1
|
Zhao W, Hu J, Li L, Xue L, Tian J, Zhang T, Yang L, Gu Y, Zhang J. Integrating lipidomics and metabolomics to reveal biomarkers of fat deposition in chicken meat. Food Chem 2025; 464:141732. [PMID: 39461315 DOI: 10.1016/j.foodchem.2024.141732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Local chicken breeds in China are highly regarded for their superior meat flavor. This study utilized lipidomics and non-targeted metabolomics to identify biomarkers influencing intramuscular fat (IMF) deposition in the breast muscle of 42- and 180-day-old Jingyuan chickens. Results revealed that IMF content was higher in the breast muscle of 180-day-old Jingyuan chickens compared to 42-day-old chickens (P < 0.01). We identified 248 differentially expressed lipids (DELs) and 1042 differentially expressed metabolites (DEMs). The breast muscle of 180-day-old chickens contained higher levels of TG, fatty acid (FA) and cholesteryl ester (CE), with C16:1 and C18:1 being particularly abundant. Integration of non-targeted metabolomic analyses emphasized glycerolipid metabolism and vitamin digestion and absorption as the main pathways distinguishing between 42- and 180-day-old chickens. Additionally, the differential metabolites LysoPS 18:1, LysoPC 20:3, LysoPC 18:2, LysoPI 20:3, and Pantothenic acid contributed to enhanced meat flavor in Jingyuan chickens.
Collapse
Affiliation(s)
- Wei Zhao
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jiahuan Hu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Lanlan Li
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Lin Xue
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Jinli Tian
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Tong Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Lijuan Yang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Zhang H, Hou W, He Y, Liu Y, Ju Y, Shi X, Zhang Y, Qiao L, He J, Jiang J. Enhanced protection for interfacial lipid ozonolysis by sulfur-containing amino acids. J Colloid Interface Sci 2025; 677:244-249. [PMID: 39094485 DOI: 10.1016/j.jcis.2024.07.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/10/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Abstract
Sulfur-containing amino acids have been proposed as drugs for lipid oxidation associated with diseases for a long time, but the molecular-level mechanism on the effectiveness of sulfur-containing amino acids against lipid oxidation remains elusive. In this work, with the interfacial sensitivity mass spectrometry method, oxidation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG), a widely used model lipid, was significantly inhibited on hung droplet surface in presence of sulfur-containing amino acids, such as cysteine (Cys) and methionine (Met). Both the Cys and Met showed a self-sacrificing protection. The amino acids with -S-R tails (R referring to methyl or t-butyl group) showed more effective against POPG oxidation than those with -SH tails, and this process was not related to the conformations of amino acids. The low effectiveness of Cys during the interfacial chemistry was proved to arise from the formation of disulfide bond. This study extends the current understanding of chemistry of sulfur-containing amino acids and provides insights to aid the sulfur-containing amino acids against cell oxidation.
Collapse
Affiliation(s)
- Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Wenhao Hou
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China; Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yuwei He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Yaqi Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Yun Ju
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Xiaohui Shi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Yuexin Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Lina Qiao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jing He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
| | - Jie Jiang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| |
Collapse
|
3
|
Hwang W, Hong WJ, Kim EJ, Kim J, Moon S, Jung KH. The Rice Online Expression Profiles Array Database Version 2 (ROADv2): An Interactive Atlas for Rice Functional Genomics. RICE (NEW YORK, N.Y.) 2024; 17:75. [PMID: 39724366 DOI: 10.1186/s12284-024-00753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
The Rice Online expression profiles Array Database version 2 (ROADv2; https://roadv2.khu.ac.kr ), an enhanced database for rice gene expression analysis, transitions from the previous microarray platforms to RNA-Seq data for improved accuracy. It encompasses 328 datasets from diverse experimental series, including anatomy, abiotic and biotic stress, hormone response, and nutrient starvation. Key updates include gene annotation (upgraded to RGAP version 7) and functional enrichment data (utilizing recent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) versions). ROADv2 debuts protein-protein interaction (PPI) network analysis and broadens interactive visualization across all features. Gene expression data are segmented into anatomy, biotic, abiotic, nutrient, and hormone categories, with user-interactive heatmaps displaying normalized log2 expression and log2 fold change data. Coexpression correlation analysis identifies genes with similar patterns, visualized through interactive network graphs. Functional enrichment tools display GO and KEGG analyses with significant terms emphasized in various formats. PPI network analysis integrates coexpression data to enhance prediction accuracy. Validation studies affirm the database's reliability, demonstrating reproducible tissue/organ-specific expression patterns. ROADv2 provides a comprehensive resource for rice functional genomics studies.
Collapse
Affiliation(s)
- Wonjae Hwang
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Smart Farm Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Eui-Jung Kim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Kim
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sunok Moon
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea.
- Research Center for Plant Plasticity, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Senko D, Efimova O, Osetrova M, Anikanov N, Boyko M, Sharaev M, Morozova A, Zorkina Y, Kislov M, Kostyuk G, Stekolshchikova E, Khaitovich P. White matter lipidome alterations in the schizophrenia brain. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:123. [PMID: 39725684 DOI: 10.1038/s41537-024-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Numerous brain imaging studies have reported white matter alterations in schizophrenia, but the lipidome analysis of the corresponding tissue remains incomplete. In this study, we investigated the lipidome composition of six subcortical white matter regions corresponding to major axonal tracks in both control subjects and schizophrenia patients. All six regions exhibited a consistent pattern of quantitative lipidome alterations in schizophrenia, involving myelin-forming and mitochondria associated lipid classes. While alteration levels of myelin-forming lipids, particularly sphingolipids, aligned with the extent of the myelin changes reported in structural brain imaging studies, a significant decrease of mitochondria in the white matter, indicated by the lipidome alterations, was not previously investigated. To verify this effect, we performed lipidome analysis in a larger set of individuals and in the mitochondria-enriched membrane fraction, as well as directly quantified mitochondrial content. Our results suggest a substantial reduction of the mitochondrial quotient accompanied by the imbalance in myelin lipids in schizophrenia white matter.
Collapse
Affiliation(s)
- Dmitry Senko
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| | - Olga Efimova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Maria Osetrova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
| | | | - Maria Boyko
- Skolkovo Institute of Science and Technology, Moscow, Russia
- BIMAI-lab, Sharjah, UAE
| | - Maksim Sharaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- BIMAI-lab, Sharjah, UAE
| | - Anna Morozova
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Yana Zorkina
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Maksim Kislov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Georgiy Kostyuk
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
5
|
Wu W, Huynh K, Du JC, She G, Duong T, Ziemann M, Zhao WB, Deng XL, Meikle PJ, Du XJ. Hippo pathway activation causes multiple lipid derangements in a murine model of cardiomyopathy. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1870:159590. [PMID: 39709046 DOI: 10.1016/j.bbalip.2024.159590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Metabolic reprogramming occurs in cardiomyopathy and heart failure contributing to progression of the disease. Activation of cardiac Hippo pathway signaling has been implicated in mediating mitochondrial dysfunction and metabolic reprogramming in cardiomyopathy, albeit influence of Hippo pathway on lipid profile is unclear. Using a dual-omics approach, we determined alterations of cardiac lipids in a mouse model of cardiomyopathy due to enhanced Hippo signaling and explored molecular mechanisms. Lipidomic profiling discovered multiple alterations in lipid classes, notably reduction of triacylglycerol, diacylglycerol, phospholipids and ether lipids, and elevation of sphingolipids and lysophosphatidylcholine. Mechanistically, we found downregulated expression of PPARα and PGC-1α at mRNA and protein levels, and downregulated expression of PPARα-target genes, indicating attenuated transcriptional activity of PPARα/PGC-1α. Lipidomics-guided transcriptomic analysis revealed dysregulated expression of gene sets that were responsible for enhanced biosynthesis of ceramides, suppression of TG biosynthesis, storage, hydrolysis and mitochondrial fatty acid oxidation, and reduction of peroxisome-localized biosynthesis of ether lipids. Collectively, Hippo pathway activation with attenuated PPARα/PGC-1α signaling is the underlying mechanism for alterations in cardiac lipids in cardiomyopathy and failing heart.
Collapse
Affiliation(s)
- Wei Wu
- Department of Cardiology, Shaanxi Provincial Hospital, Xi'an, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jin-Chan Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Thy Duong
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mark Ziemann
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia; Bioinformatics Working Group, Burnet Institute, Melbourne, Victoria, Australia
| | - Wei-Bo Zhao
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Endocrinology, The Ninth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Xiao-Jun Du
- Department of Cardiology, Shaanxi Provincial Hospital, Xi'an, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, China; Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Weber F, Axmann M, Sezgin E, Amaro M, Sych T, Hochreiner A, Hof M, Schütz GJ, Stangl H, Plochberger B. "Head-to-Toe" Lipid Properties Govern the Binding and Cargo Transfer of High-Density Lipoprotein. MEMBRANES 2024; 14:261. [PMID: 39728711 DOI: 10.3390/membranes14120261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024]
Abstract
The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.e., binding and/or cargo transfer). The analysis of interactions with HDL particles and various lipid phases revealed that both fully fluid and some gel-phase lipids preferentially interact with HDL particles, although differences were observed in protein binding and cargo exchange. Both interactions were reduced with ordered lipid mixtures containing cholesterol. To investigate the mechanism, membranes were prepared from single-lipid components, enabling step-by-step modification of the lipid building blocks. On a biophysical level, the different mixtures displayed varying stiffness, fluidity, and hydrogen bond network changes. Increased glycerol mobility and a strengthened hydrogen bond network enhanced anchoring interactions, while fluid membranes with a reduced water network facilitated cargo transfer. In summary, the data indicate that different lipid classes are involved depending on the type of interaction, whether anchoring or cargo transfer.
Collapse
Affiliation(s)
- Florian Weber
- Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet,171 77 Solna, Sweden
| | - Markus Axmann
- Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet,171 77 Solna, Sweden
| | - Mariana Amaro
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Science, 182 00 Prague, Czech Republic
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet,171 77 Solna, Sweden
| | - Armin Hochreiner
- Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Science, 182 00 Prague, Czech Republic
| | | | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Birgit Plochberger
- Department of Medical Engineering, Upper Austria University of Applied Sciences, 4020 Linz, Austria
- Research Group Nanoscopy, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
| |
Collapse
|
7
|
Bisogno S, Depciuch J, Gulzar H, Heber MF, Kobiałka M, Gąsior Ł, Bereta A, Pieczara A, Fic K, Musson R, Garcia Gamero G, Pardo Martinez M, Fornés Pérez A, Tatíčková M, Holubcova Z, Barańska M, Ptak GE. Female-age-dependent changes in the lipid fingerprint of the mammalian oocytes. Hum Reprod 2024; 39:2754-2767. [PMID: 39366679 PMCID: PMC11630086 DOI: 10.1093/humrep/deae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
STUDY QUESTION Can oocyte functionality be assessed by observing changes in their intracytoplasmic lipid droplets (LDs) profiles? SUMMARY ANSWER Lipid profile changes can reliably be detected in human oocytes; lipid changes are linked with maternal age and impaired developmental competence in a mouse model. WHAT IS KNOWN ALREADY In all cellular components, lipid damage is the earliest manifestation of oxidative stress (OS), which leads to a cascade of negative consequences for organelles and DNA. Lipid damage is marked by the accumulation of LDs. We hypothesized that impaired oocyte functionality resulting from aging and associated OS could be assessed by changes in LDs profile, hereafter called lipid fingerprint (LF). STUDY DESIGN, SIZE, DURATION To investigate if it is possible to detect differences in oocyte LF, we subjected human GV-stage oocytes to spectroscopic examinations. For this, a total of 48 oocytes derived from 26 young healthy women (under 33 years of age) with no history of infertility, enrolled in an oocyte donation program, were analyzed. Furthermore, 30 GV human oocytes from 12 women were analyzed by transmission electron microscopy (TEM). To evaluate the effect of oocytes' lipid profile changes on embryo development, a total of 52 C57BL/6 wild-type mice and 125 Gnpat+/- mice were also used. PARTICIPANTS/MATERIALS, SETTING, METHODS Human oocytes were assessed by label-free cell imaging via coherent anti-Stokes Raman spectroscopy (CARS). Further confirmation of LF changes was conducted using spontaneous Raman followed by Fourier transform infrared (FTIR) spectroscopies and TEM. Additionally, to evaluate whether LF changes are associated with developmental competence, mouse oocytes and blastocysts were evaluated using TEM and the lipid dyes BODIPY and Nile Red. Mouse embryonic exosomes were evaluated using flow cytometry, FTIR and FT-Raman spectroscopies. MAIN RESULTS AND THE ROLE OF CHANCE Here we demonstrated progressive changes in the LF of oocytes associated with the woman's age consisting of increased LDs size, area, and number. LF variations in oocytes were detectable also within individual donors. This finding makes LF assessment a promising tool to grade oocytes of the same patient, based on their quality. We next demonstrated age-associated changes in oocytes reflected by lipid peroxidation and composition changes; the accumulation of carotenoids; and alterations of structural properties of lipid bilayers. Finally, using a mouse model, we showed that LF changes in oocytes are negatively associated with the secretion of embryonic exosomes prior to implantation. Deficient exosome secretion disrupts communication between the embryo and the uterus and thus may explain recurrent implantation failures in advanced-age patients. LIMITATIONS, REASONS FOR CAUTION Due to differences in lipid content between different species' oocytes, the developmental impact of lipid oxidation and consequent LF changes may differ across mammalian oocytes. WIDER IMPLICATIONS OF THE FINDINGS Our findings open the possibility to develop an innovative tool for oocyte assessment and highlight likely functional connections between oocyte LDs and embryonic exosome secretion. By recognizing the role of oocyte LF in shaping the embryo's ability to implant, our original work points to future directions of research relevant to developmental biology and reproductive medicine. STUDY FUNDING/COMPETING INTEREST(S) This research was funded by National Science Centre of Poland, Grants: 2021/41/B/NZ3/03507 and 2019/35/B/NZ4/03547 (to G.E.P.); 2022/44/C/NZ4/00076 (to M.F.H.) and 2019/35/N/NZ3/03213 (to Ł.G.). M.F.H. is a National Agency for Academic Exchange (NAWA) fellow (GA ULM/2019/1/00097/U/00001). K.F. is a Diamond Grant fellow (Ministry of Education and Science GA 0175/DIA/2019/28). The open-access publication of this article was funded by the Priority Research Area BioS under the program "Excellence Initiative - Research University" at the Jagiellonian University in Krakow. The authors declare no competing interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Simona Bisogno
- Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| | - Hafsa Gulzar
- Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Kraków, Poland
| | - Maria Florencia Heber
- Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Michał Kobiałka
- Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Łukasz Gąsior
- Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Adrianna Bereta
- Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Anna Pieczara
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Kraków, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University in Krakow, Kraków, Poland
| | - Kinga Fic
- Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Richard Musson
- Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Kraków, Poland
| | - Gabriel Garcia Gamero
- Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Maria Pardo Martinez
- Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Alba Fornés Pérez
- Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| | - Martina Tatíčková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zuzana Holubcova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Reprofit International, Brno, Czech Republic
| | - Małgorzata Barańska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University in Krakow, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University in Kraków, Kraków, Poland
| | - Grażyna Ewa Ptak
- Malopolska Centre of Biotechnology, Jagiellonian University in Kraków, Kraków, Poland
| |
Collapse
|
8
|
Elkammash A, Zaki A, Tawfik O, Gouda S. Ferroptosis: A Key Driver in Atherosclerosis Progression and Arterial Disease. Rev Cardiovasc Med 2024; 25:441. [PMID: 39742226 PMCID: PMC11683713 DOI: 10.31083/j.rcm2512441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 01/03/2025] Open
Abstract
Atherosclerosis (AS) is a growing global health epidemic and is the leading cause of cardiovascular health problems, including ischemic stroke, coronary artery disease, and peripheral vascular disease. Despite extensive research on the underlying mechanisms of AS, iron remains an under-investigated mediator in the atherosclerotic process. Iron's involvement in AS is primarily linked to the iron-induced programmed cell death process known as ferroptosis. Ferroptosis is initiated in endothelial cells when iron overload triggers the Fenton reaction, resulting in the production of reactive oxygen species (ROS) and lipid peroxides. This oxidative stress damages cellular components, ultimately leading to cell death. The review examines the role of iron overload and ferroptosis in the progression and instability of atherosclerotic plaques. Additionally, we explore the potential therapeutic roles of iron chelators and ROS scavengers in mitigating the adverse effects of ferroptosis. The findings indicate that ferroptosis contributes significantly to the progression and instability of atherosclerotic plaques by promoting oxidative damage and cellular dysfunction. Iron chelators and ROS scavengers have shown promise in reducing ferroptosis-induced damage in endothelial cells. These therapeutic agents can potentially stabilize atherosclerotic plaques and prevent the progression of AS. Ferroptosis is a critical yet under-explored pathway in the development and progression of atherosclerosis. Targeting iron-induced oxidative stress through iron chelation and ROS scavenging presents a promising therapeutic strategy for mitigating the adverse effects of ferroptosis on atherosclerotic plaque stability. Further research is needed to validate these therapeutic approaches and better understand the molecular mechanisms underlying ferroptosis in atherosclerosis.
Collapse
Affiliation(s)
- Amr Elkammash
- Department of Cardiology, Bristol Heart Institute, BS2 8HW Bristol, UK
| | - Abrar Zaki
- Department of General Medicine, Eastbourne District General Hospital, BN21 2UD East Sussex, UK
| | - Omar Tawfik
- Department of Cardiology, Bristol Heart Institute, BS2 8HW Bristol, UK
| | - Sherif Gouda
- Department of Cardiology, Royal Gwent Hospital, NP20 2UB Newport, UK
| |
Collapse
|
9
|
Luo Y, Ou X, Liu D, Shi H, Liao J, Yu R, Song L, Zhu J. A novel exosome-like nanovesicles from Cordyceps militaris potentiate immunomodulatory and anti-tumor effect by reprogramming macrophages. Life Sci 2024; 358:123163. [PMID: 39442867 DOI: 10.1016/j.lfs.2024.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/21/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
AIMS Fungi-derived exosome-like nanovesicles (ENs) are emerging as a highly promising class of nanoparticles, particularly noted for their cost-effective production. However, their impact on immune regulation and their potential as anti-tumor agents need further exploration. Our study specifically focused on the investigation of the immunomodulatory and anti-tumor properties of ENs derived from Cordyceps militaris, an edible fungus that had achieved large-scale commercial production, referred to as CMDENs. MAIN METHODS The ENs of C. militaris were collected through ultra-high-speed centrifugation, followed by characterization of their physicochemical properties and contents. Subsequently, the biological distribution of these vesicles was investigated using in vivo fluorescence imaging experiments. Finally, the immune activation and polarization of macrophages were examined through both in vitro and in vivo experiments. KEY FINDINGS Herein, we presented the discovery of CMDENs that were rich in proteins, lipids, flavonoids and alkaloids. Immunomodulatory experiments conducted in vivo demonstrated that CMDENs exhibited protective effects against cyclophosphamide-induced immunosuppression in mice by significantly enhancing macrophage phagocytosis and peripheral blood immune cell counts. Moreover, CMDENs effectively induced the polarization of M0- and M2-like macrophages toward M1-like phenotype by activating MAPKs signaling pathway. Notably, CMDENs exhibited remarkable capabilities in inhibiting tumor growth by reprogramming tumor-associated macrophages and activating tumor-infiltrating T lymphocytes, without any observed toxicity in mice bearing tumors. SIGNIFICANCE Our research suggested that CMDENs possessed the potential to be explored as a nano-immunomodulatory agent for cancer.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China; Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xiaozheng Ou
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China
| | - De Liu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China
| | - Hui Shi
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jiapei Liao
- Department of Natural Product Chemistry, Jinan University, Guangzhou 511443, China
| | - Rongmin Yu
- Department of Natural Product Chemistry, Jinan University, Guangzhou 511443, China.
| | - Liyan Song
- Department of Pharmacology, College of Pharmacy, Jinan University, Guangzhou 511443, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
10
|
Zhang X, Chen Q, Wu L, Zhang W, Zhao X. Radical-directed dissociation mass spectrometry for differentiation and relative quantitation of isomeric ether-linked phosphatidylcholines. Anal Chim Acta 2024; 1331:343337. [PMID: 39532421 DOI: 10.1016/j.aca.2024.343337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Ether-linked phosphatidylcholines (PCs) include both plasmanyl and plasmenyl PCs, which contain an ether or a vinyl ether bond at the sn-1 linkage position, respectively. Profiling and quantifying ether PCs with accurate structural information is challenging because of the common presence of isomeric and isobaric species in a lipidome. RESULTS In the present study, radical directed dissociation (RDD) from collision-induced dissociation (CID) of the bicarbonate anion adduct of ether PCs has been investigated to differentiate and relatively quantify ether PCs. Alkyl- and alkenyl- PCs give diagnostic characteristic fragment patterns that enable their confident identification and isomer differentiation. Additionally, the sn-position specific product ions have proven effective for relative quantitation among isomers in ether PCs and their isobaric PC species. Using this methodology, we successfully identified a total of 30 PC-O species, 21 PC-P species at the chain composition level, and 22 species of isobaric PC at the sn-position level in the human plasma lipid extract. The quantitative analysis revealed that ether PCs with a 20:4 fatty acyl chain are relatively more abundant in human plasma. Finally, the profile of ether PCs in type 2 diabetic (T2D) groups compared to normal control groups revealed a significant decrease in PC-O 18:1/20:5. We also found it is the PC species containing a 17-carbon fatty acyl chain, rather than their isobaric ether PCs, that shows a decreasing trend in the T2D groups. SIGNIFICANCE ether-linked PCs are firstly investigated by RDD mass spectrometry.
Collapse
Affiliation(s)
- Xiaohui Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 010021, Hohhot, China
| | - Qinhua Chen
- Key Laboratory of TCM Clinical Pharmacy, Shenzhen Baoan Authentic TCM Therapy Hospital, Guangzhou University of Chinese Medicine, 518101, Shenzhen, China
| | - Lun Wu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, 442008, Shiyan, China
| | - Wenpeng Zhang
- Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, 100084, Beijing, China
| | - Xue Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, 010021, Hohhot, China.
| |
Collapse
|
11
|
Fukushima A, Imamura K, Takatani N, Hosokawa M, Beppu F. Identification of the Active EPA/AA-Binding Ether-Type Phosphatidylcholine Derived from the Starfish Patiria pectinifera for C2C12 Myotube Growth. ACS OMEGA 2024; 9:45564-45571. [PMID: 39554463 PMCID: PMC11561627 DOI: 10.1021/acsomega.4c07865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/12/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Concerns about nutritional approaches for promoting skeletal muscle mass and function have increased. This study assessed the effects of starfish-derived glycerophospholipids (PLs) (SPL), characterized by unique ether-linked subclasses, alkylacyl (Alk)- and alkenylacyl (Pls)-PL, on skeletal muscle function, focusing on myotube formation in C2C12 myoblasts. SPL was prepared via chloroform/methanol extraction from Patiria pectinifera, followed by silica gel chromatography fractionation. Myoblasts were induced to differentiate with or without SPL treatment. On day 7 of differentiation, 50 μg/mL of SPL treatment increased myotube diameter. The phosphatidylcholine (PC) fraction (SPC) also enhanced myotube growth at 30 μg/mL. LC-MS/MS analysis indicated the most abundant PC molecular species in SPC were Alk- and Pls-PC with eicosapentaenoic acid and arachidonic acid. Treatment with 1-O-hexadecyl-2-arachidonoyl-PC, 1-1(Z)-hexadecenyl-2-arachidonoyl-PC or 1-O-hexadecyl-2-eicosapentaenoyl-PC increased myotube diameter and myokine Il-15 mRNA expression. These results demonstrate a novel functionality of SPC and highlight the role of ether-type PC molecules in muscle function.
Collapse
Affiliation(s)
- Aoi Fukushima
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Kyosuke Imamura
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Naoki Takatani
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Fumiaki Beppu
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
12
|
Ventura G, Bianco M, Calvano CD, Losito I, Cataldi TRI. Tandem Mass Spectrometry in Untargeted Lipidomics: A Case Study of Peripheral Blood Mononuclear Cells. Int J Mol Sci 2024; 25:12077. [PMID: 39596146 PMCID: PMC11593930 DOI: 10.3390/ijms252212077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Peripheral blood mononuclear cells (PBMCs), including lymphocytes, are important components of the human immune system. These cells contain a diverse array of lipids, primarily glycerophospholipids (GPs) and sphingolipids (SPs), which play essential roles in cellular structure, signaling, and programmed cell death. This study presents a detailed analysis of GP and SP profiles in human PBMC samples using tandem mass spectrometry (MS/MS). Hydrophilic interaction liquid chromatography (HILIC) and electrospray ionization (ESI) coupled with linear ion-trap MS/MS were employed to investigate the diagnostic fragmentation patterns that aided in determining regiochemistry in complex lipid extracts. Specifically, the study explored the fragmentation patterns of various lipid species, including phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), their plasmalogen and lyso forms, phosphatidylserines (PSs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs), sphingomyelins (SMs), and dihexosylceramides (Hex2Cer). Our comprehensive analysis led to the characterization of over 200 distinct lipid species, significantly expanding our understanding of PBMC lipidome complexity. A freely available spreadsheet tool for simulating MS/MS spectra of GPs is provided, enhancing the accessibility and reproducibility of this research. This study advances our knowledge of PBMC lipidomes and establishes a robust analytical framework for future investigations in lipidomics.
Collapse
Affiliation(s)
- Giovanni Ventura
- Department of Chemistry, and Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (C.D.C.); (I.L.); (T.R.I.C.)
| | - Mariachiara Bianco
- Department of Chemistry, and Interdepartmental Research Center SMART, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy; (C.D.C.); (I.L.); (T.R.I.C.)
| | | | | | | |
Collapse
|
13
|
Wang Y, Chen Y, Ma X, Guan J, Gao Y, Hong X, Fu P, Zhou F. Apo E protein and related markers show the prognosis of stress urinary incontinence rats treated with modified Buzhong Yiqi Decoction. Int J Biol Macromol 2024; 280:135996. [PMID: 39326601 DOI: 10.1016/j.ijbiomac.2024.135996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Stress urinary incontinence (SUI) is a common disease that seriously affects the quality of life of patients. In recent years, studies have shown that apolipoprotein E (ApoE) plays a role in neuroprotection and repair, but its specific role in SUI remains unclear. The aim of this study was to investigate the effect of macromolecular protein ApoE related markers on the prognosis of rats with SUI treated by modified Buzhong Yiqi Decoction (MBZYQD), in order to provide a new target for the treatment of SUI. Healthy rats were selected to establish a SUI model and divided into groups. The levels of ApoE related metabolites in blood of rats were detected by Metabolomics analysis and Lipidomics analysis. The urine leakage point pressure (LPP) were compared in each group, and the therapeutic effect of MBZYQD was evaluated. Compared with the model group, the LPP of rats in MBZYQD supplemented group was significantly higher. Compared with the control group, the LPP of MBZYQD was not statistically significant before and after treatment. The macromolecular protein ApoE may plays a key role in the treatment of SUI by MBZYQD, which can improve symptoms by regulating lipid metabolism repair.
Collapse
Affiliation(s)
- Yuhan Wang
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yijie Chen
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiaofang Ma
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jili Guan
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yang Gao
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xuezi Hong
- School of Clinical Medicine, Hangzhou Normal University, Hangzhou, China
| | - Ping Fu
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - FeiFei Zhou
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| |
Collapse
|
14
|
Cho SH, Jones MA, Meyer K, Anderson DM, Chetyrkin S, Calcutt MW, Caprioli RM, Semenkovich CF, Boothby MR. B cell expression of the enzyme PexRAP, an intermediary in ether lipid biosynthesis, promotes antibody responses and germinal center size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618760. [PMID: 39464149 PMCID: PMC11507954 DOI: 10.1101/2024.10.17.618760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The qualities of antibody (Ab) responses provided by B lymphocytes and their plasma cell (PC) descendants are crucial facets of responses to vaccines and microbes. Metabolic processes and products regulate aspects of B cell proliferation and differentiation into germinal center (GC) and PC states as well as Ab diversification. However, there is little information about lymphoid cell-intrinsic functions of enzymes that mediate ether lipid biosynthesis, including a major class of membrane phospholipids. Imaging mass spectrometry (IMS) results had indicated that concentrations of a number of these phospholipids were substantially enhanced in GC compared to the background average in spleens. However, it was not clear if biosynthesis in B cells was a basis for this finding, or whether such cell-intrinsic biosynthesis contributes to B cell physiology or Ab responses. Ether lipid biosynthesis can involve the enzyme PexRAP, the product of the Dhrs7b gene. Using combinations of IMS and immunization experiments in mouse models with inducible Dhrs7b loss-of-function, we now show that B lineage-intrinsic expression of PexRAP promotes the magnitude and affinity maturation of a serological response. Moreover, the data revealed a Dhrs7b -dependent increase in ether phospholipids in primary follicles with a more prominent increase in GC. Mechanistically, PexRAP impacted B cell proliferation via enhanced survival associated with controlling levels of ROS and membrane peroxidation. These findings reveal a vital role of this peroxisomal enzyme in B cell homeostasis and the physiology of humoral immunity.
Collapse
|
15
|
Good CJ, Butrico CE, Colley ME, Emmerson LN, Gibson-Corley KN, Cassat JE, Spraggins JM, Caprioli RM. Uncovering lipid dynamics in Staphylococcus aureus osteomyelitis using multimodal imaging mass spectrometry. Cell Chem Biol 2024; 31:1852-1868.e5. [PMID: 39389064 DOI: 10.1016/j.chembiol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/20/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Osteomyelitis occurs when Staphylococcus aureus invades the bone microenvironment, resulting in a bone marrow abscess with a spatially defined architecture of cells and biomolecules. Imaging mass spectrometry and microscopy are tools that can be employed to interrogate the lipidome of S. aureus-infected murine femurs and reveal metabolic and signaling consequences of infection. Here, nearly 250 lipids were spatially mapped to healthy and infection-associated morphological features throughout the femur, establishing composition profiles for tissue types. Ether lipids and arachidonoyl lipids were altered between cells and tissue structures in abscesses, suggesting their roles in abscess formation and inflammatory signaling. Sterols, triglycerides, bis(monoacylglycero)phosphates, and gangliosides possessed ring-like distributions throughout the abscess, suggesting a hypothesized dysregulation of lipid metabolism in a population of cells that cannot be discerned with traditional microscopy. These data provide insight into the signaling function and metabolism of cells in the fibrotic border of abscesses, likely characteristic of lipid-laden macrophages.
Collapse
Affiliation(s)
- Christopher J Good
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Casey E Butrico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Madeline E Colley
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Lauren N Emmerson
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA; Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37235, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA.
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA; Department of Medicine, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
16
|
Li W, Wang N, Lv X, Wang D, Chen H, Wei F. Mass spectrometry unveils heat-induced changes in yolk oxylipins and key lipid molecules during home cooking. J Adv Res 2024:S2090-1232(24)00459-4. [PMID: 39414228 DOI: 10.1016/j.jare.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Oxylipins, as a widespread class of metabolic markers following oxidative stress, and several studies have reported dietary regulation of lipid metabolism. However, there is a lack of investigation of dietary oxylipins, especially cooking-induced changes in food lipid oxidation. OBJECTIVES Investigated the effects of cooking methods and lipid profiles on polyunsaturated fatty acids derived oxylipins generation within egg yolks. METHODS The lipid profile of egg yolk was determined by UPLC-QTOF-MS/MS, oxylipins were detected by HPLC-QTRAP-MS/MS, while the total fatty acid content was quantified by GC-FID. Random Forest (RF) and Partial Least Squares (PLS) regression models were employed to explore the association between oxidized lipids and key lipid species. RESULTS Heating reduced egg yolk docosahexaenoic acid (DHA) content, and no consistent trends for arachidonic acid (AA), linoleic acid (LA), and linolenic acid (ALA). Yolk lipid composition affected triacylglycerol (TG), phosphatidylethanolamine (PE), and LA-monoepoxide contents after cooking. 9- and 13-HODE (hydroxyoctadecadienoic acid), 9,10,13-TriHOME (trihydroxyoctadecenoic acid), 9,10- and 12,13-EpOME (epoxyoctadecenoic acid), 9,10- and 12,13-DiHOME (dihydroxyoctadecenoic acid), 5-HETE (hydroxyeicosatetraenoic acid), and 4-HDHA (hydroxydocosahexaenoic acid) were the prevalent oxylipins with high concentrations, accounting for 1.08 %-29.58 % of the total content of 29 oxylipins. Steaming resulted in a 1.9-fold increase in oxylipin concentrations in yolks compared to raw yolks, and boiling with or without shells (poaching) resulted in a 1.30- to 1.76-fold increase in oxylipin concentrations. In contrast, pan-fried yolks exhibited the lowest and least variable levels of total oxylipins, while still retaining some epoxides, including epoxyeicosatrienoic acid (EET) and EpOME. Utilizing big data analysis, we mapped the oxylipin network in both ordinary and DHA-enriched egg yolks, revealing a strong correlation between cooking-induced oxylipin production and variations in 24 lipid species. CONCLUSION Revealed the potential mechanisms and key lipid molecules for heating-induced oxylipin production of yolk through lipidomics and big data analysis.
Collapse
Affiliation(s)
- Wenting Li
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Nian Wang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Xin Lv
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Dan Wang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Hong Chen
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Fang Wei
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
17
|
Chen M, Huang Z, Miao G, Ren J, Liu J, Roman MJ, Devereux RB, Fabsitz RR, Zhang Y, Umans JG, Cole SA, Kelly TN, Fiehn O, Zhao J. Longitudinal lipidomic profiles of left ventricular mass and left ventricular hypertrophy in American Indians. JCI Insight 2024; 9:e181172. [PMID: 39405119 PMCID: PMC11601894 DOI: 10.1172/jci.insight.181172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/04/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUNDLeft ventricular hypertrophy (LVH) and dyslipidemia are strong, independent predictors for cardiovascular disease, but their relationship is less well studied. A longitudinal lipidomic profiling of left ventricular mass (LVM) and LVH is still lacking.METHODSUsing liquid chromatography-mass spectrometry (LC-MS), we repeatedly measured 1,542 lipids from 1,755 unique American Indians attending 2 exams (mean, 5 years apart). Cross-sectional associations of individual lipid species with LVM index (LVMI) were examined by generalized estimating equation (GEE), followed by replication in an independent biracial cohort (65% White, 35% Black). Baseline plasma lipids associated with LVH risk beyond traditional risk factors were identified by logistic GEE model in American Indians. Longitudinal associations between changes in lipids and changes in LVMI were examined by GEE, adjusting for baseline lipids, baseline LVMI, and covariates.RESULTSMultiple lipid species were significantly associated with LVMI or the risk of LVH in American Indians. Some lipids were confirmed in Black and White individuals. Moreover, some LVH-related lipids were inversely associated with risk of coronary heart disease (CHD). Longitudinal changes in several lipid species were significantly associated with changes in LVMI.CONCLUSIONAltered fasting plasma lipidome and its longitudinal change over time were significantly associated with LVMI and risk for LVH in American Indians. Our results offer insight into the role of individual lipid species in LV remodeling and risk of LVH, independent of known risk factors.FUNDINGThis study was supported by the NIH grant (R01DK107532). The Strong Heart Study has been funded in whole or in part with federal funds from the National Heart, Lung, and Blood Institute, NIH, Department of Health and Human Services, under contract nos. 75N92019D00027, 75N92019D00028, 75N92019D00029, and 75N92019D00030.
Collapse
Affiliation(s)
- Mingjing Chen
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Zhijie Huang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Guanhong Miao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jin Ren
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Jinling Liu
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mary J. Roman
- Division of Cardiology, Weill Cornell Medical College, New York, New York, USA
| | - Richard B. Devereux
- Division of Cardiology, Weill Cornell Medical College, New York, New York, USA
| | - Richard R. Fabsitz
- Missouri Breaks Industries Research Inc., Eagle Butte, South Dakota, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jason G. Umans
- MedStar Health Research Institute, Hyattsville, Maryland, USA
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC, USA
| | - Shelley A. Cole
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Tanika N. Kelly
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, UCD, Davis, California, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Bushong A, Sepúlveda M, Scherer M, Valachovic AC, Neill CM, Horn S, Choi Y, Lee LS, Baloni P, Hoskins T. Effects of Perfluorinated Alkyl Substances (PFAS) on Amphibian Body and Liver Conditions: Is Lipid Metabolism Being Perturbed throughout Metamorphosis? TOXICS 2024; 12:732. [PMID: 39453152 PMCID: PMC11510839 DOI: 10.3390/toxics12100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) may interact with peroxisome proliferator activated receptors (PPARs) and alter lipid homeostasis. Using Xenopus laevis, we investigated the effect of PFAS on (a) lipid homeostasis and whether this correlated to changes in body and hepatic condition; (b) the expression of hepatic genes regulated by PPAR; and (c) the hepatic lipidome. We chronically exposed tadpoles to 0.5 µg/L of either PFOS, PFHxS, PFOA, PFHxA, a binary mixture of PFOS and PFHxS (0.5 µg/L of each), or a control, from NF stage 52 through metamorphic climax. Growth, development, and survival were not affected, but we detected a sex-specific decrease in body condition at NF 66 (6.8%) and in hepatic condition (16.6%) across metamorphic climax for male tadpoles exposed to PFOS. We observed weak evidence for the transient downregulation of apolipoprotein-V (apoa5) at NF 62 in tadpoles exposed to PFHxA. Acyl-CoA oxidase 1 (acox1) was downregulated only in males exposed to PFHxS (Ln(Fold Change) = -0.54). We detected PFAS-specific downregulation of structural glycerophospholipids, while semi-quantitative profiling detected the upregulation in numerous glycerophospholipids, sphingomyelins, and diglycerides. Overall, our findings indicate that PFAS can induce sex-specific effects that change across larval development and metamorphosis. We demonstrate that PFAS alter lipid metabolism at environmentally relevant concentrations through divergent mechanisms that may not be related to PPARs, with an absence of effects on body condition, demonstrating the need for more molecular studies to elucidate mechanisms of PFAS-induced lipid dysregulation in amphibians and in other taxa.
Collapse
Affiliation(s)
- Anna Bushong
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Maria Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
- Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370146, Chile
| | - Meredith Scherer
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Abigail C. Valachovic
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - C. Melman Neill
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Sophia Horn
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| | - Youn Choi
- Department of Agronomy and Environmental & Ecological Engineering, Interdisciplinary Ecological Sciences and Engineering, Purdue University, West Lafayette, IN 47907, USA; (Y.C.); (L.S.L.)
| | - Linda S. Lee
- Department of Agronomy and Environmental & Ecological Engineering, Interdisciplinary Ecological Sciences and Engineering, Purdue University, West Lafayette, IN 47907, USA; (Y.C.); (L.S.L.)
| | - Priyanka Baloni
- College of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Tyler Hoskins
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; (M.S.)
| |
Collapse
|
19
|
Sarkar C, Lipinski MM. Role and Function of Peroxisomes in Neuroinflammation. Cells 2024; 13:1655. [PMID: 39404418 PMCID: PMC11476013 DOI: 10.3390/cells13191655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Peroxisomes are organelles involved in many cellular metabolic functions, including the degradation of very-long-chain fatty acids (VLCFAs; C ≥ 22), the initiation of ether-phospholipid synthesis, and the metabolism of reactive oxygen species. All of these processes are essential for the maintenance of cellular lipid and redox homeostasis, and their perturbation can trigger inflammatory response in immune cells, including in the central nervous system (CNS) resident microglia and astrocytes. Consistently, peroxisomal disorders, a group of congenital diseases caused by a block in peroxisomal biogenesis or the impairment of one of the peroxisomal enzymes, are associated with neuroinflammation. Peroxisomal function is also dysregulated in many neurodegenerative diseases and during brain aging, both of which are associated with neuroinflammation. This suggests that deciphering the role of peroxisomes in neuroinflammation may be important for understanding both congenital and age-related brain dysfunction. In this review, we discuss the current advances in understanding the role and function of peroxisomes in neuroinflammation.
Collapse
Affiliation(s)
- Chinmoy Sarkar
- Shock, Trauma and Anesthesiology Research (STAR) Center, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marta M. Lipinski
- Shock, Trauma and Anesthesiology Research (STAR) Center, Department of Anesthesiology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
20
|
Han J, Zheng D, Liu PS, Wang S, Xie X. Peroxisomal homeostasis in metabolic diseases and its implication in ferroptosis. Cell Commun Signal 2024; 22:475. [PMID: 39367496 PMCID: PMC11451054 DOI: 10.1186/s12964-024-01862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
Peroxisomes are dynamic organelles involved in various cellular processes, including lipid metabolism, redox homeostasis, and intracellular metabolite transfer. Accumulating evidence suggests that peroxisomal homeostasis plays a crucial role in human health and disease, particularly in metabolic disorders and ferroptosis. The abundance and function of peroxisomes are regulated by a complex interplay between biogenesis and degradation pathways, involving peroxins, membrane proteins, and pexophagy. Peroxisome-dependent lipid metabolism, especially the synthesis of ether-linked phospholipids, has been implicated in modulating cellular susceptibility to ferroptosis, a newly discovered form of iron-dependent cell death. This review discusses the current understanding of peroxisome homeostasis, its roles in redox regulation and lipid metabolism, and its implications in human diseases. We also summarize the main mechanisms of ferroptosis and highlight recent discoveries on how peroxisome-dependent metabolism and signaling influence ferroptosis sensitivity. A better understanding of the interplay between peroxisomal homeostasis and ferroptosis may provide new insights into disease pathogenesis and reveal novel therapeutic strategies for peroxisome-related metabolic disorders and ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Jiwei Han
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Pu-Ste Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shanshan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| |
Collapse
|
21
|
Lee RG, Rudler DL, Rackham O, Filipovska A. Interorganelle phospholipid communication, a house not so divided. Trends Endocrinol Metab 2024; 35:872-883. [PMID: 38972781 DOI: 10.1016/j.tem.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024]
Abstract
The presence of membrane-bound organelles with specific functions is one of the main hallmarks of eukaryotic cells. Organelle membranes are composed of specific lipids that govern their function and interorganelle communication. Discoveries in cell biology using imaging and omic technologies have revealed the mechanisms that drive membrane remodeling, organelle contact sites, and metabolite exchange. The interplay between multiple organelles and their interdependence is emerging as the next frontier for discovery using 3D reconstruction of volume electron microscopy (vEM) datasets. We discuss recent findings on the links between organelles that underlie common functions and cellular pathways. Specifically, we focus on the metabolism of ether glycerophospholipids that mediate organelle dynamics and their communication with each other, and the new imaging techniques that are powering these discoveries.
Collapse
Affiliation(s)
- Richard G Lee
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Danielle L Rudler
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia
| | - Oliver Rackham
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia; Curtin Medical School, Curtin University, Bentley, WA, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Aleksandra Filipovska
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre (QEIIMC), Nedlands, WA, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia; The University of Western Australia Centre for Child Health Research, Northern Entrance, Perth Children's Hospital, Nedlands, WA, Australia.
| |
Collapse
|
22
|
Kim H, Hwang J, Park C, Park R. Redox system and ROS-related disorders in peroxisomes. Free Radic Res 2024; 58:662-675. [PMID: 39550761 DOI: 10.1080/10715762.2024.2427088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Peroxisomes are essential organelles that help mitigate the oxidative damage caused by reactive oxygen species (ROS) through their antioxidant systems. They perform functions such as α-oxidation, β-oxidation, and the synthesis of cholesterol and ether phospholipids. During the breakdown of specific metabolites, peroxisomes generate ROS as byproducts, which can either be neutralized or contribute to oxidative stress. The relationship between peroxisomal metabolism and ROS-related disorders, including neurodegenerative diseases and cancers, has been studied for decades; however, the exact mechanisms remain unclear. Our review will provide recent insights into the peroxisomal redox system and its association with oxidative stress-related diseases.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jaetaek Hwang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Channy Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
23
|
Zhang Q, Li Z, Liu T, Li J, Bai C. Synthesis of Plasmalogen Derivatives with Unnatural Fatty Acids as Substrates for Ferroptosis Induction. ACS Chem Biol 2024; 19:1883-1887. [PMID: 39116319 DOI: 10.1021/acschembio.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Lipid peroxidation, the key step in the ferroptosis process, requires the oxidation of the double bonds of phospholipids in cellular membrane structures. Current research on ferroptosis mechanisms and new drug development has focused on naturally occurring phospholipids with internal double bonds. However, whether unnatural terminal double bonds can be involved in ferroptosis remains to be elucidated. In this study, we introduced terminal double bonds at the sn-2 position of phospholipids (Terminal Olefin Fatty Acids, TOFA) and discovered that these artificial phospholipids can kill cells alone, without ferroptosis inducers, and can be inhibited only by some ferroptosis inhibitors, such as ferrostatin-1, liproxstatin-1, alpha-tocopherol, but not deferoxamine mesylate. Our results reveal that phospholipids with terminal double bonds can participate in ferroptosis through an atypical mechanism. Moreover, further mechanistic studies could confirm that controlling the double bond position could be useful to maneuver ferroptosis and develop new drugs.
Collapse
Affiliation(s)
- Qiliang Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ziwen Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tao Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chuan Bai
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
24
|
Manceau R, Majeur D, Cherian CM, Miller CJ, Wat LW, Fisher JD, Labarre A, Hollman S, Prakash S, Audet S, Chao CF, Depaauw-Holt L, Rogers B, Bosson A, Xi JJY, Callow CAS, Yoosefi N, Shahraki N, Xia YH, Hui A, VanderZwaag J, Bouyakdan K, Rodaros D, Kotchetkov P, Daneault C, Fallahpour G, Tetreault M, Tremblay MÈ, Ruiz M, Lacoste B, Parker JA, Murphy-Royal C, Huan T, Fulton S, Rideout EJ, Alquier T. Neuronal lipid droplets play a conserved and sex-biased role in maintaining whole-body energy homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613929. [PMID: 39345476 PMCID: PMC11429983 DOI: 10.1101/2024.09.19.613929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Lipids are essential for neuron development and physiology. Yet, the central hubs that coordinate lipid supply and demand in neurons remain unclear. Here, we combine invertebrate and vertebrate models to establish the presence and functional significance of neuronal lipid droplets (LD) in vivo. We find that LD are normally present in neurons in a non-uniform distribution across the brain, and demonstrate triglyceride metabolism enzymes and lipid droplet-associated proteins control neuronal LD formation through both canonical and recently-discovered pathways. Appropriate LD regulation in neurons has conserved and male-biased effects on whole-body energy homeostasis across flies and mice, specifically neurons that couple environmental cues with energy homeostasis. Mechanistically, LD-derived lipids support neuron function by providing phospholipids to sustain mitochondrial and endoplasmic reticulum homeostasis. Together, our work identifies a conserved role for LD as the organelle that coordinates lipid management in neurons, with implications for our understanding of mechanisms that preserve neuronal lipid homeostasis and function in health and disease.
Collapse
Affiliation(s)
- Romane Manceau
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Danie Majeur
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Celena M Cherian
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Colin J Miller
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Lianna W Wat
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Jasper D Fisher
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Audrey Labarre
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Serena Hollman
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Sanjana Prakash
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Sébastien Audet
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Charlotte F Chao
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Lewis Depaauw-Holt
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Benjamin Rogers
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Anthony Bosson
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Joyce J Y Xi
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Catrina A S Callow
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Niyoosha Yoosefi
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Niki Shahraki
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Yi Han Xia
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Alisa Hui
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Jared VanderZwaag
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Khalil Bouyakdan
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Demetra Rodaros
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Pavel Kotchetkov
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Caroline Daneault
- Montreal Heart Institute Research Centre, Montreal, Canada. QC, Canada
| | - Ghazal Fallahpour
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Martine Tetreault
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Matthieu Ruiz
- Department of Nutrition Université de Montréal, Montréal, QC, Canada
- Montreal Heart Institute Research Centre, Montreal, Canada. QC, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - J A Parker
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Ciaran Murphy-Royal
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Tao Huan
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Fulton
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Nutrition Université de Montréal, Montréal, QC, Canada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Thierry Alquier
- Departments of Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
25
|
Li A, Dewettinck K, Verheust Y, Van de Walle D, Raes K, Diehl B, Tzompa-Sosa DA. Edible insects as a novel source of lecithin: Extraction and lipid characterization of black soldier fly larvae and yellow mealworm. Food Chem 2024; 452:139391. [PMID: 38713980 DOI: 10.1016/j.foodchem.2024.139391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
Edible insects with high fat and phosphorus content are a potential novel source of lecithin, however, studies on their minor lipids are limited. In this study, lecithin was extracted from black soldier fly larvae and yellow mealworm. Herein, the effects of lecithin extraction method, matrix and ultrasound pretreatment were explored based on the fatty acid composition and phospholipid profile with soy lecithin as a reference. The use of a wet matrix and ultrasound pretreatment increased the extraction efficiency of total PLs from both insects. Insect lecithin contained a considerable amount of sphingomyelin compared to soy lecithin. In insect lecithin, a total of 47 glycerophospholipid and sphingomyelin molecular species, as well as four molecular species of fatty acyl esters of hydroxy fatty acid, were detected. This study is the first comprehensive investigation of insects as a new source of lecithin with applications in food, cosmetics and in the pharmaceutical industry.
Collapse
Affiliation(s)
- An Li
- Food Structure and Function research group, Department of Food Technology, Safety, and Health, Ghent University, Ghent 9000, Belgium
| | - Koen Dewettinck
- Food Structure and Function research group, Department of Food Technology, Safety, and Health, Ghent University, Ghent 9000, Belgium
| | - Yannick Verheust
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University, 8500 Kortrijk, Belgium
| | - Davy Van de Walle
- Food Structure and Function research group, Department of Food Technology, Safety, and Health, Ghent University, Ghent 9000, Belgium
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University, 8500 Kortrijk, Belgium
| | - Bernd Diehl
- Spectral Service AG, Emil-Hoffmann-Straße 33, 50996 Cologne, Germany
| | - Daylan A Tzompa-Sosa
- Food Structure and Function research group, Department of Food Technology, Safety, and Health, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
26
|
Dong Y, Hu AQ, Han BX, Cao MT, Liu HY, Li ZG, Li Q, Zheng YJ. Mendelian randomization analysis reveals causal effects of blood lipidome on gestational diabetes mellitus. Cardiovasc Diabetol 2024; 23:335. [PMID: 39261922 PMCID: PMC11391602 DOI: 10.1186/s12933-024-02429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Observational studies have revealed associations between maternal lipid metabolites and gestational diabetes mellitus (GDM). However, whether these associations are causal remain uncertain. OBJECTIVE To evaluate the causal relationship between lipid metabolites and GDM. METHODS A two-sample Mendelian randomization (MR) analysis was performed based on summary statistics. Sensitivity analyses, validation analyses and reverse MR analyses were conducted to assess the robustness of the MR results. Additionally, a phenome-wide MR (Phe-MR) analysis was performed to evaluate potential side effects of the targeted lipid metabolites. RESULTS A total of 295 lipid metabolites were included in this study, 29 of them had three or more instrumental variables (IVs) suitable for sensitivity analyses. The ratio of triglycerides to phosphoglycerides (TG_by_PG) was identified as a potential causal biomarker for GDM (inverse variance weighted (IVW) estimate: odds ratio (OR) = 2.147, 95% confidential interval (95% CI) 1.415-3.257, P = 3.26e-4), which was confirmed by validation and reverse MR results. Two other lipid metabolites, palmitoyl sphingomyelin (d18:1/16:0) (PSM(d18:1/16:0)) (IVW estimate: OR = 0.747, 95% CI 0.583-0.956, P = 0.021) and triglycerides in very small very low-density lipoprotein (XS_VLDL_TG) (IVW estimate: OR = 2.948, 95% CI 1.197-5.215, P = 0.015), were identified as suggestive potential biomarkers for GDM using a conventional cut-off P-value of 0.05. Phe-MR results indicated that lowering TG_by_PG had detrimental effects on two diseases but advantageous effects on the other 13 diseases. CONCLUSION Genetically predicted elevated TG_by_PG are causally associated with an increased risk of GDM. Side-effect profiles indicate that TG_by_PG might be a target for GDM prevention, though caution is advised due to potential adverse effects on other conditions.
Collapse
Affiliation(s)
- Yao Dong
- Department of Epidemiology, School of Public Health, Fudan University, 130 Dong-an Rd., Shanghai, 200032, China
- Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
| | - An-Qun Hu
- Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, 246003, China
| | - Bai-Xue Han
- Department of Epidemiology, School of Public Health, Fudan University, 130 Dong-an Rd., Shanghai, 200032, China
- Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
| | - Meng-Ting Cao
- Department of Epidemiology, School of Public Health, Fudan University, 130 Dong-an Rd., Shanghai, 200032, China
- Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China
| | - Hai-Yan Liu
- Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, 246003, China
| | - Zong-Guang Li
- Department of Clinical Laboratory, Anqing Municipal Hospital, Anqing, 246003, China
| | - Qing Li
- Department of Obstetrics and Gynecology, Anqing Municipal Hospital, Anqing, 246003, China
| | - Ying-Jie Zheng
- Department of Epidemiology, School of Public Health, Fudan University, 130 Dong-an Rd., Shanghai, 200032, China.
- Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai, 200032, China.
- Key Laboratory for Health Technology Assessment, National Commission of Health and Family Planning, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
27
|
Maffioli E, Nonnis S, Negri A, Fontana M, Frabetti F, Rossi AR, Tedeschi G, Toni M. Environmental Temperature Variation Affects Brain Lipid Composition in Adult Zebrafish ( Danio rerio). Int J Mol Sci 2024; 25:9629. [PMID: 39273578 PMCID: PMC11394874 DOI: 10.3390/ijms25179629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
This study delves deeper into the impact of environmental temperature variations on the nervous system in teleost fish. Previous research has demonstrated that exposing adult zebrafish (Danio rerio) to 18 °C and 34 °C for 4 or 21 days induces behavioural changes compared to fish kept at a control temperature of 26 °C, suggesting alterations in the nervous system. Subsequent studies revealed that these temperature conditions also modify brain protein expression, indicating potential neurotoxic effects. The primary aim of this work was to investigate the effects of prolonged exposure (21 days) to 18 °C or 34 °C on the brain lipidomes of adult zebrafish compared to a control temperature. Analysis of the brain lipidome highlighted significant alteration in the relative abundances of specific lipid molecules at 18 °C and 34 °C, confirming distinct effects induced by both tested temperatures. Exposure to 18 °C resulted in an increase in levels of phospholipids, such as phosphatidylethanolamine, alongside a general reduction in levels of sphingolipids, including sphingomyelin. Conversely, exposure to 34 °C produced more pronounced effects, with increases in levels of phosphatidylethanolamine and those of various sphingolipids such as ceramide, gangliosides, and sphingomyelin, alongside a reduction in levels of ether phospholipids, including lysophosphatidylethanolamine ether, phosphatidylethanolamine ether, and phosphatidylglycerol ether, as well as levels of glycolipids like monogalactosyldiacylglycerol. These results, when integrated with existing proteomic and behavioural data, offer new insights into the effects of thermal variations on the nervous system in teleost fish. Specifically, our proteomic and lipidomic findings suggest that elevated temperatures may disrupt mitochondrial function, increase neuronal susceptibility to oxidative stress and cytotoxicity, alter axonal myelination, impair nerve impulse transmission, hinder synapse function and neurotransmitter release, and potentially lead to increased neuronal death. These findings are particularly relevant in the fields of cell biology, neurobiology, and ecotoxicology, especially in the context of global warming.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
- CRC "Innovation for Well-Being and Environment" (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Armando Negri
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Manuela Fontana
- Unitech OMICs, Università degli Studi di Milano, 20139 Milan, Italy
| | - Flavia Frabetti
- Department of Medical and Surgical Sciences-DIMEC, University of Bologna, 40126 Bologna, Italy
| | - Anna Rita Rossi
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185 Rome, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
- CRC "Innovation for Well-Being and Environment" (I-WE), Università degli Studi di Milano, 20126 Milano, Italy
| | - Mattia Toni
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University, 00185 Rome, Italy
| |
Collapse
|
28
|
Lin WL, Chien MM, Patchara S, Wang W, Faradina A, Huang SY, Tung TH, Tsai CS, Skalny AV, Tinkov AA, Chang CC, Chang JS. Essential trace element and phosphatidylcholine remodeling: Implications for body composition and insulin resistance. J Trace Elem Med Biol 2024; 85:127479. [PMID: 38878466 DOI: 10.1016/j.jtemb.2024.127479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Recent studies indicated that bioactive lipids of phosphatidylcholines (PCs) and lysophosphatidylcholines (LysoPCs) predict unhealthy metabolic phenotypes, but results remain inconsistent. To fill this knowledge gap, we investigated whether essential trace elements affect PC-Lyso PC remodeling pathways and the risk of insulin resistance (IR). METHODS Anthropometric and blood biochemical data (glucose, insulin, and lipoprotein-associated phospholipase A2 (Lp-PLA2)) were obtained from 99 adults. Blood essential/probably essential trace elements and lipid metabolites were respectively measured by inductively coupled plasma mass spectrometry (ICP-MS), and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). RESULT AND CONCLUSION Except for LysoPC (O-18:0/0:0), an inverse V shape was observed between body weight and PC and LysoPC species. A Pearson correlation analysis showed that essential/probably-essential metals (Se, Cu, and Ni: r=-0.4∼-0.7) were negatively correlated with PC metabolites but positively correlated with LysoPC (O-18:0/0:0) (Se, Cu, and Ni: r=0.85-0.64). Quantile-g computation showed that one quantile increase in essential metals was associated with a 2.16-fold increase in serum Lp-PLA2 (β=2.16 (95 % confidence interval (CI): 0.34, 3.98), p=0.023), which are key enzymes involved in PC/Lyso PC metabolism. An interactive analysis showed that compared to those with the lowest levels (reference), individuals with the highest levels of serum PCs (pooled, M2) and the lowest essential/probably essential metals (M1) were associated with a healthier body composition and had a 76 % decreased risk of IR (odds ratio (OR)=0.24 (95 % CI: 0.06, 0.90), p<0.05). In contrast, increased exposure to LysoPC(O-18:0/0:0) (M2) and essential metals (M2) exhibited an 8.22-times highest risk of IR (OR= 8.22 (2.07, 32.57), p<0.05) as well as an altered body composition. In conclusion, overexposure to essential/probably essential trace elements may promote an unhealthy body weight and IR through modulating PC/LysoPC remodeling pathways.
Collapse
Affiliation(s)
- Wen-Ling Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Mu-Ming Chien
- Department of Pediatrics, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC
| | - Sangopas Patchara
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Weu Wang
- Division of Digestive Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei 11301, Taiwan, ROC; Department of Surgery, College of Medicine, Taipei Medical University, Taipei 11301, Taiwan, ROC
| | - Amelia Faradina
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC; Center for Reproductive Medicine & Sciences, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Te-Hsuan Tung
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan, ROC; Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114202, Taiwan, ROC
| | - Anatoly V Skalny
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Alexey A Tinkov
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taiwan, ROC; Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Collage of Medicine, Taipei Medical University, Taipei 11031, Taiwan, ROC
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan, ROC; Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan, ROC; Chinese Taipei Society for the Study of Obesity (CTSSO), Taipei 11031, Taiwan, ROC; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan, ROC.
| |
Collapse
|
29
|
Jieu B, Sykorova EB, Rohleder C, Marcolini E, Hoffmann AE, Koethe D, Leweke FM, Couttas TA. Alterations to sphingolipid metabolism from antipsychotic administration in healthy volunteers are restored following the use of cannabidiol. Psychiatry Res 2024; 339:116005. [PMID: 38950483 DOI: 10.1016/j.psychres.2024.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/06/2024] [Accepted: 06/01/2024] [Indexed: 07/03/2024]
Abstract
Randomized clinical trials substantiate cannabidiol (CBD) as a next-generation antipsychotic, effective in alleviating positive and negative symptoms associated with psychosis, while minimising the adverse effects seen with established treatments. Although the mechanisms remain debated, CBD is known to induce drug-responsive changes in lipid-based retrograde neurotransmitters. Lipid aberrations are also frequently observed with antipsychotics, which may contribute to their efficacy or increase the risk of undesirables, including metabolic dysfunction, obesity and dyslipidaemia. Our study investigated CBD's impact following lipid responses triggered by interaction with second-generation antipsychotics (SGA) in a randomized phase I safety study. Untargeted mass spectrometry assessed the lipidomic profiles of human sera, collected from 38 healthy volunteers. Serum samples were obtained prior to commencement of any medication (t = 0), 3 days after consecutive administration of one of the five, placebo-controlled, treatment arms designed to achieve steady-state concentrations of each SGA (amisulpride, 150 mg/day; quetiapine, 300 mg/day; olanzapine 10 mg/day; risperidone, 3 mg/day), and after six successive days of SGA treatment combined with CBD (800 mg/day). Receiver operating characteristics (ROC) refined 3712 features to a putative list of 15 lipids significantly altered (AUC > 0.7), classified into sphingolipids (53 %), glycerolipids (27 %) and glycerophospholipids (20 %). Targeted mass spectrometry confirmed reduced sphingomyelin and ceramide levels with antipsychotics, which mapped along their catabolic pathway and were restored by CBD. These sphingolipids inversely correlated with body weight after olanzapine, quetiapine, and risperidone treatment, where CBD appears to have arrested or attenuated these effects. Herein, we propose CBD may alleviate aberrant sphingolipid metabolism and that further investigation into sphingolipids as markers for monitoring side effects of SGAs and efficacy of CBD is warranted.
Collapse
Affiliation(s)
- Beverly Jieu
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Eliska B Sykorova
- Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Cathrin Rohleder
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Endosane Pharmaceuticals GmbH, Berlin, Germany
| | - Elisabeth Marcolini
- Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anna E Hoffmann
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Dagmar Koethe
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - F Markus Leweke
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; Dept. of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Endosane Pharmaceuticals GmbH, Berlin, Germany
| | | |
Collapse
|
30
|
Cao X, Xu M, Feng T, Li R, Song Y, Meng N, Fan X, Zeng J, Xu J. A comparative lipid profile of four fish species: From muscle to industrial by-products based on RPLC-Q-TOF-MS/MS. Food Res Int 2024; 191:114725. [PMID: 39059921 DOI: 10.1016/j.foodres.2024.114725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Fish are crucial for the fishing industry and essential nutrient provision, including lipids. This study employed a high-throughput lipidomic approach to evaluate and contrast the lipid profiles of three marine fish species (P. crocea, S. fuscens, and C. saira) and one freshwater species (H. molitrix) across head, muscle, and viscera. Over 1000 molecular lipid species across 17 subclasses were identified. Notably, acylated monogalactosyldiacylglycerol (acMGDG) was detected for the first time in these species, with a high prevalence of saturated fatty acids (44.7 %-87.7 %). Glycerolipids (67.7 - 86.3 %) and PLs (10.7 - 31.8 %) were identified as the dominant lipid classes. Marine fish muscles displayed higher PL content than freshwater species, and P. crocea viscera contained over 30 % PLs of total lipids. In particular, ether phosphatidyl ethanolamine incorporated more DHA than ether phosphatidylcholine. The viscera of four fish species also exhibited a significant abundance of diacylglycerol (DG), indicating their potential as functional lipid sources. Multivariate analysis identified triglyceride (TG) (59:13), DG (16:1/22:5), and MGDG (16:0/18:2) as potential biomarkers for differentiating among fish anatomical parts. This study deepens the understanding of the nutritional values of these fish, providing guidance for consumer dietary choices and paving the way for transforming previously underutilized by-products into resources with high-value potential.
Collapse
Affiliation(s)
- Xinyu Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Mengjie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Tingyu Feng
- Qingdao Institute of Marine Resources for Nutrition & Health Innovation, No. 106 Xiangyang Road, Qingdao, Shandong Province 266109, China.
| | - Ruoshu Li
- Qingdao Institute of Marine Resources for Nutrition & Health Innovation, No. 106 Xiangyang Road, Qingdao, Shandong Province 266109, China.
| | - Yu Song
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Nan Meng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Xiaowei Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Junpeng Zeng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| | - Jie Xu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province 266404, China.
| |
Collapse
|
31
|
Chen L, Dai P, Liu L, Chen Y, Lu Y, Zheng L, Wang H, Yuan Q, Li X. The lipid-metabolism enzyme ECI2 reduces neutrophil extracellular traps formation for colorectal cancer suppression. Nat Commun 2024; 15:7184. [PMID: 39169021 PMCID: PMC11339366 DOI: 10.1038/s41467-024-51489-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Abnormalities in ether lipid metabolism as well as the formation of neutrophil extracellular traps have recently been recognized as detrimental factors affecting tumorigenesis and progression. However, the role of abnormal ether lipid metabolism in colorectal cancer (CRC) evolution has not been reported. Here we show that the lipid metabolism-related gene enoyl-CoA δ-isomerase 2 (ECI2) plays a tumor-suppressor role in CRC and is negatively associated with poor prognosis in CRC patients. We mechanistically demonstrate that ECI2 reduces ether lipid-mediated Interleukin 8 (IL-8) expression leading to decreased neutrophil recruitment and neutrophil extracellular traps formation for colorectal cancer suppression. In particular, ECI2 inhibits ether lipid production in CRC cells by inhibiting the peroxisomal localization of alkylglycerone phosphate synthase (AGPS), the rate-limiting enzyme for ether lipid synthesis. These findings not only deepen our understanding of the role of metabolic reprogramming and neutrophil interactions in the progression of CRC, but also provide ideas for identifying potential diagnostic markers and therapeutic targets for CRC.
Collapse
Affiliation(s)
- Lixia Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Peiling Dai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Lei Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yujia Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yanxia Lu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Lin Zheng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Haowei Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Qinzi Yuan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Xuenong Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.
| |
Collapse
|
32
|
Shen T, Oh Y, Jeong S, Cho S, Fiehn O, Youn JH. High-Fat Feeding Alters Circulating Triglyceride Composition: Roles of FFA Desaturation and ω-3 Fatty Acid Availability. Int J Mol Sci 2024; 25:8810. [PMID: 39201497 PMCID: PMC11354557 DOI: 10.3390/ijms25168810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Hypertriglyceridemia is a risk factor for type 2 diabetes and cardiovascular disease (CVD). Plasma triglycerides (TGs) are a key factor for assessing the risk of diabetes or CVD. However, previous lipidomics studies have demonstrated that not all TG molecules behave the same way. Individual TGs with different fatty acid compositions are regulated differentially under various conditions. In addition, distinct groups of TGs were identified to be associated with increased diabetes risk (TGs with lower carbon number [C#] and double-bond number [DB#]), or with decreased risk (TGs with higher C# and DB#). In this study, we examined the effects of high-fat feeding in rats on plasma lipid profiles with special attention to TG profiles. Wistar rats were maintained on either a low-fat (control) or high-fat diet (HFD) for 2 weeks. Plasma samples were obtained before and 2.5 h after a meal (n = 10 each) and subjected to lipidomics analyses. High-fat feeding significantly impacted circulating lipid profiles, with the most significant effects observed on TG profile. The effects of an HFD on individual TG species depended on DB# in their fatty acid chains; an HFD increased TGs with low DB#, associated with increased diabetes risk, but decreased TGs with high DB#, associated with decreased risk. These changes in TGs with an HFD were associated with decreased indices of hepatic stearoyl-CoA desaturase (SCD) activity, assessed from hepatic fatty acid profiles. Decreased SCD activity would reduce the conversion of saturated to monounsaturated fatty acids, contributing to the increases in saturated TGs or TGs with low DB#. In addition, an HFD selectively depleted ω-3 polyunsaturated fatty acids (PUFAs), contributing to the decreases in TGs with high DB#. Thus, an HFD had profound impacts on circulating TG profiles. Some of these changes were at least partly explained by decreased hepatic SCD activity and depleted ω-3 PUFA.
Collapse
Affiliation(s)
- Tong Shen
- West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA; (T.S.); (O.F.)
| | - Youngtaek Oh
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Y.O.); (S.C.)
| | - Shinwu Jeong
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, CA 90033, USA;
| | - Suengmok Cho
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Y.O.); (S.C.)
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis Genome Center, Davis, CA 95616, USA; (T.S.); (O.F.)
| | - Jang H. Youn
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (Y.O.); (S.C.)
| |
Collapse
|
33
|
Araújo R, Fabris V, Lamb CA, Elía A, Lanari C, Helguero LA, Gil AM. Tumor Lipid Signatures Are Descriptive of Acquisition of Therapy Resistance in an Endocrine-Related Breast Cancer Mouse Model. J Proteome Res 2024; 23:2815-2829. [PMID: 37497607 PMCID: PMC11301694 DOI: 10.1021/acs.jproteome.3c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 07/28/2023]
Abstract
The lipid metabolism adaptations of estrogen and progesterone receptor-positive breast cancer tumors from a mouse syngeneic model are investigated in relation to differences across the transition from hormone-dependent (HD) to hormone-independent (HI) tumor growth and the acquisition of endocrine therapy (ET) resistance (HIR tumors). Results are articulated with reported polar metabolome results to complete a metabolic picture of the above transitions and suggest markers of tumor progression and aggressiveness. Untargeted nuclear magnetic resonance metabolomics was used to analyze tumor and mammary tissue lipid extracts. Tumor progression (HD-HI-HIR) was accompanied by increased nonesterified cholesterol forms and phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens) and decreased relative contents of triglycerides and fatty acids. Predominating fatty acids became shorter and more saturated on average. These results were consistent with gradually more activated cholesterol synthesis, β-oxidation, and phospholipid biosynthesis to sustain tumor growth, as well as an increase in cholesterol (possibly oxysterol) forms. Particular compound levels and ratios were identified as potential endocrine tumor HD-HI-HIR progression markers, supporting new hypotheses to explain acquired ET resistance.
Collapse
Affiliation(s)
- Rita Araújo
- Department
of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Victoria Fabris
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Caroline A. Lamb
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Andrés Elía
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Claudia Lanari
- IByME
− Instituto de Biología y Medicina Experimental, Vuelta de Obligado 2490, C1428 ADN Buenos Aires, Argentina
| | - Luisa A. Helguero
- iBIMED
- Institute of Biomedicine, Department of Medical Sciences, Universidade de Aveiro, Agra do Crasto, 3810-193 Aveiro, Portugal
| | - Ana M. Gil
- Department
of Chemistry and CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
34
|
Fries BD, Tobias F, Wang Y, Holbrook JH, Hummon AB. Lipidomics Profiling Reveals Differential Alterations after FAS Inhibition in 3D Colon Cancer Cell Culture Models. J Proteome Res 2024; 23:2919-2933. [PMID: 38063332 PMCID: PMC11161555 DOI: 10.1021/acs.jproteome.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cancerous cells synthesize most of their lipids de novo to keep up with their rapid growth and proliferation. Fatty acid synthase (FAS) is a key enzyme in the lipogenesis pathway that is upregulated in many cancers and has gained popularity as a druggable target of interest for cancer treatment. The first FAS inhibitor discovered, cerulenin, initially showed promise for chemotherapeutic purposes until it was observed that it had adverse side effects in mice. TVB-2640 (Denifanstat) is part of the newer generation of inhibitors. With multiple generations of FAS inhibitors being developed, it is vital to understand their distinct molecular downstream effects to elucidate potential interactions in the clinic. Here, we profile the lipidome of two different colorectal cancer (CRC) spheroids treated with a generation 1 inhibitor (cerulenin) or a generation 2 inhibitor (TVB-2640). We observe that the cerulenin causes drastic changes to the spheroid morphology as well as alterations to the lipid droplets found within CRC spheroids. TVB-2640 causes higher abundances of polyunsaturated fatty acids (PUFAs) whereas cerulenin causes a decreased abundance of PUFAs. The increase in PUFAs in TVB-2640 exposed spheroids indicates it is causing cells to die via a ferroptotic mechanism rather than a conventional apoptotic or necrotic mechanism.
Collapse
Affiliation(s)
- Brian D Fries
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fernando Tobias
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Integrated Molecular Structure Education and Research Center (IMSERC), Northwestern University, Evanston, Illinois 60208, United States
| | - Yijia Wang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
35
|
Sikorskaya TV, Ermolenko EV, Ginanova TT, Boroda AV, Efimova KV, Bogdanov M. Membrane vectorial lipidomic features of coral host cells' plasma membrane and lipid profiles of their endosymbionts Cladocopium. Commun Biol 2024; 7:878. [PMID: 39025984 PMCID: PMC11258240 DOI: 10.1038/s42003-024-06578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The symbiotic relationships between coral animal host and autotrophic dinoflagellates are based on the mutual exchange and tight control of nutritional inputs supporting successful growth. The corals Sinularia heterospiculata and Acropora aspera were cultivated using a flow-through circulation system supplying seawater during cold and warm seasons of the year, then sorted into host cells and symbionts and subjected to phylogenetic, morphological, and advanced lipid analyses. Here we show, that the lipidomes of the dinoflagellates Cladocopium C1/C3 and acroporide-specific Cladocopium hosted by the corals, are determined by lipidomic features of different thermosensitivity and unique betaine- and phospholipid molecular species. Phosphatidylserines and ceramiaminoethylphosphonates are not detected in the symbionts and predominantly localized on the inner leaflet of the S. heterospiculata host plasma membrane. The transmembrane distribution of phosphatidylethanolamines of S. heterospiculata host changes during different seasons of the year, possibly contributing to mutualistic nutritional exchange across this membrane complex to provide the host with a secure adaptive mechanism and ecological benefits.
Collapse
Affiliation(s)
- Tatyana V Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation.
| | - Ekaterina V Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Taliya T Ginanova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Andrey V Boroda
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Kseniya V Efimova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russian Federation
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
36
|
Beyene HB, Huynh K, Wang T, Paul S, Cinel M, Mellett NA, Olshansky G, Meikle TG, Watts GF, Hung J, Hui J, Beilby J, Blangero J, Moses EK, Shaw JE, Magliano DJ, Giles C, Meikle PJ. Development and validation of a plasmalogen score as an independent modifiable marker of metabolic health: population based observational studies and a placebo-controlled cross-over study. EBioMedicine 2024; 105:105187. [PMID: 38861870 PMCID: PMC11215217 DOI: 10.1016/j.ebiom.2024.105187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Decreased levels of circulating ethanolamine plasmalogens [PE(P)], and a concurrent increase in phosphatidylethanolamine (PE) are consistently reported in various cardiometabolic conditions. Here we devised, a plasmalogen score (Pls Score) that mirrors a metabolic signal that encompasses the levels of PE(P) and PE and captures the natural variation in circulating plasmalogens and perturbations in their metabolism associated with disease, diet, and lifestyle. METHODS We utilised, plasma lipidomes from the Australian Obesity, Diabetes and Lifestyle study (AusDiab; n = 10,339, 55% women) a nationwide cohort, to devise the Pls Score and validated this in the Busselton Health Study (BHS; n = 4,492, 56% women, serum lipidome) and in a placebo-controlled crossover trial involving Shark Liver Oil (SLO) supplementation (n = 10, 100% men). We examined the association of the Pls Score with cardiometabolic risk factors, type 2 diabetes mellitus (T2DM), cardiovascular disease and all-cause mortality (over 17 years). FINDINGS In a model, adjusted for age, sex and BMI, individuals in the top quintile of the Pls Score (Q5) relative to Q1 had an OR of 0.31 (95% CI 0.21-0.43), 0.39 (95% CI 0.25-0.61) and 0.42 (95% CI 0.30-0.57) for prevalent T2DM, incident T2DM and prevalent cardiovascular disease respectively, and a 34% lower mortality risk (HR = 0.66; 95% CI 0.56-0.78). Significant associations between diet and lifestyle habits and Pls Score exist and these were validated through dietary supplementation of SLO that resulted in a marked change in the Pls Score. INTERPRETATION The Pls Score as a measure that captures the natural variation in circulating plasmalogens, was not only inversely related to cardiometabolic risk and all-cause mortality but also associate with diet and lifestyle. Our results support the potential utility of the Pls Score as a biomarker for metabolic health and its responsiveness to dietary interventions. Further research is warranted to explore the underlying mechanisms and optimise the practical implementation of the Pls Score in clinical and population settings. FUNDING National Health and Medical Research Council (NHMRC grant 233200), National Health and Medical Research Council of Australia (Project grant APP1101320), Health Promotion Foundation of Western Australia, and National Health and Medical Research Council of Australia Senior Research Fellowship (#1042095).
Collapse
Affiliation(s)
- Habtamu B Beyene
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia
| | - Tingting Wang
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia
| | - Sudip Paul
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Michelle Cinel
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | | | - Thomas G Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, Perth, WA, Australia; Cardiometabolic Service, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, Australia
| | - Joseph Hung
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Jennie Hui
- PathWest Laboratory Medicine of Western Australia, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia; School of Population and Global Health, University of Western Australia, Crawley, WA, Australia
| | - John Beilby
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - John Blangero
- South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Eric K Moses
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jonathan E Shaw
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Dianna J Magliano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Corey Giles
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia.
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, VIC, Australia; Baker Department of Cardiometabolic Health, Melbourne University, Melbourne, VIC, Australia.
| |
Collapse
|
37
|
Brorsen LF, McKenzie JS, Pinto FE, Glud M, Hansen HS, Haedersdal M, Takats Z, Janfelt C, Lerche CM. Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning. Exp Dermatol 2024; 33:e15141. [PMID: 39036889 DOI: 10.1111/exd.15141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to molecularly characterize BCC and diagnose tumour tissue by applying matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and machine learning (ML). BCC tumour development was induced in a mouse model and tissue sections containing BCC (n = 12) were analysed. The study design involved three phases: (i) Model training, (ii) Model validation and (iii) Metabolomic analysis. The ML algorithm was trained on MS data extracted and labelled in accordance with histopathology. An overall classification accuracy of 99.0% was reached for the labelled data. Classification of unlabelled tissue areas aligned with the evaluation of a certified Mohs surgeon for 99.9% of the total tissue area, underscoring the model's high sensitivity and specificity in identifying BCC. Tentative metabolite identifications were assigned to 189 signals of importance for the recognition of BCC, each indicating a potential tumour marker of diagnostic value. These findings demonstrate the potential for MALDI-MSI coupled with ML to characterize the metabolomic profile of BCC and to diagnose tumour tissue with high sensitivity and specificity. Further studies are needed to explore the potential of implementing integrated MS and automated analyses in the clinical setting.
Collapse
Affiliation(s)
- Lauritz F Brorsen
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - James S McKenzie
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, UK
| | - Fernanda E Pinto
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Martin Glud
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Harald S Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zoltan Takats
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, UK
| | - Christian Janfelt
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Catharina M Lerche
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Costa J, Gabrielli M, Altabe SG, Uttaro AD. The presence of plasmenyl ether lipids in Capsaspora owczarzaki suggests a premetazoan origin of plasmalogen biosynthesis in animals. Heliyon 2024; 10:e32807. [PMID: 38975177 PMCID: PMC11225845 DOI: 10.1016/j.heliyon.2024.e32807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Plasmalogens are glycerophospholipids with a vinyl ether bond, rather than an ester bond, at sn-1 position. These lipids were described in anaerobic bacteria, myxobacteria, animals and some protists, but not in plants or fungi. Anaerobic and aerobic organisms synthesize plasmalogens differently. The aerobic pathway requires oxygen in the last step, which is catalyzed by PEDS1. CarF and TMEM189 were recently identified as the PEDS1 from myxobacteria and mammals, which could be of valuable use in exploring the distribution of this pathway in eukaryotes. We show the presence of plasmalogens in Capsaspora owczarzaki, one of the closest unicellular relatives of animals. This is the first report of plasmalogens in non-metazoan opisthokontas. Analysis of its genome revealed the presence of enzymes of the aerobic pathway. In a broad BLAST search, we found PEDS1 homologs in Opisthokonta and some genera of Amoebozoa and Excavata, consistent with the restricted distribution of plasmalogens reported in eukaryotes. Within Opisthokonta, PEDS1 is limited to Filasterea (Capsaspora and Pigoraptor), Metazoa and a small group of fungi comprising three genera of ascomycetes. A phylogenetic analysis of PEDS1 traced the acquisition of plasmalogen synthesis in animals to a filasterean ancestor and suggested independent acquisition events for Amoebozoa, Excavata and Ascomycetes.
Collapse
Affiliation(s)
| | | | - Silvia G. Altabe
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000FHQ, Ocampo y Esmeralda, Rosario, Argentina
| | - Antonio D. Uttaro
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000FHQ, Ocampo y Esmeralda, Rosario, Argentina
| |
Collapse
|
39
|
Winnikoff JR, Milshteyn D, Vargas-Urbano SJ, Pedraza MA, Armando AM, Quehenberger O, Sodt A, Gillilan RE, Dennis EA, Lyman E, Haddock SHD, Budin I. Homeocurvature adaptation of phospholipids to pressure in deep-sea invertebrates. Science 2024; 384:1482-1488. [PMID: 38935710 PMCID: PMC11593575 DOI: 10.1126/science.adm7607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
Hydrostatic pressure increases with depth in the ocean, but little is known about the molecular bases of biological pressure tolerance. We describe a mode of pressure adaptation in comb jellies (ctenophores) that also constrains these animals' depth range. Structural analysis of deep-sea ctenophore lipids shows that they form a nonbilayer phase at pressures under which the phase is not typically stable. Lipidomics and all-atom simulations identified phospholipids with strong negative spontaneous curvature, including plasmalogens, as a hallmark of deep-adapted membranes that causes this phase behavior. Synthesis of plasmalogens enhanced pressure tolerance in Escherichia coli, whereas low-curvature lipids had the opposite effect. Imaging of ctenophore tissues indicated that the disintegration of deep-sea animals when decompressed could be driven by a phase transition in their phospholipid membranes.
Collapse
Affiliation(s)
- Jacob R. Winnikoff
- Department of Chemistry and Biochemistry, University of California San Diego; 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Organismic and Evolutionary Biology, Harvard University; 16 Divinity Ave., Cambridge, MA 02138, USA
- Monterey Bay Aquarium Research Institute; 7700 Sandholdt Rd., Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; 1156 High St., Santa Cruz, CA 95064, USA
| | - Daniel Milshteyn
- Department of Chemistry and Biochemistry, University of California San Diego; 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Sasiri J. Vargas-Urbano
- Department of Physics and Astronomy, University of Delaware; 210 South College Ave., Newark, DE 19716, USA
| | - Miguel A. Pedraza
- Department of Physics and Astronomy, University of Delaware; 210 South College Ave., Newark, DE 19716, USA
| | - Aaron M. Armando
- Department of Pharmacology, University of California San Diego Health Sciences; 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Oswald Quehenberger
- Department of Pharmacology, University of California San Diego Health Sciences; 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Alexander Sodt
- Unit on Membrane Chemical Physics, National Institute of Child Health and Human Development; 29 Lincoln Drive, Bethesda, MD 20892
| | | | - Edward A. Dennis
- Department of Chemistry and Biochemistry, University of California San Diego; 9500 Gilman Dr., La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego Health Sciences; 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware; 210 South College Ave., Newark, DE 19716, USA
| | - Steven H. D. Haddock
- Monterey Bay Aquarium Research Institute; 7700 Sandholdt Rd., Moss Landing, CA 95039, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; 1156 High St., Santa Cruz, CA 95064, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego; 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
40
|
Ding S, Grossi V, Hopmans EC, Bale NJ, Cravo-Laureau C, Sinninghe Damsté JS. Nitrogen and sulfur for phosphorus: Lipidome adaptation of anaerobic sulfate-reducing bacteria in phosphorus-deprived conditions. Proc Natl Acad Sci U S A 2024; 121:e2400711121. [PMID: 38833476 PMCID: PMC11181052 DOI: 10.1073/pnas.2400711121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Understanding how microbial lipidomes adapt to environmental and nutrient stress is crucial for comprehending microbial survival and functionality. Certain anaerobic bacteria can synthesize glycerolipids with ether/ester bonds, yet the complexities of their lipidome remodeling under varying physicochemical and nutritional conditions remain largely unexplored. In this study, we thoroughly examined the lipidome adaptations of Desulfatibacillum alkenivorans strain PF2803T, a mesophilic anaerobic sulfate-reducing bacterium known for its high proportions of alkylglycerol ether lipids in its membrane, under various cultivation conditions including temperature, pH, salinity, and ammonium and phosphorous concentrations. Employing an extensive analytical and computational lipidomic methodology, we identified an assemblage of nearly 400 distinct lipids, including a range of glycerol ether/ester lipids with various polar head groups. Information theory-based analysis revealed that temperature fluctuations and phosphate scarcity profoundly influenced the lipidome's composition, leading to an enhanced diversity and specificity of novel lipids. Notably, phosphorous limitation led to the biosynthesis of novel glucuronosylglycerols and sulfur-containing aminolipids, termed butyramide cysteine glycerols, featuring various ether/ester bonds. This suggests a novel adaptive strategy for anaerobic heterotrophs to thrive under phosphorus-depleted conditions, characterized by a diverse array of nitrogen- and sulfur-containing polar head groups, moving beyond a reliance on conventional nonphospholipid types.
Collapse
Affiliation(s)
- Su Ding
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, TexelSZ 1797, The Netherlands
| | - Vincent Grossi
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, CNRS, Université Claude Bernard Lyon 1, Villeurbanne69622, France
| | - Ellen C. Hopmans
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, TexelSZ 1797, The Netherlands
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, TexelSZ 1797, The Netherlands
| | - Cristiana Cravo-Laureau
- Institut des Sciences Analytiques et de Physico-chimie pour l’environnement et les Matériaux, Universite de Pau et des Pays de l’Adour, CNRS, Pau64000, France
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, TexelSZ 1797, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, CB3584, The Netherlands
| |
Collapse
|
41
|
Salihovic S, Nyström N, Mathisen CBW, Kruse R, Olbjørn C, Andersen S, Noble AJ, Dorn-Rasmussen M, Bazov I, Perminow G, Opheim R, Detlie TE, Huppertz-Hauss G, Hedin CRH, Carlson M, Öhman L, Magnusson MK, Keita ÅV, Söderholm JD, D'Amato M, Orešič M, Wewer V, Satsangi J, Lindqvist CM, Burisch J, Uhlig HH, Repsilber D, Hyötyläinen T, Høivik ML, Halfvarson J. Identification and validation of a blood- based diagnostic lipidomic signature of pediatric inflammatory bowel disease. Nat Commun 2024; 15:4567. [PMID: 38830848 PMCID: PMC11148148 DOI: 10.1038/s41467-024-48763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/30/2024] [Indexed: 06/05/2024] Open
Abstract
Improved biomarkers are needed for pediatric inflammatory bowel disease. Here we identify a diagnostic lipidomic signature for pediatric inflammatory bowel disease by analyzing blood samples from a discovery cohort of incident treatment-naïve pediatric patients and validating findings in an independent inception cohort. The lipidomic signature comprising of only lactosyl ceramide (d18:1/16:0) and phosphatidylcholine (18:0p/22:6) improves the diagnostic prediction compared with high-sensitivity C-reactive protein. Adding high-sensitivity C-reactive protein to the signature does not improve its performance. In patients providing a stool sample, the diagnostic performance of the lipidomic signature and fecal calprotectin, a marker of gastrointestinal inflammation, does not substantially differ. Upon investigation in a third pediatric cohort, the findings of increased lactosyl ceramide (d18:1/16:0) and decreased phosphatidylcholine (18:0p/22:6) absolute concentrations are confirmed. Translation of the lipidomic signature into a scalable diagnostic blood test for pediatric inflammatory bowel disease has the potential to support clinical decision making.
Collapse
Affiliation(s)
- Samira Salihovic
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Niklas Nyström
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Charlotte Bache-Wiig Mathisen
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Robert Kruse
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Christine Olbjørn
- Department of Pediatrics and Adolescent Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Svend Andersen
- Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| | - Alexandra J Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Maria Dorn-Rasmussen
- Department of Paediatric and Adolescence Medicine, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Igor Bazov
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Gøri Perminow
- Department of Pediatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Randi Opheim
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Trond Espen Detlie
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway and Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Charlotte R H Hedin
- Karolinska Institutet, Department of Medicine Solna, Stockholm, Sweden
- Karolinska University Hospital, Gastroenterology unit, Department of Gastroenterology, Dermatovenereology and Rheumatology, Stockholm, Sweden
| | - Marie Carlson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria K Magnusson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan D Söderholm
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mauro D'Amato
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain
- Department of Medicine & Surgery, LUM University, Casamassima, Italy
| | - Matej Orešič
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Vibeke Wewer
- Department of Paediatric and Adolescence Medicine, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
| | - Carl Mårten Lindqvist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Johan Burisch
- Copenhagen Center for Inflammatory Bowel Disease in Children, Adolescents and Adults, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
- Gastrounit, medical division, Copenhagen University Hospital - Amager and Hvidovre, Hvidovre, Denmark
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, United Kingdom
- Biomedical Research Center, University of Oxford, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Dirk Repsilber
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Marte Lie Høivik
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway and Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
42
|
Godzien J, Jablonowski K, Ruperez FJ, Kretowski A, Ciborowski M, Kalaska B. Metabolic profiling reveals the nutraceutical effect of Gongolaria abies-marina and Rosmarinus officinalis extracts in a type 1 diabetes animal model. Biomed Pharmacother 2024; 175:116731. [PMID: 38761421 DOI: 10.1016/j.biopha.2024.116731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Nutraceuticals have gained increasing interest, prompting the need to investigate plant extracts for their beneficial properties and potential side effects. This study aimed to assess the nutraceutical effects of environmentally clean extracts from Rosmarinus officinalis and Gongolaria abies-marina (formerly Cystoseira abies-marina (Phaeophyceae)) on the metabolic profile of streptozotocin-induced diabetic rats. We conducted untargeted LC-QTOF-MS metabolic profiling on six groups of rats: three diabetic groups receiving either a placebo, R. officinalis, or G. abies-marina extracts, and three corresponding control groups. The metabolic analysis revealed significant alterations in the levels of various glycerophospholipids, sterol lipids, and fatty acyls. Both extracts influenced the metabolic profile, partially mitigating diabetes-induced changes. Notably, G. abies-marina extract had a more pronounced impact on the animals' metabolic profiles compared to R. officinalis. In conclusion, our findings suggest that environmentally clean extracts from R. officinalis and G. abies-marina possess nutraceutical potential, as they were able to modulate the metabolic profile in streptozotocin-induced diabetic rats. G. abies-marina extract exhibited a more substantial effect on metabolic alterations induced by diabetes compared to R. officinalis. These results warrant further exploration of these plant extracts for their potential in managing diabetes-related metabolic disturbances.
Collapse
Affiliation(s)
- Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| | - Kacper Jablonowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Francisco J Ruperez
- CEMBIO (Center for Metabolomics and Bioanalysis) Pharmacy Faculty, Campus Monteprincipe, San Pablo-CEU University, Madrid, Spain
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
43
|
Serna MF, Suarez-Ortegón MF, Jiménez-Charris E, Echeverri I, Cala MP, Mosquera M. Lipidomic signatures in Colombian adults with metabolic syndrome. J Diabetes Metab Disord 2024; 23:1279-1292. [PMID: 38932852 PMCID: PMC11196482 DOI: 10.1007/s40200-024-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/16/2024] [Indexed: 06/28/2024]
Abstract
Background and Aims Metabolic syndrome (MetS) comprises a set of risk factors that contribute to the development of chronic and cardiovascular diseases, increasing the mortality rate. Altered lipid metabolism is associated with the development of metabolic disorders such as insulin resistance, obesity, atherosclerosis, and metabolic syndrome; however, there is a lack of knowledge about lipids compounds and the lipidic pathways associated with this condition, particularly in the Latin-American population. Innovative approaches, such as lipidomic analysis, facilitate the identification of lipid species related to these risk factors. This study aimed to assess the plasma lipidome in subjects with MetS. Methods This correlation study included healthy adults and adults with MetS. Blood samples were analyzed. The lipidomic profile was determined using an Agilent Technologies 1260 liquid chromatography system coupled to a Q-TOF 6545 quadrupole mass analyzer with electrospray ionization. The main differences were determined between the groups. Results The analyses reveal a distinct lipidomic profile between healthy adults and those with MetS, including increased concentrations of most identified glycerolipids -both triglycerides and diglycerides- and decreased levels of ether lipids and sphingolipids, especially sphingomyelins, in MetS subjects. Association between high triglycerides, waist circumference, and most differentially expressed lipids were found. Conclusion Our results demonstrate dysregulation of lipid metabolism in subjects with Mets, supporting the potential utility of plasma lipidome analysis for a deeper understanding of MetS pathophysiology. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01423-5.
Collapse
Affiliation(s)
- María Fernanda Serna
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Calle 4B #36-00 Cali, Colombia
| | - Milton Fabián Suarez-Ortegón
- Departamento de Alimentación y Nutrición, Facultad de Ciencias de La Salud, Pontificia Universidad Javeriana Seccional Cali, Colombia. Cl. 18 #118-250, Barrio Pance, 760031 Cali, Valle del Cauca Colombia
| | - Eliécer Jiménez-Charris
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Calle 4B #36-00 Cali, Colombia
| | | | - Mónica P. Cala
- Metabolomics Core Facility-MetCore, Vice Presidency for Research, Universidad de los Andes, Carrera 1, #18A-12 Bogotá, Colombia
| | - Mildrey Mosquera
- Grupo de Nutrición, Departamento de Ciencias Fisiológicas, Facultad de Salud, Universidad del Valle, Calle 4B #36-00 Cali, Colombia
| |
Collapse
|
44
|
Faria RL, Prado FM, Junqueira HC, Fabiano KC, Diniz LR, Baptista MS, Di Mascio P, Miyamoto S. Plasmalogen oxidation induces the generation of excited molecules and electrophilic lipid species. PNAS NEXUS 2024; 3:pgae216. [PMID: 38894877 PMCID: PMC11184980 DOI: 10.1093/pnasnexus/pgae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Plasmalogens are glycerophospholipids with a vinyl ether linkage at the sn-1 position of the glycerol backbone. Despite being suggested as antioxidants due to the high reactivity of their vinyl ether groups with reactive oxygen species, our study reveals the generation of subsequent reactive oxygen and electrophilic lipid species from oxidized plasmalogen intermediates. By conducting a comprehensive analysis of the oxidation products by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), we demonstrate that singlet molecular oxygen [O2 (1Δg)] reacts with the vinyl ether bond, producing hydroperoxyacetal as a major primary product (97%) together with minor quantities of dioxetane (3%). Furthermore, we show that these primary oxidized intermediates are capable of further generating reactive species including excited triplet carbonyls and O2 (1Δg) as well as electrophilic phospholipid and fatty aldehyde species as secondary reaction products. The generation of excited triplet carbonyls from dioxetane thermal decomposition was confirmed by light emission measurements in the visible region using dibromoanthracene as a triplet enhancer. Moreover, O2 (1Δg) generation from dioxetane and hydroperoxyacetal was evidenced by detection of near-infrared light emission at 1,270 nm and chemical trapping experiments. Additionally, we have thoroughly characterized alpha-beta unsaturated phospholipid and fatty aldehydes by LC-HRMS analysis using two probes that specifically react with aldehydes and alpha-beta unsaturated carbonyls. Overall, our findings demonstrate the generation of excited molecules and electrophilic lipid species from oxidized plasmalogen species unveiling the potential prooxidant nature of plasmalogen-oxidized products.
Collapse
Affiliation(s)
- Rodrigo L Faria
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Helena C Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Karen C Fabiano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Larissa R Diniz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Mauricio S Baptista
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
45
|
Li C, Fan J, Sun G, Zhao H, Zhong X, Huang X, Zhu X, Qi X. Nrf2 pathway activation promotes the expression of genes related to glutathione metabolism in alcohol-exposed astrocytes. PeerJ 2024; 12:e17541. [PMID: 38832034 PMCID: PMC11146317 DOI: 10.7717/peerj.17541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/19/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Oxidative and antioxidant pathways play essential roles in the development of alcohol-induced brain injury. The Nrf2 pathway is an endogenous antioxidant response pathway, but there has been little research on the role of Nrf2 in alcohol-related diseases. Thus, we examined the effects of alcohol and an Nrf2 agonist (TBHQ) on astrocyte function, mRNA expression, and metabolite content to further explore the protective mechanisms of Nrf2 agonists in astrocytes following alcohol exposure. Methods CTX TNA2 astrocytes were cultured with alcohol and TBHQ and then subjected to transcriptome sequencing, LC-MS/MS analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and malondialdehyde (MDA) and superoxide dismutase (SOD) activity assays. Results Alcohol exposure significantly increased malondialdehyde (MDA) levels while decreasing superoxide dismutase (SOD) levels in astrocytes. Treatment with TBHQ effectively reversed these effects, demonstrating its protective role against oxidative stress induced by alcohol. Transcriptome sequencing and qRT-PCR analysis revealed that TBHQ specifically upregulates genes involved in glutathione metabolism, including a notable increase in the expression of the glutathione S-transferase A5 (GSTA5) gene, which was suppressed by alcohol exposure. Additionally, metabolomic analysis showed that TBHQ regulates key components of ether lipid metabolism in alcohol-exposed astrocytes, with significant reductions in the levels of lysophosphatidylcholine (18:0) (LysoPC (18:0)) and 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine, both of which are critical markers in the ether lipid metabolic pathway. Discussion The findings underscore the role of TBHQ as an Nrf2 agonist in mitigating alcohol-induced oxidative damage in astrocytes by modulating glutathione metabolism and ether lipid metabolism. The regulation of GSTA5 gene expression emerges as a key mechanism through which Nrf2 agonists confer neuroprotection against oxidative stress and lipid oxidation. These insights pave the way for potential therapeutic strategies targeting the Nrf2 pathway to protect astrocytes from alcohol-induced damage.
Collapse
Affiliation(s)
- Congyan Li
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Jingxin Fan
- Jiamusi University, Jiamusi, People’s Republic of China
| | - Guangtao Sun
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | - Huiying Zhao
- Department of Neurology, Yichun Forestry Administration Central Hospital, Yichun, China
| | - Xiaogang Zhong
- College of Basic Medicine, Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyan Huang
- The Second Affiliated Hospital of Jiamusi University, Jiamusi, China
| | | | - Xunzhong Qi
- Department of Neurology, The First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
46
|
Song B, Liu D, Lu J, Tao X, Peng X, Wu T, Hou YM, Wang J, Regenstein JM, Zhou P. Lipidomic Comparisons of Whole Cream Buttermilk Whey and Cheese Whey Cream Buttermilk of Caprine Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11268-11277. [PMID: 38695399 DOI: 10.1021/acs.jafc.4c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Buttermilk is a potential material for the production of a milk fat globule membrane (MFGM) and can be mainly classified into two types: whole cream buttermilk and cheese whey cream buttermilk (WCB). Due to the high casein micelle content of whole cream buttermilk, the removal of casein micelles to improve the purity of MFGM materials is always required. This study investigated the effects of rennet and acid coagulation on the lipid profile of buttermilk rennet-coagulated whey (BRW) and buttermilk acid-coagulated whey (BAW) and compared them with WCB. BRW has significantly higher phospholipids (PLs) and ganglioside contents than BAW and WCB. The abundance of arachidonic acid (ARA)- and eicosapentaenoic acid (EPA)-structured PLs was higher in WCB, while docosahexaenoic acid (DHA)-structured PLs were higher in BRW, indicating that BRW and WCB intake might have a greater effect on improving cardiovascular conditions and neurodevelopment. WCB and BRW had a higher abundance of plasmanyl PL and plasmalogen PL, respectively. Phosphatidylcholine (PC) (28:1), LPE (20:5), and PC (26:0) are characteristic lipids among BRW, BAW, and WCB, and they can be used to distinguish MFGM-enriched whey from different sources.
Collapse
Affiliation(s)
- Bo Song
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dasong Liu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jing Lu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Key Laboratory of Flavor Chemistry, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiumei Tao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Analysis and Testing Center, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoyu Peng
- Ausnutria Dairy (China) Co. Ltd., Changsha, Hunan 410200, China
| | - Tong Wu
- Hyproca Nutrition Co., Ltd., Changsha, Hunan 410200, China
| | - Yan-Mei Hou
- Hyproca Nutrition Co., Ltd., Changsha, Hunan 410200, China
| | - Jiaqi Wang
- Ausnutria Dairy (China) Co. Ltd., Changsha, Hunan 410200, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, New York 14853-7201, United States
| | - Peng Zhou
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
47
|
Warmuzińska N, Łuczykowski K, Stryjak I, Rosales-Solano H, Urbanellis P, Pawliszyn J, Selzner M, Bojko B. The impact of normothermic and hypothermic preservation methods on kidney lipidome-comparative study using chemical biopsy with microextraction probes. Front Mol Biosci 2024; 11:1341108. [PMID: 38784665 PMCID: PMC11112113 DOI: 10.3389/fmolb.2024.1341108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Normothermic ex vivo kidney perfusion (NEVKP) is designed to replicate physiological conditions to improve graft outcomes. A comparison of the impact of hypothermic and normothermic preservation techniques on graft quality was performed by lipidomic profiling using solid-phase microextraction (SPME) chemical biopsy as a minimally invasive sampling approach. Methods Direct kidney sampling was conducted using SPME probes coated with a mixed-mode extraction phase in a porcine autotransplantation model of the renal donor after cardiac death, comparing three preservation methods: static cold storage (SCS), NEVKP, and hypothermic machine perfusion (HMP). The lipidomic analysis was done using ultra-high-performance liquid chromatography coupled with a Q-Exactive Focus Orbitrap mass spectrometer. Results Chemometric analysis showed that the NEVLP group was separated from SCS and HMP groups. Further in-depth analyses indicated significantly (p < 0.05, VIP > 1) higher levels of acylcarnitines, phosphocholines, ether-linked and longer-chain phosphoethanolamines, triacylglycerols and most lysophosphocholines and lysophosphoethanolamines in the hypothermic preservation group. The results showed that the preservation temperature has a more significant impact on the lipidomic profile of the kidney than the preservation method's mechanical characteristics. Conclusion Higher levels of lipids detected in the hypothermic preservation group may be related to ischemia-reperfusion injury, mitochondrial dysfunction, pro-inflammatory effect, and oxidative stress. Obtained results suggest the NEVKP method's beneficial effect on graft function and confirm that SPME chemical biopsy enables low-invasive and repeated sampling of the same tissue, allowing tracking alterations in the graft throughout the entire transplantation procedure.
Collapse
Affiliation(s)
- Natalia Warmuzińska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Kamil Łuczykowski
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | - Iga Stryjak
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| | | | - Peter Urbanellis
- Ajmera Transplant Center, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | - Markus Selzner
- Ajmera Transplant Center, Department of Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
- Department of Medicine, Toronto General Hospital, Toronto, ON, Canada
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Nicolaus Copernicus University in Torun, Collegium Medicum in Bydgoszcz, Bydgoszcz, Poland
| |
Collapse
|
48
|
Sarkar C, Lipinski MM. Glycerophospholipid dysregulation after traumatic brain injury. Neurochem Int 2024; 175:105701. [PMID: 38428503 PMCID: PMC11040658 DOI: 10.1016/j.neuint.2024.105701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
Brain tissue is highly enriched in lipids, the majority of which are glycerophospholipids. Glycerophospholipids are the major constituents of cellular membranes and play an important role in maintaining integrity and function of cellular and subcellular structures. Any changes in glycerophospholipid homeostasis can adversely affect brain functions. Traumatic brain injury (TBI), an acquired injury caused by the impact of external forces to the brain, triggers activation of secondary biochemical events that include perturbation of lipid homeostasis. Several studies have demonstrated glycerophospholipid dysregulation in the brain and circulation after TBI. This includes spatial and temporal changes in abundance and distribution of glycerophospholipids in the injured brain. This is at least in part mediated by TBI-induced oxidative stress and by activation of lipid metabolism pathways involved in tissue repairing. In this review, we discuss current advances in understanding of the mechanisms and implications of glycerophospholipid dysregulation following TBI.
Collapse
Affiliation(s)
- Chinmoy Sarkar
- Shock, Trauma and Anesthesiology Research (STAR) Center, Department of Anesthesiology, Baltimore, MD, 21201, USA.
| | - Marta M Lipinski
- Shock, Trauma and Anesthesiology Research (STAR) Center, Department of Anesthesiology, Baltimore, MD, 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
49
|
Li X, Wang H, Wang H, Bullert AJ, Cui JY, Wang K, Lehmler HJ. Germ-free status but not subacute polychlorinated biphenyl (PCB) exposure altered hepatic phosphatidylcholine and ether-phosphatidylcholine levels in mice. Toxicology 2024; 504:153790. [PMID: 38552894 DOI: 10.1016/j.tox.2024.153790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that pose a current ecosystem and human health concern. PCB exposure impacts the gut microbiome in animal models, suggesting a mechanistic link between PCB exposure and adverse health outcomes. The presence and absence of the microbiome and exposure to PCBs independently affect the lipid composition in the liver, which in turn affects the PCB disposition in target tissues, such as the liver. Here, we investigated microbiome × subacute PCB effects on the hepatic lipid composition of conventional and germ-free female mice exposed to 0, 6, or 30 mg/kg body weight of an environmental PCB mixture in sterile corn oil once daily for 3 consecutive days. Hepatic triacylglyceride and polar lipid levels were quantified using mass spectrometric methods following the subacute PCB exposure. The lipidomic analysis revealed no PCB effect on the hepatic levels. No microbiome effect was observed on levels of triacylglyceride and most polar lipid classes. The total hepatic levels of phosphatidylcholine (PC) and ether-phosphatidylcholine (ePC) lipids were lower in germ-free mice than the conventional mice from the same exposure group. Moreover, levels of several unsaturated PCs, such as PC(36:5) and PC(42:10), and ePCs, such as ePC(36:2) and ePC(4:2), were lower in germ-free than conventional female mice. Based on a KEGG pathway meta-analysis of RNA sequencing data, the ether lipid metabolism pathway is altered in the germ-free mouse liver. In contrast to the liver, extractable lipid levels, determined gravimetrically, differed in several tissues from naïve conventional vs. germ-free mice. Overall, microbiome × subacute PCB exposure effects on hepatic lipid composition are unlikely to affect PCB distribution into the mouse liver. Further studies are needed to assess how the different extractable lipid levels in other tissues alter PCB distribution in conventional vs. germ-free mice.
Collapse
Affiliation(s)
- Xueshu Li
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda J Bullert
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, University of Iowa, Iowa City, IA 52242, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
50
|
Yen TH, Lee SH, Tang CH, Liang HJ, Lin CY. Lipid responses to perfluorooctane sulfonate exposure for multiple rat organs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116368. [PMID: 38669874 DOI: 10.1016/j.ecoenv.2024.116368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/16/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent chemical that has long been a threat to human health. However, the molecular effects of PFOS on various organs are not well studied. In this study, male Sprague-Dawley rats were treated with various doses of PFOS through gavage for 21 days. Subsequently, the liver, lung, heart, kidney, pancreas, testis, and serum of the rats were harvested for lipid analysis. We applied a focusing lipidomic analytical strategy to identify key lipid responses of phosphorylcholine-containing lipids, including phosphatidylcholines and sphingomyelins. Partial least squares discriminant analysis revealed that the organs most influenced by PFOS exposure were the liver, kidney, and testis. Changes in the lipid profiles of the rats indicated that after exposure, levels of diacyl-phosphatidylcholines and 22:6-containing phosphatidylcholines in the liver, kidney, and testis of the rats decreased, whereas the level of 20:3-containing phosphatidylcholines increased. Furthermore, levels of polyunsaturated fatty acids-containing plasmenylcholines decreased. Changes in sphingomyelin levels indicated organ-dependent responses. Decreased levels of sphingomyelins in the liver, nonmonotonic dose responses in the kidney, and irregular responses in the testis after PFOS exposure are observed. These lipid responses may be associated with alterations pertaining to phosphatidylcholine synthesis, fatty acid metabolism, membrane properties, and oxidative stress in the liver, kidney, and testis. Lipid responses in the liver could have contributed to the observed increase in liver to body weight ratios. The findings suggest potential toxicity and possible mechanisms associated with PFOS in multiple organs.
Collapse
Affiliation(s)
- Tzu-Hsin Yen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Sheng-Han Lee
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|