain, and a BPI/LBP/CETP C-terminal domain. In vitro, the recombinant protein of TroBPI/LBP showed effective bacterial depression activity and binding activity to gram-negative bacteria. In vivo, TroBPI/LBP was constitutively expressed in tested tissues, and the highest expression level was in liver. Following Vibrio alginolyticus stimulation, the mRNA expression of TroBPI/LBP was significantly upregulated in immune-related tissues, and peaked at 12 h post-infection, which confirmed that TroBPI/LBP was highly sensitive to V. alginolyticus stimuli. Furthermore, functional analyses showed that the overexpression of TroBPI/LBP could enhance the ability of fish to against V. alginolyticus infection, and the knockdown of TroBPI/LBP significantly diminished bacterial clearance capacity post-infection. Therefore, these results suggest that TroBPI/LBP may play an important role in host defense against bacterial infection.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Collaborative Innovation Center of Marine Science and Technology, College of Marine Science, Hainan University, Haikou, Hainan, 570228, PR China
| | - Hehe Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Lin Zhu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Collaborative Innovation Center of Marine Science and Technology, College of Marine Science, Hainan University, Haikou, Hainan, 570228, PR China
| | - Na Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Shengnan Zhang
- Collaborative Innovation Center of Marine Science and Technology, College of Marine Science, Hainan University, Haikou, Hainan, 570228, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Collaborative Innovation Center of Marine Science and Technology, College of Marine Science, Hainan University, Haikou, Hainan, 570228, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Collaborative Innovation Center of Marine Science and Technology, College of Marine Science, Hainan University, Haikou, Hainan, 570228, PR China.
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Collaborative Innovation Center of Marine Science and Technology, College of Marine Science, Hainan University, Haikou, Hainan, 570228, PR China.
| |
Collapse
|
24
|
Wu D, Li J, Fan Z, Wang L, Zheng X. Resveratrol ameliorates oxidative stress, inflammatory response and lipid metabolism in common carp ( Cyprinus carpio) fed with high-fat diet. Front Immunol 2022; 13:965954. [PMID: 36405693 PMCID: PMC9669426 DOI: 10.3389/fimmu.2022.965954] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2023] Open
Abstract
High-fat diet is regarded as crucial inducers of oxidative stress, inflammation, and metabolic imbalance. In order to investigate the ameliorative potential of resveratrol against the progression of liver injury towards steatohepatitis, common carp (Cyprinus carpio) were distributed into six experimental groups and were fed with a normal-fat diet, a high-fat diet, and supplemented with resveratrol (0.8, 1.6, 2.4, and 3.2 g/kg diet) for 8 weeks. The high-fat diet decreased the antioxidant capacities, as well as causing the inflammatory response and lipid deposition of common carp. Resveratrol induced a marked elevation in the final body weight, weight gain rate, condition factor and significant decrease in the feed conversion ratio. Moreover, dietary resveratrol showed a significant decrease in the alanine aminotransferase, aspartate aminotransferase, triglyceride and low-density lipoprotein levels, which was accompanied by an increase in high-density lipoprotein concentration in serum. A significant elevation in total superoxide dismutase, catalase, glutathione peroxidase and a decreased malondialdehyde content were observed, along with a substantial elevation in antioxidant activities were found. Additionally, fish fed with resveratrol had an up-regulation of hepatic catalase, copper, zinc superoxide dismutase, glutathione peroxidase 1a, and glutathione peroxidase 1b gene expression via Nrf2 signaling pathway. Expectedly, our results also demonstrated that resveratrol regulates hepatic lipid metabolism in fish by inhibiting the expression of hepatic lipogenesis genes (acetyl-CoA carboxylase 1, fatty acid synthase, and sterol regulatory element binding protein 1), fatty acid uptake-related genes of lipoprotein lipase, and β-oxidation-related genes via PPAR-γ signaling pathway. Furthermore, dietary resveratrol reduced inflammation, as evident by down-regulating the interleukin-1β, interleukin-6, interleukin-8, and tumor necrosis factor-α expression levels and upregulating the interleukin-10 and transforming growth factor-β2 expression levels via NF-κB signaling pathway. As a whole, our results demonstrated that resveratrol defensed the impacts against high-fat diet on the serum biochemical, hepatic antioxidants, inflammation, and lipid metabolism.
Collapse
Affiliation(s)
| | | | | | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xianhu Zheng
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
25
|
Dolinski AC, Homola JJ, Jankowski MD, Robinson JD, Owen JC. Host gene expression is associated with viral shedding magnitude in blue-winged teals (Spatula discors) infected with low-path avian influenza virus. Comp Immunol Microbiol Infect Dis 2022; 90-91:101909. [PMID: 36410069 PMCID: PMC10500253 DOI: 10.1016/j.cimid.2022.101909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
Intraspecific variation in host infectiousness affects disease transmission dynamics in human, domestic animal, and many wildlife host-pathogen systems including avian influenza virus (AIV); therefore, identifying host factors related to host infectiousness is important for understanding, controlling, and preventing future outbreaks. Toward this goal, we used RNA-seq data collected from low pathogenicity avian influenza virus (LPAIV)-infected blue-winged teal (Spatula discors) to determine the association between host gene expression and intraspecific variation in cloacal viral shedding magnitude, the transmissible fraction of virus. We found that host genes were differentially expressed between LPAIV-infected and uninfected birds early in the infection, host genes were differentially expressed between shed level groups at one-, three-, and five-days post-infection, host gene expression was associated with LPAIV infection patterns over time, and genes of the innate immune system had a positive linear relationship with cloacal viral shedding. This study provides important insights into host gene expression patterns associated with intraspecific LPAIV shedding variation and can serve as a foundation for future studies focused on the identification of host factors that drive or permit the emergence of high viral shedding individuals.
Collapse
Affiliation(s)
- Amanda C Dolinski
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Jared J Homola
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Mark D Jankowski
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA; US Environmental Protection Agency, Region 10, Seattle, WA 98101, USA
| | - John D Robinson
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA
| | - Jennifer C Owen
- Michigan State University, Department of Fisheries and Wildlife, 480 Wilson Rd., Room 13, East Lansing, MI 48824, USA; Michigan State University, Department of Large Animal Clinical Sciences, 736 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
26
|
Xie M, Li Y, Olsen RE, Ringø E, Yang Y, Zhang Z, Ran C, Zhou Z. Dietary supplementation of exopolysaccharides from Lactobacillus rhamnosus GCC-3 improved the resistance of zebrafish against spring viremia of carp virus infection. Front Immunol 2022; 13:968348. [PMID: 35990638 PMCID: PMC9389081 DOI: 10.3389/fimmu.2022.968348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Spring viremia of carp virus (SVCV) can cause high mortality of fish. The aim of this study was to investigate the effects of Lactobacillus rhamnosus GCC-3 exopolysaccharides (GCC-3 EPS) on zebrafish (Danio rerio) infected with SVCV and elucidate the underlying mechanisms. Zebrafish were fed with a control diet or diet supplemented with 0.5% and 1% of GCC-3 EPS for 2 weeks. The results showed that supplementation of GCC-3 EPS significantly improved the survival rate of zebrafish compared with the control group. In addition, dietary 0.5% and 1% GCC-3 EPS significantly up-regulated the expression of genes related to type I interferon (IFN) antiviral immunity. Consistent with in vivo results, GCC-3 EPS significantly inhibited SVCV replication in zebrafish embryonic fibroblast (ZF4) cells while significantly increased the expression of type I IFN signaling pathway related genes. Furthermore, knocking down TANK-binding kinase 1 significantly blocked the antiviral effect of GCC-3 EPS. Dietary GCC-3 EPS improved gut microbiota, and the culture supernatant of GCC-3 EPS-associated microbiota significantly inhibited SVCV replication in ZF4 cells compared with the control-microbiota counterpart. In conclusion, our results indicate that dietary GCC-3 EPS can improve the resistance of zebrafish against SVCV infection, and the mechanism may involve enhanced type I interferon signaling.
Collapse
Affiliation(s)
- Mingxu Xie
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yu Li
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Rolf Erik Olsen
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringø
- Norwegian College of Fisheries Science, Faculty of Biosciences, Fisheries and Economics, University of Tromsø (UiT) The Arctic University of Norway, Tromsø, Norway
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zhigang Zhou, ; Chao Ran,
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zhigang Zhou, ; Chao Ran,
| |
Collapse
|
27
|
Lok S, Lau TNH, Trost B, Tong AHY, Wintle RF, Engstrom MD, Stacy E, Waits LP, Scrafford M, Scherer SW. Chromosomal-level reference genome assembly of the North American wolverine (Gulo gulo luscus): a resource for conservation genomics. G3 (BETHESDA, MD.) 2022; 12:jkac138. [PMID: 35674384 PMCID: PMC9339297 DOI: 10.1093/g3journal/jkac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
Abstract
We report a chromosomal-level genome assembly of a male North American wolverine (Gulo gulo luscus) from the Kugluktuk region of Nunavut, Canada. The genome was assembled directly from long-reads, comprising: 758 contigs with a contig N50 of 36.6 Mb; contig L50 of 20; base count of 2.39 Gb; and a near complete representation (99.98%) of the BUSCO 5.2.2 set of 9,226 genes. A presumptive chromosomal-level assembly was generated by scaffolding against two chromosomal-level Mustelidae reference genomes, the ermine and the Eurasian river otter, to derive a final scaffold N50 of 144.0 Mb and a scaffold L50 of 7. We annotated a comprehensive set of genes that have been associated with models of aggressive behavior, a trait which the wolverine is purported to have in the popular literature. To support an integrated, genomics-based wildlife management strategy at a time of environmental disruption from climate change, we annotated the principal genes of the innate immune system to provide a resource to study the wolverine's susceptibility to new infectious and parasitic diseases. As a resource, we annotated genes involved in the modality of infection by the coronaviruses, an important class of viral pathogens of growing concern as shown by the recent spillover infections by severe acute respiratory syndrome coronavirus-2 to naïve wildlife. Tabulation of heterozygous single nucleotide variants in our specimen revealed a heterozygosity level of 0.065%, indicating a relatively diverse genetic pool that would serve as a baseline for the genomics-based conservation of the wolverine, a rare cold-adapted carnivore now under threat.
Collapse
Affiliation(s)
- Si Lok
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Timothy N H Lau
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Amy H Y Tong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, ON M5S 3E1, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mark D Engstrom
- Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - Elise Stacy
- Environmental Science Program, University of Idaho, Moscow, ID 83844, USA
- Wildlife Conservation Society, Arctic Beringia, Fairbanks, AK 99709, USA
| | - Lisette P Waits
- Department of Fish and Wildlife, University of Idaho, Moscow, ID 83844, USA
| | - Matthew Scrafford
- Wildlife Conservation Society Canada, Thunder Bay, ON P7A 4K9, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, ON M5S 1A8, Canada
| |
Collapse
|
28
|
Fu F, Lin Z, Li Y, Wang J, Li Y, Liu P, Wang Z, Ma J, Yan Y, Sun J, Cheng Y. Goose STING mediates IFN signaling activation against RNA viruses. Front Immunol 2022; 13:921800. [PMID: 35958568 PMCID: PMC9360538 DOI: 10.3389/fimmu.2022.921800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Stimulator of the interferon gene (STING) is involved in mammalian antiviral innate immunity as an interferon (IFN) activator. However, there is still a lack of clarity regarding the molecular characterization of goose STING (GoSTING) and its role in the innate immune response. In the present study, we cloned GoSTING and performed a series of bioinformatics analyses. GoSTING was grouped into avian clades and showed the highest sequence similarity to duck STING. The in vitro experiments showed that the mRNA levels of GoSTING, IFNs, IFN-stimulated genes (ISGs), and proinflammatory cytokines were significantly upregulated in goose embryo fibroblast cells (GEFs) infected with Newcastle disease virus (NDV). Overexpression of GoSTING in DF-1 cells and GEFs strongly activated the IFN-β promoter as detected by a dual-luciferase reporter assay. Furthermore, overexpression of GoSTING induced the expression of other types of IFN, ISGs, and proinflammatory cytokines and inhibited green fluorescent protein (GFP)-tagged NDV (NDV-GFP) and GFP-tagged vesicular stomatitis virus (VSV) (VSV-GFP) replication in vitro. In conclusion, these data suggest that GoSTING is an important regulator of the type I IFN pathway and is critical in geese’s innate immune host defense against RNA viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jianhe Sun
- *Correspondence: Yuqiang Cheng, ; Jianhe Sun,
| | | |
Collapse
|
29
|
Wu D, Zhang Y, Li J, Fan Z, Xu Q, Wang L. Assessment of chicken intestinal hydrolysates as a new protein source to replace fishmeal on the growth performance, antioxidant capacity and intestinal health of common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2022; 125:161-170. [PMID: 35561948 DOI: 10.1016/j.fsi.2022.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Promoting circular economy by transforming food residues into alternative high-value protein sources for aquaculture feed is a new way to develop alternative raw materials for fishmeal. This study systematically evaluated the effects of chicken intestinal hydrolysates (CIH) on the intestinal immune health of common carp through growth performance, antioxidant capacity, and intestinal immunity analysis in order to replace fishmeal. Five iso-nitrogenous and iso-lipidic experimental feeds were formulated to replace 0% (CIH-0), 25% (CIH-25), 50% (CIH-50), 75% (CIH-75) and 100% (CIH-100) of the fishmeal with CIH. Each experimental diet was fed to triplicate groups of 30 carp for 8 weeks. The results revealed that no significant differences in the final body weight, weight gain rate, feed coefficient radio, feed intake and protein efficiency ratio were found among the CIH-0, CIH-25, and CIH-50 groups, while the final body weight and weight gain rate in the CIH-75 and CIH-100 groups were significantly decreased and the feed coefficient radio was significantly increased. The aspartate aminotransferase of all CIH groups were significantly decrease, and the total protein, albumin did not differ among the CIH-0, CIH-25, CIH-50, and CIH-75 groups. The trypsin content was significantly increased in the CIH-75 and CIH-100 groups. No significant differences in the antioxidant index (catalase, glutathione peroxidase and malonaldehyde) were found among all CIH groups compared with the CIH-0 group. The expression levels of pro-inflammatory cytokines IL-1β and TNF-α were significantly down-regulated in the CIH-50 group and anti-inflammatory cytokines IL-10 and TGF-β2 were significantly up-regulated in the CIH-50 and CIH-75 groups. No significant differences in the expression levels of claudin-1, claudin-7 and claudin-11 were observed between the CIH-0 and CIH-50 groups, while the expression levels of ZO-1, occludin and MLCK were significantly up-regulated in the CIH-50 group compared with the CIH-0 group. The expression level of claudin-1 was down-regulated in the CIH-75 and CIH-100 groups. Hence, the study demonstrated the potential of CIH as a novel protein source for replacing fishmeal, and replacing 50% of fishmeal with CIH did not significantly influence the growth performance, immune responses, and intestinal barrier of common carp (Cyprinus carpio).
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Qiyou Xu
- School of Life Science, Huzhou University, Huzhou, 313000, China
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China.
| |
Collapse
|
30
|
Yan X, Zhai Y, Zhou W, Qiao Y, Guan L, Liu H, Jiang J, Peng L. Intestinal Flora Mediates Antiobesity Effect of Rutin in High-Fat-Diet Mice. Mol Nutr Food Res 2022; 66:e2100948. [PMID: 35616308 DOI: 10.1002/mnfr.202100948] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/12/2022] [Indexed: 11/09/2022]
Abstract
SCOPE Intestinal flora plays a critical role in the development of . Rutin is a natural flavonoid with potential prebiotic effects on regulating the intestinal flora composition that is beneficial for host health. Therefore, this study hypothesizes that rutin supplementation has beneficial effects on high-fat-diet (HFD)-induced obesity and metabolic disorder through the modulation of intestinal flora in mice. METHODS AND RESULTS The obesity-alleviating property of rutin using 6-week-old C57BL/6J male mice fed on HFD with or without rutin supplementation for 16 weeks is investigated. Rutin supplementation effectively reduces body-weight gain, insulin resistance, and acted favorably on the intestinal barrier, thereby reducing endotoxemia and systemic inflammation. Sequencing of 16S rRNA genes from fecal samples indicate that rutin exerted modulatory effects on HFD-induced intestinal flora disorders (e.g., rutin decreased Firmicutes abundance and increased Bacteroidetes and Verrucomicrobia abundance). Antibiotic treatment and fecal microbiota transplantation further demonstrate that the salutary effects of rutin on obesity control are strongly dependent on the intestinal flora. CONCLUSION Rutin can be considered as a prebiotic agent for improving intestinal flora disorders and obesity-associated metabolic perturbations in obese individuals.
Collapse
Affiliation(s)
- Xu Yan
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.,Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Yuanyuan Zhai
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.,Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Wenling Zhou
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.,Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Yuan Qiao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Lingling Guan
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Hao Liu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| | - Jizhi Jiang
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Liang Peng
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
31
|
Sheu KM, Hoffmann A. Functional Hallmarks of Healthy Macrophage Responses: Their Regulatory Basis and Disease Relevance. Annu Rev Immunol 2022; 40:295-321. [PMID: 35471841 PMCID: PMC10074967 DOI: 10.1146/annurev-immunol-101320-031555] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Macrophages are first responders for the immune system. In this role, they have both effector functions for neutralizing pathogens and sentinel functions for alerting other immune cells of diverse pathologic threats, thereby initiating and coordinating a multipronged immune response. Macrophages are distributed throughout the body-they circulate in the blood, line the mucosal membranes, reside within organs, and survey the connective tissue. Several reviews have summarized their diverse roles in different physiological scenarios and in the initiation or amplification of different pathologies. In this review, we propose that both the effector and the sentinel functions of healthy macrophages rely on three hallmark properties: response specificity, context dependence, and stimulus memory. When these hallmark properties are diminished, the macrophage's biological functions are impaired, which in turn results in increased risk for immune dysregulation, manifested by immune deficiency or autoimmunity. We review the evidence and the molecular mechanisms supporting these functional hallmarks.
Collapse
Affiliation(s)
- Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA;
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, California, USA;
| |
Collapse
|
32
|
Gong L, Ou X, Hu L, Zhong J, Li J, Deng S, Li B, Pan L, Wang L, Hong X, Luo W, Zeng Q, Zan J, Peng T, Cai M, Li M. The Molecular Mechanism of Herpes Simplex Virus 1 UL31 in Antagonizing the Activity of IFN-β. Microbiol Spectr 2022; 10:e0188321. [PMID: 35196784 PMCID: PMC8865407 DOI: 10.1128/spectrum.01883-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Virus infection triggers intricate signal cascade reactions to activate the host innate immunity, which leads to the production of type I interferon (IFN-I). Herpes simplex virus 1 (HSV-1), a human-restricted pathogen, is capable of encoding over 80 viral proteins, and several of them are involved in immune evasion to resist the host antiviral response through the IFN-I signaling pathway. Here, we determined that HSV-1 UL31, which is associated with nuclear matrix and is essential for the formation of viral nuclear egress complex, could inhibit retinoic acid-inducible gene I (RIG-I)-like receptor pathway-mediated interferon beta (IFN-β)-luciferase (Luc) and (PRDIII-I)4-Luc (an expression plasmid of IFN-β positive regulatory elements III and I) promoter activation, as well as the mRNA transcription of IFN-β and downstream interferon-stimulated genes (ISGs), such as ISG15, ISG54, ISG56, etc., to promote viral infection. UL31 was shown to restrain IFN-β activation at the interferon regulatory factor 3 (IRF3)/IRF7 level. Mechanically, UL31 was demonstrated to interact with TANK binding kinase 1 (TBK1), inducible IκB kinase (IKKi), and IRF3 to impede the formation of the IKKi-IRF3 complex but not the formation of the IRF7-related complex. UL31 could constrain the dimerization and nuclear translocation of IRF3. Although UL31 was associated with the CREB binding protein (CBP)/p300 coactivators, it could not efficiently hamper the formation of the CBP/p300-IRF3 complex. In addition, UL31 could facilitate the degradation of IKKi and IRF3 by mediating their K48-linked polyubiquitination. Taken together, these results illustrated that UL31 was able to suppress IFN-β activity by inhibiting the activation of IKKi and IRF3, which may contribute to the knowledge of a new immune evasion mechanism during HSV-1 infection. IMPORTANCE The innate immune system is the first line of host defense against the invasion of pathogens. Among its mechanisms, IFN-I is an essential cytokine in the antiviral response, which can help the host eliminate a virus. HSV-1 is a double-stranded DNA virus that can cause herpes and establish a lifelong latent infection, due to its possession of multiple mechanisms to escape host innate immunity. In this study, we illustrate for the first time that the HSV-1-encoded UL31 protein has a negative regulatory effect on IFN-β production by blocking the dimerization and nuclear translocation of IRF3, as well as promoting the K48-linked polyubiquitination and degradation of both IKKi and IRF3. This study may be helpful for fully understanding the pathogenesis of HSV-1.
Collapse
Affiliation(s)
- Lan Gong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaowen Ou
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Hu
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiayi Zhong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingjing Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shenyu Deng
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bolin Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lingxia Pan
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liding Wang
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuejun Hong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenqi Luo
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiyuan Zeng
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingsheng Cai
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meili Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Khare VM, Saxena VK, Pasternak MA, Nyinawabera A, Singh KB, Ashby CR, Tiwari AK, Tang Y. The expression profiles of chemokines, innate immune and apoptotic genes in tumors caused by Rous Sarcoma Virus (RSV-A) in chickens. Genes Immun 2021; 23:12-22. [PMID: 34934184 DOI: 10.1038/s41435-021-00158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 11/09/2022]
Abstract
Innate immune genes play an important role in the immune responses to Rous sarcoma virus (RSV)-induced tumor formation and metastasis. Here, we determined in vivo expression of chemokines, innate immune and apoptotic genes in Synthetic Broiler Dam Line (SDL) chickens following RSV-A infection. The mRNA expression of genes was determined at the primary site of infection and in different organs of progressor, regressor and non-responder chicks, using RT-qPCR. Our results indicated a significant upregulation of: (1) chemokines, such as MIP1β and RANTES, (2) the innate immune gene TLR4, and (3) p53, a tumor-suppressor gene, at the site of primary infection in progressor chickens. In contrast, inducible nitric oxide synthase (iNOS) gene expression was significantly downregulated in progressor chicks compared to uninfected, control chicks. All of the innate immune genes were significantly upregulated in the lungs and liver of the progressor and regressor chicks compared to control chicks. In the spleen of progressor chicks, RANTES, iNOS and p53 gene expression were significantly increased, whereas MIP1β and TLR4 gene expression was significantly downregulated, compared to control chicks. The lungs and livers of non-responder chicks expressed a low level of iNOS and MIP1β, whereas RANTES, TLR4, and p53 gene expression were significantly upregulated compared to uninfected control chicks. In addition, there was a significant downregulation of RANTES, MIP1β, and TLR4 gene expression in non-responder chicks. These results suggest the different response to infection of chicks with RSV-A is due to differential changes in the expression of innate immune genes in different organs.
Collapse
Affiliation(s)
- Vishwa M Khare
- Eurofins Lancaster Laboratories, Philadelphia, PA, 19104, USA. .,Disease Genetics and Biotechnology Lab, CARI, Izatnagar, UP, 243 122, India.
| | - Vishesh K Saxena
- Disease Genetics and Biotechnology Lab, CARI, Izatnagar, UP, 243 122, India
| | - Mariah A Pasternak
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, 43614, USA
| | - Angelique Nyinawabera
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, 43614, USA
| | - Kunwar B Singh
- Animal Science Department, Rohilkhand University, Bareilly, UP, India
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, 43614, USA.
| | - Yuan Tang
- Department of Bioengineering, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
34
|
Dixon CR, Malik P, de las Heras JI, Saiz-Ros N, de Lima Alves F, Tingey M, Gaunt E, Richardson AC, Kelly DA, Goldberg MW, Towers GJ, Yang W, Rappsilber J, Digard P, Schirmer EC. STING nuclear partners contribute to innate immune signaling responses. iScience 2021; 24:103055. [PMID: 34541469 PMCID: PMC8436130 DOI: 10.1016/j.isci.2021.103055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
STimulator of INterferon Genes (STING) is an adaptor for cytoplasmic DNA sensing by cGAMP/cGAS that helps trigger innate immune responses (IIRs). Although STING is mostly localized in the ER, we find a separate inner nuclear membrane pool of STING that increases mobility and redistributes to the outer nuclear membrane upon IIR stimulation by transfected dsDNA or dsRNA mimic poly(I:C). Immunoprecipitation of STING from isolated nuclear envelopes coupled with mass spectrometry revealed a distinct nuclear envelope-STING proteome consisting of known nuclear membrane proteins and enriched in DNA- and RNA-binding proteins. Seventeen of these nuclear envelope STING partners are known to bind direct interactors of IRF3/7 transcription factors, and testing a subset of these revealed STING partners SYNCRIP, MEN1, DDX5, snRNP70, RPS27a, and AATF as novel modulators of dsDNA-triggered IIRs. Moreover, we find that SYNCRIP is a novel antagonist of the RNA virus, influenza A, potentially shedding light on reports of STING inhibition of RNA viruses.
Collapse
Affiliation(s)
- Charles R. Dixon
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Poonam Malik
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Jose I. de las Heras
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Natalia Saiz-Ros
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Flavia de Lima Alves
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Mark Tingey
- Department of Biology, Temple University, Philadelphia 19121, USA
| | - Eleanor Gaunt
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | - David A. Kelly
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| | - Martin W. Goldberg
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Greg J. Towers
- Department of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia 19121, USA
| | - Juri Rappsilber
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
- Department of Bioanalytics, Institute of Biotechnology, Technische Universitat Berlin, 13355 Berlin, Germany
| | - Paul Digard
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Mayfield Road, Edinburgh EH9 3BF, UK
| |
Collapse
|
35
|
Stimulus-specific responses in innate immunity: Multilayered regulatory circuits. Immunity 2021; 54:1915-1932. [PMID: 34525335 DOI: 10.1016/j.immuni.2021.08.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/07/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
Immune sentinel cells initiate immune responses to pathogens and tissue injury and are capable of producing highly stimulus-specific responses. Insight into the mechanisms underlying such specificity has come from the identification of regulatory factors and biochemical pathways, as well as the definition of signaling circuits that enable combinatorial and temporal coding of information. Here, we review the multi-layered molecular mechanisms that underlie stimulus-specific gene expression in macrophages. We categorize components of inflammatory and anti-pathogenic signaling pathways into five layers of regulatory control and discuss unifying mechanisms determining signaling characteristics at each layer. In this context, we review mechanisms that enable combinatorial and temporal encoding of information, identify recurring regulatory motifs and principles, and present strategies for integrating experimental and computational approaches toward the understanding of signaling specificity in innate immunity.
Collapse
|
36
|
Wu D, Fan Z, Li J, Zhang Y, Wang C, Xu Q, Wang L. Evaluation of Alpha-Ketoglutarate Supplementation on the Improvement of Intestinal Antioxidant Capacity and Immune Response in Songpu Mirror Carp ( Cyprinus carpio) After Infection With Aeromonas hydrophila. Front Immunol 2021; 12:690234. [PMID: 34220849 PMCID: PMC8250152 DOI: 10.3389/fimmu.2021.690234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/04/2021] [Indexed: 11/24/2022] Open
Abstract
As an intermediate substance of the tricarboxylic acid cycle and a precursor substance of glutamic acid synthesis, the effect of alpha-ketoglutarate on growth and protein synthesis has been extensively studied. However, its prevention and treatment of pathogenic bacteria and its mechanism have not yet been noticed. To evaluate the effects of alpha-ketoglutarate on intestinal antioxidant capacity and immune response of Songpu mirror carp, a total of 360 fish with an average initial weight of 6.54 ± 0.08 g were fed diets containing alpha-ketoglutarate with 1% for 8 weeks. At the end of the feeding trial, the fish were challenged with Aeromonas hydrophila for 2 weeks. The results indicated that alpha-ketoglutarate supplementation significantly increased the survival rate of carp after infection with Aeromonas hydrophila (P < 0.05), and the contents of immune digestion enzymes including lysozyme, alkaline phosphatase and the concentration of complement C4 were markedly enhanced after alpha-ketoglutarate supplementation (P < 0.05). Also, appropriate alpha-ketoglutarate increased the activities of total antioxidant capacity and catalase and prevented the up-regulation in the mRNA expression levels of pro-inflammatory cytokines including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interleukin-8 (P < 0.05). Furthermore, the mRNA expression levels of toll-like receptor 4 (TLR4), and nuclear factor kappa-B (NF-κB) were strikingly increased after infection with Aeromonas hydrophila (P < 0.05), while the TLR4 was strikingly decreased with alpha-ketoglutarate supplementation (P < 0.05). Moreover, the mRNA expression levels of tight junctions including claudin-1, claudin-3, claudin-7, claudin-11 and myosin light chain kinases (MLCK) were upregulated after alpha-ketoglutarate supplementation (P < 0.05). In summary, the appropriate alpha-ketoglutarate supplementation could increase survival rate, strengthen the intestinal enzyme immunosuppressive activities, antioxidant capacities and alleviate the intestinal inflammation, thereby promoting the intestinal immune responses and barrier functions of Songpu mirror carp via activating TLR4/MyD88/NF-κB and MLCK signaling pathways after infection with Aeromonas hydrophila.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Ze Fan
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Jinnan Li
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Yuanyuan Zhang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Chang'an Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Qiyou Xu
- School of Life Science, Huzhou University, Huzhou, China
| | - Liansheng Wang
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
37
|
Zhao Z, Ma Z, Wang B, Guan Y, Su XD, Jiang Z. Mn 2+ Directly Activates cGAS and Structural Analysis Suggests Mn 2+ Induces a Noncanonical Catalytic Synthesis of 2'3'-cGAMP. Cell Rep 2021; 32:108053. [PMID: 32814054 DOI: 10.1016/j.celrep.2020.108053] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/10/2020] [Accepted: 07/29/2020] [Indexed: 01/09/2023] Open
Abstract
DNA binding allosterically activates the cytosolic DNA sensor cGAS (cyclic GMP-AMP [cGAMP] synthase) to synthesize 2'3'-cGAMP, using Mg2+ as the metal cofactor that catalyzes two nucleotidyl-transferring reactions. We previously found that Mn2+ potentiates cGAS activation, but the underlying mechanism remains unclear. Here, we report that Mn2+ directly activates cGAS. Structural analysis reveals that Mn2+-activated cGAS undergoes globally similar conformational changes to DNA-activated cGAS but forms a unique η1 helix to widen the catalytic pocket, allowing substrate entry and cGAMP synthesis. Strikingly, in Mn2+-activated cGAS, the linear intermediates pppGpG and pGpA take an inverted orientation in the active pocket, suggesting a noncanonical but accelerated cGAMP cyclization without substrate flip-over. Moreover, unlike the octahedral coordination around Mg2+, the two catalytic Mn2+ are coordinated by triphosphate moiety of the inverted substrate, independent of the catalytic triad residues. Our findings thus uncover Mn2+ as a cGAS activator that initiates noncanonical 2'3'-cGAMP synthesis.
Collapse
Affiliation(s)
- Zhen Zhao
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhixing Ma
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Bo Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yukun Guan
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiao-Dong Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China.
| | - Zhengfan Jiang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
38
|
Bencze D, Fekete T, Pázmándi K. Type I Interferon Production of Plasmacytoid Dendritic Cells under Control. Int J Mol Sci 2021; 22:ijms22084190. [PMID: 33919546 PMCID: PMC8072550 DOI: 10.3390/ijms22084190] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
One of the most powerful and multifaceted cytokines produced by immune cells are type I interferons (IFNs), the basal secretion of which contributes to the maintenance of immune homeostasis, while their activation-induced production is essential to effective immune responses. Although, each cell is capable of producing type I IFNs, plasmacytoid dendritic cells (pDCs) possess a unique ability to rapidly produce large amounts of them. Importantly, type I IFNs have a prominent role in the pathomechanism of various pDC-associated diseases. Deficiency in type I IFN production increases the risk of more severe viral infections and the development of certain allergic reactions, and supports tumor resistance; nevertheless, its overproduction promotes autoimmune reactions. Therefore, the tight regulation of type I IFN responses of pDCs is essential to maintain an adequate level of immune response without causing adverse effects. Here, our goal was to summarize those endogenous factors that can influence the type I IFN responses of pDCs, and thus might serve as possible therapeutic targets in pDC-associated diseases. Furthermore, we briefly discuss the current therapeutic approaches targeting the pDC-type I IFN axis in viral infections, cancer, autoimmunity, and allergy, together with their limitations defined by the Janus-faced nature of pDC-derived type I IFNs.
Collapse
Affiliation(s)
- Dóra Bencze
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary
| | - Tünde Fekete
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, 1 Egyetem Square, H-4032 Debrecen, Hungary; (D.B.); (T.F.)
- Correspondence: ; Tel./Fax: +36-52-417-159
| |
Collapse
|
39
|
Wu Y, Zhou Y, Cao Z, Chen X, Du H, Sun Y. Interferon regulatory factor 7 contributes to the host response during Vibrio harveyi infection in the golden pompano Trachinotus ovatus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103959. [PMID: 33316357 DOI: 10.1016/j.dci.2020.103959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Vibrio harveyi is regarded as serious pathogen for marine fishes. However, host defense mechanisms involved in V. harveyi infection remain incompletely defined. The transcription factor IFN regulatory factor 7 (IRF7) is largely associated with host defense against viral infections, and the role of IRF7 during V. harveyi infection in fish has not been well illuminated previously. In this study, IRF7 from golden pompano (Trachinotus ovatus) was characterized (TroIRF7). The TroIRF7 gene is 1323 bp, which encodes 440 amino acid residues. Multiple amino acid alignments of TroIRF7 shows 30.37%-80.18% identity with other fish IRF7s, including Epinephelus coioides (80.18%), Larimichthys crocea (79.72%), Collichthys lucidus (79.26%), Miichthys miiuy (79.26%), Channa argus (78.77%), Cynoglossus semilaevis (72.67%), and Gadus morhua (65.23%). Like other IRF7s, TroIRF7 also contains 3 conserved domains: an N-terminal DNA-binding domain (DBD), an IRF association domain (IAD), and a C-terminal serine-rich domain (SRD). In the DBD, 4-5 conserved tryptophans were observed, which is a characteristic unique to all fish IRF7 members. TroIRF7 was constitutively expressed, with high levels in gill, head kidney, spleen, skin, and intestine. V. harveyi infection-induced TroIRF7 transcripts significantly up-regulation and translocation to the nucleus. TroIRF7 overexpression promote the fish to inhibit the replication of V. harveyi. And TroIRF7 knockdown led to decreased bacterial clearance in fish tissue. Furthermore, over-expression of TroIRF7 resulted in an increased production of interferon a3 and IFN signaling molecule in the spleen, suggesting that V. harveyi activates the IRF7- IFN pathway. These results suggest that TroIRF7 is an important component of immune responses against V. harveyi infection.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Zhenjie Cao
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Xiaojuan Chen
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Hehe Du
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China.
| |
Collapse
|
40
|
Hossam N, Matboli M, Shehata HH, Aboelhussein MM, Hassan MK, Eissa S. Toll-like receptor immune modulatory role in personalized management of colorectal cancer, review of literature. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1816136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nourhan Hossam
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Matboli
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hanan H. Shehata
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa M. Aboelhussein
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Kamel Hassan
- Zewail city for science and Technology, Helmy Institute for medical science, Center for Genomics, Giza, Egypt
- Department of Biology/Zoology, Biotechnology Program, Port Said University, Port Said, Egypt
| | - Sanaa Eissa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
41
|
Niederkorn M, Agarwal P, Starczynowski DT. TIFA and TIFAB: FHA-domain proteins involved in inflammation, hematopoiesis, and disease. Exp Hematol 2020; 90:18-29. [PMID: 32910997 DOI: 10.1016/j.exphem.2020.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022]
Abstract
Forkhead-associated (FHA) domain-containing proteins are widely expressed across eubacteria and in eukaryotes. FHA domains contain phosphopeptide recognition motifs, which operate in a variety of phosphorylation-dependent and -independent biological processes, including the DNA damage response, signal transduction, and regulation of the cell cycle. More recently, two FHA domain-containing proteins were discovered in mammalian cells as tumor necrosis factor receptor-associated factor (TRAF)-interacting proteins: TIFA and TIFAB. TIFA and TIFAB are important modifiers of the innate immune signaling through their regulation of TRAF proteins. Recent studies have also revealed distinct roles for TIFA and TIFAB in the context of immune cell function, chronic inflammation, hematopoiesis, and hematologic disorders. Collectively, these studies indicate the important role of TIFA- and TIFAB-dependent signaling in hematopoietic cells and their dysregulation in several human diseases. In this review, we summarize the molecular mechanisms and biological role of these FHA-domain homologues, placing them into the context of human disease.
Collapse
Affiliation(s)
- Madeline Niederkorn
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Cancer Biology, University of Cincinnati, Cincinnati, OH; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.
| |
Collapse
|
42
|
Feng M, Fei S, Xia J, Labropoulou V, Swevers L, Sun J. Antimicrobial Peptides as Potential Antiviral Factors in Insect Antiviral Immune Response. Front Immunol 2020; 11:2030. [PMID: 32983149 PMCID: PMC7492552 DOI: 10.3389/fimmu.2020.02030] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) with antiviral activity (antiviral peptides: AVPs) have become a research hotspot and already show immense potential to become pharmaceutically available antiviral drugs. AVPs have exhibited huge potential in inhibiting viruses by targeting various stages of their life cycle. Insects are the most speciose group of animals that inhabit almost all ecosystems and habitats on the land and are a rich source of natural AMPs. However, insect AVP mining, functional research, and drug development are still in their infancy. This review aims to summarize the currently validated insect AVPs, explore potential new insect AVPs and to discuss their possible mechanism of synthesis and action, with a view to providing clues to unravel the mechanisms of insect antiviral immunity and to develop insect AVP-derived antiviral drugs.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
43
|
Rodríguez-Gómez JA, Kavanagh E, Engskog-Vlachos P, Engskog MK, Herrera AJ, Espinosa-Oliva AM, Joseph B, Hajji N, Venero JL, Burguillos MA. Microglia: Agents of the CNS Pro-Inflammatory Response. Cells 2020; 9:E1717. [PMID: 32709045 PMCID: PMC7407646 DOI: 10.3390/cells9071717] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
The pro-inflammatory immune response driven by microglia is a key contributor to the pathogenesis of several neurodegenerative diseases. Though the research of microglia spans over a century, the last two decades have increased our understanding exponentially. Here, we discuss the phenotypic transformation from homeostatic microglia towards reactive microglia, initiated by specific ligand binding to pattern recognition receptors including toll-like receptor-4 (TLR4) or triggering receptors expressed on myeloid cells-2 (TREM2), as well as pro-inflammatory signaling pathways triggered such as the caspase-mediated immune response. Additionally, new research disciplines such as epigenetics and immunometabolism have provided us with a more holistic view of how changes in DNA methylation, microRNAs, and the metabolome may influence the pro-inflammatory response. This review aimed to discuss our current knowledge of pro-inflammatory microglia from different angles, including recent research highlights such as the role of exosomes in spreading neuroinflammation and emerging techniques in microglia research including positron emission tomography (PET) scanning and the use of human microglia generated from induced pluripotent stem cells (iPSCs). Finally, we also discuss current thoughts on the impact of pro-inflammatory microglia in neurodegenerative diseases.
Collapse
Affiliation(s)
- José A. Rodríguez-Gómez
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, 41009 Sevilla, Spain
| | - Edel Kavanagh
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Pinelopi Engskog-Vlachos
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Mikael K.R. Engskog
- Department of Medicinal Chemistry, Analytical Pharmaceutical Chemistry, Uppsala University, 751 23 Uppsala, Sweden;
| | - Antonio J. Herrera
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Ana M. Espinosa-Oliva
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institute, 17177 Stockholm, Sweden; (P.E.-V.); (B.J.)
| | - Nabil Hajji
- Division of Brain Sciences, The John Fulcher Molecular Neuro-Oncology Laboratory, Imperial College London, London W12 ONN, UK;
| | - José L. Venero
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - Miguel A. Burguillos
- Institute of Biomedicine of Seville (IBIS)-Hospital Universitario Virgen del Rocío/CSIC/University of Seville, 41012 Seville, Spain; (J.A.R.-G.); (A.J.H.); (A.M.E.-O.); (J.L.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| |
Collapse
|
44
|
Di Q, Zhu H, Pu D, Zhao X, Li X, Ma X, Xiao W, Chen W. The natural compound Cirsitakaoside enhances antiviral innate responses against vesicular stomatitis virus in vitro and in vivo. Int Immunopharmacol 2020; 86:106783. [PMID: 32652505 DOI: 10.1016/j.intimp.2020.106783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Cirsitakaoside, isolated and purified from the stems and leaves of Premna szemaoensis and Macaranga denticulata, is a natural compound with potential anti-inflammatory effects. However, the role of Cirsitakaoside in antiviral activity and the underlying mechanism remains largely unknown. In this study, we aimed to identify whether Cirsitakaoside has antiviral activity and investigated the underlying mechanisms. Mouse peritoneal macrophages were pretreated with Cir or DMSO, and then infected by Vesicular Stomatitis Virus (VSV) for indicated hours, Q-PCR and ELISA were used to detect the expression of interferons and pro-inflammatory cytokines, immunoblot assay were employed to investigate the involved signaling pathway in the antiviral effects of Cirsitakaoside. Furthermore, mice infected with VSV were used to investigate the antiviral activities of Cirsitakaoside in vivo. Our study demonstrated that Cirsitakaoside could promote type I IFN expression and inhibit pro-inflammatory cytokines such as IL-6 and TNF-α production in mouse peritoneal macrophages infected by VSV. Suppressive viral replication effects of Cirsitakaoside were observed on VSV-infected mouse peritoneal macrophages as well. Furthermore, Cirsitakaoside significantly increased the VSV-triggered phosphorylation of TBK1, IRF3 and reduced the phosphorylation of IκBα and p65 in mouse peritoneal macrophages. in vivo, the results showed that Cirsitakaoside-treated mice were more resistant to VSV infection by producing more IFN-β and less pro-inflammatory cytokines. Our study indicates that Cirsitakaoside is a good candidate for the treatment of viral infection and inflammation-related diseases.
Collapse
Affiliation(s)
- Qianqian Di
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Huihui Zhu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Debing Pu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xibao Zhao
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China; Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Xingyu Ma
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Weilin Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Shenzhen University School of Medicine, Shenzhen 518060, China.
| |
Collapse
|
45
|
Yuk JM, Silwal P, Jo EK. Inflammasome and Mitophagy Connection in Health and Disease. Int J Mol Sci 2020; 21:ijms21134714. [PMID: 32630319 PMCID: PMC7370205 DOI: 10.3390/ijms21134714] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
The inflammasome is a large intracellular protein complex that activates inflammatory caspase-1 and induces the maturation of interleukin (IL)-1β and IL-18. Mitophagy plays an essential role in the maintenance of mitochondrial homeostasis during stress. Previous studies have indicated compelling evidence of the crosstalk between inflammasome and mitophagy. Mitophagy regulation of the inflammasome, or vice versa, is crucial for various biological functions, such as controlling inflammation and metabolism, immune and anti-tumor responses, and pyroptotic cell death. Uncontrolled regulation of the inflammasome often results in pathological inflammation and pyroptosis, and causes a variety of human diseases, including metabolic and inflammatory diseases, infection, and cancer. Here, we discuss how improved understanding of the interactions between inflammasome and mitophagy can lead to novel therapies against various disease pathologies, and how the inflammasome-mitophagy connection is currently being targeted pharmacologically by diverse agents and small molecules. A deeper understanding of the inflammasome-mitophagy connection will provide new insights into human health and disease through the balance between mitochondrial clearance and pathology.
Collapse
Affiliation(s)
- Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 35015, Korea
- Correspondence: ; Tel.: +82-42-580-8243
| |
Collapse
|
46
|
Harrington V, Gurung P. Reconciling protective and pathogenic roles of the NLRP3 inflammasome in leishmaniasis. Immunol Rev 2020; 297:53-66. [PMID: 32564424 DOI: 10.1111/imr.12886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/29/2022]
Abstract
Leishmaniasis is a global health problem that affects more than 2 billion people worldwide. Recent advances in research have demonstrated critical roles for cytoplasmic sensors and inflammasomes during Leishmania spp. infection and pathogenesis. Specifically, several studies have focused on the role of nod-like receptor family, pyrin domain-containing protein 3 (NLRP3) inflammasome and inflammasome-associated cytokines IL-1β and IL-18 in leishmaniasis. Despite these studies, our understanding of the priming and activation events that lead to NLRP3 inflammasome activation during Leishmania spp. infection is limited. Furthermore, whether NLRP3 plays a protective or pathogenic role during Leishmania spp. infection is far from resolved, with some studies showing a protective role and others showing a pathogenic role. In this review, we performed a critical review of the literature to provide a current update on priming and activating signals required for NLRP3 inflammasome activation during Leishmania spp. infection. Finally, we provide a thorough review of the literature to reconcile differences in the observed protective vs pathogenic roles of the NLRP3 inflammasome during Leishmania spp. infection.
Collapse
Affiliation(s)
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, IA, USA.,Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Immunology Graduate Program, University of Iowa, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
47
|
Park YJ, Oanh NTK, Heo J, Kim SG, Lee HS, Lee H, Lee JH, Kang HC, Lim W, Yoo YS, Cho H. Dual targeting of RIG-I and MAVS by MARCH5 mitochondria ubiquitin ligase in innate immunity. Cell Signal 2020; 67:109520. [PMID: 31881323 DOI: 10.1016/j.cellsig.2019.109520] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/17/2022]
Abstract
The mitochondrial antiviral signaling (MAVS) protein on the mitochondrial outer membrane acts as a central signaling molecule in the RIG-I-like receptor (RLR) signaling pathway by linking upstream viral RNA recognition to downstream signal activation. We previously reported that mitochondrial E3 ubiquitin ligase, MARCH5, degrades the MAVS protein aggregate and prevents persistent downstream signaling. Since the activated RIG-I oligomer interacts and nucleates the MAVS aggregate, MARCH5 might also target this oligomer. Here, we report that MARCH5 targets and degrades RIG-I, but not its inactive phosphomimetic form (RIG-IS8E). The MARCH5-mediated reduction of RIG-I is restored in the presence of MG132, a proteasome inhibitor. Upon poly(I:C) stimulation, RIG-I forms an oligomer and co-expression of MARCH5 reduces the expression of this oligomer. The RING domain of MARCH5 is necessary for binding to the CARD domain of RIG-I. In an in vivo ubiquitination assay, MARCH5 transfers the Lys 48-linked polyubiquitin to Lys 193 and 203 residues of RIG-I. Thus, dual targeting of active RIG-I and MAVS protein oligomers by MARCH5 is an efficient way to switch-off RLR signaling. We propose that modulation of MARCH5 activity might be beneficial for the treatment of chronic immune diseases.
Collapse
Affiliation(s)
- Yeon-Ji Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Nguyen Thi Kim Oanh
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - June Heo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Seong-Gwang Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Ho-Soo Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyojoon Lee
- Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae-Ho Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Ho Chul Kang
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea; Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Republic of Korea
| | - Young-Suk Yoo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea.
| | - Hyeseong Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
48
|
Therajaran P, Hamilton JA, O'Brien TJ, Jones NC, Ali I. Microglial polarization in posttraumatic epilepsy: Potential mechanism and treatment opportunity. Epilepsia 2020; 61:203-215. [PMID: 31943156 DOI: 10.1111/epi.16424] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Owing to the complexity of the pathophysiological mechanisms driving epileptogenesis following traumatic brain injury (TBI), effective preventive treatment approaches are not yet available for posttraumatic epilepsy (PTE). Neuroinflammation appears to play a critical role in the pathogenesis of the acquired epilepsies, including PTE, but despite a large preclinical literature demonstrating the ability of anti-inflammatory treatments to suppress epileptogenesis and chronic seizures, no anti-inflammatory treatment approaches have been clinically proven to date. TBI triggers robust inflammatory cascades, suggesting that they may be relevant for the pathogenesis of PTE. A major cell type involved in such cascades is the microglial cells-brain-resident immune cells that become activated after brain injury. When activated, these cells can oscillate between different phenotypes, and such polarization states are associated with the release of various pro- and anti-inflammatory mediators that may influence brain repair processes, and also differentially contribute to the development of PTE. As the molecular mechanisms and key signaling molecules associated with microglial polarization in brain are discovered, strategies are now emerging that can modulate this polarization, promoting this as a potential therapeutic strategy for PTE. In this review, we discuss the relevant literature regarding the polarization of brain-resident immune cells following TBI and attempt to put into perspective a role in epilepsy pathogenesis. Finally, we explore potential strategies that could polarize microglia/macrophages toward a neuroprotective phenotype to mitigate PTE development.
Collapse
Affiliation(s)
- Peravina Therajaran
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - John A Hamilton
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Idrish Ali
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
49
|
Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharm Sin B 2020; 10:61-78. [PMID: 31993307 PMCID: PMC6977534 DOI: 10.1016/j.apsb.2019.12.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/29/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Solute carrier (SLC) transporters meditate many essential physiological functions, including nutrient uptake, ion influx/efflux, and waste disposal. In its protective role against tumors and infections, the mammalian immune system coordinates complex signals to support the proliferation, differentiation, and effector function of individual cell subsets. Recent research in this area has yielded surprising findings on the roles of solute carrier transporters, which were discovered to regulate lymphocyte signaling and control their differentiation, function, and fate by modulating diverse metabolic pathways and balanced levels of different metabolites. In this review, we present current information mainly on glucose transporters, amino-acid transporters, and metal ion transporters, which are critically important for mediating immune cell homeostasis in many different pathological conditions.
Collapse
Key Words
- 3-PG, 3-phosphoglyceric acid
- ABC, ATP-binding cassette
- AIF, apoptosis-inducing factor
- AP-1, activator protein 1
- ASCT2, alanine serine and cysteine transporter system 2
- ATP, adenosine triphosphate
- BCR, B cell receptor
- BMDMs, bone marrow-derived macrophages
- CD45R, a receptor-type protein tyrosine phosphatase
- CTL, cytotoxic T lymphocytes
- DC, dendritic cells
- EAATs, excitatory amino acid transporters
- ER, endoplasmic reticulum
- ERRα, estrogen related receptor alpha
- FFA, free fatty acids
- G-6-P, glucose 6-phosphate
- GLUT, glucose transporters
- GSH, glutathione
- Glucose
- Glutamine
- HIF-1α, hypoxia-inducible factor 1-alpha
- HIV-1, human immunodeficiency virus type 1
- Hk1, hexokinase-1
- IFNβ, interferon beta
- IFNγ, interferon gamma
- IKK, IκB kinase
- IKKβ, IκB kinase beta subunit
- IL, interleukin
- LDHA, lactate dehydrogenase A
- LPS, lipopolysaccharide
- Lymphocytes
- Lyn, tyrosine-protein kinase
- MAPK, mitogen-activated protein kinase
- MCT, monocarboxylate transporters
- MS, multiple sclerosis
- Metal ion
- NADPH, nicotinamide adenine dinucleotide phosphate
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NO, nitric oxide
- NOD2, nucleotide-binding oligomerization domain containing 2
- PEG2, prostaglandin E2
- PI-3K/AKT, phosphatidylinositol-3-OH kinase/serine–threonine kinase
- PPP, pentose phosphate pathway
- Pfk, phosphofructokinase
- RA, rheumatoid arthritis
- RLR, RIG-I-like receptor
- ROS, reactive oxygen species
- SLC, solute carrier
- SLE, systemic lupus erythematosus
- SNAT, sodium-coupled neutral amino acid transporters
- STAT, signal transducers and activators of transcription
- Solute carrier
- TAMs, tumor-associated macrophages
- TCA, tricarboxylic acid
- TCR, T cell receptor
- TLR, toll-like receptor
- TNF, tumor necrosis factor
- TRPM7, transient receptor potential cation channel subfamily M member 7
- Teffs, effector T cells
- Th1/2/17, type 1/2/17 helper T cells
- Tregs, regulatory T cells
- VEGF, vascular endothelial growth factor
- ZIP, zrt/irt-like proteins
- iNOS, inducible nitric oxide synthase
- iTregs, induced regulatory T cells
- mTORC1, mammalian target of rapamycin complex 1
- α-KG, α-ketoglutaric acid
Collapse
|
50
|
Verma NK, Chalasani MLS, Scott JD, Kelleher D. CG-NAP/Kinase Interactions Fine-Tune T Cell Functions. Front Immunol 2019; 10:2642. [PMID: 31781123 PMCID: PMC6861388 DOI: 10.3389/fimmu.2019.02642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023] Open
Abstract
CG-NAP, also known as AKAP450, is an anchoring/adaptor protein that streamlines signal transduction in various cell types by localizing signaling proteins and enzymes with their substrates. Great efforts are being devoted to elucidating functional roles of this protein and associated macromolecular signaling complex. Increasing understanding of pathways involved in regulating T lymphocytes suggests that CG-NAP can facilitate dynamic interactions between kinases and their substrates and thus fine-tune T cell motility and effector functions. As a result, new binding partners of CG-NAP are continually being uncovered. Here, we review recent advances in CG-NAP research, focusing on its interactions with kinases in T cells with an emphasis on the possible role of this anchoring protein as a target for therapeutic intervention in immune-mediated diseases.
Collapse
Affiliation(s)
- Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - John D Scott
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, United States
| | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.,Departments of Medicine and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|