1
|
Zhang X, Fan Y, Tan K. A bird's eye view of mitochondrial unfolded protein response in cancer: mechanisms, progression and further applications. Cell Death Dis 2024; 15:667. [PMID: 39261452 PMCID: PMC11390889 DOI: 10.1038/s41419-024-07049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Mitochondria are essential organelles that play critical roles in energy metabolism, apoptosis and various cellular processes. Accumulating evidence suggests that mitochondria are also involved in cancer development and progression. The mitochondrial unfolded protein response (UPRmt) is a complex cellular process that is activated when the protein-folding capacity of the mitochondria is overwhelmed. The core machinery of UPRmt includes upstream regulatory factors, mitochondrial chaperones and proteases. These components work together to eliminate misfolded proteins, increase protein-folding capacity, and restore mitochondrial function. Recent studies have shown that UPRmt is dysregulated in various cancers and contributes to tumor initiation, growth, metastasis, and therapeutic resistance. Considering the pivotal role of the UPRmt in oncogenesis, numerous compounds and synthetic drugs targeting UPRmt-related components induce cancer cell death and suppress tumor growth. In this review, we comprehensively summarize recent studies on the molecular mechanisms of UPRmt activation in C. elegans and mammals and elucidate the conceptual framework, functional aspects, and implications of the UPRmt for cancer therapy. In summary, we paint a developmental landscape of the UPRmt in different types of cancer and offer valuable insights for the development of novel cancer treatment strategies by targeting the UPRmt.
Collapse
Affiliation(s)
- Xinyu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yumei Fan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Ke Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology; Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Province Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
2
|
Cigliano A, Gigante I, Serra M, Vidili G, Simile MM, Steinmann S, Urigo F, Cossu E, Pes GM, Dore MP, Ribback S, Milia EP, Pizzuto E, Mancarella S, Che L, Pascale RM, Giannelli G, Evert M, Chen X, Calvisi DF. HSF1 is a prognostic determinant and therapeutic target in intrahepatic cholangiocarcinoma. J Exp Clin Cancer Res 2024; 43:253. [PMID: 39243039 PMCID: PMC11378393 DOI: 10.1186/s13046-024-03177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is a lethal primary liver tumor characterized by clinical aggressiveness, poor prognosis, and scarce therapeutic possibilities. Therefore, new treatments are urgently needed to render this disease curable. Since cumulating evidence supports the oncogenic properties of the Heat Shock Factor 1 (HSF1) transcription factor in various cancer types, we investigated its pathogenetic and therapeutic relevance in iCCA. METHODS Levels of HSF1 were evaluated in a vast collection of iCCA specimens. The effects of HSF1 inactivation on iCCA development in vivo were investigated using three established oncogene-driven iCCA mouse models. In addition, the impact of HSF1 suppression on tumor cells and tumor stroma was assessed in iCCA cell lines, human iCCA cancer-associated fibroblasts (hCAFs), and patient-derived organoids. RESULTS Human preinvasive, invasive, and metastatic iCCAs displayed widespread HSF1 upregulation, which was associated with a dismal prognosis of the patients. In addition, hydrodynamic injection of a dominant-negative form of HSF1 (HSF1dn), which suppresses HSF1 activity, significantly delayed cholangiocarcinogenesis in AKT/NICD, AKT/YAP, and AKT/TAZ mice. In iCCA cell lines, iCCA hCAFs, and patient-derived organoids, administration of the HSF1 inhibitor KRIBB-11 significantly reduced proliferation and induced apoptosis. Cell death was profoundly augmented by concomitant administration of the Bcl-xL/Bcl2/Bcl-w inhibitor ABT-263. Furthermore, KRIBB-11 reduced mitochondrial bioenergetics and glycolysis of iCCA cells. CONCLUSIONS The present data underscore the critical pathogenetic, prognostic, and therapeutic role of HSF1 in cholangiocarcinogenesis.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Isabella Gigante
- National Institute of Gastroenterology, IRCCS "Saverio de Bellis", Castellana Grotte, Italy
| | - Marina Serra
- Institute of Pathology, University of Regensburg, Regensburg, Germany
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Gianpaolo Vidili
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Maria M Simile
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Sara Steinmann
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Francesco Urigo
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Eleonora Cossu
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Giovanni M Pes
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Maria P Dore
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Egle P Milia
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Elena Pizzuto
- National Institute of Gastroenterology, IRCCS "Saverio de Bellis", Castellana Grotte, Italy
| | - Serena Mancarella
- National Institute of Gastroenterology, IRCCS "Saverio de Bellis", Castellana Grotte, Italy
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Rosa M Pascale
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, IRCCS "Saverio de Bellis", Castellana Grotte, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- University of Hawaii Cancer Center, Honolulu, USA
| | - Diego F Calvisi
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy.
| |
Collapse
|
3
|
Viana PHL, Schvarcz CA, Danics LO, Besztercei B, Aloss K, Bokhari SMZ, Giunashvili N, Bócsi D, Koós Z, Benyó Z, Hamar P. Heat shock factor 1 inhibition enhances the effects of modulated electro hyperthermia in a triple negative breast cancer mouse model. Sci Rep 2024; 14:8241. [PMID: 38589452 PMCID: PMC11002009 DOI: 10.1038/s41598-024-57659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Female breast cancer is the most diagnosed cancer worldwide. Triple negative breast cancer (TNBC) is the most aggressive type and there is no existing endocrine or targeted therapy. Modulated electro-hyperthermia (mEHT) is a non-invasive complementary cancer therapy using an electromagnetic field generated by amplitude modulated 13.56 MHz frequency that induces tumor cell destruction. However, we have demonstrated a strong induction of the heat shock response (HSR) by mEHT, which can result in thermotolerance. We hypothesized that inhibition of the heat shock factor 1 (HSF1) can synergize with mEHT and enhance tumor cell-killing. Thus, we either knocked down the HSF1 gene with a CRISPR/Cas9 lentiviral construct or inhibited HSF1 with a specific small molecule inhibitor: KRIBB11 in vivo. Wild type or HSF1-knockdown 4T1 TNBC cells were inoculated into the mammary gland's fat pad of BALB/c mice. Four mEHT treatments were performed every second day and the tumor growth was followed by ultrasound and caliper. KRIBB11 was administrated intraperitoneally at 50 mg/kg daily for 8 days. HSF1 and Hsp70 expression were assessed. HSF1 knockdown sensitized transduced cancer cells to mEHT and reduced tumor growth. HSF1 mRNA expression was significantly reduced in the KO group when compared to the empty vector group, and consequently mEHT-induced Hsp70 mRNA upregulation diminished in the KO group. Immunohistochemistry (IHC) confirmed the inhibition of Hsp70 upregulation in mEHT HSF1-KO group. Demonstrating the translational potential of HSF1 inhibition, combined therapy of mEHT with KRIBB11 significantly reduced tumor mass compared to either monotherapy. Inhibition of Hsp70 upregulation by mEHT was also supported by qPCR and IHC. In conclusion, we suggest that mEHT-therapy combined with HSF1 inhibition can be a possible new strategy of TNBC treatment with great translational potential.
Collapse
Affiliation(s)
- Pedro H L Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Csaba A Schvarcz
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Lea O Danics
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Balázs Besztercei
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Kenan Aloss
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Syeda M Z Bokhari
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Nino Giunashvili
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Dániel Bócsi
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Zoltán Koós
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Diseases Research Group, Tűzoltó Utca 37-47, Budapest, 1094, Hungary
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó Utca 37-47, Budapest, 1094, Hungary.
| |
Collapse
|
4
|
Viana P, Hamar P. Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189069. [PMID: 38176599 DOI: 10.1016/j.bbcan.2023.189069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
The Heat Shock Response (HSR) is a cellular stress reaction crucial for cell survival against stressors, including heat, in both healthy and cancer cells. Modulated electro-hyperthermia (mEHT) is an emerging non-invasive cancer therapy utilizing electromagnetic fields to selectively target cancer cells via temperature-dependent and independent mechanisms. However, mEHT triggers HSR in treated cells. Despite demonstrated efficacy in cancer treatment, understanding the underlying molecular mechanisms for improved therapeutic outcomes remains a focus. This review examines the HSR induced by mEHT in cancer cells, discussing potential strategies to modulate it for enhanced tumor-killing effects. Approaches such as HSF1 gene-knockdown and small molecule inhibitors like KRIBB11 are explored to downregulate the HSR and augment tumor destruction. We emphasize the impact of HSR inhibition on cancer cell viability, mEHT sensitivity, and potential synergistic effects, addressing challenges and future directions. This understanding offers opportunities for optimizing treatment strategies and advancing precision medicine in cancer therapy.
Collapse
Affiliation(s)
- Pedro Viana
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Tűzoltó utca 37-49, 1094 Budapest, Hungary.
| |
Collapse
|
5
|
Gumilar KE, Chin Y, Ibrahim IH, Tjokroprawiro BA, Yang JY, Zhou M, Gassman NR, Tan M. Heat Shock Factor 1 Inhibition: A Novel Anti-Cancer Strategy with Promise for Precision Oncology. Cancers (Basel) 2023; 15:5167. [PMID: 37958341 PMCID: PMC10649344 DOI: 10.3390/cancers15215167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Heat shock factor 1 (HSF1) is a transcription factor crucial for regulating heat shock response (HSR), one of the significant cellular protective mechanisms. When cells are exposed to proteotoxic stress, HSF1 induces the expression of heat shock proteins (HSPs) to act as chaperones, correcting the protein-folding process and maintaining proteostasis. In addition to its role in HSR, HSF1 is overexpressed in multiple cancer cells, where its activation promotes malignancy and leads to poor prognosis. The mechanisms of HSF1-induced tumorigenesis are complex and involve diverse signaling pathways, dependent on cancer type. With its important roles in tumorigenesis and tumor progression, targeting HSF1 offers a novel cancer treatment strategy. In this article, we examine the basic function of HSF1 and its regulatory mechanisms, focus on the mechanisms involved in HSF1's roles in different cancer types, and examine current HSF1 inhibitors as novel therapeutics to treat cancers.
Collapse
Affiliation(s)
- Khanisyah Erza Gumilar
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, Surabaya 60286, Indonesia;
| | - Yeh Chin
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Ibrahim Haruna Ibrahim
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Brahmana A. Tjokroprawiro
- Department of Obstetrics and Gynecology, Faculty of Medicine, Airlangga University, Surabaya 60286, Indonesia;
| | - Jer-Yen Yang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
| | - Ming Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
| | - Natalie R. Gassman
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Ming Tan
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan (Y.C.); (I.H.I.); (J.-Y.Y.)
- Institute of Biochemistry and Molecular Biology, Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
6
|
Pasqua AE, Sharp SY, Chessum NEA, Hayes A, Pellegrino L, Tucker MJ, Miah A, Wilding B, Evans LE, Rye CS, Mok NY, Liu M, Henley AT, Gowan S, De Billy E, te Poele R, Powers M, Eccles SA, Clarke PA, Raynaud FI, Workman P, Jones K, Cheeseman MD. HSF1 Pathway Inhibitor Clinical Candidate (CCT361814/NXP800) Developed from a Phenotypic Screen as a Potential Treatment for Refractory Ovarian Cancer and Other Malignancies. J Med Chem 2023; 66:5907-5936. [PMID: 37017629 PMCID: PMC10150365 DOI: 10.1021/acs.jmedchem.3c00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Indexed: 04/06/2023]
Abstract
CCT251236 1, a potent chemical probe, was previously developed from a cell-based phenotypic high-throughput screen (HTS) to discover inhibitors of transcription mediated by HSF1, a transcription factor that supports malignancy. Owing to its activity against models of refractory human ovarian cancer, 1 was progressed into lead optimization. The reduction of P-glycoprotein efflux became a focus of early compound optimization; central ring halogen substitution was demonstrated by matched molecular pair analysis to be an effective strategy to mitigate this liability. Further multiparameter optimization led to the design of the clinical candidate, CCT361814/NXP800 22, a potent and orally bioavailable fluorobisamide, which caused tumor regression in a human ovarian adenocarcinoma xenograft model with on-pathway biomarker modulation and a clean in vitro safety profile. Following its favorable dose prediction to human, 22 has now progressed to phase 1 clinical trial as a potential future treatment for refractory ovarian cancer and other malignancies.
Collapse
Affiliation(s)
- A. Elisa Pasqua
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Swee Y. Sharp
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Nicola E. A. Chessum
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Angela Hayes
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Loredana Pellegrino
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Michael J. Tucker
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Asadh Miah
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Birgit Wilding
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lindsay E. Evans
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Carl S. Rye
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - N. Yi Mok
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Manjuan Liu
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Alan T. Henley
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Sharon Gowan
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Emmanuel De Billy
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Robert te Poele
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Marissa Powers
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Suzanne A. Eccles
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul A. Clarke
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Florence I. Raynaud
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul Workman
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Keith Jones
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Matthew D. Cheeseman
- Centre for Cancer Drug Discovery
and Division of Cancer Therapeutics at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| |
Collapse
|
7
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Ray SK, Mukherjee S. Piwi-interacting RNAs (piRNAs) and Colorectal Carcinoma: Emerging Non-invasive diagnostic Biomarkers with Potential Therapeutic Target Based Clinical Implications. Curr Mol Med 2023; 23:300-311. [PMID: 35068393 DOI: 10.2174/1566524022666220124102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
PIWI-interacting RNAs (piRNAs) constitute new small non-coding RNA molecules of around 24-31 nucleotides in length, mostly performing regulatory roles for the piwi protein family members. In recent times, developing evidence proposes that piRNAs are expressed in a tissue-specific way in various human tissues and act as moderate vital signalling pathways at the transcriptional or post-transcriptional level in addition to mammalian germline. Recent findings, however, show that the unusual expression of piRNAs is an exclusive and discrete feature in several diseases, including many human cancers. Recently, considerable evidence indicates that piRNAs could be dysregulated thus playing critical roles in tumorigenesis. The function and underlying mechanisms of piRNAs in cancer, particularly in colorectal carcinoma, are not fully understood to date. Abnormal expression of piRNAs is emerging as a critical player in cancer cell proliferation, apoptosis, invasion, and migration in vitro and in vivo. Functionally, piRNAs preserve genomic integrity and regulate the expression of downstream target genes through transcriptional or post-transcriptional mechanisms by repressing transposable elements' mobilization. However, little research has been done to check Piwi and piRNAs' potential role in cancer and preserve genome integrity by epigenetically silencing transposons via DNA methylation, especially in germline cancer stem cells. This review reveals emerging insights into piRNA functions in colorectal carcinoma, revealing novel findings behind various piRNA-mediated gene regulation mechanisms, biogenetic piRNA processes, and possible applications of piRNAs and piwi proteins in cancer diagnosis and their potential clinical significance in the treatment of colorectal carcinoma patients.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Associate Professor, Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
9
|
Li Y, Li Q, Liu J, Huang Y, Mao J, Zhang G. HSF1 expression in tumor-associated macrophages promotes tumor cell proliferation and indicates poor prognosis in esophageal squamous cell carcinoma. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1682-1689. [PMID: 36586067 DOI: 10.1007/s12094-022-03063-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE Tumor-associated macrophages (TAMs), are crucial for the survival and development of tumor cells. Heat shock factor 1 (HSF1) is a potent, complex carcinogenesis modulator, and esophageal cancer (EC) patients have a bad prognosis when HSF1 is highly expressed. HSF1's clinical importance and biological role in TAMs are still unknown. METHODS The HSF1 expression profile and patient survival information were analyzed from the TCGA database. The infiltration of different types of immune cells in EC was evaluated based on HSF1 gene expression by Sangerbox 3.0. Immunochemistry was employed to assess HSF1 protein expression in 134 individuals with esophageal squamous cell carcinoma (ESCC), proceeded by association with clinicopathological variables. The role of macrophage-driven HSF1 were observed using HSF1-knockdown THP1 cells. RESULTS High level of HSF1 have a poorer prognosis in individuals with EC. The expressing level of HSF1 was positively related to infiltration of M2 macrophages (P < 0.05). The expression of HSF1 in macrophages was an independent factor for DFS (P = 0.002) and OS (P = 0.002) in ESCC cases. HSF1 was up-regulated in IL-4 stimulation THP1 cells in a time-dependent manner. Under the heat stimulation condition, THP1-derived macrophages were more sensitive than tumor cells. Compared to IL-4 induced-THP1 cells control, the HSF1 knockdown in THP1 cell inhibited the growth and proliferation of ESCC cells. CONCLUSIONS The up-regulation of HSF1 was more rapid and could affect the proliferation of tumor cells in IL4-induced macrophages. The expression of HSF1 in TAMs can also serve as a marker for ESCC prognosis.
Collapse
Affiliation(s)
- Yiqiu Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, No. 132 Waihuandong Road, University Town, Guangzhou, 510006, China
| | - Qifan Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, No. 132 Waihuandong Road, University Town, Guangzhou, 510006, China
| | - Jiasheng Liu
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, No. 132 Waihuandong Road, University Town, Guangzhou, 510006, China
| | - Yuying Huang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, No. 132 Waihuandong Road, University Town, Guangzhou, 510006, China
| | - Jinzhu Mao
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, No. 132 Waihuandong Road, University Town, Guangzhou, 510006, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-Sen University, No. 132 Waihuandong Road, University Town, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Zhang J, Wen H, Qi X, Zhang Y, Dong X, Zhang K, Zhang M, Li J, Li Y. Morphological and Molecular Responses of Lateolabrax maculatus Skeletal Muscle Cells to Different Temperatures. Int J Mol Sci 2022; 23:ijms23179812. [PMID: 36077203 PMCID: PMC9456278 DOI: 10.3390/ijms23179812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Temperature strongly modulates muscle development and growth in ectothermic teleosts; however, the underlying mechanisms remain largely unknown. In this study, primary cultures of skeletal muscle cells of Lateolabrax maculatus were conducted and reared at different temperatures (21, 25, and 28 °C) in both the proliferation and differentiation stages. CCK-8, EdU, wound scratch and nuclear fusion index assays revealed that the proliferation, myogenic differentiation, and migration processes of skeletal muscle cells were significantly accelerated as the temperature raises. Based on the GO, GSEA, and WGCNA, higher temperature (28 °C) induced genes involved in HSF1 activation, DNA replication, and ECM organization processes at the proliferation stage, as well as HSF1 activation, calcium activity regulation, myogenic differentiation, and myoblast fusion, and sarcomere assembly processes at the differentiation stage. In contrast, lower temperature (21 °C) increased the expression levels of genes associated with DNA damage, DNA repair and apoptosis processes at the proliferation stage, and cytokine signaling and neutrophil degranulation processes at the differentiation stage. Additionally, we screened several hub genes regulating myogenesis processes. Our results could facilitate the understanding of the regulatory mechanism of temperature on fish skeletal muscle growth and further contribute to utilizing rational management strategies and promoting organism growth and development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yun Li
- Correspondence: ; Tel.: +86-0532-82-031-792
| |
Collapse
|
11
|
Antitumor Activities of Aqueous Cinnamon Extract on 5637 Cell Line of Bladder Cancer through Glycolytic Pathway. Int J Inflam 2022; 2022:3855368. [PMID: 35990198 PMCID: PMC9388315 DOI: 10.1155/2022/3855368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background Pharmacotherapy with medicinal plants is a promising approach to treat cancer. Cinnamon is a medicinal plant whose properties have been proven in various fields of medical sciences. Among its biological activities, its antioxidant and antiviral effects can be mentioned. In this study, the antitumor effects of Cinnamon with a focus on glucose metabolism in bladder cancer carcinoma cell-line 5637 were investigated. Methods Aqueous extract of Cinnamon was prepared from Cinnamon bark. Bladder cancer 5637cell line were treated with different concentrations of aqueous extract of Cinnamon. MTT was used to evaluate cell viability at 24, 48, and 72 h. The concentration of 1.25, 2.50, and 5 mg/ml was used. Apoptosis was assessed with Hochest33258 staining. For evaluating of aqueous extract of Cinnamon effect on glycolysis, the gene expression of epidermal growth factor receptor 2 (ErbB2), heat shock protein transcription factor1 (HSF1), and lactate dehydrogenase A (LDHA), as well as protein levels of HSF1 and LDHA, LDH activity, glucose consumption, and lactate production, were measured. Results Aqueous extract of Cinnamon significantly decreased ErbB2, HSF1, and LDHA gene expression and also decreased the protein level of HSF1 and LDHA, LDH activity, glucose consumption, and lactate production dose-dependently (p < 0.05). Conclusion Our finding showed that the aqueous extract of Cinnamon can inhibit proliferation in 5637 cells by inhibition of glycolysis and induction of apoptosis.
Collapse
|
12
|
Risha MA, Ali A, Siengdee P, Trakooljul N, Dannenberger D, Wimmers K, Ponsuksili S. Insights into molecular pathways and fatty acid membrane composition during the temperature stress response in the murine C2C12 cell model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151019. [PMID: 34662617 DOI: 10.1016/j.scitotenv.2021.151019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Daily and seasonal temperature fluctuations are inevitable due to climate change, which highlights the importance of studying the detrimental effects of temperature fluctuations on the health, productivity, and product quality of farm animals. Muscle membrane composition and the molecular signals are vital for muscle cell differentiation and muscle growth, but their response to temperature stress is not well characterized. Temperature changes can lead to modification of membrane components of the cell, which may affect its surroundings and intracellular signaling pathways. Using C2C12 myoblast cells as a model of skeletal muscle development, this study was designed to investigate the effects of high temperature (39 °C and 41 °C) and low temperature (35 °C) on molecular pathways in the cells as well as the cell membrane fatty acid composition. Our results show that several genes were differentially expressed in C2C12 cells cultured under heat or cold stress, and these genes were enriched important KEGG pathways including PI3K-Akt signaling pathway, lysosome and HIF- signaling pathway, Wnt signaling pathway and AMPK signaling pathway. Our analysis further reveals that several membrane transporters and genes involved in lipid metabolism and fatty acid elongation were also differentially expressed in C2C12 cells cultured under high or low temperature. Additionally, temperature stress shifts the fatty acid composition in the cell membranes, including the proportion of saturated, monounsaturated and polyunsaturated fatty acids. This study revealed an interference between fatty acid composition in the membranes and changing molecular pathways including lipid metabolism and fatty acids elongation mediated under thermal stress. These findings will reinforce a better understanding of the adaptive mechanisms in skeletal muscle under temperature stress.
Collapse
Affiliation(s)
- Marua Abu Risha
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Asghar Ali
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Puntita Siengdee
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Dirk Dannenberger
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Lipid metabolism and muscular adaptation workgroup, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany.
| |
Collapse
|
13
|
He L, Lv S, Ma X, Jiang S, Zhou F, Zhang Y, Yu R, Zhao Y. ErbB2 promotes breast cancer metastatic potential via HSF1/LDHA axis-mediated glycolysis. Med Oncol 2022; 39:45. [PMID: 35092510 DOI: 10.1007/s12032-021-01641-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022]
Abstract
ErbB2 is overexpressed in approximately 25% of breast cancer cases and promotes metastatic potential. We previously reported that ErbB2 promoted glycolysis via heat shock factor 1 (HSF1)/lactate dehydrogenase A (LDHA) axis and ErbB2-mediated glycolysis was required for the growth of breast cancer cells. However, the importance of HSF1/LDHA axis-mediated glycolysis in ErbB2-enhanced metastatic potential remains to be elucidated. In this study, we investigated the effect of HSF1/LDHA axis-mediated glycolysis on migration and invasion in breast cancer cells. Firstly, we demonstrated that ErbB2-mediated migration and invasion were dependent on glycolysis in breast cancer cells. Secondly, we found that HSF1/LDHA axis played an important role in glycolysis, which contributed to ErbB2-enhanced migration and invasion. Finally, we showed that ErbB2 was positively correlated with HSF1/LDHA axis in invasive breast cancer patients via GEO analysis. Taken together, ErbB2 promoted metastatic potential of breast cancer cells via HSF1/LDHA axis-mediated glycolysis. And our findings indicated that targeting HSF1/LDHA axis may be a promising strategy to treat ErbB2-overexpressing breast cancer patients.
Collapse
Affiliation(s)
- Li He
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China
- Department of Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Sinan Lv
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Xuejiao Ma
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China
- Department of Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Sufang Jiang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China
- Department of Anesthesiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fang Zhou
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Yunwu Zhang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China
| | - Rong Yu
- Department of Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China.
| | - Yuhua Zhao
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, South Renmin Road, Chengdu, 610041, China.
| |
Collapse
|
14
|
Heat Shock Proteins in Benign Prostatic Hyperplasia and Prostate Cancer. Int J Mol Sci 2022; 23:ijms23020897. [PMID: 35055079 PMCID: PMC8779911 DOI: 10.3390/ijms23020897] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Two out of three diseases of the prostate gland affect aging men worldwide. Benign prostatic hyperplasia (BPH) is a noncancerous enlargement affecting millions of men. Prostate cancer (PCa) in turn is the second leading cause of cancer death. The factors influencing the occurrence of BPH and PCa are different; however, in the course of these two diseases, the overexpression of heat shock proteins is observed. Heat shock proteins (HSPs), chaperone proteins, are known to be one of the main proteins playing a role in maintaining cell homeostasis. HSPs take part in the process of the proper folding of newly formed proteins, and participate in the renaturation of damaged proteins. In addition, they are involved in the transport of specific proteins to the appropriate cell organelles and directing damaged proteins to proteasomes or lysosomes. Their function is to protect the proteins against degradation factors that are produced during cellular stress. HSPs are also involved in modulating the immune response and the process of apoptosis. One well-known factor affecting HSPs is the androgen receptor (AR)—a main player involved in the development of BPH and the progression of prostate cancer. HSPs play a cytoprotective role and determine the survival of cancer cells. These chaperones are often upregulated in malignancies and play an indispensable role in tumor progression. Therefore, HSPs are considered as one of the therapeutic targets in anti-cancer therapies. In this review article, we discuss the role of different HSPs in prostate diseases, and their potential as therapeutic targets.
Collapse
|
15
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
16
|
Yang S, Xiao H, Cao L. Recent advances in heat shock proteins in cancer diagnosis, prognosis, metabolism and treatment. Biomed Pharmacother 2021; 142:112074. [PMID: 34426258 DOI: 10.1016/j.biopha.2021.112074] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are a group of proteins, also known as molecular chaperones, which participate in protein folding and maturation in response to stresses or high temperature. According to their molecular weights, mammalian HSPs are classified into HSP27, HSP40, HSP60, HSP70, HSP90, and large HSPs. Previous studies have revealed that HSPs play important roles in oncogenesis and malignant progression because they can modulate all six hallmark traits of cancer. Because of this, HSPs have been propelled into the spotlight as biomarkers for cancer diagnosis and prognosis, as well as an exciting anticancer drug target. However, the relationship between the expression level of HSPs and their activity and cancer diagnosis, prognosis, metabolism and treatment is not clear and has not been completely established. Herein, this review summarizes and discusses recent advances and perspectives in major HSPs as biomarkers for cancer diagnosis, as regulators for cancer metabolism or as therapeutic targets for cancer therapy, which may provide new directions to improve the accuracy of cancer diagnosis and develop more effective and safer anticancer therapeutics.
Collapse
Affiliation(s)
- Shuxian Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Haiyan Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Li Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
17
|
Targeting Cancer Metabolism Breaks Radioresistance by Impairing the Stress Response. Cancers (Basel) 2021; 13:cancers13153762. [PMID: 34359663 PMCID: PMC8345170 DOI: 10.3390/cancers13153762] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Ionizing radiation is a major pillar in the therapy of solid tumors. However, normal tissue toxicities and radioresistance of tumor cells can limit the therapeutic success of radiotherapy. In this study, we investigated the coregulation of the cancer metabolism and the heat shock response with respect to radioresistance. Our results indicate that an inhibition of lactate dehydrogenase, either pharmacologically or by gene knockout of LDHA and LDHB, significantly increases the radiosensitivity in tumor cells by global impairing of the stress response. Therefore, inhibition of the lactate metabolism might provide a promising strategy in the future to improve the clinical outcome of patients with highly aggressive, therapy-resistant tumors. Abstract The heightened energetic demand increases lactate dehydrogenase (LDH) activity, the corresponding oncometabolite lactate, expression of heat shock proteins (HSPs) and thereby promotes therapy resistance in many malignant tumor cell types. Therefore, we assessed the coregulation of LDH and the heat shock response with respect to radiation resistance in different tumor cells (B16F10 murine melanoma and LS174T human colorectal adenocarcinoma). The inhibition of LDH activity by oxamate or GNE-140, glucose deprivation and LDHA/B double knockout (LDH−/−) in B16F10 and LS174T cells significantly diminish tumor growth; ROS production and the cytosolic expression of different HSPs, including Hsp90, Hsp70 and Hsp27 concomitant with a reduction of heat shock factor 1 (HSF1)/pHSF1. An altered lipid metabolism mediated by a LDHA/B double knockout results in a decreased presence of the Hsp70-anchoring glycosphingolipid Gb3 on the cell surface of tumor cells, which, in turn, reduces the membrane Hsp70 density and increases the extracellular Hsp70 levels. Vice versa, elevated extracellular lactate/pyruvate concentrations increase the membrane Hsp70 expression in wildtype tumor cells. Functionally, an inhibition of LDH causes a generalized reduction of cytosolic and membrane-bound HSPs in tumor cells and significantly increases the radiosensitivity, which is associated with a G2/M arrest. We demonstrate that targeting of the lactate/pyruvate metabolism breaks the radioresistance by impairing the stress response.
Collapse
|
18
|
Aminzadeh Z, Ziamajidi N, Abbasalipourkabir R. Anticancer Effects of Cinnamaldehyde through Inhibition of ErbB2/HSF1/LDHA Pathway in 5637 Cell Line of Bladder Cancer. Anticancer Agents Med Chem 2021; 22:1139-1148. [PMID: 34315398 DOI: 10.2174/1871520621666210726142814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The growing prevalence of bladder cancer worldwide has become a major concern for the researchers, and the side effects of chemotherapy drugs have always been a major problem in cancer treatment. Cinnamaldehyde, the active ingredient in the Cinnamon plant, has long been considered with anti-oxidant and anti-inflammatory effects. METHODS Bladder cancer 5637 cell lines were treated with the different concentrations of Cinnamaldehyde. MTT assay was performed to evaluate cell viability at 24, 48, and 72 hours. The concentration of 0.02, 0.04, and 0.08 mg/ml of Cinnamaldehyde were selected. Apoptosis was assessed with Annexin V-FITC/PI and Hochest33258 staining. Cell migration was performed by the scratch test. To evaluate Cinnamaldehyde effect on glycolysis, the gene expression of epidermal growth factor receptor 2 (ErbB2), heat shock protein transcription factor-1 (HSF1) and lactate dehydrogenase A (LDHA), as well as the protein levels of HSF1 and LDHA, LDH activity and finally glucose consumption and lactate production, were measured. RESULTS Cinnamaldehyde significantly increased apoptosis rate in the 5637 cells (p<0.05). Furthermore, it significantly reduced the gene expression of ErbB2, HSF1, and LDHA, protein level of HSF1 and LDHA, LDH activity, as well as cell migration, glucose consumption, and lactate production (p<0.05). These changes were dose-dependent. CONCLUSION Thus, Cinnamaldehyde induced apoptosis and decreased growth in 5637 cells by reducing ErbB2-HSF1-LDHA pathway.
Collapse
Affiliation(s)
- Zeynab Aminzadeh
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
19
|
Jacobson BA, Ahmad Z, Chen S, Waldusky G, Dillenburg M, Stoian E, Cambron DA, Patel AJ, Patel MR, Wagner CR, Kratzke RA. 4Ei-10 interdiction of oncogenic cap-mediated translation as therapy for non-small cell lung cancer. Invest New Drugs 2021; 39:636-643. [PMID: 33230623 DOI: 10.1007/s10637-020-01036-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/18/2020] [Indexed: 11/28/2022]
Abstract
In order to suppress 5' cap-mediated translation a highly available inhibitor of the interaction between the 5' mRNA cap and the eIF4E complex has been developed. 4Ei-10 is a member of the class of ProTide compounds and has elevated membrane permeability and is a strong active chemical antagonist for eIF4E. Once taken up by cells it is converted by anchimeric activation of the lipophilic 2-(methylthio) ethyl protecting group and after that Hint1 P-N bond cleavage to N7-(p-chlorophenoxyethyl) guanosine 5'-monophosphate (7-Cl-Ph-Ethyl-GMP). Using this powerful interaction, it has been demonstrated that 4Ei-10 inhibits non-small cell lung cancer (NSCLC) cell growth. In addition, treatment of NSCLC cells with 4Ei-10 results in suppression of translation and diminished expression of a cohort of cellular proteins important to maintaining the malignant phenotype and resisting apoptosis such as Bcl-2, survivin, and ornithine decarboxylase (ODC). Finally, as a result of targeting the translation of anti-apoptotic proteins, NSCLC cells are synergized to be more sensitive to the existing anti-neoplastic treatment gemcitabine currently used in NSCLC therapy.
Collapse
Affiliation(s)
- Blake A Jacobson
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Zeeshan Ahmad
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Maxwell Dillenburg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Anil J Patel
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Manish R Patel
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Division of Heme-Onc-Transplant, University of Minnesota Medical School, MMC 480, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
20
|
Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing. Cancers (Basel) 2021; 13:cancers13051102. [PMID: 33806538 PMCID: PMC7961562 DOI: 10.3390/cancers13051102] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Some regions of aggressive malignancies experience hypoxia due to inadequate blood supply. Cancer cells adapting to hypoxic conditions somehow become more resistant to radiation exposure and this decreases the efficacy of radiotherapy toward hypoxic tumors. The present review article helps clarify two intriguing points: why hypoxia-adapted cancer cells turn out radioresistant and how they can be rendered more radiosensitive. The critical molecular targets associated with intratumoral hypoxia and various approaches are here discussed which may be used for sensitizing hypoxic tumors to radiotherapy. Abstract Within aggressive malignancies, there usually are the “hypoxic zones”—poorly vascularized regions where tumor cells undergo oxygen deficiency through inadequate blood supply. Besides, hypoxia may arise in tumors as a result of antiangiogenic therapy or transarterial embolization. Adapting to hypoxia, tumor cells acquire a hypoxia-resistant phenotype with the characteristic alterations in signaling, gene expression and metabolism. Both the lack of oxygen by itself and the hypoxia-responsive phenotypic modulations render tumor cells more radioresistant, so that hypoxic tumors are a serious challenge for radiotherapy. An understanding of causes of the radioresistance of hypoxic tumors would help to develop novel ways for overcoming this challenge. Molecular targets for and various approaches to radiosensitizing hypoxic tumors are considered in the present review. It is here analyzed how the hypoxia-induced cellular responses involving hypoxia-inducible factor-1, heat shock transcription factor 1, heat shock proteins, glucose-regulated proteins, epigenetic regulators, autophagy, energy metabolism reprogramming, epithelial–mesenchymal transition and exosome generation contribute to the radioresistance of hypoxic tumors or may be inhibited for attenuating this radioresistance. The pretreatments with a multitarget inhibition of the cancer cell adaptation to hypoxia seem to be a promising approach to sensitizing hypoxic carcinomas, gliomas, lymphomas, sarcomas to radiotherapy and, also, liver tumors to radioembolization.
Collapse
|
21
|
Meng C, Liu K, Cai X, Chen Y. Mechanism of miR-455-3 in suppressing epithelial-mesenchymal transition and angiogenesis of non-small cell lung cancer cells. Cell Stress Chaperones 2021; 27:107-117. [PMID: 35064898 PMCID: PMC8943084 DOI: 10.1007/s12192-022-01254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor-suppressing role of miR-455-3p has been reported in lung cancer, but the working mechanism remains to be fully elucidated. This study aims to explore the possible mechanism of miR-455-3p in regulating epithelial-mesenchymal transition (EMT) progression and angiogenesis in non-small cell lung cancer (NSCLC) cells.The expressions of miR-455-3p, HSF1, GLS1, and EMT-related proteins (E-cadherin, N-cadherin, vimentin, and Snail-1) in both NSCLC tissues and cell lines were determined by RT-qPCR and western blot. After cell transfection, cell proliferation and angiogenesis ability on NSCLC cells were assessed by MTT and tube formation assay. The binding of miR-455-3p with HSF1 was measured by luciferase reporter gene assay, while the interaction between HSF1 and GLS1 was determined by co-immunoprecipitation assay (Co-IP).HSF1 was highly expressed in NSCLC tissues and cells. Inhibition of HSF1 expression or overexpression of miR-455-3p in NSCLC cells can suppress cell proliferation, angiogenesis ability, and EMT progression. miR-455-3p was found to negatively regulate HSF1 expression. Co-transfection of miR-455-3p overexpression and HSF1 inhibition in NSCLC cells showed that miR-455-3p can partially counteract the effect of HSF1 in NSCLC cells. HSF1 can interact with GLS1 and elevate the expression of GLS1. GLS1 can partially abolish the suppressive effect of miR-455-3p in NSCLC cells.miR-455-3p can bind HSF1 to suppress the GLS1 in NSCLC cells, therefore suppressing EMT progression and angiogenesis of NSCLC cells.
Collapse
Affiliation(s)
- Chong Meng
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, Hainan, 570311, People's Republic of China
| | - Kai Liu
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, Hainan, 570311, People's Republic of China
| | - Xingjun Cai
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, Hainan, 570311, People's Republic of China
| | - Yongxing Chen
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No. 19, Xiuhua Road, Haikou, Hainan, 570311, People's Republic of China.
| |
Collapse
|
22
|
Abstract
Cell death is an important facet of animal development. In some developing tissues, death is the ultimate fate of over 80% of generated cells. Although recent studies have delineated a bewildering number of cell death mechanisms, most have only been observed in pathological contexts, and only a small number drive normal development. This Primer outlines the important roles, different types and molecular players regulating developmental cell death, and discusses recent findings with which the field currently grapples. We also clarify terminology, to distinguish between developmental cell death mechanisms, for which there is evidence for evolutionary selection, and cell death that follows genetic, chemical or physical injury. Finally, we suggest how advances in understanding developmental cell death may provide insights into the molecular basis of developmental abnormalities and pathological cell death in disease.
Collapse
Affiliation(s)
- Piya Ghose
- Department of Biology, The University of Texas at Arlington, 655 Mitchell St., Arlington, TX 76019, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
23
|
Payne M, Bossmann SH, Basel MT. Direct treatment versus indirect: Thermo-ablative and mild hyperthermia effects. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1638. [PMID: 32352660 DOI: 10.1002/wnan.1638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/02/2020] [Accepted: 04/07/2020] [Indexed: 11/11/2022]
Abstract
Hyperthermia is a rapidly growing field in cancer therapy and many advances have been made in understanding and applying the mechanisms of hyperthermia. Secondary effects of hyperthermia have been increasingly recognized as important in therapeutic effects and multiple studies have started to elucidate their implications for treatment. Immune effects have especially been recognized as important in the efficacy of hyperthermia treatment of cancer. Both thermo-ablative and mild hyperthermia activate the immune system, but mild hyperthermia seems to be more effective at doing so. This may suggest that mild hyperthermia has some advantages over thermo-ablative hyperthermia and research into immune effects of mild hyperthermia should continue. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.
Collapse
Affiliation(s)
- Macy Payne
- Department of Chemistry, Kansas State University, Manhattan, Kansas, USA
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, Manhattan, Kansas, USA
| | - Matthew T Basel
- Department of Anatomy & Physiology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
24
|
Ahmad Z, Jacobson BA, McDonald MW, Vattendahl Vidal N, Vattendahl Vidal G, Chen S, Dillenburg M, Okon AM, Patel MR, Wagner CR, Kratzke RA. Repression of oncogenic cap-mediated translation by 4Ei-10 diminishes proliferation, enhances chemosensitivity and alters expression of malignancy-related proteins in mesothelioma. Cancer Chemother Pharmacol 2020; 85:425-432. [PMID: 31974652 DOI: 10.1007/s00280-020-04029-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Activated cap-dependent translation promotes cancer by stimulating translation of mRNAs encoding malignancy-promoting proteins. The nucleoside monophosphate Protide, 4Ei-10, undergoes intracellular uptake and conversion by Hint1 to form 7-Cl-Ph-Ethyl-GMP. 7-Cl-Ph-Ethyl-GMP is an analog of cap and inhibits protein translation by binding and sequestering eIF4E thus blocking eIF4E from binding to the mRNA cap. The effects of inhibiting translation initiation by disruption of the eIF4F complex with 4Ei-10 were examined in malignant mesothelioma (MM). In a cell-free assay system, formation of the eIF4F complex was disabled in response to exposure to 4Ei-10. Treatment of MM with 4Ei-10 resulted in decreased cell proliferation, increased sensitivity to pemetrexed and altered expression of malignancy-related proteins. In light of these findings, suppression of translation initiation by small molecule inhibitors like 4Ei-10 alone or in combination with pemetrexed represents an encouraging strategy meriting further evaluation in the treatment of MM.
Collapse
Affiliation(s)
- Zeeshan Ahmad
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Blake A Jacobson
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | - Maxwell Dillenburg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Aniekan M Okon
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Manish R Patel
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Carston R Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Robert A Kratzke
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA. .,Division of Heme-Onc-Transplant, University of Minnesota Medical School, MMC 480, 420 Delaware St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
25
|
Yun CW, Kim HJ, Lim JH, Lee SH. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in Anti-Cancer Therapy. Cells 2019; 9:cells9010060. [PMID: 31878360 PMCID: PMC7017199 DOI: 10.3390/cells9010060] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022] Open
Abstract
Heat shock proteins (HSPs) constitute a large family of molecular chaperones classified by their molecular weights, and they include HSP27, HSP40, HSP60, HSP70, and HSP90. HSPs function in diverse physiological and protective processes to assist in maintaining cellular homeostasis. In particular, HSPs participate in protein folding and maturation processes under diverse stressors such as heat shock, hypoxia, and degradation. Notably, HSPs also play essential roles across cancers as they are implicated in a variety of cancer-related activities such as cell proliferation, metastasis, and anti-cancer drug resistance. In this review, we comprehensively discuss the functions of HSPs in association with cancer initiation, progression, and metastasis and anti-cancer therapy resistance. Moreover, the potential utilization of HSPs to enhance the effects of chemo-, radio-, and immunotherapy is explored. Taken together, HSPs have multiple clinical usages as biomarkers for cancer diagnosis and prognosis as well as the potential therapeutic targets for anti-cancer treatment.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Hyung Joo Kim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Ji Ho Lim
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea; (C.W.Y.); (H.J.K.); (J.H.L.)
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31538, Korea
- Correspondence: ; Tel.: +82-02-709-2029
| |
Collapse
|
26
|
Brusselaers N, Ekwall K, Durand-Dubief M. Copy number of 8q24.3 drives HSF1 expression and patient outcome in cancer: an individual patient data meta-analysis. Hum Genomics 2019; 13:54. [PMID: 31699156 PMCID: PMC6836670 DOI: 10.1186/s40246-019-0241-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The heat-shock transcription factor 1 (HSF1) has been linked to cell proliferation and survival in cancer and has been proposed as a biomarker for poor prognosis. Here, we assessed the role of HSF1 expression in relation to copy number alteration (CNA) and cancer prognosis. METHODS Using 10,287 cancer genomes from The Cancer Genome Atlas and Cbioportal databases, we assessed the association of HSF1 expression with CNA and cancer prognosis. CNA of 8q24.3 was categorized as diploid (reference), deletion (fewer copies), gain (+ 1 copy) and amplification (≥ + 2 copies). Multivariate logistic regression modeling was used to assess 5-year survival among those with a first cancer diagnosis and complete follow-up data (N = 9568), categorized per anatomical location and histology, assessing interaction with tumor stage, and expressed as odds ratios and 95% confidence intervals. RESULTS We found that only 54.1% of all tumors have a normal predicted 8q24.3 copy number and that 8q24.3 located genes including HSF1 are mainly overexpressed due to increased copies number of 8q24.3 in different cancers. The tumor of patients having respectively gain (+ 1 copy) and amplification (≥ + 2 copies) of 8q24.3 display a global increase of 5-year mortality (odds ratio = 1.98, 95% CI 1.22-3.21) and (OR = 2.19, 1.13-4.26) after full adjustment. For separate cancer types, tumor patients with 8q24.3 deletion showed a marked increase of 5-year mortality in uterine (OR = 4.84, [2.75-8.51]), colorectal (OR = 4.12, [1.15-14.82]), and ovarian (OR = 1.83, [1.39-2.41]) cancers; and decreased mortality in kidney cancer (OR = 0.41, [0.21-0.82]). Gain of 8q24.3 resulted in significant mortality changes in 5-year mortality for cancer of the uterus (OR = 3.67, [2.03-6.66]), lung (OR = 1.76, [1.24-2.51]), colorectal (OR = 1.75, [1.32-2.31]) cancers; and amplification for uterine (OR = 4.58, [1.43-14.65]), prostate (OR = 4.41 [3.41-5.71]), head and neck (OR = 2.68, [2.17-3.30]), and stomach (OR = 0.56, [0.36-0.87]) cancers. CONCLUSIONS Here, we show that CNAs of 8q24.3 genes, including HSF1, are tightly linked to 8q24.3 copy number in tumor patients and can affect patient outcome. Our results indicate that the integration of 8q24.3 CNA detection may be a useful predictor for cancer prognosis.
Collapse
Affiliation(s)
- Nele Brusselaers
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Karolinska Hospital, SE-17176, Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), SE-17165, Stockholm, Sweden
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo building, Blickagången 16, S-141 52, Huddinge, Sweden
| | - Mickael Durand-Dubief
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo building, Blickagången 16, S-141 52, Huddinge, Sweden.
| |
Collapse
|
27
|
Hoter A, Naim HY. Heat Shock Proteins and Ovarian Cancer: Important Roles and Therapeutic Opportunities. Cancers (Basel) 2019; 11:E1389. [PMID: 31540420 PMCID: PMC6769485 DOI: 10.3390/cancers11091389] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022] Open
Abstract
Ovarian cancer is a serious cause of death in gynecological oncology. Delayed diagnosis and poor survival rates associated with late stages of the disease are major obstacles against treatment efforts. Heat shock proteins (HSPs) are stress responsive molecules known to be crucial in many cancer types including ovarian cancer. Clusterin (CLU), a unique chaperone protein with analogous oncogenic criteria to HSPs, has also been proven to confer resistance to anti-cancer drugs. Indeed, these chaperone molecules have been implicated in diagnosis, prognosis, metastasis and aggressiveness of various cancers. However, relative to other cancers, there is limited body of knowledge about the molecular roles of these chaperones in ovarian cancer. In the current review, we shed light on the diverse roles of HSPs as well as related chaperone proteins like CLU in the pathogenesis of ovarian cancer and elucidate their potential as effective drug targets.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
28
|
Liu Y, Dou M, Song X, Dong Y, Liu S, Liu H, Tao J, Li W, Yin X, Xu W. The emerging role of the piRNA/piwi complex in cancer. Mol Cancer 2019; 18:123. [PMID: 31399034 PMCID: PMC6688334 DOI: 10.1186/s12943-019-1052-9] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/31/2019] [Indexed: 01/08/2023] Open
Abstract
Piwi interacting RNAs (piRNAs) constitute novel small non-coding RNA molecules of approximately 24-31 nucleotides in length that often bind to members of the piwi protein family to play regulatory roles. Recently, emerging evidence suggests that in addition to the mammalian germline, piRNAs are also expressed in a tissue-specific manner in a variety of human tissues and modulate key signaling pathways at the transcriptional or post-transcriptional level. In addition, a growing number of studies have shown that piRNA and PIWI proteins, which are abnormally expressed in various cancers, may serve as novel biomarkers and therapeutic targets for tumor diagnostics and treatment. However, the functions of piRNAs in cancer and their underlying mechanisms remain incompletely understood. In this review, we discuss current findings regarding piRNA biogenetic processes, functions, and emerging roles in cancer, providing new insights regarding the potential applications of piRNAs and piwi proteins in cancer diagnosis and clinical treatment.
Collapse
Affiliation(s)
- Yongmei Liu
- Department of Inspection, The medical faculty of Qingdao University, Qingdao, 266003, China
| | - Mei Dou
- School of Public Health, Qingdao University, Qingdao, 266003, China
| | - Xuxia Song
- The Laboratory of Biomedical Center, Qingdao University, Qingdao, 266003, China
| | - Yanhan Dong
- Institute of Translational Medicine, Qingdao University, Qingdao, 266003, China
| | - Si Liu
- Department of Inspection, The medical faculty of Qingdao University, Qingdao, 266003, China
| | - Haoran Liu
- Department of Inspection, The medical faculty of Qingdao University, Qingdao, 266003, China
| | - Jiaping Tao
- Department of Inspection, The medical faculty of Qingdao University, Qingdao, 266003, China
| | - Wenjing Li
- Department of Inspection, The medical faculty of Qingdao University, Qingdao, 266003, China
| | - Xunhua Yin
- Department of Inspection, The medical faculty of Qingdao University, Qingdao, 266003, China
| | - Wenhua Xu
- Department of Inspection, The medical faculty of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
29
|
Zhao Y, Fan JH, Luo Y, Talukder M, Li XN, Zuo YZ, Li JL. Di-(2-ethylhexyl) phthalate (DEHP)-induced hepatotoxicity in quail (Coturnix japonica) via suppression of the heat shock response. CHEMOSPHERE 2019; 228:685-693. [PMID: 31063915 DOI: 10.1016/j.chemosphere.2019.04.172] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a widespread environmental toxicant that severely impacts agricultural production and animal and human health. Nevertheless, DEHP-induced hepatotoxicity at the molecular level in quail remains unexplored. The heat shock response (HSR), involving heat shock proteins (HSPs) and heat shock transcription factors (HSFs), is a highly conserved molecular response that is triggered by stressors, especially exposure to toxicants. To explore the DEHP-induced hepatotoxicity that occurs via regulation of HSR in birds, female quail were dosed with DEHP by oral gavage (0, 250, 500 and 1000 mg/kg) for 45 days. Based on histopathological analysis, the livers of the DEHP-treated groups exhibited structural alterations of hepatocytes, including mitochondrial swelling, derangement of hepatic plates, inflammatory cell infiltration and adipose degeneration. Ultrastructural evaluation of the livers of DEHP-treated quail revealed swollen mitochondria, partial disappearance of mitochondrial membranes and cristae, nuclear chromatin margination and nuclear condensation. The expression of HSF1 and HSF3 significantly decreased after DEHP exposure. The levels of HSPs (HSP10, HSP25, HSP27, HSP40, HSP47, HSP60, HSP70 and HSP90) were significantly downregulated in the livers of DEHP-treated quail. In this study, we concluded that DEHP exposure resulted in liver function damage and hepatotoxicity by reducing the expression of HSFs and HSPs in quail liver, which inhibited the protective effect of the HSR signaling pathway.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jing-Hui Fan
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, PR China
| | - Yu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu-Zhu Zuo
- College of Veterinary Medicine, Agricultural University of Hebei, Baoding, 071001, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
30
|
Li N, Wang T, Li Z, Ye X, Deng B, Zhuo S, Yao P, Yang M, Mei H, Chen X, Zhu T, Chen S, Wang H, Wang J, Le Y. Dorsomorphin induces cancer cell apoptosis and sensitizes cancer cells to HSP90 and proteasome inhibitors by reducing nuclear heat shock factor 1 levels. Cancer Biol Med 2019; 16:220-233. [PMID: 31516744 PMCID: PMC6713636 DOI: 10.20892/j.issn.2095-3941.2018.0235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective Heat shock factor 1 (HSF1), a transcriptional regulator of heat shock proteins (HSPs), is an attractive therapeutic target for cancer. However, only a few HSF1 inhibitors have been identified so far. Methods The mRNA and protein levels of HSF1, HSPs, cleaved PARP, and phosphorylated HSF1 were examined by real-time PCR and Western blot. Forced expression, RNA interference, and immunofluorescence assay were used for mechanistic studies. Cell viability and apoptosis were measured by WST-8 assay and flow cytometry, respectively. Xenograft studies were performed in nude mice to evaluate the effect of dorsomorphin and an HSP90 inhibitor on tumor growth. Results Dorsomorphin suppressed multiple stimuli-induced and constitutive HSPs expression in cancer cells. Mechanistic studies revealed that dorsomorphin reduced heat-induced HSP expression independent of adenosine monophosphate activated protein kinase. Dorsomorphin reduced heat-stimulated HSF1 Ser320 phosphorylation and nuclear translocation, as well as resting nuclear HSF1 levels in cancer cells. Dorsomorphin induced cancer cell apoptosis by inhibiting HSF1 expression. A structure-activity study revealed that the 4-pyridyl at the 3-site of the pyrazolo [1, 5-a]pyrimidine ring is critical for the anti-HSF1 activities of dorsomorphin. Dorsomorphin sensitized cancer cells to HSP90 and proteasome inhibitors and inhibited HSP70 expression induced by these inhibitors in vitro. In tumor-bearing nude mice, dorsomorphin enhanced HSP90 inhibitor-induced cancer cell apoptosis, tumor growth inhibition, and HSP70 expression.
Conclusions Dorsomorphin is an HSF1 inhibitor. It induces cancer cell apoptosis, sensitizes cancer cells to both HSP90 and proteasome inhibitors, and suppresses HSP upregulation by these drugs, which may prevent the development of drug resistance. Hence, dorsomorphin and its derivates may serve as potential precursors for developing drugs against cancer.
Collapse
Affiliation(s)
- Na Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ting Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zongmeng Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoli Ye
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo Deng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shu Zhuo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengle Yao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengmei Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Mei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaofang Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tengfei Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shiting Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100022, China
| | - Jiming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick 21702, MD, USA
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100022, China
| |
Collapse
|
31
|
Chen L, Yang X. TRIM11 cooperates with HSF1 to suppress the anti-tumor effect of proteotoxic stress drugs. Cell Cycle 2018; 18:60-68. [PMID: 30563406 DOI: 10.1080/15384101.2018.1558870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cells mainly rely on stress proteins, such as heat-shock proteins (HSPs), to respond to various proteotoxic conditions. These proteins protect tumor cells and enhance their survive. However, the regulation of stress proteins involved in protein quality control (PQC) is still poorly understood. Here, we report that the expression of TRIM11, an important regulator of PQC, is positively correlated with tumor cell surviaval during the proteotoxic conditions induced by anti-tumor drugs. In addition, HSF1 is required for TRIM11-mediated removal of protein aggregates and resistance of proteotoxic stress. During these processes, TRIM11 interacts with and stabilizes HSF1, increaseing HSF1 levels in the nucleus. These findings identify that TRIM11, through cooperation with HSF1, protects cells against the proteotoxic stress and promotes tumor cell survival.
Collapse
Affiliation(s)
- Liang Chen
- a Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , University City of Shenzhen , Shenzhen , P. R. China.,b Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Xiaolu Yang
- b Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
32
|
Yun HH, Baek JY, Seo G, Kim YS, Ko JH, Lee JH. Effect of BIS depletion on HSF1-dependent transcriptional activation in A549 non-small cell lung cancer cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:457-465. [PMID: 29962860 PMCID: PMC6019875 DOI: 10.4196/kjpp.2018.22.4.457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 12/31/2022]
Abstract
The expression of BCL-2 interacting cell death suppressor (BIS), an anti-stress or anti-apoptotic protein, has been shown to be regulated at the transcriptional level by heat shock factor 1 (HSF1) upon various stresses. Recently, HSF1 was also shown to bind to BIS, but the significance of these protein-protein interactions on HSF1 activity has not been fully defined. In the present study, we observed that complete depletion of BIS using a CRISPR/Cas9 system in A549 non-small cell lung cancer did not affect the induction of heat shock protein (HSP) 70 and HSP27 mRNAs under various stress conditions such as heat shock, proteotoxic stress, and oxidative stress. The lack of a functional association of BIS with HSF1 activity was also demonstrated by transient downregulation of BIS by siRNA in A549 and U87 glioblastoma cells. Endogenous BIS mRNA levels were significantly suppressed in BIS knockout (KO) A549 cells compared to BIS wild type (WT) A549 cells at the constitutive and inducible levels. The promoter activities of BIS and HSP70 as well as the degradation rate of BIS mRNA were not influenced by depletion of BIS. In addition, the expression levels of the mutant BIS construct, in which 14 bp were deleted as in BIS-KO A549 cells, were not different from those of the WT BIS construct, indicating that mRNA stability was not the mechanism for autoregulation of BIS. Our results suggested that BIS was not required for HSF1 activity, but was required for its own expression, which involved an HSF1-independent pathway.
Collapse
Affiliation(s)
- Hye Hyeon Yun
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Ji-Ye Baek
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| | - Gwanwoo Seo
- The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, Chosun University School of medicine, Gwangju 61452, Korea
| | - Yong Sam Kim
- Genome Editing Research Center, KRIBB, Daejeon 34141, Korea.,Department of Biomolecular Science, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jeong-Heon Ko
- Genome Editing Research Center, KRIBB, Daejeon 34141, Korea.,Department of Biomolecular Science, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jeong-Hwa Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.,The Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
33
|
Li J, Song P, Jiang T, Dai D, Wang H, Sun J, Zhu L, Xu W, Feng L, Shin VY, Morrison H, Wang X, Jin H. Heat Shock Factor 1 Epigenetically Stimulates Glutaminase-1-Dependent mTOR Activation to Promote Colorectal Carcinogenesis. Mol Ther 2018; 26:1828-1839. [PMID: 29730197 DOI: 10.1016/j.ymthe.2018.04.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/01/2018] [Accepted: 04/10/2018] [Indexed: 01/05/2023] Open
Abstract
Heat shock factor 1 (HSF1) generally exhibits its properties under stress conditions. In tumors, HSF1 has a pleiotropic feature in regulating growth, survival, and aggressiveness of cancer cells. In this study, we found HSF1 was increased in colorectal cancer (CRC) and had a positive correlation with shorter disease-free survival (DFS). Knockdown of HSF1 in CRC cells attenuated their growth while inhibiting mTOR activation and glutamine metabolism. HSF1 inhibited the expression of microRNA137 (MIR137), which targeted GLS1 (glutaminase 1), thus stimulating GLS1 protein expression to promote glutaminolysis and mTOR activation. HSF1 bound DNA methyltransferase DNMT3a and recruited it to the promoter of lncRNA MIR137 host gene (MIR137HG), suppressing the generation of primary MIR137. The chemical inhibitor of HSF1 also reduced cell growth, increased apoptosis, and impaired glutamine metabolism in vitro. Moreover, both chemical inhibition and genetic knockout of HSF1 succeeded in increasing MIR137 expression, reducing GLS1 expression, and alleviating colorectal tumorigenesis in azoxymethane (AOM)/dextran sulfate sodium (DSS) mice. In conclusion, HSF1 expression was increased and associated with poor prognosis in CRC. By recruiting DNMT3a to suppress the expression of MIR137 that targets GLS1 mRNA, HSF1 stimulated GLS1-dependent mTOR activation to promote colorectal carcinogenesis. Therefore, targeting HSF1 to attenuate glutaminolysis and mTOR activation could be a promising approach for CRC treatment.
Collapse
Affiliation(s)
- Jiaqiu Li
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Ping Song
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Tingting Jiang
- Laboratory of Cancer Biology, Key Lab of Zhejiang Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Dongjun Dai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Hanying Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Jie Sun
- Laboratory of Cancer Biology, Key Lab of Zhejiang Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Liyuan Zhu
- Laboratory of Cancer Biology, Key Lab of Zhejiang Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Wenxia Xu
- Laboratory of Cancer Biology, Key Lab of Zhejiang Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Lab of Zhejiang Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Vivian Y Shin
- Department of Surgery, Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute (FLI), Jena, Germany
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Key Lab of Zhejiang Biotherapy, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Progress in Molecular Chaperone Regulation of Heat Shock Protein 90 and Cancer. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(17)61071-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Almotwaa S, Elrobh M, AbdulKarim H, Alanazi M, Aldaihan S, Shaik J, Arafa M, Warsy AS. Genetic polymorphism and expression of HSF1 gene is significantly associated with breast cancer in Saudi females. PLoS One 2018; 13:e0193095. [PMID: 29494616 PMCID: PMC5832201 DOI: 10.1371/journal.pone.0193095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 02/05/2018] [Indexed: 12/20/2022] Open
Abstract
The transcription factor, heat shock factor 1 (HSF1), influences the expression of heat shock proteins as well as other activities like the induction of tumor suppressor genes, signal transduction pathway, and glucose metabolism. We hypothesized that single nucleotide polymorphisms (SNPs) in HSF1 gene might affect its expression or function which might have an influence on the development of breast cancer. The study group included 242 individuals (146 breast cancer patients and 96 healthy controls). From the cancer patients, genomic DNA was extracted from 96 blood samples and 50 Formalin-Fixed Paraffin Embedded (FFPE) tissues, while from the controls DNA were extracted from blood only. Genotype was carried out for four SNPs in the HSF1 gene (rs78202224, rs35253356, rs4977219 and rs34404564) using Taqman genotyping assay method. The HSF1 expression was investigated using immunohistochemistry on FFPE tissues (cancer tissue and adjacent normal tissue). The SNP rs78202224 (G>T) was significantly associated with increased risk of breast cancer. The combined TT + GT genotype (OR: 6.91; p: 0.035) and the T allele showed high risk (OR: 5.81; p:0.0085) for breast cancer development. The SNP rs34404564 (A>G) had a protective effect against the development of breast cancer. The genotype AG (OR: 0.41; p = 0.0059) and GG+AG (OR: 0.52; p: 0.026) occurred at a significantly lower frequency in the breast cancer patients compared to the frequency in healthy controls. No significant relationship was identified between either rs35253356 (A>G) or rs4977219 (A>C) and breast cancer in Saudi. The HSF1 protein expression was higher in all invasive and in situ breast carcinoma compared to the normal tissue. A stronger positive staining for HSF1 was found in the nucleus compared to the cytoplasm. Our results show that HSF1 gene expression is elevated in breast cancer tissue and two of the studied SNPs correlate significantly with cancer development.
Collapse
Affiliation(s)
- Sahar Almotwaa
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Elrobh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Huda AbdulKarim
- Head of the Hematology/Oncology Unit at King Fahad Medical City Hospital, Comprehensive Cancer Center, Riyadh, Saudi Arabia
| | - Mohamed Alanazi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sooad Aldaihan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jilani Shaik
- Genome Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maha Arafa
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Arjumand Sultan Warsy
- Senior Scientist, Central Laboratory, Center for Science and Medical Studies for Girls, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
36
|
Huang C, Wu J, Xu L, Wang J, Chen Z, Yang R. Regulation of HSF1 protein stabilization: An updated review. Eur J Pharmacol 2018; 822:69-77. [PMID: 29341886 DOI: 10.1016/j.ejphar.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/11/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
Heat shock factor 1 (HSF1) is a transcriptional factor that determines the efficiency of heat shock responses (HSRs) in the cell. Given its function has been extensively studied in recent years, HSF1 is considered a potential target for the treatment of disorders associated with protein aggregation. The activity of HSF1 is traditionally regulated at the transcriptional level in which the transactivation domain of HSF1 is modified by extensive array of pos-translational modifications, such as phosphorylation, sumoylation, and acetylation. Recently, HSF1 is also reported to be regulated at the monomeric level. For example, in neurodegenerative disorders such as Huntington's disease and Alzheimer's disease the expression levels of the monomeric HSF1 are found to be reduced markedly. Methylene blue (MB) and riluzole, two clinical available drugs, increase the amount of the monomeric HSF1 in both cells and animals. Since the monomeric HSF1 not only determines the efficiency of HSRs, but exerts protective effects in a trimerization-independent manner, increasing the amount of the monomeric HSF1 via stabilization of HSF1 may be an alternative strategy for the amplification of HSR. However, to date we have no outlined knowledges about HSF1 protein stabilization, though studies regarding the regulation of the monomeric HSF1 have been documented in recent years. Here, we summarize the regulation of the monomeric HSF1 by some previously reported factors, such as synuclein, Huntingtin (Htt), TDP-43, unfolded protein response (UPR), MB and doxorubicin (DOX), as well as their possible mechanisms, aiming to push the understanding about HSF1 protein stabilization.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Li Xu
- Department of Ultrasound, Danyang People's Hospital, #2 Xinmin Western Road, Danyang 212300, Jiangsu, China
| | - Jili Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, # 6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20Xisi Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
37
|
Lin YL, Tsai HC, Liu PY, Benneyworth M, Wei LN. Receptor-interacting protein 140 as a co-repressor of Heat Shock Factor 1 regulates neuronal stress response. Cell Death Dis 2017; 8:3203. [PMID: 29233969 PMCID: PMC5870597 DOI: 10.1038/s41419-017-0008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/23/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022]
Abstract
Heat shock response (HSR) is a highly conserved transcriptional program that protects organisms against various stressful conditions. However, the molecular mechanisms modulating HSR, especially the suppression of HSR, is poorly understood. Here, we found that RIP140, a wide-spectrum cofactor of nuclear hormone receptors, acts as a co-repressor of heat shock factor 1 (HSF1) to suppress HSR in healthy neurons. When neurons are stressed such as by heat shock or sodium arsenite (As), cells engage specific proteosome-mediated degradation to reduce RIP140 level, thereby relieving the suppression and activating HSR. RIP140 degradation requires specific Tyr-phosphorylation by Syk that is activated in stressful conditions. Lowering RIP140 level protects hippocampal neurons from As stress, significantly it increases neuron survival and improves spine density. Reducing hippocampal RIP140 in the mouse rescues chronic As-induced spatial learning deficits. This is the first study elucidating RIP140-mediated suppression of HSF1-activated HSR in neurons and brain. Importantly, degradation of RIP140 in stressed neurons relieves this suppression, allowing neurons to efficiently and timely engage HSR programs and recover. Therefore, stimulating RIP140 degradation to activate anti-stress program provides a potential preventive or therapeutic strategy for neurodegeneration diseases.
Collapse
Affiliation(s)
- Yu-Lung Lin
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hong-Chieh Tsai
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan, ROC.,Department of Neurosurgery, Chang-Gung Memorial Hospital and University, Tao-Yuan, Taiwan, ROC
| | - Pei-Yao Liu
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael Benneyworth
- Departments of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
38
|
Martinez Guimera A, Welsh CM, Proctor CJ, McArdle A, Shanley DP. 'Molecular habituation' as a potential mechanism of gradual homeostatic loss with age. Mech Ageing Dev 2017; 169:53-62. [PMID: 29146308 PMCID: PMC5846846 DOI: 10.1016/j.mad.2017.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/26/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022]
Abstract
Constitutive signals indicate homeostatic dysregulation but their effect on signal transduction remains largely unexplored. A theoretical approach is undertaken to examine how oxidative stress may affect redox signal transduction. Constitutive signals can result in a ‘molecular habituation’ effect that interferes with information transmission. The robustness of such a theoretical observation to the underlying methodology hints at the generality of this principle.
The ability of reactive oxygen species (ROS) to cause molecular damage has meant that chronic oxidative stress has been mostly studied from the point of view of being a source of toxicity to the cell. However, the known duality of ROS molecules as both damaging agents and cellular redox signals implies another perspective in the study of sustained oxidative stress. This is a perspective of studying oxidative stress as a constitutive signal within the cell. In this work, we adopt a theoretical perspective as an exploratory and explanatory approach to examine how chronic oxidative stress can interfere with signal processing by redox signalling pathways in the cell. We report that constitutive signals can give rise to a ‘molecular habituation’ effect that can prime for a gradual loss of biological function. This is because a constitutive signal in the environment has the potential to reduce the responsiveness of a signalling pathway through the prolonged activation of negative regulators. Additionally, we demonstrate how this phenomenon is likely to occur in different signalling pathways exposed to persistent signals and furthermore at different levels of biological organisation.
Collapse
Affiliation(s)
- Alvaro Martinez Guimera
- Institute for Cell and Molecular Biosciences (ICaMB), Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL,United Kingdom; MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), United Kingdom
| | - Ciaran M Welsh
- Institute for Cell and Molecular Biosciences (ICaMB), Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL,United Kingdom
| | - Carole J Proctor
- Institute of Cellular Medicine, Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL, United Kingdom; MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), United Kingdom
| | - Anne McArdle
- Department of Musculoskeletal Biology, University of Liverpool (University, Not-for-profit), Institute of Ageing and Chronic Disease,William Duncan Building, 6 West Derby Street, Liverpool L7 8TX, United Kingdom; MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), United Kingdom
| | - Daryl P Shanley
- Institute for Cell and Molecular Biosciences (ICaMB), Ageing Research Laboratories, Campus for Ageing and Vitality, Newcastle University, Newcastle Upon Tyne, NE4 5PL,United Kingdom; MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), United Kingdom.
| |
Collapse
|
39
|
Deregulated c-Myc requires a functional HSF1 for experimental and human hepatocarcinogenesis. Oncotarget 2017; 8:90638-90650. [PMID: 29207593 PMCID: PMC5710874 DOI: 10.18632/oncotarget.21469] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 09/21/2017] [Indexed: 12/16/2022] Open
Abstract
Deregulated activity of the c-Myc protooncogene is a frequent molecular event underlying mouse and human hepatocarcinogenesis. Nonetheless, the mechanisms sustaining c-Myc oncogenic activity in liver cancer remain scarcely delineated. Recently, we showed that the mammalian target of rapamycin complex 1 (mTORC1) cascade is induced and necessary for c-Myc dependent liver tumor development and progression. Since the heat shock factor 1 (HSF1) transcription factor is a major positive regulator of mTORC1 in the cell, we investigated the functional interaction between HSF1 and c-Myc using in vitro and in vivo approaches. We found that ablation of HSF1 restrains the growth of c-Myc-derived mouse hepatocellular carcinoma (HCC) cell lines, where it induces downregulation of c-Myc levels. Conversely, silencing of c-Myc gene in human and mouse HCC cells led to downregulation of HSF1 expression. Most importantly, overexpression of a dominant negative form of HSF1 (HSF1dn) in the mouse liver via hydrodynamic gene delivery resulted in the complete inhibition of mouse hepatocarcinogenesis driven by overexpression of c-Myc. Altogether, the present results indicate that a functional HSF1 is necessary for c-Myc-driven hepatocarcinogenesis. Consequently, targeting HSF1 might represent a novel and effective therapeutic strategy for the treatment of HCC subsets with activated c-Myc signaling.
Collapse
|
40
|
Targeting Heat Shock Proteins in Cancer: A Promising Therapeutic Approach. Int J Mol Sci 2017; 18:ijms18091978. [PMID: 28914774 PMCID: PMC5618627 DOI: 10.3390/ijms18091978] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins (HSPs) are a large family of chaperones that are involved in protein folding and maturation of a variety of "client" proteins protecting them from degradation, oxidative stress, hypoxia, and thermal stress. Hence, they are significant regulators of cellular proliferation, differentiation and strongly implicated in the molecular orchestration of cancer development and progression as many of their clients are well established oncoproteins in multiple tumor types. Interestingly, tumor cells are more HSP chaperonage-dependent than normal cells for proliferation and survival because the oncoproteins in cancer cells are often misfolded and require augmented chaperonage activity for correction. This led to the development of several inhibitors of HSP90 and other HSPs that have shown promise both preclinically and clinically in the treatment of cancer. In this article, we comprehensively review the roles of some of the important HSPs in cancer, and how targeting them could be efficacious, especially when traditional cancer therapies fail.
Collapse
|
41
|
Rashmi KC, Atreya HS, Harsha Raj M, Salimath BP, Aparna HS. A pyrrole-based natural small molecule mitigates HSP90 expression in MDA-MB-231 cells and inhibits tumor angiogenesis in mice by inactivating HSF-1. Cell Stress Chaperones 2017; 22:751-766. [PMID: 28717943 PMCID: PMC5573693 DOI: 10.1007/s12192-017-0802-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/21/2017] [Accepted: 04/22/2017] [Indexed: 12/15/2022] Open
Abstract
Heat shock proteins (HSPs), molecular chaperones, are crucial for the cancer cells to facilitate proper functioning of various oncoproteins involved in cell survival, proliferation, migration, and tumor angiogenesis. Tumor cells are said to be "addicted" to HSPs. HSPs are overexpressed in many cancers due to upregulation of transcription factor Heat-shock factor 1 (HSF-1), the multifaceted master regulator of heat shock response. Therefore, pharmacological targeting of HSPs via HSF-1 is an effective strategy to treat malignant cancers like triple negative breast cancer. In the current study, we evaluated the efficacy of a pyrrole derivative [bis(2-ethylhexyl)1H-pyrrole-3,4-dicarboxylate], TCCP, purified from leaves of Tinospora cordifolia for its ability to suppress heat shock response and angiogenesis using MDA-MB-231 cells and the murine mammary carcinoma: Ehrlich ascites tumor model. HSP90 was downregulated by TCCP by inactivation of HSF-1 resulting in inhibition of tumor cell proliferation, VEGF-induced cell migration, and concomitant decrease in tumor burden and neo-angiogenesis in vivo. The mechanism of suppression of HSPs involves inactivation of PI3K/Akt and phosphorylation on serine 307 of HSF-1 by the activation of ERK1. HSF-1 and HSP90 and 70 localization and expression were ascertained by immunolocalization, immunoblotting, and qPCR experiments. The anti-angiogenic effect of TCCP was studied in vivo in tumor-bearing mice and ex vivo using rat corneal micro-pocket assay. All the results thus corroborate the logic behind inactivating HSF-1 using TCCP as an alternative approach for cancer therapy.
Collapse
Affiliation(s)
- K C Rashmi
- Department of Studies in Biotechnology, University of Mysore, Mysuru, Karnataka, 570 006, India
| | - H S Atreya
- NMR Research Centre, Indian Institute of Science, Bengaluru, 560 012, India
| | - M Harsha Raj
- Department of Studies in Biotechnology, University of Mysore, Mysuru, Karnataka, 570 006, India
| | - Bharathi P Salimath
- Department of Studies in Biotechnology, University of Mysore, Mysuru, Karnataka, 570 006, India
| | - H S Aparna
- Department of Studies in Biotechnology, University of Mysore, Mysuru, Karnataka, 570 006, India.
| |
Collapse
|
42
|
Hattori Y, Kikuchi T, Ozaki KI, Onishi H. Evaluation of in vitro and in vivo therapeutic antitumor efficacy of transduction of polo-like kinase 1 and heat shock transcription factor 1 small interfering RNA. Exp Ther Med 2017; 14:4300-4306. [PMID: 29067111 PMCID: PMC5647550 DOI: 10.3892/etm.2017.5060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023] Open
Abstract
Mitotic progression is regulated by the phosphorylation of heat shock transcription factor 1 (HSF1) by polo-like kinase 1 (PLK1); however, this interaction is often deregulated in tumors. High expression levels of PLK1 and HSF1 have been observed in various types of human cancer. In the present study, it was investigated whether small interfering (si)RNA against PLK1 or HSF1 could suppress tumor growth in vitro and in vivo. In vitro transfection of PLK1 and HSF1 siRNA into PKL1- and HSF1-positive human breast tumor MDA-MB-231 and human cervical carcinoma HeLa cells inhibited cell growth via suppression of PLK1 and HSF1 mRNA expression, respectively. However, the transfection of PLK1 or HSF1 siRNA did not significantly affect the cytotoxicity of doxorubicin in HeLa cells. Furthermore, injection of PKL1 or HSF1 siRNA into mice with liver HeLa metastasis suppressed tumor growth. From these findings, PLK1 and HSF1 may be considered to be promising targets for antitumor therapy.
Collapse
Affiliation(s)
- Yoshiyuki Hattori
- Department of Drug Delivery Research, Hoshi University, Tokyo 142-8501, Japan
| | - Takuto Kikuchi
- Department of Drug Delivery Research, Hoshi University, Tokyo 142-8501, Japan
| | - Kei-Ichi Ozaki
- Education and Research Center for Fundamental Pharmaceutical Sciences, Osaka University of Pharmaceutical Sciences, Osaka 569-1094, Japan
| | - Hiraku Onishi
- Department of Drug Delivery Research, Hoshi University, Tokyo 142-8501, Japan
| |
Collapse
|
43
|
Wu PS, Chang YH, Pan CC. High expression of heat shock proteins and heat shock factor-1 distinguishes an aggressive subset of clear cell renal cell carcinoma. Histopathology 2017; 71:711-718. [DOI: 10.1111/his.13284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/11/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Pao-Shu Wu
- Department of Pathology; MacKay Memorial Hospital; New Taipei City Taiwan
- Department of Medicine; MacKay Medical College; New Taipei City Taiwan
| | - Yen-Hwa Chang
- Department of Urology; Taipei Veterans General Hospital; Taipei Taiwan
| | - Chin-Chen Pan
- Department of Pathology and Laboratory Medicine; Taipei Veterans General Hospital and National Yang-Ming University; Taipei Taiwan
| |
Collapse
|
44
|
Yin J, Jiang XY, Qi W, Ji CG, Xie XL, Zhang DX, Cui ZJ, Wang CK, Bai Y, Wang J, Jiang HQ. piR-823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF1. Cancer Sci 2017; 108:1746-1756. [PMID: 28618124 PMCID: PMC5581525 DOI: 10.1111/cas.13300] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/02/2017] [Accepted: 06/10/2017] [Indexed: 12/13/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs), a novel class of small non-coding RNAs, were first discovered in germline cells and are thought to silence transposons in spermatogenesis. Recently, piRNAs have also been identified in somatic tissues, and aberrant expression of piRNAs in tumor tissues may be implicated in carcinogenesis. However, the function of piR-823 in colorectal cancer (CRC) remains unclear. Here, we first found that piR-823 was significantly upregulated in CRC tissues compared with its expression in the adjacent tissues. Inhibition of piR-823 suppressed cell proliferation, arrested the cell cycle in the G1 phase and induced cell apoptosis in CRC cell lines HCT116 and DLD-1, whereas overexpression of piR-823 promoted cell proliferation in normal colonic epithelial cell line FHC. Interestingly, Inhibition of piR-823 repressed the expression of heat shock protein (HSP) 27, 60, 70. Furthermore, elevated HSPs expression partially abolished the effect of piR-823 on cell proliferation and apoptosis. In addition, we further demonstrated that piR-823 increased the transcriptional activity of HSF1, the common transcription factor of HSPs, by binding to HSF1 and promoting its phosphorylation at Ser326. Our study reveals that piR-823 plays a tumor-promoting role by upregulating phosphorylation and transcriptional activity of HSF1 and suggests piR-823 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Jie Yin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Xiao-Yu Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Wei Qi
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Chen-Guang Ji
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Xiao-Li Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Dong-Xuan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Zi-Jin Cui
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Cun-Kai Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Yun Bai
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| | - Jia Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei.,Ronghe Biotechnology Co., Ltd, Shijiazhuang, Hebei, China
| | - Hui-Qing Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei
| |
Collapse
|
45
|
Manerba M, Di Ianni L, Govoni M, Roberti M, Recanatini M, Di Stefano G. LDH inhibition impacts on heat shock response and induces senescence of hepatocellular carcinoma cells. Eur J Pharm Sci 2017; 105:91-98. [DOI: 10.1016/j.ejps.2017.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/02/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
|
46
|
Liang W, Liao Y, Zhang J, Huang Q, Luo W, Yu J, Gong J, Zhou Y, Li X, Tang B, He S, Yang J. Heat shock factor 1 inhibits the mitochondrial apoptosis pathway by regulating second mitochondria-derived activator of caspase to promote pancreatic tumorigenesis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:64. [PMID: 28482903 PMCID: PMC5422968 DOI: 10.1186/s13046-017-0537-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/04/2017] [Indexed: 12/20/2022]
Abstract
Background As a relatively conservative transcriptional regulator in biological evolution, heat shock factor 1 (HSF1) is activated by, and regulates the expression of heat shock proteins (HSPs) in response to a variety of stress conditions. HSF1 also plays a key role in regulating the development of various tumors; however, its role in pancreatic cancer and the specific underlying mechanism are not clear. Methods We first examined HSF1 expression in pancreatic cancer tissues by immunohistochemistry, and then studied its clinical significance. We then constructed HSF1-siRNA to investigate the potential of HSF1 to regulate apoptosis, proliferation and the cell cycle of pancreatic cancer cells and the underlying mechanism both in vitro and in vivo. Protein chip analysis was used subsequently to explore the molecular regulation pathway. Finally, second mitochondria-derived activator of caspase (SMAC)-siRNA was used to validate the signaling pathway. Results HSF1 was highly expressed in pancreatic cancer tissues and the level of upregulation was found to be closely related to the degree of pancreatic cancer differentiation and poor prognosis. After HSF1-silencing, we found that pancreatic cancer cell proliferation decreased both in vitro and in vivo and the apoptotic cell ratio increased, while the mitochondrial membrane potential decreased, and the cells were arrested at the G0/G1 phase. In terms of the molecular mechanism, we confirmed that HSF1 regulated SMAC to inhibit mitochondrial apoptosis in pancreatic cancer cells, and to promote the occurrence of pancreatic tumors. SMAC silencing reversed the effects of HSF1 silencing. Conclusion Our study provides evidence that HSF1 functions as a novel oncogene in pancreatic tumors and is implicated as a target for the diagnosis and treatment of pancreatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0537-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjin Liang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Yong Liao
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Jing Zhang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Qi Huang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Wei Luo
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Jidong Yu
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Jianhua Gong
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Yi Zhou
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Xuan Li
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China
| | - Bo Tang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China.
| | - Songqing He
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China.
| | - Jinghong Yang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, 541004, Guangxi, People's Republic of China.
| |
Collapse
|
47
|
Cigliano A, Wang C, Pilo MG, Szydlowska M, Brozzetti S, Latte G, Pes GM, Pascale RM, Seddaiu MA, Vidili G, Ribback S, Dombrowski F, Evert M, Chen X, Calvisi DF. Inhibition of HSF1 suppresses the growth of hepatocarcinoma cell lines in vitro and AKT-driven hepatocarcinogenesis in mice. Oncotarget 2017; 8:54149-54159. [PMID: 28903330 PMCID: PMC5589569 DOI: 10.18632/oncotarget.16927] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
Upregulation of the heat shock transcription factor 1 (HSF1) has been described as a frequent event in many cancer types, but its oncogenic role in hepatocellular carcinoma (HCC) remains poorly delineated. In the present study, we assessed the function(s) of HSF1 in hepatocarcinogenesis via in vitro and in vivo approaches. In particular, we determined the importance of HSF1 on v-Akt murine thymoma viral oncogene homolog (AKT)-induced liver cancer development in mice. We found that knockdown of HSF1 activity via specific siRNA triggered growth restraint by suppressing cell proliferation and inducing massive cell apoptosis in human HCC cell lines. At the molecular level, HSF1 inhibition was accompanied by downregulation of the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) cascade and related metabolic pathways. Most importantly, overexpression of a dominant negative form of HSF1 (HSF1dn) in the mouse liver via hydrodynamic gene delivery led to the inhibition of mouse hepatocarcinogenesis driven by overexpression of AKT. In human liver cancer specimens, we detected that HSF1 is progressively induced from human non-tumorous surrounding livers to HCC, reaching the highest expression in the tumors characterized by the poorest outcome (as defined by the length of patients’ survival). In conclusion, HSF1 is an independent prognostic factor in liver cancer and might represent an innovative therapeutic target in HCC subsets characterized by activation of the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Antonio Cigliano
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Chunmei Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Maria G Pilo
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Marta Szydlowska
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Stefania Brozzetti
- Pietro Valdoni Surgery Department, University of Rome La Sapienza, Rome, Italy
| | - Gavinella Latte
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Giovanni M Pes
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Rosa M Pascale
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Maria A Seddaiu
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Gianpaolo Vidili
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Silvia Ribback
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frank Dombrowski
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Matthias Evert
- Institut für Pathologie, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Diego F Calvisi
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
48
|
Cheeseman M, Chessum NEA, Rye CS, Pasqua AE, Tucker M, Wilding B, Evans LE, Lepri S, Richards M, Sharp SY, Ali S, Rowlands M, O’Fee L, Miah A, Hayes A, Henley AT, Powers M, te Poele R, De Billy E, Pellegrino L, Raynaud F, Burke R, van Montfort RLM, Eccles SA, Workman P, Jones K. Discovery of a Chemical Probe Bisamide (CCT251236): An Orally Bioavailable Efficacious Pirin Ligand from a Heat Shock Transcription Factor 1 (HSF1) Phenotypic Screen. J Med Chem 2017; 60:180-201. [PMID: 28004573 PMCID: PMC6014687 DOI: 10.1021/acs.jmedchem.6b01055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 12/20/2022]
Abstract
Phenotypic screens, which focus on measuring and quantifying discrete cellular changes rather than affinity for individual recombinant proteins, have recently attracted renewed interest as an efficient strategy for drug discovery. In this article, we describe the discovery of a new chemical probe, bisamide (CCT251236), identified using an unbiased phenotypic screen to detect inhibitors of the HSF1 stress pathway. The chemical probe is orally bioavailable and displays efficacy in a human ovarian carcinoma xenograft model. By developing cell-based SAR and using chemical proteomics, we identified pirin as a high affinity molecular target, which was confirmed by SPR and crystallography.
Collapse
Affiliation(s)
- Matthew
D. Cheeseman
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Nicola E. A. Chessum
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Carl S. Rye
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - A. Elisa Pasqua
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Michael
J. Tucker
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Birgit Wilding
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lindsay E. Evans
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Susan Lepri
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Meirion Richards
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Swee Y. Sharp
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Salyha Ali
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
- Division
of Structural Biology at The Institute of
Cancer Research, London SW7 3RP, United Kingdom
| | - Martin Rowlands
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Lisa O’Fee
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Asadh Miah
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Angela Hayes
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Alan T. Henley
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Marissa Powers
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Robert te Poele
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Emmanuel De Billy
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Loredana Pellegrino
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Florence Raynaud
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Rob L. M. van Montfort
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
- Division
of Structural Biology at The Institute of
Cancer Research, London SW7 3RP, United Kingdom
| | - Suzanne A. Eccles
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Paul Workman
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| | - Keith Jones
- Cancer
Research UK Cancer Therapeutics Unit at The Institute of Cancer Research, London SW7 3RP, United Kingdom
| |
Collapse
|
49
|
Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and Damage-Associated Molecular Patterns (DAMPs). Am J Transplant 2016; 16:3338-3361. [PMID: 27421829 DOI: 10.1111/ajt.13963] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/24/2016] [Accepted: 07/10/2016] [Indexed: 01/25/2023]
Abstract
Upon solid organ transplantation and during cancer immunotherapy, cellular stress responses result in the release of damage-associated molecular patterns (DAMPs). The various cellular stresses have been characterized in detail over the last decades, but a unifying classification based on clinically important aspects is lacking. Here, we provide an in-depth review of the most recent literature along with a unifying concept of the danger/injury model, suggest a classification of DAMPs, and review the recently elaborated mechanisms that result in the emission of such factors. We further point out the differences in DAMP responses including the release following a heat shock pattern, endoplasmic reticulum stress, DNA damage-mediated DAMP release, and discuss the diverse pathways of regulated necrosis in this respect. The understanding of various forms of DAMPs and the consequences of their different release patterns are prerequisite to associate serum markers of cellular stresses with clinical outcomes.
Collapse
Affiliation(s)
- W G Land
- German Academy of Transplantation Medicine, Munich, Germany.,Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabexTRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - P Agostinis
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - S Gasser
- Immunology Programme and Department of Microbiology and Immunology, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - A D Garg
- Cell Death Research and Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven, University of Leuven, Leuven, Belgium
| | - A Linkermann
- Cluster of Excellence EXC306, Inflammation at Interfaces, Schleswig-Holstein, Germany.,Clinic for Nephrology and Hypertension, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
50
|
Su KH, Dai C. Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders. Cell Mol Life Sci 2016; 73:4231-4248. [PMID: 27289378 PMCID: PMC5599143 DOI: 10.1007/s00018-016-2291-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Abstract
Proteome homeostasis, or proteostasis, is essential to maintain cellular fitness and its disturbance is associated with a broad range of human health conditions and diseases. Cells are constantly challenged by various extrinsic and intrinsic insults, which perturb cellular proteostasis and provoke proteotoxic stress. To counter proteomic perturbations and preserve proteostasis, cells mobilize the proteotoxic stress response (PSR), an evolutionarily conserved transcriptional program mediated by heat shock factor 1 (HSF1). The HSF1-mediated PSR guards the proteome against misfolding and aggregation. In addition to proteotoxic stress, emerging studies reveal that this proteostatic mechanism also responds to cellular energy state. This regulation is mediated by the key cellular metabolic sensor AMP-activated protein kinase (AMPK). In this review, we present an overview of the maintenance of proteostasis by HSF1, the metabolic regulation of the PSR, particularly focusing on AMPK, and their implications in the two major age-related diseases-diabetes mellitus and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kuo-Hui Su
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Chengkai Dai
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| |
Collapse
|