1
|
Guesmi F, Tahri W, Mehrez A, Barkaoui T, Prasad S, Giuffrè AM, Landoulsi A. Colorectal carcinoma cell targeting aromatherapy with Teucrium ramosissimum essential oil to sensitize TRAIL/Apo2L-induced HCT-116 cell death. Int Immunopharmacol 2024; 136:112405. [PMID: 38850792 DOI: 10.1016/j.intimp.2024.112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
This report drives insights for the investigation of the underlying mechanisms of antitumor effects of Teucrium ramosissimum (TrS) essential oil (EO) that elicits colon tumor protection via activation of cell death machinery. A study of the aerial part phytocomplex was performed by FTIR spectra and GC/MS. In vivo colon carcinogenesis induced by LPS was carried out using mouse model. HCT-116 cells were coincubated with TrS EO and TRAIL-resistant cancer cells, and then cell lysates were assessed using Western blotting technique for death and decoy receptor expression. TrS essential oil potentiates TRAIL-mediated apoptosis cell death of HCT-116 as detected by PARP cleavage and caspase activation. Further data suggest that TrS up-regulates DR 5/4 expression, and down-regulates DcRs expression. Additionally, TrS potentiates apoptosis in TRAIL-resistant tumor cells through induction of MAPK signalling components, including ERK, p38 kinase, JNK, and activation of CHOP, and SP1, involved in DR5 expression. Moreover, Teucrium EO phytoconstituents mediate HCT-116 cells apoptosis by evoking cell cycle arrest at the G1 and G2/M phase through diminishing the expression of cyclin D1 acting as a potent multitargeted factors of inhibition of JAK/STAT oncogenic signaling pathway. These results demonstrate that TRAIL-induced apoptosis enhancing effect of TrS mediated through proto-oncogene expression in HCT-116. TrS administered intragastrically is able to prevent tumor of colon by stopping carcinogenesis process and impede tumor cell growth in in vivo analysis promoted by LPS. On the whole, our results revealed that TrS is an effective antitcancer agent through the induction of transcription factor and kinases, either are needed to trigger Apo2L receptors.
Collapse
Affiliation(s)
- Fatma Guesmi
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia; Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Wiem Tahri
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Amel Mehrez
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Taha Barkaoui
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Research and Development, Noble Pharma LLC, Menomonie, WI 54751, USA
| | - Angelo Maria Giuffrè
- Department AGRARIA, University of Studies "Mediterranea" of Reggio Calabria, Via dell'Università, 25 - 89124 Reggio Calabria, Italy.
| | - Ahmed Landoulsi
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| |
Collapse
|
2
|
Nikiema WA, Ouédraogo M, Ouédraogo WP, Fofana S, Ouédraogo BHA, Delma TE, Amadé B, Abdoulaye GM, Sawadogo AS, Ouédraogo R, Semde R. Systematic Review of Chemical Compounds with Immunomodulatory Action Isolated from African Medicinal Plants. Molecules 2024; 29:2010. [PMID: 38731500 PMCID: PMC11085867 DOI: 10.3390/molecules29092010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 05/13/2024] Open
Abstract
A robust, well-functioning immune system is the cornerstone of good health. Various factors may influence the immune system's effectiveness, potentially leading to immune system failure. This review aims to provide an overview of the structure and action of immunomodulators isolated from African medicinal plants. The research was conducted according to PRISMA guidelines. Full-text access research articles published in English up to December 2023, including plant characteristics, isolated phytochemicals, and immuno-modulatory activities, were screened. The chemical structures of the isolated compounds were generated using ChemDraw® (version 12.0.1076), and convergent and distinctive signaling pathways were highlighted. These phytochemicals with demonstrated immunostimulatory activity include alkaloids (berberine, piperine, magnoflorine), polysaccharides (pectin, glucan, acemannan, CALB-4, GMP90-1), glycosides (syringin, cordifolioside, tinocordiside, aucubin), phenolic compounds (ferulic acid, vanillic acid, eupalitin), flavonoids (curcumin, centaurein, kaempferin, luteolin, guajaverin, etc.), terpenoids (oleanolic acid, ursolic acid, betulinic acid, boswellic acids, corosolic acid, nimbidin, andrographolides). These discussed compounds exert their effects through various mechanisms, targeting the modulation of MAPKs, PI3K-Akt, and NF-kB. These mechanisms can support the traditional use of medicinal plants to treat immune-related diseases. The outcomes of this overview are to provoke structural action optimization, to orient research on particular natural chemicals for managing inflammatory, infectious diseases and cancers, or to boost vaccine immunogenicity.
Collapse
Affiliation(s)
- Wendwaoga Arsène Nikiema
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Moussa Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Windbedma Prisca Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Souleymane Fofana
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Institut des Sciences de la Santé, Université NAZI Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
| | - Boris Honoré Amadou Ouédraogo
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Talwendpanga Edwige Delma
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Belem Amadé
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Gambo Moustapha Abdoulaye
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Aimé Serge Sawadogo
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| | - Raogo Ouédraogo
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
| | - Rasmané Semde
- Laboratoire de Développement du Médicament, Ecole Doctorale Sciences et Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (W.A.N.); (W.P.O.); (B.H.A.O.); (T.E.D.); (B.A.); (G.M.A.); (R.S.)
- Centre d’Excellence Africain, Centre de Formation, de Recherche et d’Expertises en sciences du Médicament (CEA-CFOREM), Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; (S.F.); (R.O.)
- Unité de Formation et de Recherche, Sciences de la Santé, Université Joseph KI—ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso;
| |
Collapse
|
3
|
Ijaz MU, Ishtiaq A, Tahir A, Alvi MA, Rafique A, Wang P, Zhu GP. Antioxidant, anti-inflammatory, and anti-apoptotic effects of genkwanin against aflatoxin B 1-induced testicular toxicity. Toxicol Appl Pharmacol 2023; 481:116750. [PMID: 37980962 DOI: 10.1016/j.taap.2023.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
Aflatoxin B1 (AFB1) is the most hazardous aflatoxin that causes significant damage to the male reproductive system. Genkwanin (GNK) is a bioactive flavonoid that shows antioxidant and anti-inflammatory potential. Therefore, the current study was planned to evaluate the effects of GNK against AFB1-induced testicular toxicity. Forty-eight male rats were distributed into four groups (n = 12 rats). AFB1 (50 μg/kg) and GNK (20 mg/kg) were administered to the rats for eight weeks. Results of the current study revealed that AFB1 exposure induced adverse effects on the Nrf2/Keap1 pathway and reduced the expressions and activities of antioxidant enzymes. Additionally, it increased the levels of oxidative stress markers. Furthermore, expressions of steroidogenic enzymes were down-regulated by AFB1 intoxication. Besides, AFB1 exposure reduced the levels of gonadotropins and plasma testosterone, which subsequently reduced the epididymal sperm count, motility, and hypo-osmotic swelled (HOS) sperms, while increasing the number of dead sperms and causing morphological anomalies of the head, midpiece, and tail of the sperms. In addition, AFB1 decreased the activities of testicular function marker enzymes and the levels of inflammatory markers. Moreover, it severely affected the apoptotic profile by up-regulating the expressions of Bax and Casp3, while down-regulating the Bcl2 expression. Besides, AFB1 significantly damaged the histoarchitecture of testicular tissues. However, GNK treatment reversed all the AFB1-induced damages in the rats. Taken together, the current study reports the potential use of GNK as a therapeutic agent to prevent AFB1-induced testicular toxicity due to its antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Ayesha Ishtiaq
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Arfa Tahir
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Mughees Aizaz Alvi
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Azhar Rafique
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Guo-Ping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
4
|
El Menyiy N, Aboulaghras S, Bakrim S, Moubachir R, Taha D, Khalid A, Abdalla AN, Algarni AS, Hermansyah A, Ming LC, Rusu ME, Bouyahya A. Genkwanin: An emerging natural compound with multifaceted pharmacological effects. Biomed Pharmacother 2023; 165:115159. [PMID: 37481929 DOI: 10.1016/j.biopha.2023.115159] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Plant bioactive molecules could play key preventive and therapeutic roles in chronological aging and the pathogenesis of many chronic diseases, often accompanied by increased oxidative stress and low-grade inflammation. Dietary antioxidants, including genkwanin, could decrease oxidative stress and the expression of pro-inflammatory cytokines or pathways. The present study is the first comprehensive review of genkwanin, a methoxyflavone found in several plant species. Indeed, natural sources, and pharmacokinetics of genkwanin, the biological properties were discussed and highlighted in detail. This review analyzed and considered all original studies related to identification, isolation, quantification, investigation of the biological and pharmacological properties of genkwanin. We consulted all published papers in peer-reviewed journals in the English language from the inception of each database to 12 May 2023. Different phytochemical demonstrated that genkwanin is a non-glycosylated flavone found and isolated from several medicinal plants such as Genkwa Flos, Rosmarinus officinalis, Salvia officinalis, and Leonurus sibiricus. In vitro and in vivo biological and pharmacological investigations showed that Genkwanin exhibits remarkable antioxidant and anti-inflammatory activities, genkwanin, via activation of glucokinase, has shown antihyperglycemic activity with a potential role against metabolic syndrome and diabetes. Additionally, it revealed cardioprotective and neuroprotective properties, thus reducing the risk of cardiovascular diseases and assisting against neurodegenerative diseases. Furthermore, genkwanin showed other biological properties like antitumor capability, antibacterial, antiviral, and dermato-protective effects. The involved mechanisms include sub-cellular, cellular and molecular actions at different levels such as inducing apoptosis and inhibiting the growth and proliferation of cancer cells. Despite the findings from preclinical studies that have demonstrated the effects of genkwanin and its diverse mechanisms of action, additional research is required to comprehensively explore its therapeutic potential. Primarily, extensive studies should be carried out to enhance our understanding of the molecule's pharmacodynamic actions and pharmacokinetic pathways. Moreover, toxicological and clinical investigations should be undertaken to assess the safety and clinical efficacy of genkwanin. These forthcoming studies are of utmost importance in fully unlocking the potential of this molecule in the realm of therapeutic applications.
Collapse
Affiliation(s)
- Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco.
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco.
| | - Rania Moubachir
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco.
| | - Doaue Taha
- Molecular Modeling, Materials, Nanomaterials, Water and Environment Laboratory, CERNE2D, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
5
|
Akter R, Rahman MR, Ahmed ZS, Afrose A. Plausibility of natural immunomodulators in the treatment of COVID-19-A comprehensive analysis and future recommendations. Heliyon 2023; 9:e17478. [PMID: 37366526 PMCID: PMC10284624 DOI: 10.1016/j.heliyon.2023.e17478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
The COVID-19 pandemic has inflicted millions of deaths worldwide. Despite the availability of several vaccines and some special drugs approved for emergency use to prevent or treat this disease still, there is a huge concern regarding their effectiveness, adverse effects, and most importantly, their efficacy against the new variants. A cascade of immune-inflammatory responses is involved with the pathogenesis and severe complications with COVID-19. People with dysfunctional and compromised immune systems display severe complications, including acute respiratory distress syndrome, sepsis, multiple organ failure etc., when they get infected with the SARS-CoV-2 virus. Plant-derived natural immune-suppressant compounds, such as resveratrol, quercetin, curcumin, berberine, luteolin, etc., have been reported to inhibit pro-inflammatory cytokines and chemokines. Therefore, natural products with immunomodulatory and anti-inflammatory potential could be plausible targets to treat this contagious disease. This review aims to delineate the clinical trials status and outcomes of natural compounds with immunomodulatory potential in COVID-19 patients along with the outcomes of their in-vivo studies. In clinical trials several natural immunomodulators resulted in significant improvement of COVID-19 patients by diminishing COVID-19 symptoms such as fever, cough, sore throat, and breathlessness. Most importantly, they reduced the duration of hospitalization and the need for supplemental oxygen therapy, improved clinical outcomes in patients with COVID-19, especially weakness, and eliminated acute lung injury and acute respiratory distress syndrome. This paper also discusses many potent natural immunomodulators yet to undergo clinical trials. In-vivo studies with natural immunomodulators demonstrated reduction of a wide range of proinflammatory cytokines. Natural immunomodulators that were found effective, safe, and well tolerated in small-scale clinical trials are warranted to undergo large-scale trials to be used as drugs to treat COVID-19 infections. Alongside, compounds yet to test clinically must undergo clinical trials to find their effectiveness and safety in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Raushanara Akter
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Md. Rashidur Rahman
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zainab Syed Ahmed
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| | - Afrina Afrose
- School of Pharmacy, Brac University, 66 Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
6
|
Feng YB, Chen L, Chen FX, Yang Y, Chen GH, Zhou ZH, Xu CF. Immunopotentiation effects of apigenin on NK cell proliferation and killing pancreatic cancer cells. Int J Immunopathol Pharmacol 2023; 37:3946320231161174. [PMID: 36848930 PMCID: PMC9974612 DOI: 10.1177/03946320231161174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Apigenin is a kind of flavonoid with many beneficial biological effects. It not only has direct cytotoxicity to tumor cells, but also can boost the antitumor effect of immune cells by modulating immune system. The purpose of this study was to investigate the proliferation of NK cells treated with apigenin and its cytotoxicity to pancreatic cancer cells in vitro, and explore its potential molecular mechanism. In this study, the effect of apigenin on NK cell proliferation and killing pancreatic cancer cells were measured by CCK-8 assay. Perforin, granzyme B (Gran B), CD107a, and NKG2D expressions of NK cells induced with apigenin were detected by flow cytometry (FCM). The mRNA expression of Bcl-2, Bax and protein expression of Bcl-2, Bax, p-ERK, and p-JNK in NK cells were evaluated by qRT-PCR and western blotting analysis, respectively. The results showed that appropriate concentration of apigenin could significantly promote the proliferation of NK cells in vitro and enhance the killing activity of NK cells against pancreatic cancer cells. The expressions of surface antigen NKG2D and intracellular antigen perforin and Gran B of NK cells were upregulated after treating with apigenin. Bcl-2 mRNA expression was increased, while Bax mRNA expression was decreased. Similarly, the expression of Bcl-2, p-JNK, and p-ERK protein was upregulated, and the expression of Bax protein was downregulated. The molecular mechanism of the immunopotentiation effects of apigenin may be that it up-regulates Bcl-2 and down-regulates Bax expression at the gene and protein levels to facilitate NK cell proliferation, and up-regulates the expression of perforin, Gran B, and NKG2D through the activation of JNK and ERK pathways to enhance NK cell cytotoxicity.
Collapse
Affiliation(s)
- Yong-Bo Feng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Jiangsu, China,Department of Gastroenterology, Nanjing Gaochun Hospital of Chinese Medicine, Jiangsu, China
| | - Ling Chen
- Department of Central Laboratory, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, Jiangsu, China
| | - Fu-Xing Chen
- Department of Central Laboratory, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, Jiangsu, China
| | - Yang Yang
- Department of Pharmacy, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, Jiangsu, China
| | - Guo-Hua Chen
- Department of General Surgery, Nanjing Gaochun Hospital of Chinese Medicine, Jiangsu, China
| | - Zhong-Hai Zhou
- Department of Central Laboratory, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, Jiangsu, China,Zhong-Hai Zhou, Department of Central Laboratory, the 71st Group Army Hospital of PLA Army, The Affiliated Huaihai Hospital of Xuzhou Medical University, 236 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Chun-Fang Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Jiangsu, China,Chun-Fang Xu, Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi street, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
7
|
Nasim N, Sandeep IS, Mohanty S. Plant-derived natural products for drug discovery: current approaches and prospects. THE NUCLEUS 2022; 65:399-411. [PMID: 36276225 PMCID: PMC9579558 DOI: 10.1007/s13237-022-00405-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Nature has abundant source of drugs that need to be identified/purified for use as essential biologics, either individually or in combination in the modern medical field. These drugs are divided into small bio-molecules, plant-made biologics, and a recently introduced third category known as phytopharmaceutical drugs. The development of phytopharmaceutical medicines is based on the ethnopharmacological approach, which relies on the traditional medicine system. The concept of ‘one-disease one-target drug’ is becoming less popular, and the use of plant extracts, fractions, and molecules is the new paradigm that holds promising scope to formulate appropriate drugs. This led to discovering a new concept known as polypharmacology, where natural products from varying sources can engage with multiple human physiology targets. This article summarizes different approaches for phytopharmaceutical drug development and discusses the progress in systems biology and computational tools for identifying drug targets. We review the existing drug delivery methods to facilitate the efficient delivery of drugs to the targets. In addition, we describe different analytical techniques for the authentication and fingerprinting of plant materials. Finally, we highlight the role of biopharming in developing plant-based biologics.
Collapse
Affiliation(s)
- Noohi Nasim
- grid.412612.20000 0004 1760 9349Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Inavolu Sriram Sandeep
- grid.412612.20000 0004 1760 9349Centre for Biotechnology, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Sujata Mohanty
- grid.506052.40000 0004 4911 8595Department of Biotechnology, Rama Devi Women’s University, Vidya Vihar, Bhubaneswar, Odisha 751022 India
| |
Collapse
|
8
|
Duarte-Casar R, Romero-Benavides JC. Xylosma G. Forst. Genus: Medicinal and Veterinary Use, Phytochemical Composition, and Biological Activity. PLANTS 2022; 11:plants11091252. [PMID: 35567253 PMCID: PMC9103172 DOI: 10.3390/plants11091252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
Xylosma G. Forst. is a genus of plants belonging to the Salicaceae family with intertropical distribution in America, Asia, and Oceania. Of the 100 accepted species, 22 are under some level of conservation risk. In this review, around 13 species of the genus used as medicinal plants were found, mainly in Central and South America, with a variety of uses, among which antimicrobial is the most common. There is published research in chemistry and pharmacological activity on around 15 of the genus species, centering in their antibacterial and fungicidal activity. Additionally, a variety of active phytochemicals have been isolated, the most representative of which are atraric acid, xylosmine and its derivatives, and velutinic acid. There is still ample field for the validation and evaluation of the activity of Xylosma extracts, particularly in species not yet studied, and concerning uses other than antimicrobial and for the identification and evaluation of their active compounds.
Collapse
Affiliation(s)
- Rodrigo Duarte-Casar
- Maestría en Química Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador;
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
| | - Juan Carlos Romero-Benavides
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, Loja 110108, Ecuador
- Correspondence: ; Tel.: +593-987708487
| |
Collapse
|
9
|
Genkwanin suppresses MPP +-induced cytotoxicity by inhibiting TLR4/MyD88/NLRP3 inflammasome pathway in a cellular model of Parkinson's disease. Neurotoxicology 2021; 87:62-69. [PMID: 34481870 DOI: 10.1016/j.neuro.2021.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) is a complicated multifactorial neurodegenerative disorder. Oxidative stress, neuroinflammatory response, and activation of apoptosis have been proposed to be tightly involved in the pathogenesis of PD. Genkwanin is a typical bioactive non-glycosylated flavonoid with anti-inflammatory and anti-oxidant activities. However, the effect of genkwanin on PD remains unclear. Cell viability, lactate dehydrogenase (LDH) release, caspase-3/7 activity, and apoptosis was evaluated by MTT, LDH release assay, caspase-3/7 activity assay, and TUNEL assay, respectively. The secretion of prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were measured by respective commercial ELISA kits. The mRNA expression of TNF-α, IL-1β, and IL-6 was detected by qRT-PCR. The protein levels of cycloxygenase-2 (COX-2), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and NOD-like receptor (NLR) protein: 3 (NLRP3) were determined by western blot analysis. Genkwanin at concentrations less than 40 μM had no impact on cell viability and LDH release. Genkwanin suppressed MPP+-induced neuroinflammation in SH-SY5Y cells. MPP+ treatment inhibited cell viability, increased LDH release, apoptosis, and ROS generation, and reduced superoxide dismutase (SOD) activity in SH-SY5Y cells, which were abolished by genkwanin treatment. Genkwanin suppressed MPP+-induced activation of TLR4/MyD88/NLRP3 inflammasome pathway in SH-SY5Y cells. TLR4 overexpression weakened the anti-inflammatory and anti-neurotoxicity of genkwanin in SH-SY5Y cells. In conclusion, genkwanin attenuated neuroinflammation and neurotoxicity by inhibiting TLR4/MyD88/NLRP3 inflammasome pathway in MPP+-induced cellular model of PD.
Collapse
|
10
|
Khouchlaa A, El Menyiy N, Guaouguaou FE, El Baaboua A, Charfi S, Lakhdar F, El Omari N, Taha D, Shariati MA, Rebezov M, El-Shazly M, Bouyahya A. Ethnomedicinal use, phytochemistry, pharmacology, and toxicology of Daphne gnidium: A review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114124. [PMID: 33865924 DOI: 10.1016/j.jep.2021.114124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/18/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Daphne gnidium L., (Lazaz or Metnan) is a perennial plant that grows around the Mediterranean basin, in Southern Europe, North Africa and the Middle East. It is used in different countries for hair care and to treat several diseases including skin cancer, diabetes, nervous breakdowns, sinusitis, poisoning, rheumatic disorders, odontalgia, muscular pain, and gastrointestinal infections. It is also used as anti-inflammatory, insecticide, and anti-parasitic remedy. AIM OF THE REVIEW In this review, previous studies on D. gnidium including its botanical description, taxonomy, geographical distribution, medicinal use, phytochemistry, and pharmacological properties were critically highlighted and discussed for suggesting the exploration of this specie and its bioactive compounds in medical applications. MATERIALS AND METHODS Data on D. gnidium were gathered from Scientific search engines including PubMed, ScienceDirect, SpringerLink, Web of Science, Scopus, Wiley Online, SciFinder, and Google Scholar. Reports on D. gnidium written in English published before September 2020 were summarized. RESULTS In traditional medicine, D. gnidium is used to treat diabetes, gastrointestinal infections, skin cancer, nervous breakdowns, and sinusitis. The extracts and essential oil of D. gnidium exhibited several biological properties such as antibacterial, antifungal, antiviral, antigenotoxic, hemolytic, anti-inflammatory, immunomodulatory, neuroprotective, allelopathic, and insecticidal effects. Phytochemical investigations identified several chemical classes of secondary metabolites in D. gnidium essential oil and extracts including terpenoids, coumarins, flavonoids, fatty acids, and alkanes. CONCLUSIONS The findings presented in this study showed a link between the traditional medicinal use and scientific biological results about D. gnidium. However, further investigations should be carried out to support medical and cosmetic applications of this species. Indeed, D. gnidium and its main compounds should be confirmed concerning their safety and their bioavailability. Moreover, pharmacodynamic studies should be conducted to support their efficacy in medical applications.
Collapse
Affiliation(s)
- Aya Khouchlaa
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Naoual El Menyiy
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Fatima-Ezzahrae Guaouguaou
- Mohammed V University in Rabat, LPCMIO, Materials Science Center (MSC), Ecole Normale Supérieure, Rabat, Morocco
| | - Aicha El Baaboua
- Biology and Health Laboratory, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Saoulajan Charfi
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Fatima Lakhdar
- Department of Biology, Laboratory of Marine Biotechnology and Environment, Faculty of Sciences, Chouaib Doukkali University, BP 20, El Jadida 24000, Morocco.
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| | - Douae Taha
- Laboratoire de Spectroscopie, Modélisation Moléculaire, Matériaux, Nanomatériaux, Eau et Environnement, CERNE2D, Faculté des Sciences, Université Mohammed V, Rabat, Morocco.
| | - Mohammad Ali Shariati
- Department of Technology of Food Production, K.G. Razumoysky Moscow State University of Technologies and Management (the First Cossack University) 109004, Moscow, Russian Federation.
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian, Academy of Sciences, 109029, Moscow, Russian Federation.
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
11
|
Yin HF, Yin CM, Ouyang T, Sun SD, Chen WG, Yang XL, He X, Zhang CF. Self-Nanoemulsifying Drug Delivery System of Genkwanin: A Novel Approach for Anti-Colitis-Associated Colorectal Cancer. Drug Des Devel Ther 2021; 15:557-576. [PMID: 33603345 PMCID: PMC7886095 DOI: 10.2147/dddt.s292417] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/13/2021] [Indexed: 01/26/2023] Open
Abstract
PURPOSE The aim of the present study was to develop an optimized Genkwanin (GKA)-loaded self-nanoemulsifying drug delivery system (SNEDDS) formulation to enhance the solubility, intestinal permeability, oral bioavailability and anti-colitis-associated colorectal cancer (CAC) activity of GKA. METHODS We designed a SNEDDS comprised oil phase, surfactants and co-surfactants for oral administration of GKA, the best of which were selected by investigating the saturation solubility, constructing pseudo-ternary phase diagrams, followed by optimizing thermodynamic stability, emulsification efficacy, self-nanoemulsification time, droplet size, transmission electron microscopy (TEM), drug release and intestinal permeability. In addition, the physicochemical properties and pharmacokinetics of GKA-SNEDDS were characterized, and its anti-colitis-associated colorectal cancer (CAC) activity and potential mechanisms were evaluated in AOM/DSS-induced C57BL/6J mice model. RESULTS The optimized nanoemulsion formula (OF) consists of Maisine CC, Labrasol ALF and Transcutol HP in a weight ratio of 20:60:20 (w/w/w), in which ratio the OF shows multiple improvements, specifically small mean droplet size, excellent stability, fast release properties as well as enhanced solubility and permeability. Pharmacokinetic studies demonstrated that compared with GKA suspension, the relative bioavailability of GKA-SNEDDS was increased by 353.28%. Moreover, GKA-SNEDDS not only significantly prevents weight loss and improves disease activity index (DAI) but also reduces the histological scores of inflammatory cytokine levels as well as inhibiting the formation of colon tumors via inducing tumor cell apoptosis in the AOM/DSS-induced CAC mice model. CONCLUSION Our results show that the developed GKA-SNEDDS exhibited enhanced oral bioavailability and excellent anti-CAC efficacy. In summary, GKA-SNEDDS, using lipid nanoparticles as the drug delivery carrier, can be applied as a potential drug delivery system for improving the clinical application of GKA.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Colitis/drug therapy
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Daphne/chemistry
- Dose-Response Relationship, Drug
- Drug Compounding
- Drug Delivery Systems
- Emulsions
- Flavones/administration & dosage
- Flavones/chemistry
- Flavones/pharmacology
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Rats
- Rats, Sprague-Dawley
- Solubility
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Hua-Feng Yin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
- Jiangxi QingFeng Pharmaceutical Co., Ltd, Ganzhou, 341000, Jiangxi, People’s Republic of China
| | - Chun-Ming Yin
- Emergency Department, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People’s Republic of China
| | - Ting Ouyang
- School of Chinese Materia Medical, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shu-Ding Sun
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| | - Wei-Guo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| | - Xiao-Lin Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, People’s Republic of China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People’s Republic of China
| |
Collapse
|
12
|
Popoola JO, Aworunse OS, Oyesola OL, Akinnola OO, Obembe OO. A systematic review of pharmacological activities and safety of Moringa oleifera. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.34172/jhp.2020.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the last few decades, Moringa oleifera, a multipurpose medicinal plant (MMP) has received increased research attention and commercial interest for its nutritional, therapeutic and pharmacological properties. Rigorous approaches including biological assays, animal and clinical trials are required towards safe usage as herbal therapy. We conducted a systematic review of the known pharmacological activities, toxicity, and safety of M. oleifera, usually used locally in the treatment and prevention of myriads of illnesses. Five major bibliographic databases (SCOPUS, Web of Science, Science Direct, PubMed, and Mendeley) were searched for studies reported on pharmacological activities, toxicity, and safety assessment of M. oleifera in the last 29 years (1990 – 2019). Studies on animals and humans involving aqueous leaf extracts and different preparations from M. oleifera seed and bark were also considered. All articles retained, and data collected were evaluated based on the period of the article, country where such studies were conducted and the document type. Our search results identified and analyzed 165 articles while 63 studies were eventually retained. Diverse pharmacological activities including neuroprotective, antimicrobial, antiasthmatic, anti-malaria, cardioprotective, antidiabetic, antiobesity, hepatoprotective and cytotoxic effects, amongst others, were recorded. Toxicity studies in animal models and few human studies showed that M. oleifera is safe with no adverse effect reported. The importance of the plant is highlighted in the search for new bioactive compounds to explore its therapeutic potentials towards drug discovery and development in the pharmaceutical and allied industries.
Collapse
Affiliation(s)
- Jacob O. Popoola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | | | - Olusola L. Oyesola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Olayemi O. Akinnola
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| | - Olawole O. Obembe
- Department of Biological Sciences, Covenant University, P.M.B. 1023 Ota, Ogun State, Nigeria
| |
Collapse
|
13
|
Bao Y, Sun YW, Ji J, Gan L, Zhang CF, Wang CZ, Yuan CS. Genkwanin ameliorates adjuvant-induced arthritis in rats through inhibiting JAK/STAT and NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153036. [PMID: 31401534 DOI: 10.1016/j.phymed.2019.153036] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Genkwanin is a flavone isolated from the traditional Chinese herb Daphne genkwa. Our previous work proved that four flavonoids (including genkwanin) isolated from D. genkwa (FFD) significantly improved the symptoms of arthritis in rat models. Recent studies have revealed that genkwanin exhibited anti-inflammatory and immunomodulatory activities, both of which were closely related to the pathology of rheumatoid arthritis (RA). Therefore, studying the anti-RA effects and mechanisms of genkwanin may give us insight into FFD's therapeutic effects on RA. PURPOSE This study aimed to investigate the anti-rheumatoid arthritis activity of genkwanin on adjuvant-induced arthritis (AIA) model in rats and explore the underlying mechanisms. METHODS The anti-rheumatoid arthritis activity of genkwanin was evaluated on AIA rat model by determining the paw swelling degrees and arthritis index scores, along with histopathological analysis of joint tissues. The serum cytokine levels were measured by ELISA method, and serum NO levels were measured by Griess method. The expression and phosphorylation levels of proteins in JAK/STAT and NF-κB signaling pathways were determined by western blot analysis and immunohistochemistry analysis. RESULTS Genkwanin significantly decreased the paw swelling and arthritis index in AIA rats and also decreased the inflammation and bone destruction in joint tissues. The serum TNF-α, IL-6, and NO concentrations were markedly reduced while the IL-10 concentration was markedly increased with the treatment of genkwanin. Genkwanin inhibited the activation of JAK/STAT and NF-κB signaling pathways in synovial tissues of AIA rats. CONCLUSION Genkwanin exerted anti-rheumatoid arthritis effects on AIA rats through inhibiting the activation of JAK/STAT and NF-κB signaling pathways. The results obtained in this work lead us to suggest that Genkwanin could play a crucial role on the previously demonstrated anti-rheumatoid arthritis activity of flavonoid extract of D. genkwa (namely FFD).
Collapse
Affiliation(s)
- Yarigui Bao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yue-Wen Sun
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Ji
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Gan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, United States.
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, United States
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL 60637, United States
| |
Collapse
|
14
|
Zhou L, Li J, Yan C. Simultaneous determination of three flavonoids and one coumarin by LC-MS/MS: Application to a comparative pharmacokinetic study in normal and arthritic rats after oral administration of Daphne genkwa extract. Biomed Chromatogr 2018; 32:e4233. [PMID: 29500935 DOI: 10.1002/bmc.4233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/12/2018] [Accepted: 02/22/2018] [Indexed: 01/17/2023]
Abstract
A selective and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for investigating the pharmacokinetics of umbelliferone, apigenin, genkwanin and hydroxygenkwanin after oral administration of Daphne genkwa extract. Plasma samples were treated by protein precipitation with acetonitrile. Analytes were detected by triple-quadrupole MS/MS with an ESI source in negative selection reaction monitoring mode. The transitions of m/z 161 → 133 for umbelliferone, m/z 269 → 117 for apigenin, m/z 283 → 268 for genkwanin and m/z 299 → 284 for hydroxygenkwanin were confirmed for quantification. Chromatographic separation was conducted using an Eclipse XDB-C18 column, and the applied isocratic elution program allowed for simultaneous determination of the four analytes for a total run time of 2.5 min. The linearity was validated over the plasma concentration ranges of 1.421-1421 ng/mL for umbelliferone, 0.845-845 ng/mL for apigenin, 1.025-1025 ng/mL for genkwanin and 0.845-845 ng/mL for hydroxygenkwanin. The extraction recovery rate was >82.7% for each analyte. No apparent matrix effect was observed during the bioanalysis. After full validation, the proposed method was successfully applied to compare the pharmacokinetics of these analytes between normal and arthritic rats.
Collapse
Affiliation(s)
- Luyi Zhou
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jing Li
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Chong Yan
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
15
|
Sassi A, Mokdad Bzéouich I, Mustapha N, Maatouk M, Ghedira K, Chekir-Ghedira L. Immunomodulatory potential of hesperetin and chrysin through the cellular and humoral response. Eur J Pharmacol 2017; 812:91-96. [PMID: 28690190 DOI: 10.1016/j.ejphar.2017.07.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/20/2022]
Abstract
Flavonoids are polyphenols frequently consumed in the diet they have been suggested to exert a number of beneficial actions on human health, including anti-inflammatory activity. This study investigated the immunomodulatory effects of two flavonoids, Chrysin and Hesperetin. The effects of flavonoids on B and T cell proliferation were assessed on splenocytes stimulated or not with mitogens. However, their effects on cytotoxic T lymphocyte (CTL) and natural killer (NK) activities were assessed in splenocytes co-incubated with target cells. We report for the first time that both tested flavonoids enhance lymphocyte proliferation at 3.12μM. Chrysin significantly inhibited lipopolysaccharide (LPS) and lectin stimulated splenocyte proliferation. Whereas, hesperetin enhanced LPS and lectin stimulated splenocyte proliferation. In addition, both flavonoids significantly enhance NK cell and CTL activities. Furthermore, our study demonstrated that depending on the concentrations, flavonoid molecules affect macrophage functions by modulating their lysosomal activity and nitric oxide (NO) release, suggesting a potential anti-inflammatory effect. We conclude that flavonoids such as chrysin and hesperetin may be potentially useful for modulating immune cell functions in physiological and pathological conditions and thus a good candidate as food addition component.
Collapse
Affiliation(s)
- Aïcha Sassi
- Laboratoire de biologie cellulaire et moléculaire, Faculté de médecine dentaire, Université de Monastir, Rue Avicenne, 5000 Monastir, Tunisia; Unité de Substances Naturelles Bioactives et Biotechnologie « UR12ES12 », Faculté de pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000 Monastir, Tunisia
| | - Imen Mokdad Bzéouich
- Laboratoire de biologie cellulaire et moléculaire, Faculté de médecine dentaire, Université de Monastir, Rue Avicenne, 5000 Monastir, Tunisia; Unité de Substances Naturelles Bioactives et Biotechnologie « UR12ES12 », Faculté de pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000 Monastir, Tunisia
| | - Nadia Mustapha
- Laboratoire de biologie cellulaire et moléculaire, Faculté de médecine dentaire, Université de Monastir, Rue Avicenne, 5000 Monastir, Tunisia; Unité de Substances Naturelles Bioactives et Biotechnologie « UR12ES12 », Faculté de pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000 Monastir, Tunisia
| | - Mouna Maatouk
- Laboratoire de biologie cellulaire et moléculaire, Faculté de médecine dentaire, Université de Monastir, Rue Avicenne, 5000 Monastir, Tunisia; Unité de Substances Naturelles Bioactives et Biotechnologie « UR12ES12 », Faculté de pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000 Monastir, Tunisia
| | - Kamel Ghedira
- Unité de Substances Naturelles Bioactives et Biotechnologie « UR12ES12 », Faculté de pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000 Monastir, Tunisia
| | - Leila Chekir-Ghedira
- Laboratoire de biologie cellulaire et moléculaire, Faculté de médecine dentaire, Université de Monastir, Rue Avicenne, 5000 Monastir, Tunisia; Unité de Substances Naturelles Bioactives et Biotechnologie « UR12ES12 », Faculté de pharmacie de Monastir, Université de Monastir, Rue Avicenne, 5000 Monastir, Tunisia.
| |
Collapse
|
16
|
Ling N, Zhou X, Ji Y, Li W, Ji C, Qi Z. Immuno-modulatory and cellular antioxidant activities of κ-selenocarrageenan in combination with Epirubicin in H22 hepatoma-bearing mice. Biomed Pharmacother 2017; 91:132-137. [PMID: 28448867 DOI: 10.1016/j.biopha.2017.04.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/15/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival time. The aim of this study is to evaluate the synergistic anti-tumor effects and underlying mechanism of κ-selenocarrageenan (KSC) in combination with the chemotherapy drug epirubicin (EPI) in H22 tumor-bearing mice. METHODS Hepatocellular carcinoma H22 cells were implanted into mice. After the transplants were successfully established, the animals were divided into four groups: namely the control group, the KSC group, the EPI group and the KSC+EPI group. The effects of KSC and EPI on tumor growth, survival time, thymus index, spleen index, white blood cells (WBC), splenocyte proliferation, natural killer (NK) cell activity, serum TNF-α and IL-2 levels, and antioxidant enzymes in the liver cells were determined. RESULTS KSC and/or EPI significantly reduced tumor weight and prolonged the survival time. Furthermore, KSC could attenuate EPI-induced atrophy in the thymus and spleen, as well as other toxicities, which may indicate an additive effect of this combination against organ dysfunction and cellular injury. KSC significantly promoted Con A- and LPS-stimulated splenocyte proliferation, enhanced NK cell activity, and reversed the inhibition of NK activity induced by EPI (P<0.01). In addition, KSC could elevate serum TNF-α and IL-2 levels, increase the GSH-Px, SOD, CAT and GSH activity levels in liver tissue, and reduce MDA content. CONCLUSIONS These results suggest that KSC can regulate immune function in mice and suppress the growth of tumor in H22 tumor-bearing mice, and its synergistic antitumor activity with epirubicin may be related to its antioxidant and immuno-modulatory effects.
Collapse
Affiliation(s)
- Na Ling
- College of Science, Harbin University of Commerce, Harbin 150076, Heilongjiang Province, China.
| | - Xiaojun Zhou
- College of Life Science, Luoyang Normal University, Luoyang 471022, Henan Province, China.
| | - Yubin Ji
- College of Science, Harbin University of Commerce, Harbin 150076, Heilongjiang Province, China
| | - Wenlan Li
- College of Science, Harbin University of Commerce, Harbin 150076, Heilongjiang Province, China
| | - Chenfeng Ji
- College of Science, Harbin University of Commerce, Harbin 150076, Heilongjiang Province, China
| | - Zheng Qi
- College of Science, Harbin University of Commerce, Harbin 150076, Heilongjiang Province, China
| |
Collapse
|
17
|
Chu LL, Pandey RP, Jung N, Jung HJ, Kim EH, Sohng JK. Hydroxylation of diverse flavonoids by CYP450 BM3 variants: biosynthesis of eriodictyol from naringenin in whole cells and its biological activities. Microb Cell Fact 2016; 15:135. [PMID: 27495155 PMCID: PMC4974697 DOI: 10.1186/s12934-016-0533-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cytochrome P450 monooxygenase constitutes a significant group of oxidative enzymes that can introduce an oxygen atom in a high regio- and stereo-selectivity mode. We used the Bacillus megaterium cytochrome P450 BM3 (CYP450 BM3) and its variants namely mutant 13 (M13) and mutant 15 (M15) for the hydroxylation of diverse class of flavonoids. RESULTS Among 20 flavonoids, maximum seven flavonoids were hydroxylated by the variants while none of these molecules were accepted by CYP450 BM3 in in vitro reaction. Moreover, M13 exhibited higher conversion of substrates than M15 and CYP450 BM3 enzymes. We found that M13 carried out regiospecific 3'-hydroxylation reaction of naringenin with the highest conversion among all the tested flavonoids. The apparent K m and k cat values of M13 for naringenin were 446 µM and 1.955 s(-1), respectively. In whole-cell biotransformation experiment with 100 µM of naringenin in M9 minimal medium with 2 % glucose in shake flask culture, M13 showed 2.14- and 13.96-folds higher conversion yield in comparison with M15 (16.11 %) and wild type (2.47 %). The yield of eriodictyol was 46.95 µM [~40.7 mg (13.5 mg/L)] in a 3-L volume lab scale fermentor at 48 h in the same medium exhibiting approximately 49.81 % conversion of the substrate. In addition, eriodictyol exhibited higher antibacterial and anticancer potential than naringenin, flavanone and hesperetin. CONCLUSIONS We elucidated that eriodictyol being produced from naringenin using recombinant CYP450 BM3 and its variants from B. megaterium, which shows an approach for the production of important hydroxylated compounds of various polyphenols that may span pharmaceutical industries.
Collapse
Affiliation(s)
- Luan Luong Chu
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea
| | - Ramesh Prasad Pandey
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea
| | - Narae Jung
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea
| | - Eun-Hee Kim
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk, 363-883, South Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea. .,Department of BT-Convergent Pharmaceutical Engineering, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si, Chungnam, 31460, South Korea.
| |
Collapse
|