1
|
Truong TTT, Liu ZSJ, Panizzutti B, Kim JH, Dean OM, Berk M, Walder K. Network-based drug repurposing for schizophrenia. Neuropsychopharmacology 2024; 49:983-992. [PMID: 38321095 PMCID: PMC11039639 DOI: 10.1038/s41386-024-01805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Despite recent progress, the challenges in drug discovery for schizophrenia persist. However, computational drug repurposing has gained popularity as it leverages the wealth of expanding biomedical databases. Network analyses provide a comprehensive understanding of transcription factor (TF) regulatory effects through gene regulatory networks, which capture the interactions between TFs and target genes by integrating various lines of evidence. Using the PANDA algorithm, we examined the topological variances in TF-gene regulatory networks between individuals with schizophrenia and healthy controls. This algorithm incorporates binding motifs, protein interactions, and gene co-expression data. To identify these differences, we subtracted the edge weights of the healthy control network from those of the schizophrenia network. The resulting differential network was then analysed using the CLUEreg tool in the GRAND database. This tool employs differential network signatures to identify drugs that potentially target the gene signature associated with the disease. Our analysis utilised a large RNA-seq dataset comprising 532 post-mortem brain samples from the CommonMind project. We constructed co-expression gene regulatory networks for both schizophrenia cases and healthy control subjects, incorporating 15,831 genes and 413 overlapping TFs. Through drug repurposing, we identified 18 promising candidates for repurposing as potential treatments for schizophrenia. The analysis of TF-gene regulatory networks revealed that the TFs in schizophrenia predominantly regulate pathways associated with energy metabolism, immune response, cell adhesion, and thyroid hormone signalling. These pathways represent significant targets for therapeutic intervention. The identified drug repurposing candidates likely act through TF-targeted pathways. These promising candidates, particularly those with preclinical evidence such as rimonabant and kaempferol, warrant further investigation into their potential mechanisms of action and efficacy in alleviating the symptoms of schizophrenia.
Collapse
Affiliation(s)
- Trang T T Truong
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Zoe S J Liu
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Bruna Panizzutti
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Olivia M Dean
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, The Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, University of Melbourne, Parkville, 3010, Australia
| | - Ken Walder
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong, Australia.
| |
Collapse
|
2
|
Yang L, Zhang J, Liu S, Zhang Y, Wang L, Wang X, Wang S, Li K, Wei M, Zhang C. Establishment of transgenic fluorescent mice for labeling synapses and screening synaptogenic adhesion molecules. eLife 2024; 13:e81884. [PMID: 38450720 PMCID: PMC10948142 DOI: 10.7554/elife.81884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/05/2024] [Indexed: 03/08/2024] Open
Abstract
Synapse is the fundamental structure for neurons to transmit information between cells. The proper synapse formation is crucial for developing neural circuits and cognitive functions of the brain. The aberrant synapse formation has been proved to cause many neurological disorders, including autism spectrum disorders and intellectual disability. Synaptic cell adhesion molecules (CAMs) are thought to play a major role in achieving mechanistic cell-cell recognition and initiating synapse formation via trans-synaptic interactions. Due to the diversity of synapses in different brain areas, circuits and neurons, although many synaptic CAMs, such as Neurexins (NRXNs), Neuroligins (NLGNs), Synaptic cell adhesion molecules (SynCAMs), Leucine-rich-repeat transmembrane neuronal proteins (LRRTMs), and SLIT and NTRK-like protein (SLITRKs) have been identified as synaptogenic molecules, how these molecules determine specific synapse formation and whether other molecules driving synapse formation remain undiscovered are unclear. Here, to provide a tool for synapse labeling and synaptic CAMs screening by artificial synapse formation (ASF) assay, we generated synaptotagmin-1-tdTomato (Syt1-tdTomato) transgenic mice by inserting the tdTomato-fused synaptotagmin-1 coding sequence into the genome of C57BL/6J mice. In the brain of Syt1-tdTomato transgenic mice, the tdTomato-fused synaptotagmin-1 (SYT1-tdTomato) signals were widely observed in different areas and overlapped with synapsin-1, a widely-used synaptic marker. In the olfactory bulb, the SYT1-tdTomato signals are highly enriched in the glomerulus. In the cultured hippocampal neurons, the SYT1-tdTomato signals showed colocalization with several synaptic markers. Compared to the wild-type (WT) mouse neurons, cultured hippocampal neurons from Syt1-tdTomato transgenic mice presented normal synaptic neurotransmission. In ASF assays, neurons from Syt1-tdTomato transgenic mice could form synaptic connections with HEK293T cells expressing NLGN2, LRRTM2, and SLITRK2 without immunostaining. Therefore, our work suggested that the Syt1-tdTomato transgenic mice with the ability to label synapses by tdTomato, and it will be a convenient tool for screening synaptogenic molecules.
Collapse
Affiliation(s)
- Lei Yang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Jingtao Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Sen Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Yanning Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Li Wang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Xiaotong Wang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Shanshan Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Ke Li
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Mengping Wei
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| |
Collapse
|
3
|
Marcatti M, Jamison D, Fracassi A, Zhang WR, Limon A, Taglialatela G. A method to study human synaptic protein-protein interactions by using flow cytometry coupled to proximity ligation assay (Syn-FlowPLA). J Neurosci Methods 2023; 396:109920. [PMID: 37459899 DOI: 10.1016/j.jneumeth.2023.109920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Synapses are highly specialized sites characterized by intricate networks of protein-protein interactions (PPIs) important to maintain healthy synapses. Therefore, mapping these networks could address unsolved questions about human cognition, synaptic plasticity, learning, and memory in physiological and pathological conditions. The limitation of analyzing synaptic interactions in living humans has led to the development of methods to isolate synaptic terminals (synaptosomes) from cryopreserved human brains. NEW METHOD Here, we established a method to detect synaptic PPIs by applying flow cytometric proximity ligation assay (FlowPLA) to synaptosomes isolated from frozen human frontal cortex (FC) and hippocampus (HP) (Syn-FlowPLA). RESULTS Applying this method in synaptosomes, we were able to detect the known post-synaptic interactions between distinct subtypes of N-methyl-D-aspartate glutamate receptors (NMDARs) and their anchoring postsynaptic density 95 protein (PSD95). Moreover, we detected the known pre-synaptic interactions between the SNARE complex proteins synaptosomal-associated protein of 25 kDa (SNAP25), synaptobrevin (VAMP2), and syntaxin 1a (STX1A). As a negative control, we analyzed the interaction between mitochondrial superoxide dismutase 2 (SOD2) and PSD95, which are not expected to be physically associated. COMPARISON WITH EXISTING METHODS PPIs have been studied in vitro primarily by co-immunoprecipitation, affinity chromatography, protein-fragment complementation assays (PCAs), and flow cytometry. All these are valid approaches; however, they require more steps or combination with other techniques. PLA technology identifies PPIs with high specificity and sensitivity. CONCLUSIONS The Syn-FlowPLA described here allows rapid analyses of PPIs, specifically within the synaptic compartment isolated from frozen autopsy specimens, achieving greater target sensitivity. Syn-FlowPLA, as presented here, is therefore a useful method to study human synaptic PPI in physiological and pathological conditions.
Collapse
Affiliation(s)
- Michela Marcatti
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA
| | - Danielle Jamison
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, USA
| | - Anna Fracassi
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA
| | - Wen-Ru Zhang
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, USA
| | - Agenor Limon
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA
| | - Giulio Taglialatela
- Mitchell Center for Neurodegenerative Disease, Department of Neurology, University of Texas Medical Branch at Galveston, USA.
| |
Collapse
|
4
|
Ramos CL, Nascimento-Carvalho EC, Nascimento-Carvalho GC, VanDuijn MM, Vilas-Boas AL, Moreno-Carvalho OA, Carvalho LP, Zeneyedpour L, Ferwerda G, de Groot R, Luider TM, Nascimento-Carvalho CM. Cell adhesion proteins in the cerebrospinal fluid of neonates prenatally exposed to Zika virus: A case-control study. Eur J Neurosci 2022; 56:6258-6268. [PMID: 36300719 DOI: 10.1111/ejn.15851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 12/29/2022]
Abstract
To compare cell adhesion molecules levels in cerebrospinal fluid (CSF) between Zika virus (ZIKV)-exposed neonates with/without microcephaly (cases) and controls, 16 neonates (cases), 8 (50%) with and 8 (50%) without microcephaly, who underwent lumbar puncture (LP) during the ZIKV epidemic (2015-2016) were included. All mothers reported ZIKV clinical symptoms during gestation, all neonates presented with congenital infection findings, and other congenital infections were ruled out. Fourteen control neonates underwent LP in the same laboratory (2017-2018). Five cell adhesion proteins were measured in the CSF using mass spectrometry. Neurexin-1 (3.50 [2.00-4.00] vs. 7.5 [5.00-10.25], P = 0.001), neurexin-3 (0.00 [0.00-0.00] vs. 3.00 [1.50-4.00], P = 0.001) and neural cell adhesion molecule 2 (NCAM2) (0.00 [0.00-0.75] vs. 1.00 [1.00-2.00], P = 0.001) were significantly lower in microcephalic and non-microcephalic cases than in controls. When these two sub-groups of prenatally ZIKA-exposed children were compared to controls separately, the same results were found. When cases with and without microcephaly were compared, no difference was found. Neurexin-3 (18.8% vs. 78.6%, P = 0.001) and NCAM2 (25.0% vs. 85.7%, P = 0.001) were less frequently found among the cases. A positive correlation was found between cephalic perimeter and levels of these two proteins. Neurexin-2 and neurexin-2b presented no significant differences. Levels of three cell adhesion proteins were significantly lower in CSF of neonates exposed to ZIKV before birth than in controls, irrespective of presence of congenital microcephaly. Moreover, the smaller the cephalic perimeter, the lower CSF cell adhesion protein levels. These findings suggest that low CSF levels of neurexin-1, neurexin-3 and NCAM2 may reflect the effects of ZIKV on foetal brain development.
Collapse
Affiliation(s)
- Clara L Ramos
- Bahiana Foundation for Science Development, Bahiana School of Medicine, Salvador, Brazil
| | | | | | | | - Ana-Luisa Vilas-Boas
- Bahiana Foundation for Science Development, Bahiana School of Medicine, Salvador, Brazil
| | | | - Lucas P Carvalho
- Laboratory of Clinical Research, LAPEC, Gonçalo Moniz Institute, Salvador, Brazil
| | | | - Gerben Ferwerda
- Section of Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud Centre for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald de Groot
- Section of Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud Centre for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
5
|
Differential Methylation Profile in Fragile X Syndrome-Prone Offspring Mice after in Utero Exposure to Lactobacillus Reuteri. Genes (Basel) 2022; 13:genes13081300. [PMID: 35893036 PMCID: PMC9331364 DOI: 10.3390/genes13081300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 01/13/2023] Open
Abstract
Environmental factors such as diet, gut microbiota, and infections have proven to have a significant role in epigenetic modifications. It is known that epigenetic modifications may cause behavioral and neuronal changes observed in neurodevelopmental disabilities, including fragile X syndrome (FXS) and autism (ASD). Probiotics are live microorganisms that provide health benefits when consumed, and in some cases are shown to decrease the chance of developing neurological disorders. Here, we examined the epigenetic outcomes in offspring mice after feeding of a probiotic organism, Lactobacillus reuteri (L. reuteri), to pregnant mother animals. In this study, we tested a cohort of Western diet-fed descendant mice exhibiting a high frequency of behavioral features and lower FMRP protein expression similar to what is observed in FXS in humans (described in a companion manuscript in this same GENES special topic issue). By investigating 17,735 CpG sites spanning the whole mouse genome, we characterized the epigenetic profile in two cohorts of mice descended from mothers treated and non-treated with L. reuteri to determine the effect of prenatal probiotic exposure on the prevention of FXS-like symptoms. We found several genes involved in different neurological pathways being differentially methylated (p ≤ 0.05) between the cohorts. Among the key functions, synaptogenesis, neurogenesis, synaptic modulation, synaptic transmission, reelin signaling pathway, promotion of specification and maturation of neurons, and long-term potentiation were observed. The results of this study are relevant as they could lead to a better understanding of the pathways involved in these disorders, to novel therapeutics approaches, and to the identification of potential biomarkers for early detection of these conditions.
Collapse
|
6
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
7
|
Karimian SS, Akbari MT, Sadr SS, Javadi G. Association of Candidate Single Nucleotide Polymorphisms Related to Candidate Genes in Patients With Schizophrenia. Basic Clin Neurosci 2021; 11:595-608. [PMID: 33643553 PMCID: PMC7878058 DOI: 10.32598/bcn.9.10.470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/10/2018] [Accepted: 04/06/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction: Schizophrenia is a chronic heterogenic neurodevelopment disorder. Many genes interfere in the development of SCZ. All four genes, NrCAM, PRODH, ANK3, and ANKK1, which were evaluated in this study, were previously reported to be associated with Schizophrenia. The NrCAM contributes to creating cognitive deficiencies through the CAM’s signaling pathway. PRODH plays a vital role in creating SCZ negative symptoms through the signaling pathway of glutamatergic and NMDA receptors. ANK3 affects ion channel and molecular adhesion in Ranvier and initial segments of axons, leading to mental retardation, sleep disorder, and SCZ. ANKK1 encodes a protein kinase and was reported to be associated with alcohol addiction, Attention Deficit Hyperactivity Disorder (ADHD), and SCZ. Methods: The subjects were selected from Schizophrenic patients referring to the Psychiatric Ward of Imam-Hussein Hospital and Schizophrenic Patients Support Institution (AHEBBA). 95 (30 Schizoaffective patients, 57 Paranoid patients, and 8 disorganized) patients were recruited as the subjects in the present case-control association study. 120 healthy subjects were recruited from the Tehran Medical Genetics Laboratory staff and a group of students from the Islamic Azad University of Science and Research in Tehran. The genotypes were determined with molecular genotyping techniques of PCR-RFLP, ARMS-PCR, and Cycle sequencing. Results were analyzed by the Chi-Square test using SPSS V. 24 and R, SNP STATE Package to investigate significant differences between cases and controls. Results: The incidence of schizophrenia was 68% and 32% among men and women, respectively. The evaluation of the allelic association between schizophrenia and all the candidate SNPs showed a significant association between NrCAM’s SNP rs10235968 and SCZ (P=0.001). Haplotype T, T, C in rs10235968, rs6967368, rs3763463, respectively, within the NrCAM gene, showed significant association with schizophrenia disorder (P=0.0001). Conclusion: No association was found between other candidate SNPs and SCZ among the subjects.
Collapse
Affiliation(s)
- Seyedeh Sara Karimian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Taghi Akbari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modarres University, Tehran, Iran.,Tehran Medical Genetics Laboratory, Tehran, Iran
| | - Seyed Saeed Sadr
- Department of Psychiatry, Imam Hussein Hospital, Shahid Beheshti University, Tehran, Iran
| | - Gholamreza Javadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Gandawijaya J, Bamford RA, Burbach JPH, Oguro-Ando A. Cell Adhesion Molecules Involved in Neurodevelopmental Pathways Implicated in 3p-Deletion Syndrome and Autism Spectrum Disorder. Front Cell Neurosci 2021; 14:611379. [PMID: 33519384 PMCID: PMC7838543 DOI: 10.3389/fncel.2020.611379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social interaction, language delay and repetitive or restrictive behaviors. With increasing prevalence, ASD is currently estimated to affect 0.5–2.0% of the global population. However, its etiology remains unclear due to high genetic and phenotypic heterogeneity. Copy number variations (CNVs) are implicated in several forms of syndromic ASD and have been demonstrated to contribute toward ASD development by altering gene dosage and expression. Increasing evidence points toward the p-arm of chromosome 3 (chromosome 3p) as an ASD risk locus. Deletions occurring at chromosome 3p result in 3p-deletion syndrome (Del3p), a rare genetic disorder characterized by developmental delay, intellectual disability, facial dysmorphisms and often, ASD or ASD-associated behaviors. Therefore, we hypothesize that overlapping molecular mechanisms underlie the pathogenesis of Del3p and ASD. To investigate which genes encoded in chromosome 3p could contribute toward Del3p and ASD, we performed a comprehensive literature review and collated reports investigating the phenotypes of individuals with chromosome 3p CNVs. We observe that high frequencies of CNVs occur in the 3p26.3 region, the terminal cytoband of chromosome 3p. This suggests that CNVs disrupting genes encoded within the 3p26.3 region are likely to contribute toward the neurodevelopmental phenotypes observed in individuals affected by Del3p. The 3p26.3 region contains three consecutive genes encoding closely related neuronal immunoglobulin cell adhesion molecules (IgCAMs): Close Homolog of L1 (CHL1), Contactin-6 (CNTN6), and Contactin-4 (CNTN4). CNVs disrupting these neuronal IgCAMs may contribute toward ASD phenotypes as they have been associated with key roles in neurodevelopment. CHL1, CNTN6, and CNTN4 have been observed to promote neurogenesis and neuronal survival, and regulate neuritogenesis and synaptic function. Furthermore, there is evidence that these neuronal IgCAMs possess overlapping interactomes and participate in common signaling pathways regulating axon guidance. Notably, mouse models deficient for these neuronal IgCAMs do not display strong deficits in axonal migration or behavioral phenotypes, which is in contrast to the pronounced defects in neuritogenesis and axon guidance observed in vitro. This suggests that when CHL1, CNTN6, or CNTN4 function is disrupted by CNVs, other neuronal IgCAMs may suppress behavioral phenotypes by compensating for the loss of function.
Collapse
Affiliation(s)
- Josan Gandawijaya
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Rosemary A Bamford
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, Utrecht, Netherlands
| | - Asami Oguro-Ando
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
9
|
Zhang Z, Ye M, Li Q, You Y, Yu H, Ma Y, Mei L, Sun X, Wang L, Yue W, Li R, Li J, Zhang D. The Schizophrenia Susceptibility Gene OPCML Regulates Spine Maturation and Cognitive Behaviors through Eph-Cofilin Signaling. Cell Rep 2020; 29:49-61.e7. [PMID: 31577955 DOI: 10.1016/j.celrep.2019.08.091] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/09/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
Previous genetic and biological evidence converge on the involvement of synaptic dysfunction in schizophrenia, and OPCML, encoding a synaptic membrane protein, is reported to be genetically associated with schizophrenia. However, its role in the pathophysiology of schizophrenia remains largely unknown. Here, we found that Opcml is strongly expressed in the mouse hippocampus; ablation of Opcml leads to reduced phosphorylated cofilin and dysregulated F-actin dynamics, which disturbs the spine maturation. Furthermore, Opcml interacts with EphB2 to control the stability of spines by regulating the ephrin-EphB2-cofilin signaling pathway. Opcml-deficient mice display impaired cognitive behaviors and abnormal sensorimotor gating, which are similar to features in neuropsychiatric disorders such as schizophrenia. Notably, the administration of aripiprazole partially restores the abnormal behaviors in Opcml-/- mice by increasing the phosphorylated cofilin level and facilitating spine maturation. We demonstrated a critical role of the schizophrenia-susceptible gene OPCML in spine maturation and cognitive behaviors via regulating the ephrin-EphB2-cofilin signaling pathway, providing further insights into the characteristics of schizophrenia.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Maoqing Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Qiongwei Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yang You
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Hao Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yuanlin Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Liwei Mei
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiaqin Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Lifang Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Rena Li
- National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Jun Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
10
|
Gritsenko PG, Atlasy N, Dieteren CEJ, Navis AC, Venhuizen JH, Veelken C, Schubert D, Acker-Palmer A, Westerman BA, Wurdinger T, Leenders W, Wesseling P, Stunnenberg HG, Friedl P. p120-catenin-dependent collective brain infiltration by glioma cell networks. Nat Cell Biol 2020; 22:97-107. [PMID: 31907411 PMCID: PMC6952556 DOI: 10.1038/s41556-019-0443-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/26/2019] [Indexed: 12/23/2022]
Abstract
Diffuse brain infiltration by glioma cells causes detrimental disease progression, but its multicellular coordination is poorly understood. We show here that glioma cells infiltrate the brain collectively as multicellular networks. Contacts between moving glioma cells are adaptive epithelial-like or filamentous junctions stabilized by N-cadherin, β-catenin and p120-catenin, which undergo kinetic turnover, transmit intercellular calcium transients and mediate directional persistence. Downregulation of p120-catenin compromises cell-cell interaction and communication, disrupts collective networks, and both the cadherin and RhoA binding domains of p120-catenin are required for network formation and migration. Deregulating p120-catenin further prevents diffuse glioma cell infiltration of the mouse brain with marginalized microlesions as the outcome. Transcriptomics analysis has identified p120-catenin as an upstream regulator of neurogenesis and cell cycle pathways and a predictor of poor clinical outcome in glioma patients. Collective glioma networks infiltrating the brain thus depend on adherens junctions dynamics, the targeting of which may offer an unanticipated strategy to halt glioma progression.
Collapse
Affiliation(s)
- Pavlo G Gritsenko
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nader Atlasy
- Department of Molecular Biology, Radboud University, Nijmegen, The Netherlands
- Center for Molecular Medicine, University Medical Center, Utrecht, The Netherlands
| | - Cindy E J Dieteren
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
- Protinhi Therapeutics, Nijmegen, The Netherlands
| | - Anna C Navis
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jan-Hendrik Venhuizen
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cornelia Veelken
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk Schubert
- Cognitive Neuroscience Department, Donders Institute, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and BMLS, Goethe University Frankfurt, Frankfurt, Germany
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Bart A Westerman
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - William Leenders
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, Amsterdam University Medical Centers/VUmc and Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Radboud University, Nijmegen, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud University Medical Center, Nijmegen, The Netherlands.
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Genomics Center, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Jiang W, Gong J, Rong Y, Yang X. A new co-culture method for identifying synaptic adhesion molecules involved in synapse formation. BIOPHYSICS REPORTS 2019. [DOI: 10.1007/s41048-019-0084-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
12
|
Abstract
Synapse formation is mediated by a surprisingly large number and wide variety of genes encoding many different protein classes. One of the families increasingly implicated in synapse wiring is the immunoglobulin superfamily (IgSF). IgSF molecules are by definition any protein containing at least one Ig-like domain, making this family one of the most common protein classes encoded by the genome. Here, we review the emerging roles for IgSF molecules in synapse formation specifically in the vertebrate brain, focusing on examples from three classes of IgSF members: ( a) cell adhesion molecules, ( b) signaling molecules, and ( c) immune molecules expressed in the brain. The critical roles for IgSF members in regulating synapse formation may explain their extensive involvement in neuropsychiatric and neurodevelopmental disorders. Solving the IgSF code for synapse formation may reveal multiple new targets for rescuing IgSF-mediated deficits in synapse formation and, eventually, new treatments for psychiatric disorders caused by altered IgSF-induced synapse wiring.
Collapse
Affiliation(s)
- Scott Cameron
- Center for Neuroscience, University of California, Davis, California 95618, USA; ,
| | | |
Collapse
|
13
|
Identification of Protein Tyrosine Phosphatase Receptor Type O (PTPRO) as a Synaptic Adhesion Molecule that Promotes Synapse Formation. J Neurosci 2017; 37:9828-9843. [PMID: 28871037 DOI: 10.1523/jneurosci.0729-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/26/2017] [Accepted: 08/22/2017] [Indexed: 01/07/2023] Open
Abstract
The proper formation of synapses-specialized unitary structures formed between two neurons-is critical to mediating information flow in the brain. Synaptic cell adhesion molecules (CAMs) are thought to participate in the initiation of the synapse formation process. However, in vivo functional analysis demonstrates that most well known synaptic CAMs regulate synaptic maturation and plasticity rather than synapse formation, suggesting that either CAMs work synergistically in the process of forming synapses or more CAMs remain to be found. By screening for unknown CAMs using a co-culture system, we revealed that protein tyrosine phosphatase receptor type O (PTPRO) is a potent CAM that induces the formation of artificial synapse clusters in co-cultures of human embryonic kidney 293 cells and hippocampal neurons cultured from newborn mice regardless of gender. PTPRO was enriched in the mouse brain and localized to postsynaptic sites at excitatory synapses. The overexpression of PTPRO in cultured hippocampal neurons increased the number of synapses and the frequency of miniature EPSCs (mEPSCs). The knock-down (KD) of PTPRO expression in cultured neurons by short hairpin RNA (shRNA) reduced the number of synapses and the frequencies of the mEPSCs. The effects of shRNA KD were rescued by expressing either full-length PTPRO or a truncated PTPRO lacking the cytoplasmic domain. Consistent with these results, the N-terminal extracellular domain of PTPRO was required for its synaptogenic activity in the co-culture assay. Our data show that PTPRO is a synaptic CAM that serves as a potent initiator of the formation of excitatory synapses.SIGNIFICANCE STATEMENT The formation of synapses is critical for the brain to execute its function and synaptic cell adhesion molecules (CAMs) play essential roles in initiating the formation of synapses. By screening for unknown CAMs using a co-culture system, we revealed that protein tyrosine phosphatase receptor type O (PTPRO) is a potent CAM that induces the formation of artificial synapse clusters. Using loss-of-function and gain-of-function approaches, we show that PTPRO promotes the formation of excitatory synapses. The N-terminal extracellular domain of PTPRO was required for its synaptogenic activity in cultured hippocampal neurons and the co-culture assay. Together, our data show that PTPRO is a synaptic CAM that serves as a potent initiator of synapse formation.
Collapse
|
14
|
Cooperative stochastic binding and unbinding explain synaptic size dynamics and statistics. PLoS Comput Biol 2017; 13:e1005668. [PMID: 28704399 PMCID: PMC5546711 DOI: 10.1371/journal.pcbi.1005668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 08/07/2017] [Accepted: 06/30/2017] [Indexed: 11/28/2022] Open
Abstract
Synapses are dynamic molecular assemblies whose sizes fluctuate significantly over time-scales of hours and days. In the current study, we examined the possibility that the spontaneous microscopic dynamics exhibited by synaptic molecules can explain the macroscopic size fluctuations of individual synapses and the statistical properties of synaptic populations. We present a mesoscopic model, which ties the two levels. Its basic premise is that synaptic size fluctuations reflect cooperative assimilation and removal of molecules at a patch of postsynaptic membrane. The introduction of cooperativity to both assimilation and removal in a stochastic biophysical model of these processes, gives rise to features qualitatively similar to those measured experimentally: nanoclusters of synaptic scaffolds, fluctuations in synaptic sizes, skewed, stable size distributions and their scaling in response to perturbations. Our model thus points to the potentially fundamental role of cooperativity in dictating synaptic remodeling dynamics and offers a conceptual understanding of these dynamics in terms of central microscopic features and processes. Neurons communicate through specialized sites of cell–cell contact known as synapses. This vast set of connections is believed to be crucial for sensory processing, motor function, learning and memory. Experimental data from recent years suggest that synapses are not static structures, but rather dynamic assemblies of molecules that move in, out and between nearby synapses, with these dynamics driving changes in synaptic properties over time. Thus, in addition to changes directed by activity or other physiological signals, synapses also exhibit spontaneous changes that have particular dynamical and statistical signatures. Given the immense complexity of synapses at the molecular scale, how can one hope to understand the principles that govern these spontaneous changes and statistical signatures? Here we offer a mesoscopic modelling approach—situated between detailed microscopic and abstract macroscopic approaches—to advance this understanding. Our model, based on simplified biophysical assumptions, shows that spontaneous cooperative binding and unbinding of proteins at synaptic sites can give rise to dynamic and statistical signatures similar to those measured in experiments. Importantly, we find cooperativity to be indispensable in this regard. Our model thus offers a conceptual understanding of synaptic dynamics and statistical features in terms of a fundamental biological principle, namely cooperativity.
Collapse
|
15
|
Bibollet-Bahena O, Okafuji T, Hokamp K, Tear G, Mitchell KJ. A dual-strategy expression screen for candidate connectivity labels in the developing thalamus. PLoS One 2017; 12:e0177977. [PMID: 28558017 PMCID: PMC5448750 DOI: 10.1371/journal.pone.0177977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
The thalamus or “inner chamber” of the brain is divided into ~30 discrete nuclei, with highly specific patterns of afferent and efferent connectivity. To identify genes that may direct these patterns of connectivity, we used two strategies. First, we used a bioinformatics pipeline to survey the predicted proteomes of nematode, fruitfly, mouse and human for extracellular proteins containing any of a list of motifs found in known guidance or connectivity molecules. Second, we performed clustering analyses on the Allen Developing Mouse Brain Atlas data to identify genes encoding surface proteins expressed with temporal profiles similar to known guidance or connectivity molecules. In both cases, we then screened the resultant genes for selective expression patterns in the developing thalamus. These approaches identified 82 candidate connectivity labels in the developing thalamus. These molecules include many members of the Ephrin, Eph-receptor, cadherin, protocadherin, semaphorin, plexin, Odz/teneurin, Neto, cerebellin, calsyntenin and Netrin-G families, as well as diverse members of the immunoglobulin (Ig) and leucine-rich receptor (LRR) superfamilies, receptor tyrosine kinases and phosphatases, a variety of growth factors and receptors, and a large number of miscellaneous membrane-associated or secreted proteins not previously implicated in axonal guidance or neuronal connectivity. The diversity of their expression patterns indicates that thalamic nuclei are highly differentiated from each other, with each one displaying a unique repertoire of these molecules, consistent with a combinatorial logic to the specification of thalamic connectivity.
Collapse
Affiliation(s)
| | - Tatsuya Okafuji
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Guy Tear
- Department of Developmental Neurobiology, New Hunt’s House, Guy’s Campus, King’s College, London, United Kingdom
| | - Kevin J. Mitchell
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
- Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
16
|
Wei M, Jia M, Zhang J, Yu L, Zhao Y, Chen Y, Ma Y, Zhang W, Shi YS, Zhang C. The Inhibitory Effect of α/β-Hydrolase Domain-Containing 6 (ABHD6) on the Surface Targeting of GluA2- and GluA3-Containing AMPA Receptors. Front Mol Neurosci 2017; 10:55. [PMID: 28303090 PMCID: PMC5333494 DOI: 10.3389/fnmol.2017.00055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/17/2017] [Indexed: 01/16/2023] Open
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) are major excitatory receptors that mediate fast neurotransmission in the mammalian brain. The surface expression of functional AMPARs is crucial for synaptic transmission and plasticity. AMPAR auxiliary subunits control the biosynthesis, membrane trafficking, and synaptic targeting of AMPARs. Our previous report showed that α/β-hydrolase domain-containing 6 (ABHD6), an auxiliary subunit for AMPARs, suppresses the membrane delivery and function of GluA1-containing receptors in both heterologous cells and neurons. However, it remained unclear whether ABHD6 affects the membrane trafficking of glutamate receptor subunits, GluA2 and GluA3. Here, we examine the effects of ABHD6 overexpression in HEK293T cells expressing GluA1, GluA2, GluA3, and stargazin, either alone or in combination. The results show that ABHD6 suppresses the glutamate-induced currents and the membrane expression of AMPARs when expressing GluA2 or GluA3 in the HEK293T cells. We generated a series of GluA2 and GluA3 C-terminal deletion constructs and confirm that the C-terminus of GluAs is required for ABHD6’s inhibitory effects on glutamate-induced currents and surface expression of GluAs. Meanwhile, our pull-down experiments reveal that ABHD6 binds to GluA1–3, and deletion of the C-terminal domain of GluAs abolishes this binding. These findings demonstrate that ABHD6 inhibits the AMPAR-mediated currents and its surface expression, independent of the type of AMPAR subunits, and this inhibitor’s effects are mediated through the binding with the GluAs C-terminal regions.
Collapse
Affiliation(s)
- Mengping Wei
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking UniversityBeijing, China; PKU-IDG (International Digital Group)/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Moye Jia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking UniversityBeijing, China; PKU-IDG (International Digital Group)/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Jian Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking UniversityBeijing, China; PKU-IDG (International Digital Group)/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Lulu Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking UniversityBeijing, China; PKU-IDG (International Digital Group)/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Yunzhi Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking UniversityBeijing, China; PKU-IDG (International Digital Group)/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Yingqi Chen
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking UniversityBeijing, China; PKU-IDG (International Digital Group)/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Yimeng Ma
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking UniversityBeijing, China; PKU-IDG (International Digital Group)/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| | - Wei Zhang
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University Shijiazhuang, China
| | - Yun S Shi
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University Nanjing, China
| | - Chen Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking UniversityBeijing, China; PKU-IDG (International Digital Group)/McGovern Institute for Brain Research, Peking UniversityBeijing, China
| |
Collapse
|
17
|
Gonzalez-Lozano MA, Klemmer P, Gebuis T, Hassan C, van Nierop P, van Kesteren RE, Smit AB, Li KW. Dynamics of the mouse brain cortical synaptic proteome during postnatal brain development. Sci Rep 2016; 6:35456. [PMID: 27748445 PMCID: PMC5066275 DOI: 10.1038/srep35456] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 09/28/2016] [Indexed: 01/04/2023] Open
Abstract
Development of the brain involves the formation and maturation of numerous synapses. This process requires prominent changes of the synaptic proteome and potentially involves thousands of different proteins at every synapse. To date the proteome analysis of synapse development has been studied sparsely. Here, we analyzed the cortical synaptic membrane proteome of juvenile postnatal days 9 (P9), P15, P21, P27, adolescent (P35) and different adult ages P70, P140 and P280 of C57Bl6/J mice. Using a quantitative proteomics workflow we quantified 1560 proteins of which 696 showed statistically significant differences over time. Synaptic proteins generally showed increased levels during maturation, whereas proteins involved in protein synthesis generally decreased in abundance. In several cases, proteins from a single functional molecular entity, e.g., subunits of the NMDA receptor, showed differences in their temporal regulation, which may reflect specific synaptic development features of connectivity, strength and plasticity. SNARE proteins, Snap 29/47 and Stx 7/8/12, showed higher expression in immature animals. Finally, we evaluated the function of Cxadr that showed high expression levels at P9 and a fast decline in expression during neuronal development. Knock down of the expression of Cxadr in cultured primary mouse neurons revealed a significant decrease in synapse density.
Collapse
Affiliation(s)
- Miguel A Gonzalez-Lozano
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics &Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Patricia Klemmer
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics &Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Titia Gebuis
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics &Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Chopie Hassan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Pim van Nierop
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics &Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics &Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics &Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics &Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Korte M, Schmitz D. Cellular and System Biology of Memory: Timing, Molecules, and Beyond. Physiol Rev 2016; 96:647-93. [PMID: 26960344 DOI: 10.1152/physrev.00010.2015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The storage of information in the mammalian nervous systems is dependent on a delicate balance between change and stability of neuronal networks. The induction and maintenance of processes that lead to changes in synaptic strength to a multistep process which can lead to long-lasting changes, which starts and ends with a highly choreographed and perfectly timed dance of molecules in different cell types of the central nervous system. This is accompanied by synchronization of specific networks, resulting in the generation of characteristic "macroscopic" rhythmic electrical fields, whose characteristic frequencies correspond to certain activity and information-processing states of the brain. Molecular events and macroscopic fields influence each other reciprocally. We review here cellular processes of synaptic plasticity, particularly functional and structural changes, and focus on timing events that are important for the initial memory acquisition, as well as mechanisms of short- and long-term memory storage. Then, we cover the importance of epigenetic events on the long-time range. Furthermore, we consider how brain rhythms at the network level participate in processes of information storage and by what means they participating in it. Finally, we examine memory consolidation at the system level during processes of sleep.
Collapse
Affiliation(s)
- Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
19
|
Hussein NA, Delaney TL, Tounsel BL, Liebl FLW. The Extracellular-Regulated Kinase Effector Lk6 is Required for Glutamate Receptor Localization at the Drosophila Neuromuscular Junction. J Exp Neurosci 2016; 10:77-91. [PMID: 27199570 PMCID: PMC4866800 DOI: 10.4137/jen.s32840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 11/16/2022] Open
Abstract
The proper localization and synthesis of postsynaptic glutamate receptors are essential for synaptic plasticity. Synaptic translation initiation is thought to occur via the target of rapamycin (TOR) and mitogen-activated protein kinase signal-integrating kinase (Mnk) signaling pathways, which is downstream of extracellular-regulated kinase (ERK). We used the model glutamatergic synapse, the Drosophila neuromuscular junction, to better understand the roles of the Mnk and TOR signaling pathways in synapse development. These synapses contain non-NMDA receptors that are most similar to AMPA receptors. Our data show that Lk6, the Drosophila homolog of Mnk1 and Mnk2, is required in either presynaptic neurons or postsynaptic muscle for the proper localization of the GluRIIA glutamate receptor subunit. Lk6 may signal through eukaryotic initiation factor (eIF) 4E to regulate the synaptic levels of GluRIIA as either interfering with eIF4E binding to eIF4G or expression of a nonphosphorylatable isoform of eIF4E resulted in a significant reduction in GluRIIA at the synapse. We also find that Lk6 and TOR may independently regulate synaptic levels of GluRIIA.
Collapse
Affiliation(s)
- Nizar A Hussein
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Taylor L Delaney
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Brittany L Tounsel
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
20
|
Synaptic Cell Adhesion Molecules in Alzheimer's Disease. Neural Plast 2016; 2016:6427537. [PMID: 27242933 PMCID: PMC4868906 DOI: 10.1155/2016/6427537] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD.
Collapse
|
21
|
Leshchyns'ka I, Sytnyk V. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons. Front Cell Dev Biol 2016; 4:9. [PMID: 26909348 PMCID: PMC4754453 DOI: 10.3389/fcell.2016.00009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/01/2016] [Indexed: 12/04/2022] Open
Abstract
Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail.
Collapse
Affiliation(s)
- Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
22
|
Sarto-Jackson I, Tomaska L. How to bake a brain: yeast as a model neuron. Curr Genet 2016; 62:347-70. [PMID: 26782173 DOI: 10.1007/s00294-015-0554-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/14/2022]
Abstract
More than 30 years ago Dan Koshland published an inspirational essay presenting the bacterium as a model neuron (Koshland, Trends Neurosci 6:133-137, 1983). In the article he argued that there are several similarities between neurons and bacterial cells in "how signals are processed within a cell or how this processing machinery can be modified to produce plasticity". He then explored the bacterial chemosensory system to emphasize its attributes that are analogous to information processing in neurons. In this review, we wish to expand Koshland's original idea by adding the yeast cell to the list of useful models of a neuron. The fact that yeasts and neurons are specialized versions of the eukaryotic cell sharing all principal components sets the stage for a grand evolutionary tinkering where these components are employed in qualitatively different tasks, but following analogous molecular logic. By way of example, we argue that evolutionarily conserved key components involved in polarization processes (from budding or mating in Saccharomyces cervisiae to neurite outgrowth or spinogenesis in neurons) are shared between yeast and neurons. This orthologous conservation of modules makes S. cervisiae an excellent model organism to investigate neurobiological questions. We substantiate this claim by providing examples of yeast models used for studying neurological diseases.
Collapse
Affiliation(s)
- Isabella Sarto-Jackson
- Konrad Lorenz Institute for Evolution and Cognition Research, Martinstraße 12, 3400, Klosterneuburg, Austria.
| | - Lubomir Tomaska
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina B-1, Ilkovicova 6, 842 15, Bratislava, Slovak Republic.
| |
Collapse
|
23
|
Evidence for Association of Cell Adhesion Molecules Pathway and NLGN1 Polymorphisms with Schizophrenia in Chinese Han Population. PLoS One 2015; 10:e0144719. [PMID: 26674772 PMCID: PMC4682938 DOI: 10.1371/journal.pone.0144719] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/23/2015] [Indexed: 01/22/2023] Open
Abstract
Multiple risk variants of schizophrenia have been identified by Genome-wide association studies (GWAS). As a complement for GWAS, previous pathway-based analysis has indicated that cell adhesion molecules (CAMs) pathway might be involved in the pathogenesis of schizophrenia. However, less replication studies have been reported. Our objective was to investigate the association between CAMs pathway and schizophrenia in the Chinese Han population. We first performed a pathway analysis utilizing our previous GWAS data. The CAMs pathway (hsa04514) was significantly associated with schizophrenia using hybrid gene set-based test (P = 1.03×10−10) and hypergeometric test (P = 5.04×10−6). Moreover, 12 genes (HLA-A, HLA-C, HLA-DOB, HLA-DPB1, HLA-DQA2, HLA-DRB1, MPZ, CD276, NLGN1, NRCAM, CLDN1 and ICAM3) were modestly significantly associated with schizophrenia (P<0.01). Then, we selected one promising gene neuroligin 1 (NLGN1) to further investigate the association between eight significant SNPs and schizophrenia in an independent sample (1814 schizophrenia cases and 1487 healthy controls). Our study showed that seven SNPs of NLGN1 and two haplotype blocks were significantly associated with schizophrenia. This association was confirmed by the results of combined analysis. Among them, SNP rs9835385 had the most significant association with schizophrenia (P = 2.83×10−7). Furthermore, in silico analysis we demonstrated that NLGN1 is preferentially expressed in human brain and SNP rs1488547 was related to the expression level. We validated the association of CAMs pathway with schizophrenia in pathway-level and identified one susceptibility gene NLGN1. Further investigation of the roles of CAMs pathway in the pathogenesis of schizophrenia is warranted.
Collapse
|
24
|
Nelson SB, Valakh V. Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders. Neuron 2015; 87:684-98. [PMID: 26291155 DOI: 10.1016/j.neuron.2015.07.033] [Citation(s) in RCA: 696] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autism spectrum disorders (ASDs) and related neurological disorders are associated with mutations in many genes affecting the ratio between neuronal excitation and inhibition. However, understanding the impact of these mutations on network activity is complicated by the plasticity of these networks, making it difficult in many cases to separate initial deficits from homeostatic compensation. Here we explore the contrasting evidence for primary defects in inhibition or excitation in ASDs and attempt to integrate the findings in terms of the brain's ability to maintain functional homeostasis.
Collapse
Affiliation(s)
- Sacha B Nelson
- Department of Biology and Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| | - Vera Valakh
- Department of Biology and Center for Behavioral Genomics, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
25
|
Mosca TJ. On the Teneurin track: a new synaptic organization molecule emerges. Front Cell Neurosci 2015; 9:204. [PMID: 26074772 PMCID: PMC4444827 DOI: 10.3389/fncel.2015.00204] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022] Open
Abstract
To achieve proper synaptic development and function, coordinated signals must pass between the pre- and postsynaptic membranes. Such transsynaptic signals can be comprised of receptors and secreted ligands, membrane associated receptors, and also pairs of synaptic cell adhesion molecules. A critical open question bridging neuroscience, developmental biology, and cell biology involves identifying those signals and elucidating how they function. Recent work in Drosophila and vertebrate systems has implicated a family of proteins, the Teneurins, as a new transsynaptic signal in both the peripheral and central nervous systems. The Teneurins have established roles in neuronal wiring, but studies now show their involvement in regulating synaptic connections between neurons and bridging the synaptic membrane and the cytoskeleton. This review will examine the Teneurins as synaptic cell adhesion molecules, explore how they regulate synaptic organization, and consider how some consequences of human Teneurin mutations may have synaptopathic origins.
Collapse
Affiliation(s)
- Timothy J Mosca
- Department of Biology, Stanford University Stanford, CA, USA
| |
Collapse
|
26
|
Inoue T, Fujiwara T, Rikitake Y, Maruo T, Mandai K, Kimura K, Kayahara T, Wang S, Itoh Y, Sai K, Mori M, Mori K, Mizoguchi A, Takai Y. Nectin-1 spots as a novel adhesion apparatus that tethers mitral cell lateral dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb. J Comp Neurol 2015; 523:1824-39. [DOI: 10.1002/cne.23762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/15/2015] [Accepted: 02/18/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Takahito Inoue
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
| | - Takeshi Fujiwara
- CREST, Japan Science and Technology Agency; Kobe Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yoshiyuki Rikitake
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
- Division of Signal Transduction; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
| | - Tomohiko Maruo
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
| | - Kenji Mandai
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
| | - Kazushi Kimura
- Department of Physical Therapy; Faculty of Human Science; Hokkaido Bunkyo University; Eniwa Hokkaido 061-1449 Japan
| | - Tetsuro Kayahara
- Department of Medical Rehabilitation; Faculty of Rehabilitation; Kobe Gakuin University; Kobe Hyogo 651-2180 Japan
| | - Shujie Wang
- CREST, Japan Science and Technology Agency; Kobe Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yu Itoh
- CREST, Japan Science and Technology Agency; Kobe Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Kousyoku Sai
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Masahiro Mori
- CREST, Japan Science and Technology Agency; Kobe Japan
- Faculty of Health Sciences; Kobe University Graduate School of Health Sciences; Kobe Hyogo 654-0142 Japan
| | - Kensaku Mori
- Department of Physiology; Graduate School of Medicine, University of Tokyo; Tokyo Japan
- CREST, Japan Science and Technology Agency; Tokyo Japan
| | - Akira Mizoguchi
- CREST, Japan Science and Technology Agency; Kobe Japan
- Department of Neural Regeneration and Cell Communication; Mie University Graduate School of Medicine; Tsu Mie 514-8507 Japan
| | - Yoshimi Takai
- Division of Molecular and Cellular Biology; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0017 Japan
- Division of Pathogenetic Signaling; Department of Biochemistry and Molecular Biology; Kobe University Graduate School of Medicine; Kobe Hyogo 650-0047 Japan
- CREST, Japan Science and Technology Agency; Kobe Japan
| |
Collapse
|
27
|
Molecular Mechanoneurobiology: An Emerging Angle to Explore Neural Synaptic Functions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:486827. [PMID: 26106609 PMCID: PMC4461725 DOI: 10.1155/2015/486827] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/17/2015] [Indexed: 12/28/2022]
Abstract
Neural synapses are intercellular asymmetrical junctions that transmit biochemical and biophysical information between a neuron and a target cell. They are very tight, dynamic, and well organized by many synaptic adhesion molecules, signaling receptors, ion channels, and their associated cytoskeleton that bear forces. Mechanical forces have been an emerging factor in regulating axon guidance and growth, synapse formation and plasticity in physiological and pathological brain activity. Therefore, mechanical forces are undoubtedly exerted on those synaptic molecules and modulate their functions. Here we review current progress on how mechanical forces regulate receptor-ligand interactions, protein conformations, ion channels activation, and cytoskeleton dynamics and discuss how these regulations potentially affect synapse formation, stabilization, and plasticity.
Collapse
|
28
|
Abstract
Mutations in methyl-CpG-binding protein 2 (MeCP2) cause Rett syndrome and related autism spectrum disorders (Amir et al., 1999). MeCP2 is believed to be required for proper regulation of brain gene expression, but prior microarray studies in Mecp2 knock-out mice using brain tissue homogenates have revealed only subtle changes in gene expression (Tudor et al., 2002; Nuber et al., 2005; Jordan et al., 2007; Chahrour et al., 2008). Here, by profiling discrete subtypes of neurons we uncovered more dramatic effects of MeCP2 on gene expression, overcoming the "dilution problem" associated with assaying homogenates of complex tissues. The results reveal misregulation of genes involved in neuronal connectivity and communication. Importantly, genes upregulated following loss of MeCP2 are biased toward longer genes but this is not true for downregulated genes, suggesting MeCP2 may selectively repress long genes. Because genes involved in neuronal connectivity and communication, such as cell adhesion and cell-cell signaling genes, are enriched among longer genes, their misregulation following loss of MeCP2 suggests a possible etiology for altered circuit function in Rett syndrome.
Collapse
|
29
|
Xie ZR, Chen J, Wu Y. Linking 3D and 2D binding kinetics of membrane proteins by multiscale simulations. Protein Sci 2014; 23:1789-99. [PMID: 25271078 DOI: 10.1002/pro.2574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/29/2014] [Indexed: 01/26/2023]
Abstract
Membrane proteins are among the most functionally important proteins in cells. Unlike soluble proteins, they only possess two translational degrees of freedom on cell surfaces, and experience significant constraints on their rotations. As a result, it is currently challenging to characterize the in situ binding of membrane proteins. Using the membrane receptors CD2 and CD58 as a testing system, we developed a multiscale simulation framework to study the differences of protein binding kinetics between 3D and 2D environments. The association and dissociation processes were implemented by a coarse-grained Monte-Carlo algorithm, while the dynamic properties of proteins diffusing on lipid bilayer were captured from all-atom molecular dynamic simulations. Our simulations show that molecular diffusion, linker flexibility and membrane fluctuations are important factors in adjusting binding kinetics. Moreover, by calibrating simulation parameters to the measurements of 3D binding, we derived the 2D binding constant which is quantitatively consistent with the experimental data, indicating that the method is able to capture the difference between 3D and 2D binding environments. Finally, we found that the 2D dissociation between CD2 and CD58 is about 100-fold slower than the 3D dissociation. In summary, our simulation framework offered a generic approach to study binding mechanisms of membrane proteins.
Collapse
Affiliation(s)
- Zhong-Ru Xie
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, 10461
| | | | | |
Collapse
|