1
|
Bolaños-Martínez OC, Urbanetz A, Maresch D, Strasser R, Vimolmangkang S. Engineering Nicotiana benthamiana for production of active cannabinoid synthases via secretory pathway optimization. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00865. [PMID: 39691101 PMCID: PMC11647631 DOI: 10.1016/j.btre.2024.e00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
The production of cannabinoid compounds such as Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabichromene (CBC) with potential pharmaceutical applications is growing sharply. However, challenges such as the low yield of minor cannabinoids, legal restrictions on cultivation, and the complexity and cost of purification from the Cannabis sativa plant necessitate a biotechnological approach. Since the biosynthetic pathway is disclosed, cannabinoids have been produced in yeast, insect cells and plants mainly by the heterologous expression of tetrahydrocannabinol acid synthase (THCAS). THCAS and cannabidiolic acid synthase (CBDAS) use cannabigerolic acid (CBGA) as a substrate. In this study, we transiently expressed recombinant forms of THCAS and CBDAS in leaves of Nicotiana benthamiana. Our results demonstrate that efficient expression in the secretory pathway relies on replacing the endogenous signal peptide with a heterologous one. Both proteins were successfully secreted to the apoplast. MS-based analysis of the purified proteins revealed that they are heavily glycosylated with mainly Golgi-processed complex type N-glycans. In planta enzymatic removal of N-glycans indicated that glycosylation plays a role for CBDAS protein folding or stability. Finally, in vitro assays with CBGA showed that the plant-made recombinant CBDAS and THCAS are enzymatically active.
Collapse
Affiliation(s)
- Omayra C. Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Anna Urbanetz
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Maresch
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Laux DA, Azuma MC, Cain ME. Effects of repeated voluntary oral consumption of synthetic delta-9-tetrahydrocannabinol on locomotor activity and cannabinoid receptor 1 expression. Behav Brain Res 2025; 477:115315. [PMID: 39461370 PMCID: PMC11570332 DOI: 10.1016/j.bbr.2024.115315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
As cannabis legalization expands, preclinical studies continue to investigate the impact of repeated exposure to delta-9-tetrahydrocannabinol (THC), the primary psychoactive compound in the plant. With the increasing popularity of cannabis infused foods, the rise of THC in medicinal applications have also expanded. The present study addresses a critical gap in existing literature by investigating the behavioral and neurobiological effects of low-dose edible THC in a preclinical rodent model. Adult male rats were administered synthetic-THC (Dronabinol) (0.0625 mg/kg, 0.125 mg/kg, and 0.25 mg/kg) or vehicle (sesame oil) through edible cookies, 90 min prior to eight locomotor sessions. Locomotor activity significantly increased in both 0.0625 mg/kg and 0.25 mg/kg THC groups, indicating a dose-dependent relationship. Repeated 0.25 mg/kg THC administration dose-dependently reduced cannabinoid receptor 1 expression in the hippocampus. The observed neurobiological change from low dose oral THC advances our understanding of repeated cannabis use. These findings also emphasize the importance of refining rodent models for translational relevance.
Collapse
Affiliation(s)
- Dylan A Laux
- Department of Psychological Sciences, Kansas State University, Bluemont Hall, 1114 mid-campus Dr., Manhattan, KS 66506, USA.
| | - Miki C Azuma
- Department of Psychological Sciences, Kansas State University, Bluemont Hall, 1114 mid-campus Dr., Manhattan, KS 66506, USA.
| | - Mary E Cain
- Department of Psychological Sciences, Kansas State University, Bluemont Hall, 1114 mid-campus Dr., Manhattan, KS 66506, USA.
| |
Collapse
|
3
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Jochen A, Holben D. School Nurse Perspectives of Medical Cannabis Policy in K-12 Schools: An Exploratory Descriptive Study. J Sch Nurs 2024; 40:596-607. [PMID: 36377286 PMCID: PMC11558934 DOI: 10.1177/10598405221136288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
As states legalize medical cannabis, school nurses face increased parent questions about administration at school. Although school nurses frequently collaborate on the development and implementation of medication administration policies, their perceptions of barriers to school-based medical cannabis administration are not well-documented. To explore these perceptions, we surveyed school nurses (n = 379) in sixteen states about their beliefs related to school-based medical cannabis administration policy development. Findings revealed school nurses from states completely legalizing cannabis expressed significantly fewer concerns about the safety, stigma, and federal status of medical cannabis than their peers in more restrictive states. Implications for practice include (a) education of key stakeholders, (b) collaboration with stakeholders to formulate medication administration policy; and (c) development of state-level guidance for school professionals.
Collapse
Affiliation(s)
- Alison Jochen
- Ross and Carol Nese College of Nursing, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Diane Holben
- Secondary Education Department, East Stroudsburg University in the Professional, East Stroudsburg University, Pennsylvania, USA
| |
Collapse
|
5
|
Lamonarca J, Mintz I, Bayarres L, Kochen S, Oddo S. Psychiatric comorbidities before and after cannabidiol treatment in adult patients with drug resistant focal epilepsy. Epilepsy Behav 2024; 160:110032. [PMID: 39433001 DOI: 10.1016/j.yebeh.2024.110032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/23/2024]
Abstract
Cannabidiol oil (CBD) has been approved as an antiseizure medication for the treatment of drug -resistant epilepsy in pediatric patients in 2018 for some special types of epilepsy. Since this time its use was extended to other forms of epilepsy. However, to date, there are few publications on the use of CBD in adult patients with drug-resistant focal epilepsy and psychiatric comorbidities. We conducted a prospective, observational, open cohort study, with a before-after design, in adult patients, we assessed the effectiveness, dosage, and tolerance of adjunctive CBD treatment. Our study concluded that CBD was effective and safe.Our study in line with others examining CBD use in adult patients with drug-resistant epilepsy, omits consideration of psychiatric aspects. The aim of this study was to evaluate, in the same patient population that was part of a previous observational study, depression, quality of life, anxious symptoms and daytime sleepiness before and after CBD treatment. RESULTS: Forty-four patients were enrolled in the study. Prior to CBD treatment, 50 % of participants exhibited symptoms of depression. Following CBD treatment, 95.4 % of these individuals demonstrated a marked improvement (p = 0.001). Among this cohort, 71.5 % of patients reported minimal or no depressive symptoms post-treatment. Moreover, 68 % of patients experienced an enhancement in their overall quality of life. Comparative analysis of BDI-II and QOLIE-10 scores before and after CBD treatment revealed a statistically significant positive correlation (p < 0.036 and < 0.001, respectively). Improvements in depressive symptoms were found to correspond with enhancements in quality of life. In terms of anxiety symptoms, 54.5 % of patients exhibited such symptoms prior to CBD treatment, with 71 % showing improvement post-treatment. Adjunctive CBD treatment in adult patients with drug-resistant focal epilepsy was effective, safe, well tolerated and associated with significant improvement in depressive symptoms, anxiety and quality of life.
Collapse
Affiliation(s)
- Julián Lamonarca
- Neurosciences and Complex Systems Unit (ENyS), Epilepsy Unit, CONICET, El Cruce "N. Kirchner" Hospital.", Univ. Nat. A. Jauretche (UNAJ), F. Varela, Prov. Buenos Aires. Buenos Aires, Argentina
| | - Inés Mintz
- Neurosciences and Complex Systems Unit (ENyS), Epilepsy Unit, CONICET, El Cruce "N. Kirchner" Hospital.", Univ. Nat. A. Jauretche (UNAJ), F. Varela, Prov. Buenos Aires. Buenos Aires, Argentina
| | - Liliana Bayarres
- Neurosciences and Complex Systems Unit (ENyS), Epilepsy Unit, CONICET, El Cruce "N. Kirchner" Hospital.", Univ. Nat. A. Jauretche (UNAJ), F. Varela, Prov. Buenos Aires. Buenos Aires, Argentina
| | - Silvia Kochen
- Neurosciences and Complex Systems Unit (ENyS), Epilepsy Unit, CONICET, El Cruce "N. Kirchner" Hospital.", Univ. Nat. A. Jauretche (UNAJ), F. Varela, Prov. Buenos Aires. Buenos Aires, Argentina
| | - Silvia Oddo
- Neurosciences and Complex Systems Unit (ENyS), Epilepsy Unit, CONICET, El Cruce "N. Kirchner" Hospital.", Univ. Nat. A. Jauretche (UNAJ), F. Varela, Prov. Buenos Aires. Buenos Aires, Argentina.
| |
Collapse
|
6
|
Rozov A, Jappy DJ, Maltseva K, Vazetdinova A, Valiullina-Rakhmatullina F. Dialectics of perisomatic inhibition-The unity and conflict of opposites. Front Neural Circuits 2024; 18:1494300. [PMID: 39534761 PMCID: PMC11554531 DOI: 10.3389/fncir.2024.1494300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Over the past three decades, a great deal of attention has been paid to the study of perisomatic inhibition and perisomatic inhibitory basket cells. A growing body of experimental evidence points to the leading role of perisomatic inhibitory cells in the generation of oscillatory activity in various frequency ranges. Recently the link between the activity of basket cells and complex behavior has been demonstrated in several laboratories. However, all this is true only for one type of perisomatic inhibitory interneuron-parvalbumin-positive basket cells. Nevertheless, where parvalbumin-positive basket cells are found, there is another type of basket cell, cholecystokinin-positive interneurons. These two types of interneurons share a number of common features: they innervate the same compartments of target neurons and they often receive excitation from the same sources, but they also differ from each other in the synchrony of their GABA release and expression of receptors. The functional role of cholecystokinin-positive basket cells in oscillatory activity is not so obvious. They were thought to be involved in theta oscillations, however recent measurements in free moving animals have put some doubts on this hypothesis. Therefore, an important question is, whether these two types of basket cells work synergistically or perform opposing actions in functional networks? In this mini-review, we attempt to answer this question by putting forward the idea that these two types of basket cells are functionally united as two entities of the same network, and their opposing actions are necessary to maintain rhythmogenesis in a "healthy", physiological range.
Collapse
Affiliation(s)
- Andrei Rozov
- Laboratory of Electrophysiology, Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhniy Novgorod, Nizhny Novgorod, Russia
| | - David John Jappy
- Laboratory of Electrophysiology, Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
- Institute of Neuroscience, Lobachevsky State University of Nizhniy Novgorod, Nizhny Novgorod, Russia
| | - Ksenia Maltseva
- Institute of Neuroscience, Lobachevsky State University of Nizhniy Novgorod, Nizhny Novgorod, Russia
| | - Alina Vazetdinova
- Laboratory of Electrophysiology, Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Fliza Valiullina-Rakhmatullina
- Laboratory of Electrophysiology, Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
7
|
Espinosa-Jovel C, Riveros S, Acosta-Amaya A, García C. Use of artisanal and non-regulated cannabis-based products for the treatment of epilepsy in a low-income population. Epilepsy Behav 2024; 159:109942. [PMID: 39121749 DOI: 10.1016/j.yebeh.2024.109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Several artisanal and non-regulated cannabis-based products used for the treatment of epilepsy are available and can be easily obtained. Many of these preparations lack proper quality validation and exhibit cannabinoid contents significantly different from those stated on their labels, along with the presence of potentially harmful compounds. This study aims to evaluate the frequency of use and prescription patterns of these products among patients with epilepsy from a low-income population. METHODS Observational and cross-sectional study. A survey was conducted on patients with epilepsy at a public hospital in Bogotá, Colombia. RESULTS A total of 380 patients were evaluated, with 10.3 % (n = 39) reporting the use of artisanal and non-regulated cannabis-based products for the treatment of epilepsy. Among these patients, 84.6 % (n = 33) used the product on their own initiative, without a medical recommendation. Only 7.7 % (n = 3) of the patients had a record of the consumption of these products in their medical history. Age (p = 0.002), type of therapeutic response (p = 0.01), number of previous antiseizure medications used (p < 0.01), and non-pharmacological treatment such as vagal nerve stimulation (p < 0.01) showed a statistically significant association with the utilization of these products. CONCLUSION One in ten patients with epilepsy has used artisanal and non-regulated cannabis-based products for the treatment of their condition. The majority of patients used these products on their own initiative, without a medical recommendation. The prevalence of consuming these products was higher among younger individuals with uncontrolled epilepsy, who had previously used multiple antiseizure medications and other non-pharmacological alternatives such as vagal nerve stimulation.
Collapse
Affiliation(s)
- Camilo Espinosa-Jovel
- Epilepsy Program, Hospital de Kennedy, Subred de Servicios de Salud Sur Occidente, Bogotá, Colombia; Neurology Posgraduate Program, Universidad de la Sabana, Chía, Colombia.
| | - Sandra Riveros
- Epilepsy Program, Hospital de Kennedy, Subred de Servicios de Salud Sur Occidente, Bogotá, Colombia; Neurology Posgraduate Program, Universidad de la Sabana, Chía, Colombia
| | - Angela Acosta-Amaya
- Epilepsy Program, Hospital de Kennedy, Subred de Servicios de Salud Sur Occidente, Bogotá, Colombia
| | - Camila García
- Neurology Posgraduate Program, Universidad de la Sabana, Chía, Colombia
| |
Collapse
|
8
|
Huang S, Pham AC, Salim M, Eason T, Ramirez G, Boyd BJ. Infant formula as a solid lipid dose form for enhancement of the oral bioavailability of cannabidiol for paediatric patients. Int J Pharm 2024; 660:124257. [PMID: 38782154 DOI: 10.1016/j.ijpharm.2024.124257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Cannabinoids can save paediatric patients from harmful psychological conditions caused by epilepsy. However, the limited aqueous solubility of the drug presents a limitation to oral absorption and bioavailability. Previous studies have shown the enhancement of oral bioavailability for poorly water-soluble drugs using milk or milk-based products like infant formula as a novel lipid-based formulation, due to digestion of the lipids to enhance drug solubility that is particularly well suited to infants and in low economy settings. Therefore, this study has investigated the in vitro solubilisation enhancement of cannabidiol (CBD) in milk-based products during digestion using synchrotron small angle X-ray scattering, followed by pharmacokinetic studies to determine the relative oral bioavailability. The in vitro results, coupled with in vivo data, demonstrate a two-fold increase in the oral bioavailability of CBD in bovine milk as well as infant formula. The results of this study indicate the potential for infant formula to be considered as a novel formulation approach for CBD. Further study is encouraged for more drugs with infant formula to strengthen the correlation between the solubilisation of drug and their oral bioavailability.
Collapse
Affiliation(s)
- Shouyuan Huang
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Anna C Pham
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Thomas Eason
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Gisela Ramirez
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia; Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
9
|
Maiorov SA, Laryushkin DP, Kritskaya KA, Zinchenko VP, Gaidin SG, Kosenkov AM. The Role of Ion Channels and Intracellular Signaling Cascades in the Inhibitory Action of WIN 55,212-2 upon Hyperexcitation. Brain Sci 2024; 14:668. [PMID: 39061409 PMCID: PMC11274798 DOI: 10.3390/brainsci14070668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Gi-coupled receptors, particularly cannabinoid receptors (CBRs), are considered perspective targets for treating brain pathologies, including epilepsy. However, the precise mechanism of the anticonvulsant effect of the CBR agonists remains unknown. We have found that WIN 55,212-2 (a CBR agonist) suppresses the synchronous oscillations of the intracellular concentration of Ca2+ ions (epileptiform activity) induced in the neurons of rat hippocampal neuron-glial cultures by bicuculline or NH4Cl. As we have demonstrated, the WIN 55,212-2 effect is mediated by CB1R receptors. The agonist suppresses Ca2+ inflow mediated by the voltage-gated calcium channels but does not alter the inflow mediated by NMDA, AMPA, and kainate receptors. We have also found that phospholipase C (PLC), protein kinase C (PKC), and G-protein-coupled inwardly rectifying K+ channels (GIRK channels) are involved in the molecular mechanism underlying the inhibitory action of CB1R activation against epileptiform activity. Thus, our results demonstrate that the antiepileptic action of CB1R agonists is mediated by different intracellular signaling cascades, including non-canonical PLC/PKC-associated pathways.
Collapse
Affiliation(s)
| | | | | | | | - Sergei G. Gaidin
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institute of Cell Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia (A.M.K.)
| | | |
Collapse
|
10
|
Zorba BI, Boyacıoğlu Ö, Çağlayan T, Reçber T, Nemutlu E, Eroğlu İ, Korkusuz P. CB65 and novel CB65 liposomal system suppress MG63 and Saos-2 osteosarcoma cell growth in vitro. J Liposome Res 2024; 34:274-287. [PMID: 37740901 DOI: 10.1080/08982104.2023.2262025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
Curable approaches for primary osteosarcoma are inadequate and urge investigation of novel therapeutic formulations. Cannabinoid ligands exert antiproliferative and apoptotic effect on osteosarcoma cells via cannabinoid 2 (CB2) or transient receptor potential vanilloid type (TRPV1) receptors. In this study, we confirmed CB2 receptor expression in MG63 and Saos-2 osteosarcoma cells by qRT-PCR and flow cytometry (FCM), then reported the reduction effect of synthetic specific CB2 receptor agonist CB65 on the proliferation of osteosarcoma cells by WST-1 (water-soluble tetrazolium-1) and RTCA (real-time impedance-based proliferation). CB65 revealed an IC50 (inhibitory concentration) for MG63 and Saos-2 cells as 1.11 × 10-11 and 4.95 × 10-11 M, respectively. The specific antiproliferative effect of CB65 on osteosarcoma cells was inhibited by CB2 antagonist AM630. CB65 induced late apoptosis of MG63 and Saos-2 cells at 24 and 48 h, respectively by FCM when applied submaximal concentration. A novel CB65 liposomal system was generated by a thin film hydration method with optimal particle size (141.7 ± 0.6 nm), polydispersity index (0.451 ± 0.026), and zeta potential (-10.9 ± 0.3 mV) values. The encapsulation efficiency (EE%) of the CB65-loaded liposomal formulation was 51.12%. The CB65 and CB65-loaded liposomal formulation releasing IC50 of CB65 reduced proliferation by RTCA and invasion by scratch assay and induced late apoptosis of MG63 and Saos-2 cells, by FCM. Our results demonstrate the CB2 receptor-mediated antiproliferative and apoptotic effect of a new liposomal CB65 delivery system on osteosarcoma cells that can be used as a targeted and intelligent tool for bone tumors to ameliorate pediatric bone cancers following in vivo validation.
Collapse
Affiliation(s)
- Başak Işıl Zorba
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Özge Boyacıoğlu
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Medical Biochemistry, Atılım University, Ankara, Turkey
| | - Tuğba Çağlayan
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Tuba Reçber
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey
| | - İpek Eroğlu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Maldonado C, Peyraube R, Fagiolino P, Oricchio F, Cuñetti L, Vázquez M. Human Data on Pharmacokinetic Interactions of Cannabinoids: A Narrative Review. Curr Pharm Des 2024; 30:241-254. [PMID: 38288797 DOI: 10.2174/0113816128288510240113170116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/02/2024] [Indexed: 05/08/2024]
Abstract
Concomitant use of cannabinoids with other drugs may result in pharmacokinetic drug-drug interactions, mainly due to the mechanism involving Phase I and Phase II enzymes and/or efflux transporters. Cannabinoids are not only substrates but also inhibitors or inducers of some of these enzymes and/or transporters. This narrative review aims to provide the available information reported in the literature regarding human data on the pharmacokinetic interactions of cannabinoids with other medications. A search on Pubmed/Medline, Google Scholar, and Cochrane Library was performed. Some studies were identified with Google search. Additional articles of interest were obtained through cross-referencing of published literature. All original research papers discussing interactions between cannabinoids, used for medical or recreational/adult-use purposes, and other medications in humans were included. Thirty-two studies with medicinal or recreational/adult-use cannabis were identified (seventeen case reports/series, thirteen clinical trials, and two retrospective analyses). In three of these studies, a bidirectional pharmacokinetic drug-drug interaction was reported. In the rest of the studies, cannabinoids were the perpetrators, as in most of them, concentrations of cannabinoids were not measured. In light of the widespread use of prescribed and non-prescribed cannabinoids with other medications, pharmacokinetic interactions are likely to occur. Physicians should be aware of these potential interactions and closely monitor drug levels and/or responses. The existing literature regarding pharmacokinetic interactions is limited, and for some drugs, studies have relatively small cohorts or are only case reports. Therefore, there is a need for high-quality pharmacological studies on cannabinoid-drug interactions.
Collapse
Affiliation(s)
- Cecilia Maldonado
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Raquel Peyraube
- Instituto de Investigaciones Biológicas Clemente Estable - MEC, Montevideo, Uruguay
| | - Pietro Fagiolino
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Florencia Oricchio
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| | - Leticia Cuñetti
- Kidney Transplant Unit, Nephrology and Urology Institute, Montevideo, Uruguay
| | - Marta Vázquez
- Department of Pharmaceutical Sciences, Faculty of Chemistry, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
12
|
Smith BP, Hoots B, DePadilla L, Roehler DR, Holland KM, Bowen DA, Sumner SA. Using Transformer-Based Topic Modeling to Examine Discussions of Delta-8 Tetrahydrocannabinol: Content Analysis. J Med Internet Res 2023; 25:e49469. [PMID: 38127427 PMCID: PMC10767625 DOI: 10.2196/49469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Delta-8 tetrahydrocannabinol (THC) is a psychoactive cannabinoid found in small amounts naturally in the cannabis plant; it can also be synthetically produced in larger quantities from hemp-derived cannabidiol. Most states permit the sale of hemp and hemp-derived cannabidiol products; thus, hemp-derived delta-8 THC products have become widely available in many state hemp marketplaces, even where delta-9 THC, the most prominently occurring THC isomer in cannabis, is not currently legal. Health concerns related to the processing of delta-8 THC products and their psychoactive effects remain understudied. OBJECTIVE The goal of this study is to implement a novel topic modeling approach based on transformers, a state-of-the-art natural language processing architecture, to identify and describe emerging trends and topics of discussion about delta-8 THC from social media discourse, including potential symptoms and adverse health outcomes experienced by people using delta-8 THC products. METHODS Posts from January 2008 to December 2021 discussing delta-8 THC were isolated from cannabis-related drug forums on Reddit (Reddit Inc), a social media platform that hosts the largest web-based drug forums worldwide. Unsupervised topic modeling with state-of-the-art transformer-based models was used to cluster posts into topics and assign labels describing the kinds of issues being discussed with respect to delta-8 THC. Results were then validated by human subject matter experts. RESULTS There were 41,191 delta-8 THC posts identified and 81 topics isolated, the most prevalent being (1) discussion of specific brands or products, (2) comparison of delta-8 THC to other hemp-derived cannabinoids, and (3) safety warnings. About 5% (n=1220) of posts from the resulting topics included content discussing health-related symptoms such as anxiety, sleep disturbance, and breathing problems. Until 2020, Reddit posts contained fewer than 10 mentions of delta-8-THC for every 100,000 cannabis posts annually. However, in 2020, these rates increased by 13 times the 2019 rate (to 99.2 mentions per 100,000 cannabis posts) and continued to increase into 2021 (349.5 mentions per 100,000 cannabis posts). CONCLUSIONS Our study provides insights into emerging public health concerns around delta-8 THC, a novel substance about which little is known. Furthermore, we demonstrate the use of transformer-based unsupervised learning approaches to derive intelligible topics from highly unstructured discussions of delta-8 THC, which may help improve the timeliness of identification of emerging health concerns related to new substances.
Collapse
Affiliation(s)
- Brandi Patrice Smith
- Office of Strategy and Innovation, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Brooke Hoots
- Division of Overdose Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, United States
- US Public Health Service Commissioned Corps, Bethesda, MD, United States
| | - Lara DePadilla
- Division of Overdose Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Douglas R Roehler
- Division of Overdose Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Kristin M Holland
- Division of Violence Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Daniel A Bowen
- Division of Violence Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Steven A Sumner
- Office of Strategy and Innovation, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
13
|
Skala K, Trabi T, Fuchs M, Gössler R, Haas-Stockmair CW, Kriechbaumer N, Leitner M, Ortner N, Reiter M, Müller C, Wladika W. [Cannabis use in adolescents : Narrative Review and Position paper of the "Addiction Disorders in Adolescents" task force of the Austrian Society for Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy (ÖGKJP)]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT OSTERREICHISCHER NERVENARZTE UND PSYCHIATER 2023; 37:175-195. [PMID: 35900691 DOI: 10.1007/s40211-022-00424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cannabis is the illegal drug most frequently used by Minors in Austria. Due to the gradual decriminalization and legalization that has taken place in many European countries in recent years, the ÖGKJP would like to take a balanced and scientifically based stand on the complex issue of cannabis use and abuse among young people. METHODS The authors searched the medline for current studies using searches tailored to each specific subtopic. Furthermore, recognized compendiums were quoted. RESULTS While occasional recreational use of cannabis in adults with completed brain maturation and no risk profile for mental disorders is likely to be relatively harmless, early initiation of use with regular use and the increasingly available, highly potent cannabis varieties can lead to explicit and sometimes irreversible neurocognitive brain dysfunction. CONCLUSION Legalisation of cannabis consumption for minors needs to be objected to due to the risks of the expected damage in the area of brain development. At the same time, however, it is important to establish sensible legal regulations in order to be able to adequately counteract the fact that over 30% of all European young people occasionally consume cannabis. We are also clearly recommending to not criminalize cannabis users and provide necessary support to vulnerable and addicted cannabis users.
Collapse
Affiliation(s)
- Katrin Skala
- Univ. Klinik für Kinder und Jugendpsychiatrie, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich.
| | - Thomas Trabi
- Abteilung für Kinder- und Jugendpsychiatrie, LKH Graz II, Graz, Österreich
| | - Martin Fuchs
- Univ. Klinik für Kinder- und Jugendpsychiatrie, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Ralf Gössler
- Abteilung für Kinder- und Jugendpsychiatrie, Klinik Floridsdorf, Floridsdorf, Österreich
| | | | | | - Monika Leitner
- Praxis für Kinder- und Jugendpsychiatrie, Graz, Österreich
| | - Nora Ortner
- Univ. Klinik für Kinder- und Jugendpsychiatrie, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Melanie Reiter
- Univ. Klinik für Kinder- und Jugendpsychiatrie, Medizinische Universität Innsbruck, Innsbruck, Österreich
| | - Christian Müller
- Ambulatorium für Kinder- u. Jugendpsychiatrie, PSD Einsenstadt, Einsenstadt, Österreich
| | - Wolfgang Wladika
- Abteilung für Neurologie und Psychiatrie des Kindes- und Jugendalters, Klinikum Klagenfurt, Klagenfurt, Österreich
| |
Collapse
|
14
|
Healy CR, Gethin G, Pandit A, Finn DP. Chronic wound-related pain, wound healing and the therapeutic potential of cannabinoids and endocannabinoid system modulation. Biomed Pharmacother 2023; 168:115714. [PMID: 37865988 DOI: 10.1016/j.biopha.2023.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic wounds represent a significant burden on the individual, and the healthcare system. Individuals with chronic wounds report pain to be the most challenging aspect of living with a chronic wound, with current therapeutic options deemed insufficient. The cutaneous endocannabinoid system is an important regulator of skin homeostasis, with evidence of system dysregulation in several cutaneous disorders. Herein, we describe the cutaneous endocannabinoid system, chronic wound-related pain, and comorbidities, and review preclinical and clinical evidence investigating endocannabinoid system modulation for wound-related pain and wound healing. Based on the current literature, there is some evidence to suggest efficacy of endocannabinoid system modulation for promotion of wound healing, attenuation of cutaneous disorder-related inflammation, and for the management of chronic wound-related pain. However, there is 1) a paucity of preclinical studies using validated models, specific for the study of chronic wound-related pain and 2) a lack of randomised control trials and strong clinical evidence relating to endocannabinoid system modulation for wound-related pain. In conclusion, while there is some limited evidence of benefit of endocannabinoid system modulation in wound healing and wound-related pain management, further research is required to better realise the potential of targeting the endocannabinoid system for these therapeutic applications.
Collapse
Affiliation(s)
- Catherine R Healy
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway City, Ireland; Galway Neuroscience Centre, University of Galway, Galway City, Ireland; Centre for Pain Research, University of Galway, Galway City, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland
| | - Georgina Gethin
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland; School of Nursing and Midwifery, University of Galway, Galway City, Ireland; Alliance for Research and Innovation in Wounds, University of Galway, Galway City, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, University of Galway, Galway City, Ireland; Galway Neuroscience Centre, University of Galway, Galway City, Ireland; Centre for Pain Research, University of Galway, Galway City, Ireland; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway City, Ireland.
| |
Collapse
|
15
|
Murni W, Umar TP, Tandarto K, Simatupang A, Hasugian AR, Purwoko RY, Idaiani S, Stevanny B, Oktarina C, Jonlean R, Tango T, Kusuma KS, Sugiyono SP, Putra A. Efficacy and safety of medical cannabinoids in children with cerebral palsy: a systematic review. EINSTEIN-SAO PAULO 2023; 21:eRW0387. [PMID: 37991091 PMCID: PMC10691312 DOI: 10.31744/einstein_journal/2023rw0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/19/2023] [Indexed: 11/23/2023] Open
Abstract
INTRODUCTION The increasing popularity of cannabinoids for treating numerous neurological disorders has been reported in various countries. Although it reduces tetrahydrocannabinol psychoactivity, it helps patients tolerate higher doses and complements the anti-spasmodic effects of tetrahydrocannabinol. One of the most important potential of cannabinoids are related to its potential to help children with cerebral palsy, a contributor of lifelong disability. Therefore, this systematic review aimed to assess the efficacy and safety of medical cannabinoids in children with cerebral palsy. METHODS This review adhered to The Preferred Reporting Items for Systematic Reviews and Meta-analysis 2020 guidelines. Seven databases, namely, Scopus, PubMed, EBSCO Host, ProQuest, Google Scholar, Semantic Scholar, and JSTOR, were used to identify relevant studies. Studies examining pediatric patients with cerebral palsy and reporting the efficacy and safety of medical cannabinoids through clinical trials, observational cross-sectional studies, or cohort designs were included. The outcomes of the studies included the efficacy of medical cannabinoids administered for spasticity, motor components, pain control, sleep difficulties, adverse effects, and seizure control. RESULTS Of 803 identified articles, only three met the inclusion criteria for data synthesis. One study exhibited a moderate risk-of-bias. A total of 133 respondents, mainly from Europe, were investigated. Overall effectiveness and safety were considered good. However, the results are inconsistent, especially regarding spasticity treatment variables. CONCLUSION The anti-spasticity, anti-inflammatory, and anti-seizure properties of cannabinoids might be beneficial for patients with cerebral palsy, although their effectiveness has not been widely studied. Further studies with larger sample sizes and various ethnicities are warranted. Prospero database registration: (www.crd.york.ac.uk/prospero) under ID CRD42022358383.
Collapse
Affiliation(s)
- Widya Murni
- Jakarta Anti-Aging Center ClinicJakartaIndonesia Jakarta Anti-Aging Center Clinic , Jakarta , Indonesia .
| | - Tungki Pratama Umar
- Faculty of MedicineSriwijaya UniversityPalembangIndonesia Faculty of Medicine , Sriwijaya University , Palembang , Indonesia .
| | - Kevin Tandarto
- Faculty of Medicine and Health SciencesAtma Jaya Catholic University of IndonesiaJakartaIndonesia Faculty of Medicine and Health Sciences , Atma Jaya Catholic University of Indonesia , Jakarta , Indonesia .
| | - Abraham Simatupang
- Department of Pharmacology and TherapyFaculty of MedicineUniversitas Kristen IndonesiaJakartaIndonesia Department of Pharmacology and Therapy , Faculty of Medicine , Universitas Kristen Indonesia , Jakarta , Indonesia .
| | - Armedy Ronny Hasugian
- Indonesia National Research and Innovation AgencyJakartaIndonesia Indonesia National Research and Innovation Agency , Jakarta , Indonesia .
| | - Reza Yuridian Purwoko
- Indonesia National Research and Innovation AgencyJakartaIndonesia Indonesia National Research and Innovation Agency , Jakarta , Indonesia .
| | - Sri Idaiani
- Indonesia National Research and Innovation AgencyJakartaIndonesia Indonesia National Research and Innovation Agency , Jakarta , Indonesia .
| | - Bella Stevanny
- Faculty of MedicineSriwijaya UniversityPalembangIndonesia Faculty of Medicine , Sriwijaya University , Palembang , Indonesia .
| | - Caroline Oktarina
- Faculty of MedicineUniversity of IndonesiaJakartaIndonesia Faculty of Medicine , University of Indonesia , Jakarta , Indonesia .
| | - Reganedgary Jonlean
- Faculty of MedicineUniversity of IndonesiaJakartaIndonesia Faculty of Medicine , University of Indonesia , Jakarta , Indonesia .
| | - Tamara Tango
- Faculty of MedicineUniversity of IndonesiaJakartaIndonesia Faculty of Medicine , University of Indonesia , Jakarta , Indonesia .
| | - Kevin Surya Kusuma
- Faculty of Medicine and Health SciencesAtma Jaya Catholic University of IndonesiaJakartaIndonesia Faculty of Medicine and Health Sciences , Atma Jaya Catholic University of Indonesia , Jakarta , Indonesia .
| | - Sagita Pratiwi Sugiyono
- Faculty of Medicine and Health SciencesAtma Jaya Catholic University of IndonesiaJakartaIndonesia Faculty of Medicine and Health Sciences , Atma Jaya Catholic University of Indonesia , Jakarta , Indonesia .
| | - Aditya Putra
- Faculty of Medicine and Health SciencesAtma Jaya Catholic University of IndonesiaJakartaIndonesia Faculty of Medicine and Health Sciences , Atma Jaya Catholic University of Indonesia , Jakarta , Indonesia .
| |
Collapse
|
16
|
Roberts-West L, Baxendale S. The impact of recreational cannabis use on neuropsychological function in epilepsy. Epilepsy Behav Rep 2023; 24:100630. [PMID: 37954009 PMCID: PMC10637877 DOI: 10.1016/j.ebr.2023.100630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Cannabis use is associated with neuropsychological impairments in the general population, but little is known about the impact on cognitive function in people with epilepsy who are already at increased risk of difficulties due to the essential comorbidities of the disease. We compared the performance of 42 people with epilepsy (PWE) who reported regular cannabis use with 254 age matched, non-cannabis-using PWE. Patients completed tests of intellectual reserve, memory, language and processing speed. Approximately one in 17 patients (5.9 %) reported current cannabis use. Cannabis use was not associated with epilepsy type. Males were 1.8 times more likely to report cannabis use compared to females. Cannabis use was associated with lower intellectual reserve (Reading IQ: t = 2.8, p < 0.01, Cohen's d = 0.49), reduced encoding of new information (List Learning: t = 3.3, p < 0.001, Cohen's d = 0.56) and enhanced susceptibility to distraction on a subsequent recall task (t = 3.07, p < 0.01, Cohen's d = 0.51. In regression models cannabis use was significantly associated with impairments in learning and recall after controlling for elevated levels of anxiety and depression. Our data indicates that recreational cannabis use in people with epilepsy amplifies deficits in new learning and enhances susceptibility to distraction in the retention of newly learnt material. Recreational cannabis use should be considered when interpreting the significance of these cognitive impairments when they are recorded in a clinical assessment.
Collapse
Affiliation(s)
| | - Sallie Baxendale
- University College Hospital, London, United Kingdom
- UCL Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, United Kingdom
| |
Collapse
|
17
|
Calapai F, Mannucci C, McQuain L, Salvo F. Pharmacological Evaluation of Signals of Disproportionality Reporting Related to Adverse Reactions to Antiepileptic Cannabidiol in VigiBase. Pharmaceuticals (Basel) 2023; 16:1420. [PMID: 37895891 PMCID: PMC10610535 DOI: 10.3390/ph16101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/11/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Cannabidiol is the first cannabis-derived drug approved for the treatment of Lennox-Gastaut syndrome, Dravet syndrome, and Tuberous Sclerosis Complex. In the current study, we performed a descriptive analysis followed by a disproportionality analysis of potential adverse events caused by CBD extracted from the VigiBase® database. Furthermore, the biological plausibility of the association between CBD and the serotonin 5-HT1A receptor as a possible cause of adverse events was analyzed and discussed. Data were extracted from the VigiBase® database using the VigiLyze® signal detection and signal management tool. Adverse events in VigiBase® reports were coded using MedDRA, version 19 of Preferred Terms (PTs). Data were uploaded into SPSS software and analyzed via a disproportionality analysis. Statistically significant disproportionality signals for CBD were found for "weight decreased" (5.19 (95% CI: 4.54-5.70)), "hypophagia" (3.68 (95% CI: 3.22-5.27)), and "insomnia" (1.6 (95% CI: 1.40-1.83)). Positive IC025 values were found for "weight decreased" (2.2), "hypophagia" (1.3), and "insomnia" (0.5), indicating a surplus of reported cases. CBD's interactions with 5-HT1A serotonin receptors may offer a potential biological explanation for the occurrence of insomnia in patients. It is noteworthy that the risk profiles mentioned in the information for prescribing CBD as an antiepileptic agent by regulatory agencies showed disparities specifically related to the adverse event "insomnia".
Collapse
Affiliation(s)
- Fabrizio Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy;
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy
| | - Liana McQuain
- Université de Bordeaux, European Training Programme in Pharmacovigilance and Pharmacoepidemiology (Eu2P), F-33000 Bordeaux, France;
| | - Francesco Salvo
- CHU de Bordeaux, Service de Pharmacologie Médicale, Centre Régional de Pharmacovigilance de Bordeaux, F-33000 Bordeaux, France;
- Université de Bordeaux, INSERM, Bordeaux Population Health, U1219, AHeaD Team, F-33000 Bordeaux, France
| |
Collapse
|
18
|
Bhat TA, Kalathil SG, Goniewicz ML, Hutson A, Thanavala Y. Not all vaping is the same: differential pulmonary effects of vaping cannabidiol versus nicotine. Thorax 2023; 78:922-932. [PMID: 36823163 PMCID: PMC10447384 DOI: 10.1136/thorax-2022-218743] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023]
Abstract
RATIONALE Vaping has become a popular method of inhaling various psychoactive substances. While evaluating respiratory effects of vaping have primarily focused on nicotine-containing products, cannabidiol (CBD)-vaping is increasingly becoming popular. It currently remains unknown whether the health effects of vaping nicotine and cannabinoids are similar. OBJECTIVES This study compares side by side the pulmonary effects of acute inhalation of vaporised CBD versus nicotine. METHODS In vivo inhalation study in mice and in vitro cytotoxicity experiments with human cells were performed to assess the pulmonary damage-inducing effects of CBD or nicotine aerosols emitted from vaping devices. MEASUREMENTS AND MAIN RESULTS Pulmonary inflammation in mice was scored by histology, flow cytometry, and quantifying levels of proinflammatory cytokines and chemokines. Lung damage was assessed by histology, measurement of myeloperoxidase activity and neutrophil elastase levels in the bronchoalveolar lavage fluid and lung tissue. Lung epithelial/endothelial integrity was assessed by quantifying BAL protein levels, albumin leak and pulmonary FITC-dextran leak. Oxidative stress was determined by measuring the antioxidant potential in the BAL and lungs. The cytotoxic effects of CBD and nicotine aerosols on human neutrophils and human small airway epithelial cells were evaluated using in vitro air-liquid interface system. Inhalation of CBD aerosol resulted in greater inflammatory changes, more severe lung damage and higher oxidative stress compared with nicotine. CBD aerosol also showed higher toxicity to human cells compared with nicotine. CONCLUSIONS Vaping of CBD induces a potent inflammatory response and leads to more pathological changes associated with lung injury than vaping of nicotine.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Suresh G Kalathil
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Alan Hutson
- Department of Biostatistics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
19
|
Bolaños-Martínez OC, Malla A, Rosales-Mendoza S, Vimolmangkang S. Harnessing the advances of genetic engineering in microalgae for the production of cannabinoids. Crit Rev Biotechnol 2023; 43:823-834. [PMID: 35762029 DOI: 10.1080/07388551.2022.2071672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/16/2022] [Indexed: 11/03/2022]
Abstract
Cannabis is widely recognized as a medicinal plant owing to bioactive cannabinoids. However, it is still considered a narcotic plant, making it hard to be accessed. Since the biosynthetic pathway of cannabinoids is disclosed, biotechnological methods can be employed to produce cannabinoids in heterologous systems. This would pave the way toward biosynthesizing any cannabinoid compound of interest, especially minor substances that are less produced by a plant but have a high medicinal value. In this context, microalgae have attracted increasing scientific interest given their unique potential for biopharmaceutical production. In the present review, the current knowledge on cannabinoid production in different hosts is summarized and the biotechnological potential of microalgae as an emerging platform for synthetic production is put in perspective. A critical survey of genetic requirements and various transformation approaches are also discussed.
Collapse
Affiliation(s)
- Omayra C Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Ashwini Malla
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
Wiciński M, Fajkiel-Madajczyk A, Kurant Z, Gryczka K, Kurant D, Szambelan M, Malinowski B, Falkowski M, Zabrzyński J, Słupski M. The Use of Cannabidiol in Metabolic Syndrome-An Opportunity to Improve the Patient's Health or Much Ado about Nothing? J Clin Med 2023; 12:4620. [PMID: 37510734 PMCID: PMC10380672 DOI: 10.3390/jcm12144620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/01/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis-derived therapies are gaining popularity in the medical world. More and more perfect forms of cannabinoids are sought, which could be used in the treatment of many common diseases, including metabolic syndrome, whose occurrence is also increasing. The purpose of this review was to investigate the usefulness of cannabinoids, mainly cannabidiol (CBD), in individuals with obesity, impaired glucose and lipid metabolism, high blood pressure, and non-alcoholic fatty liver disease (NAFLD). We summarised the most recent research on the broad topic of cannabis-derived influence on metabolic syndrome components. Since there is a lot of work on the effects of Δ9-THC (Δ9-tetrahydrocannabinol) on metabolism and far less on cannabidiol, we felt it needed to be sorted out and summarised in this review. The research results on the use of cannabidiol in obesity are contraindicatory. When it comes to glucose homeostasis, it appears that CBD maintains it, sensitises adipose tissue to insulin, and reduces fasting glucose levels, so it seems to be a potential target in this kind of metabolic disorder, but some research results are inconclusive. CBD shows some promising results in the treatment of various lipid disorders. Some studies have proven its positive effect by decreasing LDL and increasing HDL as well. Despite their probable efficacy, CBD and its derivatives will likely remain an adjunctive treatment rather than a mainstay of therapy. Studies have also shown that CBD in patients with hypertension has positive effects, even though the hypotensive properties of cannabidiol are small. However, CBD can be used to prevent blood pressure surges, stabilise them, and have a protective effect on blood vessels. Results from preclinical studies have shown that the effect of cannabidiol on NAFLD may be potentially beneficial in the treatment of the metabolic syndrome and its components. Nevertheless, there is limited data on CBD and NAFLD in human studies. Because of the numerous confounding factors, the conclusions are unclear, and more research in this field is required.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Anna Fajkiel-Madajczyk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Zuzanna Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Karol Gryczka
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Dominik Kurant
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Monika Szambelan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Michal Falkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| | - Jan Zabrzyński
- Department of Orthopedics and Traumatology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Maciej Słupski
- Department of Hepatobiliary and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
21
|
Lachowicz J, Szopa A, Ignatiuk K, Świąder K, Serefko A. Zebrafish as an Animal Model in Cannabinoid Research. Int J Mol Sci 2023; 24:10455. [PMID: 37445631 DOI: 10.3390/ijms241310455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Cannabinoids are active substances present in plants of the Cannabis genus. Both the Food and Drug Administration (FDA) and European Medicines Agency (EMA) have approved several medicinal products containing natural cannabinoids or their synthetic derivatives for the treatment of drug-resistant epilepsy, nausea and vomiting associated with cancer chemotherapy, anorexia in AIDS patients, and the alleviation of symptoms in patients with multiple sclerosis. In fact, cannabinoids constitute a broad group of molecules with a possible therapeutic potential that could be used in the management of much more diseases than mentioned above; therefore, multiple preclinical and clinical studies on cannabinoids have been carried out in recent years. Danio rerio (zebrafish) is an animal model that has gained more attention lately due to its numerous advantages, including easy and fast reproduction, the significant similarity of the zebrafish genome to the human one, simplicity of genetic modifications, and body transparency during the early stages of development. A number of studies have confirmed the usefulness of this model in toxicological research, experiments related to the impact of early life exposure to xenobiotics, modeling various diseases, and screening tests to detect active substances with promising biological activity. The present paper focuses on the current knowledge of the endocannabinoid system in the zebrafish model, and it summarizes the results and observations from studies investigating the pharmacological effects of natural and synthetic cannabinoids that were carried out in Danio rerio. The presented data support the notion that the zebrafish model is a suitable animal model for use in cannabinoid research.
Collapse
Affiliation(s)
- Joanna Lachowicz
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Katarzyna Ignatiuk
- Scientific Circle, Department of Clincal Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Katarzyna Świąder
- Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|
22
|
Alonso C, Satta V, Hernández-Fisac I, Fernández-Ruiz J, Sagredo O. Disease-modifying effects of cannabidiol, β-caryophyllene and their combination in Syn1-Cre/Scn1a WT/A1783V mice, a preclinical model of Dravet syndrome. Neuropharmacology 2023:109602. [PMID: 37290534 DOI: 10.1016/j.neuropharm.2023.109602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/05/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Cannabidiol (CBD) has been recently approved as an antiseizure agent in Dravet Syndrome (DS), a pediatric epileptic encephalopathy, but CBD could also be active against associated comorbidities. Such associated comorbidities were also attenuated by the sesquiterpene β-caryophyllene (BCP). Here, we have compared the efficacy of both compounds and further initiated the analysis of a possible additive effect between both compounds in relation with these comorbidities using two experimental approaches. The first experiment was aimed at comparing the benefits of CBD and BCP, including their combination in conditional knock-in Scn1a-A1783V mice, an experimental model of DS, treated since the postnatal day 10th to 24th. As expected, DS mice showed impairment in limb clasping, delay in the appearance of hindlimb grasp reflex and additional behavioural disturbances (e.g., hyperactivity, cognitive deterioration, social interaction deficits). This behavioural impairment was associated with marked astroglial and microglial reactivities in the prefrontal cortex and the hippocampal dentate gyrus. BCP and CBD administered alone were both able to partially attenuate the behavioural disturbances and the glial reactivities, with apparently greater efficacy against glial reactivities obtained with BCP, whereas superior effects in a few specific parameters were obtained when both compounds were combined. In the second experiment, we investigated this additive effect in cultured BV2 cells treated with BCP and/or CBD and stimulated with LPS. As expected, addition of LPS induced a marked increase in several inflammation-related markers (e.g., TLR4, COX-2, iNOS, catalase, TNF-α, IL-1β), as well as elevated Iba-1 immunostaining. Treatment with BCP or CBD attenuated these elevations, but, again and in general, superior results were obtained when both cannabinoids were combined. In conclusion, our results support the interest to continue investigating the combination of BCP and CBD to improve the therapeutic management of DS in relation with their disease-modifying properties.
Collapse
Affiliation(s)
- Cristina Alonso
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Inés Hernández-Fisac
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Onintza Sagredo
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
23
|
Bradley EK, Hoots BE, Bradley ES, Roehler DR. Unintentional ingestion of putative delta-8 tetrahydrocannabinol by two youth requiring critical care: a case report. J Cannabis Res 2023; 5:9. [PMID: 36941718 PMCID: PMC10029299 DOI: 10.1186/s42238-023-00176-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/13/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Delta-8 tetrahydrocannabinol (THC) is a psychoactive cannabinoid from the cannabis plant that can be synthetically converted from cannabidiol (CBD). Most states permit the full or restricted sale of hemp and hemp-derived CBD products, and therefore, delta-8 THC products are on the rise. Delta-8 THC consumption can cause intoxication. Products are often sold in edible form and occasionally in packaging that appears similar to candy. Clinical presentations for delta-8 THC ingestions are understudied and may differ from those described for delta-9 THC ingestions. CASE PRESENTATION This case report describes unintentional ingestions of putative delta-8 THC by two pediatric patients that results in admission to the pediatric intensive care unit. The ingestions were of putative delta-8 THC infused product that resembled popular candies. Both patients developed periods of bradypnea with continued intermittent periods of agitation. Medical intervention included observation, noninvasive positive pressure ventilation via high flow nasal cannula, and intubation-but was not needed for both patients. Although family noted ongoing irritability for the patients, both were discharged approximately 45 h after ingestion. Delta-8 THC ingestion is reliant on self-report. CONCLUSIONS As the availability of delta-8 THC increases, along with associated pediatric exposures, it is imperative for health care providers to quickly recognize and provide adequate treatment. While there is no specific antidote for THC intoxication beyond supportive care, providers can play an important role in prevention by educating parents and guardians on safe cannabis storage and by documenting cases for adverse event monitoring.
Collapse
Affiliation(s)
- Erin K Bradley
- Department of Pediatric Critical Care Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Brooke E Hoots
- Cannabis Strategy Unit, Division of Overdose Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA, 30341, USA
| | - Evan S Bradley
- Department of Emergency Medicine, Division of Medical Toxicology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Douglas R Roehler
- Cannabis Strategy Unit, Division of Overdose Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, 4770 Buford Hwy, NE, Atlanta, GA, 30341, USA.
| |
Collapse
|
24
|
Lu H, Wang Q, Jiang X, Zhao Y, He M, Wei M. The Potential Mechanism of Cannabidiol (CBD) Treatment of Epilepsy in Pentetrazol (PTZ) Kindling Mice Uncovered by Multi-Omics Analysis. Molecules 2023; 28:molecules28062805. [PMID: 36985783 PMCID: PMC10056192 DOI: 10.3390/molecules28062805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cannabidiol (CBD) is the main active ingredient in the cannabis plant used for treating epilepsy and related diseases. However, how CBD ameliorates epilepsy and its effect on the hippocampus remains unknown. Herein, we evaluated how CBD ameliorates seizure degree in pentylenetetrazol (PTZ) induced epilepsy mice after being exposed to CBD (10 mg/kg p.o). In addition, transcriptome and metabolomic analysis were performed on the hippocampus. Our results suggested that CBD could alleviate PTZ-induced seizure, of which the NPTX2, Gprc5c, Lipg, and Stc2 genes were significantly down-regulated in mice after being exposed to PTZ. Transcriptome analysis showed 97 differently expressed genes (CBD) and the PTZ groups. Metabonomic analysis revealed that compared with the PTZ group, 41 up-regulated and 67 down-regulated metabolites were identified in the hippocampus of epileptic mice exposed to CBD. The correlation analysis for transcriptome and metabolome showed that (±) 15-HETE and carnitine C6:0 were at the core of the network and were involved in the positive or negative regulation of the related genes after being treated with CBD. In conclusion, CBD ameliorates epilepsy by acting on the metabolism, calcium signaling pathway, and tuberculosis pathways in the hippocampus. Our study provided a practical basis for the therapeutic potential of treating epilepsy using CBD.
Collapse
Affiliation(s)
- Hongyuan Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Qinbiao Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
25
|
Lafourcade CA, Sparks FT, Bordey A, Wyneken U, Mohammadi MH. Cannabinoid regulation of neurons in the dentate gyrus during epileptogenesis: Role of CB1R-associated proteins and downstream pathways. Epilepsia 2023. [PMID: 36869624 DOI: 10.1111/epi.17569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
The hippocampal formation plays a central role in the development of temporal lobe epilepsy (TLE), a disease characterized by recurrent, unprovoked epileptic discharges. TLE is a neurologic disorder characterized by acute long-lasting seizures (i.e., abnormal electrical activity in the brain) or seizures that occur in close proximity without recovery, typically after a brain injury or status epilepticus. After status epilepticus, epileptogenic hyperexcitability develops gradually over the following months to years, resulting in the emergence of chronic, recurrent seizures. Acting as a filter or gate, the hippocampal dentate gyrus (DG) normally prevents excessive excitation from propagating through the hippocampus, and is considered a critical region in the progression of epileptogenesis in pathological conditions. Importantly, lipid-derived endogenous cannabinoids (endocannabinoids), which are produced on demand as retrograde messengers, are central regulators of neuronal activity in the DG circuit. In this review, we summarize recent findings concerning the role of the DG in controlling hyperexcitability and propose how DG regulation by cannabinoids (CBs) could provide avenues for therapeutic interventions. We also highlight possible pathways and manipulations that could be relevant for the control of hyperexcitation. The use of CB compounds to treat epilepsies is controversial, as anecdotal evidence is not always validated by clinical trials. Recent publications shed light on the importance of the DG as a region regulating incoming hippocampal excitability during epileptogenesis. We review recent findings concerning the modulation of the hippocampal DG circuitry by CBs and discuss putative underlying pathways. A better understanding of the mechanisms by which CBs exert their action during seizures may be useful to improve therapies.
Collapse
Affiliation(s)
- Carlos A Lafourcade
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Fraser T Sparks
- Department of Neuroscience, Columbia University, New York, New York, USA.,Current: Regeneron Pharmaceuticals, Tarrytown, New York, USA
| | - Angelique Bordey
- Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ursula Wyneken
- Centro de Investigación e Innovación Biomédica, Laboratorio de Neurociencias, Universidad de Los Andes, Santiago, Chile.,Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | |
Collapse
|
26
|
The study of rs324420 (C385A) polymorphism of the FAAH gene of the endocannabinoid system in patients with epilepsy and ADHD. Epilepsy Res 2023; 192:107100. [PMID: 37018974 DOI: 10.1016/j.eplepsyres.2023.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
The endocannabinoid (eCB) system regulates many physiological functions in the central nervous system. Fatty acid amide hydrolase (FAAH) is an essential enzyme in the eCB system, degrading anandamide. Single nucleotide polymorphism (SNP) rs324420 is a common genetic polymorphism of the FAAH gene and has been associated with susceptibility to neurological conditions. This study examined whether the SNP rs324420 (C385A) is associated with epilepsy and attention deficit hyperactivity disorder (ADHD). This study consists of two case-control parts. The first part comprises 250 epilepsy subjects and 250 healthy individuals as controls. The second one comprises 157 cases with ADHD and 136 healthy individuals as controls. Genotyping was carried out using polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) technique. Interestingly, the FAAH C384A genotype (OR 1.755, 95 % CI 1.124-2.742, p = 0.013) and allele (OR 1.462, 95 % CI 1.006-2.124, p = 0.046) distribution showed an association with generalized epilepsy. On the other hand, this SNP was not associated with the risk of ADHD. To our knowledge, there was no study on the association between rs324420 (C385A) polymorphism and the risks of ADHD or epilepsy. This study provided the first evidence of an association between generalized epilepsy and rs324420 (C385A) of FAAH. Larger sample sizes and functional studies are warranted to explore the clinical utility of FAAH genotyping as a possible marker for increased generalized epilepsy risk.
Collapse
|
27
|
Del Pozo A, Barker-Haliski M. Cannabidiol reveals a disruptive strategy for 21st century epilepsy drug discovery. Exp Neurol 2023; 360:114288. [PMID: 36471511 PMCID: PMC9789191 DOI: 10.1016/j.expneurol.2022.114288] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Over 30 antiseizure medicines (ASMs) have been uncovered in a diversity of preclinical seizure and epilepsy models, with several critical inflection points in the 20th century fundamentally transforming ASM discovery. This commentary aims to review the historical relevance of cannabidiol's (CBD; Epidiolex) approval for epilepsy in the context of other ASMs brought to market. Further, we highlight how CBD's approval may represent an inflection point for 21st century ASM discovery. CBD is one of the main phytocannabinoids of Cannabis sativa. Unlike its related phytocannabinoid, Δ9-tetrahydrocannabinol, CBD does not exert any euphorigenic, tolerance, or withdrawal effects at anticonvulsant doses. CBD also possess marked anti-inflammatory effects, offering the tantalizing potential of a new pharmacological approach in epilepsy. For decades, hints of the anticonvulsant profile of CBD had been suggested with a small handful of studies in rodent seizure models, yet difficulties in formulation, compounded by the social and regulatory pressures related to medical use of cannabis plant-derived agents constrained any clinical implementation. Nonetheless, CBD possesses a broad antiseizure profile in preclinical seizure and epilepsy models, but the transformative impact of CBD'-s approval came because of studies in a rodent model of the orphan disease Dravet syndrome (DS). DS is a pediatric developmental epileptic encephalopathy with high mortality, frequent spontaneous recurrent seizures, and marked resistance to conventional ASMs, such as phenytoin and carbamazepine. CBD was approved for DS by the US Food and Drug Administration in 2018 after convincing efficacy was established in randomized, placebo-controlled trials in children. Because of the clinical approval of CBD as a novel, cannabis plantderived ASM for DS, CBD has revealed a new strategy in ASM discovery to reignite 21st century therapeutic development for epilepsy. In this commentary, we review the major preclinical and clinical milestones of the late 20th century that made CBD, a compound historically subjected to regulatory restrictions, a key driver of a new discovery strategy for epilepsy in the 21st century.
Collapse
Affiliation(s)
- Aaron Del Pozo
- Department of Pharmacy, University of Washington, Seattle, WA 98195, United States of America
| | - Melissa Barker-Haliski
- Department of Pharmacy, University of Washington, Seattle, WA 98195, United States of America.
| |
Collapse
|
28
|
Patil N, Chandel V, Rana A, Jain M, Kaushik P. Investigation of Cannabis sativa Phytochemicals as Anti-Alzheimer's Agents: An In Silico Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:510. [PMID: 36771595 PMCID: PMC9919841 DOI: 10.3390/plants12030510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 05/27/2023]
Abstract
Cannabis sativa is a medicinal plant that has been known for years and is used as an Ayurvedic medicine. This plant has great potential in treating various types of brain diseases. Phytochemicals present in this plant act as antioxidants by maintaining synaptic plasticity and preventing neuronal loss. Cannabidiol (CBD) and Tetrahydrocannabinol (THC) are both beneficial in treating Alzheimer's disease by increasing the solubility of Aβ42 amyloid and Tau aggregation. Apart from these therapeutic effects, there are certain unknown functions of these phytochemicals in Alzheimer's disease that we want to elucidate through this study. In this research, our approach is to analyze the effect of phytochemicals in Cannabis sativa on multiple culprit enzymes in Alzheimer's disease, such as AChE (Acetylcholinesterase), BChE (Butyrylcholinesterase), γ-secretase, and BACE-1. In this study, the compounds were selected by Lipinski's rule, ADMET, and ProTox based on toxicity. Molecular docking between the selected compounds (THCV, Cannabinol C2, and Cannabidiorcol) and enzymes mentioned above was obtained by various software programs including AutoDock Vina 4.2, AutoDock, and iGEMDOCK. In comparison to Donepezil (BA = -8.4 kcal/mol, Ki = 1.46 mM), Rivastigmine (BA = -7.0 kcal/mol, Ki = 0.02 mM), and Galantamine (BA = -7.1, Ki = 2.1 mM), Cannabidiorcol (BA = -9.4 kcal/mol, Ki = 4.61 mM) shows significant inhibition of AChE. On the other hand, Cannabinol C2 (BA = -9.2 kcal/mol, Ki = 4.32 mM) significantly inhibits Butyrylcholinesterase (BuChE) in comparison to Memantine (BA = -6.8 kcal/mol, Ki = 0.54 mM). This study sheds new light and opens new avenues for elucidating the role of bioactive compounds present in Cannabis sativa in treating Alzheimer's disease.
Collapse
Affiliation(s)
- Nil Patil
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India
- Laboratory 209, Cell & Developmental Biology Laboratory, Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India
| | - Vaishnavi Chandel
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India
| | - Aarzu Rana
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India
| | - Mukul Jain
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara 391760, Gujarat, India
- Laboratory 209, Cell & Developmental Biology Laboratory, Centre of Research for Development, Parul University, Vadodara 391760, Gujarat, India
| | - Prashant Kaushik
- Instituto de Conservacióny Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
29
|
Luz-Veiga M, Azevedo-Silva J, Fernandes JC. Beyond Pain Relief: A Review on Cannabidiol Potential in Medical Therapies. Pharmaceuticals (Basel) 2023; 16:155. [PMID: 37259306 PMCID: PMC9958812 DOI: 10.3390/ph16020155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 07/30/2023] Open
Abstract
The phytocannabinoid cannabidiol (CBD) is receiving increasing attention due to its pharmacological properties. Although CBD is extracted from Cannabis sativa, it lacks the psychoactive effects of Δ9-tetrahydrocannabinol (THC) and has become an attractive compound for pharmacological uses due to its anti-inflammatory, antioxidant, anticonvulsant, and anxiolytic potential. The molecular mechanisms involved in CBD's biological effects are not limited to its interaction with classical cannabinoid receptors, exerting anti-inflammatory or pain-relief effects. Several pieces of evidence demonstrate that CBD interacts with other receptors and cellular signaling cascades, which further support CBD's therapeutic potential beyond pain management. In this review, we take a closer look at the molecular mechanisms of CBD and its potential therapeutic application in the context of cancer, neurodegeneration, and autoimmune diseases.
Collapse
Affiliation(s)
- Mariana Luz-Veiga
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
| | - João Azevedo-Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
| | - João C. Fernandes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal
- Amyris Bio Products Portugal, Unipessoal Lda, 4169-005 Porto, Portugal
| |
Collapse
|
30
|
Reddy DS. Therapeutic and clinical foundations of cannabidiol therapy for difficult-to-treat seizures in children and adults with refractory epilepsies. Exp Neurol 2023; 359:114237. [PMID: 36206806 DOI: 10.1016/j.expneurol.2022.114237] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Novel and effective antiseizure medications are needed to treat refractory and rare forms of epilepsy. Cannabinoids, which are obtained from the cannabis plant, have a long history of medical use, including for neurologic conditions. In 2018, the US Food and Drug Administration approved the first phytocannabinoid, cannabidiol (CBD, Epidiolex), which is now indicated for severe seizures associated with three rare forms of developmental and epileptic encephalopathy: Dravet syndrome, Lennox-Gastaut syndrome, and tuberous sclerosis complex. Compelling evidence supports the efficacy of CBD in experimental models and patients with epilepsy. In randomized clinical trials, highly-purified CBD has demonstrated efficacy with an acceptable safety profile in children and adults with difficult-to-treat seizures. Although the underlying antiseizure mechanisms of CBD in humans have not yet been elucidated, the identification of novel antiseizure targets of CBD preclinically indicates multimodal mechanisms that include non-cannabinoid pathways. In addition to antiseizure effects, CBD possesses strong anti-inflammatory and neuroprotective activities, which might contribute to protective effects in epilepsy and other conditions. This article provides a succinct overview of therapeutic approaches and clinical foundations of CBD, emphasizing the clinical utility of CBD for the treatment of seizures associated with refractory and rare epilepsies. CBD has shown to be a safe and effective antiseizure medicine, demonstrating a broad spectrum of efficacy across multiple seizure types, including those associated with severe epilepsies with childhood onset. Despite such promise, there are many perils with CBD that hampers its widespread use, including limited understanding of pharmacodynamics, limited exposure-response relationship, limited information for seizure freedom with continued use, complex pharmacokinetics with drug interactions, risk of adverse effects, and lack of expert therapeutic guidelines. These scientific issues need to be resolved by further investigations, which would decide the unique role of CBD in the management of refractory epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA; Texas A&M Health Institute of Pharmacology and Neurotherapeutics, School of Medicine, Texas A&M University, Bryan, TX, USA; Engineering Medicine, Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX, USA; Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, USA; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
31
|
Espinosa-Jovel C. Cannabinoids in epilepsy: clinical efficacy and pharmacological considerations. Neurologia 2023; 38:47-53. [PMID: 34824031 DOI: 10.1016/j.nrleng.2020.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/16/2020] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Advances in the development of drugs with novel mechanisms of action have not been sufficient to significantly reduce the percentage of patients presenting drug-resistant epilepsy. This lack of satisfactory clinical results has led to the search for more effective treatment alternatives with new mechanisms of action. DEVELOPMENT The aim of this study is to examine epidemiological aspects of the use of cannabis-based products for the treatment of epilepsy, with particular emphasis on the main mechanisms of action, indications for use, clinical efficacy, and safety. We conducted a narrative review of articles gathered from the PubMed, EMBASE, and Google Scholar databases and from the reference sections of relevant publications. CONCLUSIONS In recent years there has been growing interest in the use of cannabis-based products for the treatment of a wide range of diseases, including epilepsy. The cannabis plant is currently known to contain more than 100 terpenophenolic compounds, known as cannabinoids. The 2 most abundant are delta-9-tetrahydrocannabinol and cannabidiol. Studies of preclinical models of epilepsy have shown that these cannabinoids have anticonvulsant properties, and 100% purified cannabidiol and cannabidiol-enriched cannabis extracts are now being used to treat epilepsy in humans. Several open-label studies and randomised controlled clinical trials have demonstrated the efficacy and safety of these products.
Collapse
Affiliation(s)
- C Espinosa-Jovel
- Programa de Epilepsia, Servicio de Neurología, Hospital Occidente de Kennedy, Bogotá, Colombia; Posgrado de Neurología, Universidad de La Sabana, Chía, Colombia.
| |
Collapse
|
32
|
Biosynthesis of cannabinoid precursor olivetolic acid in genetically engineered Yarrowia lipolytica. Commun Biol 2022; 5:1239. [PMID: 36371560 PMCID: PMC9653464 DOI: 10.1038/s42003-022-04202-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Engineering microbes to produce plant-derived natural products provides an alternate solution to obtain bioactive products. Here we report a systematic approach to sequentially identify the rate-limiting steps and improve the biosynthesis of the cannabinoid precursor olivetolic acid (OLA) in Yarrowia lipolytica. We find that Pseudomonas sp LvaE encoding a short-chain acyl-CoA synthetase can efficiently convert hexanoic acid to hexanoyl-CoA. The co-expression of the acetyl-CoA carboxylase, the pyruvate dehydrogenase bypass, the NADPH-generating malic enzyme, as well as the activation of peroxisomal β-oxidation pathway and ATP export pathway are effective strategies to redirect carbon flux toward OLA synthesis. Implementation of these strategies led to an 83-fold increase in OLA titer, reaching 9.18 mg/L of OLA in shake flask culture. This work may serve as a baseline for engineering cannabinoids biosynthesis in oleaginous yeast species.
Collapse
|
33
|
Rodríguez-Soacha DA, Steinmüller SAM, Işbilir A, Fender J, Deventer MH, Ramírez YA, Tutov A, Sotriffer C, Stove CP, Lorenz K, Lohse MJ, Hislop JN, Decker M. Development of an Indole-Amide-Based Photoswitchable Cannabinoid Receptor Subtype 1 (CB 1R) "Cis-On" Agonist. ACS Chem Neurosci 2022; 13:2410-2435. [PMID: 35881914 DOI: 10.1021/acschemneuro.2c00160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Activation of the human cannabinoid receptor type 1 (hCB1R) with high spatiotemporal control is useful to study processes involved in different pathologies related to nociception, metabolic alterations, and neurological disorders. To synthesize new agonist ligands for hCB1R, we have designed different classes of photoswitchable molecules based on an indole core. The modifications made to the central core have allowed us to understand the molecular characteristics necessary to design an agonist with optimal pharmacological properties. Compound 27a shows high affinity for CB1R (Ki (cis-form) = 0.18 μM), with a marked difference in affinity with respect to its inactive "trans-off" form (CB1R Ki trans/cis ratio = 5.4). The novel compounds were evaluated by radioligand binding studies, receptor internalization, sensor receptor activation (GRABeCB2.0), Western blots for analysis of ERK1/2 activation, NanoBiT βarr2 recruitment, and calcium mobilization assays, respectively. The data show that the novel agonist 27a is a candidate for studying the optical modulation of cannabinoid receptors (CBRs), serving as a new molecular tool for investigating the involvement of hCB1R in disorders associated with the endocannabinoid system.
Collapse
Affiliation(s)
- Diego A Rodríguez-Soacha
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sophie A M Steinmüller
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ali Işbilir
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Str. 9, D-97078 Würzburg, Germany.,Receptor Signaling Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Julia Fender
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Str. 9, D-97078 Würzburg, Germany
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Yesid A Ramírez
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.,Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad Icesi, Valle del Cauca, 760031 Cali, Colombia
| | - Anna Tutov
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christoph Sotriffer
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Kristina Lorenz
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Str. 9, D-97078 Würzburg, Germany.,Leibniz-Institut für Analytische Wissenschaften─ISAS e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
| | - Martin J Lohse
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Str. 9, D-97078 Würzburg, Germany.,Receptor Signaling Group, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.,ISAR Bioscience Institut, 82152 Planegg/Munich, Germany
| | - James N Hislop
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
34
|
Zirotti Rosenberg A, Méndez-Ruette M, Gorziglia M, Alzerreca B, Cabello J, Kaufmann S, Rambousek L, Iturriaga Jofré A, Wyneken U, Lafourcade CA. Behavioral and Molecular Responses to Exogenous Cannabinoids During Pentylenetetrazol-Induced Convulsions in Male and Female Rats. Front Mol Neurosci 2022; 15:868583. [PMID: 36147210 PMCID: PMC9488559 DOI: 10.3389/fnmol.2022.868583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a disabling, chronic brain disease,affecting ~1% of the World’s population, characterized by recurrent seizures (sudden, uncontrolled brain activity), which may manifest with motor symptoms (e.g., convulsions) or non-motor symptoms. Temporal lobe epilepsies (TLE) compromising the hippocampus are the most common form of focal epilepsies. Resistance in ~1/3 of epileptic patients to the first line of treatment, i.e., antiepileptic drugs (AEDs), has been an important motivation to seek alternative treatments. Among these, the plant Cannabis sativa (commonly known as marihuana) or compounds extracted from it (cannabinoids) have gained widespread popularity. Moreover, sex differences have been proposed in epilepsy syndromes and in cannabinoid action. In the hippocampus, cannabinoids interact with the CB1R receptor whose membrane levels are regulated by β-Arrestin2, a protein that promotes its endocytosis and causes its downregulation. In this article, we evaluate the modulatory role of WIN 55,212-2 (WIN), a synthetic exogenous cannabinoid on behavioral convulsions and on the levels of CB1R and β-Arrestin2 in female and male adolescent rats after a single injection of the proconvulsant pentylenetetrazol (PTZ). As epilepsies can have a considerable impact on synaptic proteins that regulate neuronal toxicity, plasticity, and cognition, we also measured the levels of key proteins markers of excitatory synapses, in order to examine whether exogenous cannabinoids may prevent such pathologic changes after acute seizures. We found that the exogenous administration of WIN prevented convulsions of medium severity in females and males and increased the levels of phosphorylated CaMKII in the hippocampus. Furthermore, we observed a higher degree of colocalization between CB1R and β-Arrestin2 in the granule cell layer.
Collapse
Affiliation(s)
| | - Maxs Méndez-Ruette
- Centro de investigación e innovación Biomédica (CiiB), Laboratorio de Neurociencias, Universidad de Los Andes, Santiago, Chile
| | - Mario Gorziglia
- Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | | | - Javiera Cabello
- Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Sofía Kaufmann
- Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Lukas Rambousek
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Ursula Wyneken
- Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Carlos A. Lafourcade
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou, China
- *Correspondence: Carlos A. Lafourcade
| |
Collapse
|
35
|
Dias Viegas FP, Gontijo VS, de Freitas Silva M, Cristancho Ortiz CJ, Franco GDRR, Ernesto JT, Damasio CM, Fernandes Silva IM, Campos TG, Viegas C. Curcumin, Resveratrol and Cannabidiol as Natural Key Prototypes in Drug Design for Neuroprotective Agents. Curr Neuropharmacol 2022; 20:1297-1328. [PMID: 34825873 PMCID: PMC9881080 DOI: 10.2174/1570159x19666210712152532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/28/2021] [Accepted: 07/03/2021] [Indexed: 11/22/2022] Open
Abstract
Nowadays, neurodegenerative diseases (NDs), such as Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), represent a great challenge in different scientific fields, such as neuropharmacology, medicinal chemistry, molecular biology and medicine, as all these pathologies remain incurable, with high socioeconomic impacts and high costs for governmental health services. Due to their severity and multifactorial pathophysiological complexity, the available approved drugs for clinic have not yet shown adequate effectiveness and exhibited very restricted options in the therapeutic arsenal; this highlights the need for continued drug discovery efforts in the academia and industry. In this context, natural products, such as curcumin (1), resveratrol (2) and cannabidiol (CBD, 3) have been recognized as important sources, with promising chemical entities, prototype models and starting materials for medicinal organic chemistry, as their molecular architecture, multifunctional properties and single chemical diversity could facilitate the discovery, optimization and development of innovative drug candidates with improved pharmacodynamics and pharmacokinetics compared to the known drugs and, perhaps, provide a chance for discovering novel effective drugs to combat NDs. In this review, we report the most recent efforts of medicinal chemists worldwide devoted to the exploration of curcumin (1), resveratrol (2) and cannabidiol (CBD, 3) as starting materials or privileged scaffolds in the design of multi-target directed ligands (MTDLs) with potential therapeutic properties against NDs, which have been published in the scientific literature during the last 10 years of research and are available in PubMed, SCOPUS and Web of Science databases.
Collapse
Affiliation(s)
- Flávia P. Dias Viegas
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Alfenas, Brazil
| | - Vanessa Silva Gontijo
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Ciências Farmacêuticas, Federal University of Alfenas, Alfenas, 37133-840, Brazil;
| | - Matheus de Freitas Silva
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Alfenas, Brazil
| | - Cindy Juliet Cristancho Ortiz
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Alfenas, Brazil
| | - Graziella dos Reis Rosa Franco
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Alfenas, Brazil
| | - Januário Tomás Ernesto
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Ciências Farmacêuticas, Federal University of Alfenas, Alfenas, 37133-840, Brazil;
| | - Caio Miranda Damasio
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil;
| | - Isabela Marie Fernandes Silva
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil;
| | - Thâmara Gaspar Campos
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil;
| | - Claudio Viegas
- PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Ciências Farmacêuticas, Federal University of Alfenas, Alfenas, 37133-840, Brazil; ,Programa de Pós-Graduação em Química, Federal University of Alfenas, 37133-840, Alfenas, Brazil,Address correspondence to this author at the PeQuiM - Laboratory of Research in Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas, 37133-840, Brazil; Tel: +55 35 37011880; E-mail:
| |
Collapse
|
36
|
Neuroplastic alterations in cannabinoid receptors type 1 (CB1) in animal models of epileptic seizures. Neurosci Biobehav Rev 2022; 137:104675. [PMID: 35460705 DOI: 10.1016/j.neubiorev.2022.104675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/16/2022] [Accepted: 04/17/2022] [Indexed: 01/01/2023]
Abstract
Currently, there is an urgent need to better comprehend neuroplastic alterations in cannabinoid receptors type 1 (CB1) and to understand the biological meaning of these alterations in epileptic disorders. The present study reviewed neuroplastic changes in CB1 distribution, expression, and functionality in animal models of epileptic seizures. Neuroplastic alterations in CB1 were consistently observed in chemical, genetic, electrical, and febrile seizure models. Most studies assessed changes in hippocampal and cortical CB1, while thalamic, hypothalamic, and brainstem nuclei were rarely investigated. Additionally, the relationship between CB1 alteration and the control of brain excitability through modulation of specific neuronal networks, such as striatonigral, nigrotectal and thalamocortical pathways, and inhibitory projections to hippocampal pyramidal neurons, were all presented and discussed in the present review. Neuroplastic alterations in CB1 detected in animal models of epilepsy may reflect two different scenarios: (1) endogenous adaptations aimed to control neuronal hyperexcitability in epilepsy or (2) pathological alterations that facilitate neuronal hyperexcitability. Additionally, a better comprehension of neuroplastic and functional alterations in CB1 can improve pharmacological therapies for epilepsies and their comorbidities.
Collapse
|
37
|
Augustin SM, Lovinger DM. Synaptic changes induced by cannabinoid drugs and cannabis use disorder. Neurobiol Dis 2022; 167:105670. [DOI: 10.1016/j.nbd.2022.105670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022] Open
|
38
|
Janisset NRLL, Romariz SAA, Hashiguchi D, Quintella ML, Gimenes C, Yokoyama T, Filev R, Carlini E, Barbosa da Silva R, Faber J, Longo BM. Partial protective effects of cannabidiol against PTZ-induced acute seizures in female rats during the proestrus-estrus transition. Epilepsy Behav 2022; 129:108615. [PMID: 35217387 DOI: 10.1016/j.yebeh.2022.108615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/12/2021] [Accepted: 02/05/2022] [Indexed: 11/03/2022]
Abstract
Approximately 70% of women with epilepsy experience additional challenges in seizure exacerbation due to hormonal changes, particularly during fluctuations of estrogen-progesterone levels in the menstrual cycle, which is known as catamenial epilepsy. In animal models of epilepsy, a sustained increase in seizure frequency has been observed in female rats during the proestrus-estrus transition when estrogen levels are high and progesterone levels are low resembling catamenial epilepsy. Cannabidiol (CBD) has been proposed to have anticonvulsant and anti-inflammatory effects, able to decrease seizure duration and increase seizure threshold in rats with epilepsy. However, most studies have used males to investigate the pharmacological effects of CBD on seizures, and the neuroprotective effects of CBD against seizures exacerbated by hormonal fluctuations in females are still little explored. Given this scenario, the aim of the present study was to investigate whether CBD would protect against acute seizures induced by pentylenetetrazole (PTZ) in female rats during a pro-convulsant hormonal phase. Therefore, CBD (50 mg/kg) or saline was administered during the proestrus-estrus transition phase, 1 h prior to induction of seizures with PTZ (60 mg/kg), and the following parameters were recorded: duration, latency to first seizure, as well as percentage of convulsing animals (incidence), mortality, and severity of seizures. Brains were processed for immunohistochemistry for microglial cells (Iba-1), and blood was collected for the analysis of cytokines (IL-1β, IL-6, IL-10, and TNF-α). Cannabidiol pre-treated rats showed a significant reduction in duration and severity of seizures, and IL-1β levels, although the latency, incidence of seizures, and mortality rate remained unchanged as well the quantification of microglia in the selected areas. Therefore, acute administration of CBD in a single dose prior to seizure induction showed a partial neuroprotective effect against seizure severity and inflammation, suggesting that female rats in the proconvulsant phase of proestrus-estrus have a low seizure threshold and are more resistant to the anticonvulsant effects of CBD. It appears that other doses or administration windows of CBD may be required to achieve a full protective effect against seizures, suggesting that CBD could be used as an adjunctive therapy during fluctuations of estrogen-progesterone levels. In this sense, considering the hormonal fluctuation as a seizure-potentiating factor, our study contributes to understand the anticonvulsant activity of CBD in females in a pro-convulsant hormonal phase, similar to catamenial seizures in humans.
Collapse
Affiliation(s)
- Nilma R L L Janisset
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Simone A A Romariz
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Debora Hashiguchi
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Miguel L Quintella
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Christiane Gimenes
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Thais Yokoyama
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Renato Filev
- Departamento de Psiquiatria e Psicologia Médica, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Elisaldo Carlini
- Departamento de Psicobiologia, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Regina Barbosa da Silva
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP Baixada Santista, Brazil
| | - Jean Faber
- Departamento de Neurologia e Neurocirurgia, Laboratório de Neuroengenharia e Neurocognição, Universidade Federal de São Paulo - UNIFESP, Brazil
| | - Beatriz M Longo
- Departamento de Fisiologia, Laboratório de Neurofisiologia, Universidade Federal de São Paulo - UNIFESP, Brazil.
| |
Collapse
|
39
|
Odieka AE, Obuzor GU, Oyedeji OO, Gondwe M, Hosu YS, Oyedeji AO. The Medicinal Natural Products of Cannabis sativa Linn.: A Review. Molecules 2022; 27:1689. [PMID: 35268790 PMCID: PMC8911748 DOI: 10.3390/molecules27051689] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
Cannabis sativa is known among many cultures for its medicinal potential. Its complexity contributes to the historical application of various parts of the plant in ethno-medicines and pharmacotherapy. C. sativa has been used for the treatment of rheumatism, epilepsy, asthma, skin burns, pain, the management of sexually transmitted diseases, difficulties during child labor, postpartum hemorrhage, and gastrointestinal activity. However, the use of C. sativa is still limited, and it is illegal in most countries. Thus, this review aims to highlight the biological potential of the plant parts, as well as the techniques for the extraction, isolation, and characterization of C. sativa compounds. The plant produces a unique class of terpenophenolic compounds, called cannabinoids, as well as non-cannabinoid compounds. The exhaustive profiling of bioactive compounds and the chemical characterization and analysis of C. sativa compounds, which modern research has not yet fully achieved, is needed for the consistency, standardization, and the justified application of Cannabis sativa products for therapeutic purposes. Studies on the clinical relevance and applications of cannabinoids and non-cannabinoid phenols in the prevention and treatment of life-threatening diseases is indeed significant. Furthermore, psychoactive cannabinoids, when chemically standardized and administered under medical supervision, can be the legal answer to the use of C. sativa.
Collapse
Affiliation(s)
- Anwuli Endurance Odieka
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Gloria Ukalina Obuzor
- Department of Pure and Industrial Chemistry, University of Port Harcourt, Port Harcourt 500004, Rivers State, Nigeria;
| | | | - Mavuto Gondwe
- Department of Human Biology, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Yiseyon Sunday Hosu
- Department of Economics and Business Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| |
Collapse
|
40
|
Zhang HXB, Heckman L, Niday Z, Jo S, Fujita A, Shim J, Pandey R, Al Jandal H, Jayakar S, Barrett LB, Smith J, Woolf CJ, Bean BP. Cannabidiol activates neuronal Kv7 channels. eLife 2022; 11:73246. [PMID: 35179483 PMCID: PMC8856652 DOI: 10.7554/elife.73246] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 02/09/2022] [Indexed: 01/10/2023] Open
Abstract
Cannabidiol (CBD), a chemical found in the Cannabis sativa plant, is a clinically effective antiepileptic drug whose mechanism of action is unknown. Using a fluorescence-based thallium flux assay, we performed a large-scale screen and found enhancement of flux through heterologously expressed human Kv7.2/7.3 channels by CBD. Patch-clamp recordings showed that CBD acts at submicromolar concentrations to shift the voltage dependence of Kv7.2/7.3 channels in the hyperpolarizing direction, producing a dramatic enhancement of current at voltages near –50 mV. CBD enhanced native M-current in mouse superior cervical ganglion starting at concentrations of 30 nM and also enhanced M-current in rat hippocampal neurons. The potent enhancement of Kv2/7.3 channels by CBD may contribute to its effectiveness as an antiepileptic drug by reducing neuronal hyperexcitability.
Collapse
Affiliation(s)
| | - Laurel Heckman
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Zachary Niday
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Akie Fujita
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Jaehoon Shim
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Roshan Pandey
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Hoor Al Jandal
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Selwyn Jayakar
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Lee B Barrett
- F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Jennifer Smith
- ICCB-Longwood Screening Facility and Department of Immunology, Harvard Medical School, Boston, United States
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, United States.,F.M. Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
41
|
Legare CA, Raup-Konsavage WM, Vrana KE. Therapeutic Potential of Cannabis, Cannabidiol, and Cannabinoid-Based Pharmaceuticals. Pharmacology 2022; 107:131-149. [DOI: 10.1159/000521683] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022]
Abstract
<b><i>Background:</i></b> There is a growing interest in the use of cannabis (and its extracts), as well as CBD oil (hemp extracts containing cannabidiol), for therapeutic purposes. While there is reason to believe that cannabinoids may be efficacious for a number of different diseases and syndromes, there exist limited objective data supporting the use of crude materials (CBD oil, cannabis extracts, and/or cannabis itself). <b><i>Summary:</i></b> In the present review, we examined data for pure cannabinoid compounds (dronabinol, nabilone, and CBD), as well as partially purified medicinal cannabis extracts (nabiximols), to provide guidance on the potential therapeutic uses of high-THC cannabis and CBD oil. In general, data support a role for cannabis/cannabinoids in pain, seizure disorders, appetite stimulation, muscle spasticity, and treatment of nausea/vomiting. Given the biological activities of the cannabinoids, there may be utility in treatment of central nervous system disorders (such as neurodegenerative diseases, PTSD, and addiction) or for the treatment of cancer. However, those data are much less compelling. <b><i>Key Message:</i></b> On balance, there are reasons to support the potential use of medical cannabis and cannabis extract (Δ<sup>9</sup>-THC-dominant or CBD-dominant), but much more careful research is required.
Collapse
|
42
|
Chand P, Abbasi AA, Wahid A, Das J. Cannabidiol (CBD) in children with drug-resistant epilepsy: An initial experience from a developing country. J Pediatr Neurosci 2022. [DOI: 10.4103/jpn.jpn_123_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
43
|
Kaur S, Sharma N, Roy A. Role of cannabinoids in various diseases: A review. Curr Pharm Biotechnol 2021; 23:1346-1358. [PMID: 34951355 DOI: 10.2174/1389201023666211223164656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The plant, Cannabis sativa is heavily explored and researched with many industrial and pharmaceutical applications. The medicinal and therapeutic role of cannabis Sativa has been summarized in the paper, citing its mechanism of action and influence on the human body. Diseases like metabolic disorders, infectious diseases, and psychological disorders pose negative and long-term drastic effects on the body like neurodegeneration and other chronic system failures. Several existing literature has proved its effectiveness against such diseases. OBJECTIVES This review aims to provide an overview of the role of cannabinoids in various diseases like metabolic disorders, infectious diseases, and psychological disorders. METHOD Various e-resources like Pubmed, Science Direct, and Google Scholar were thoroughly searched and read to form a well-informed and information-heavy manuscript. Here we tried to summaries the therapeutic aspect of Cannabis sativa and its bioactive compound cannabinoids in various diseases. RESULT This review highlights the various constituents which are present in Cannabis sativa, the Endocannabinoid system, and the role of cannabinoids in various diseases Conclusion: Recent research on Cannabis has suggested its role in neurodegenerative diseases, inflammation, sleep disorders, pediatric diseases, and their analgesic nature. Therefore, the authors majorly focus on the therapeutic aspect of Cannabis sativa in various diseases. The focus is also on the endocannabinoid system (ECS) and its role in fighting or preventing bacterial, parasitic, fungal, and viral infections.
Collapse
Affiliation(s)
- Simran Kaur
- Department of Biotechnology, Delhi Technological University. India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi. India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida. India
| |
Collapse
|
44
|
Uttl L, Hložek T, Mareš P, Páleníček T, Kubová H. Anticonvulsive Effects and Pharmacokinetic Profile of Cannabidiol (CBD) in the Pentylenetetrazol (PTZ) or N-Methyl-D-Aspartate (NMDA) Models of Seizures in Infantile Rats. Int J Mol Sci 2021; 23:ijms23010094. [PMID: 35008517 PMCID: PMC8744811 DOI: 10.3390/ijms23010094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022] Open
Abstract
In spite of use of cannabidiol (CBD), a non-psychoactive cannabinoid, in pediatric patients with epilepsy, preclinical studies on its effects in immature animals are very limited. In the present study we investigated anti-seizure activity of CBD (10 and 60 mg/kg administered intraperitoneally) in two models of chemically induced seizures in infantile (12-days old) rats. Seizures were induced either with pentylenetetrazol (PTZ) or N-methyl-D-aspartate (NMDA). In parallel, brain and plasma levels of CBD and possible motor adverse effects were assessed in the righting reflex and the bar holding tests. CBD was ineffective against NMDA-induced seizures, but in a dose 60 mg/kg abolished the tonic phase of PTZ-induced generalized seizures. Plasma and brain levels of CBD were determined up to 24 h after administration. Peak CBD levels in the brain (996 ± 128 and 5689 ± 150 ng/g after the 10- and 60-mg/kg doses, respectively) were reached 1–2 h after administration and were still detectable 24 h later (120 ± 12 and 904 ± 63 ng/g, respectively). None of the doses negatively affected motor performance within 1 h after administration, but CBD in both doses blocked improvement in the bar holding test with repeated exposure to this task. Taken together, anti-seizure activity of CBD in infantile animals is dose and model dependent, and at therapeutic doses CBD does not cause motor impairment. The potential risk of CBD for motor learning seen in repeated motor tests has to be further examined.
Collapse
Affiliation(s)
- Libor Uttl
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Topolová 748, 250 67 Klecany, Czech Republic;
- Laboratory of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
| | - Tomáš Hložek
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic;
| | - Pavel Mareš
- Laboratory of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
| | - Tomáš Páleníček
- Department of Experimental Neurobiology, National Institute of Mental Health, Klecany, Topolová 748, 250 67 Klecany, Czech Republic;
- Department of Psychiatry and Medical Psychology 3FM CU and NIMH, 3rd Faculty of Medicine, Charles University in Prague, Ruská 87, 100 00 Prague, Czech Republic
- Correspondence: (T.P.); (H.K.)
| | - Hana Kubová
- Laboratory of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic;
- Correspondence: (T.P.); (H.K.)
| |
Collapse
|
45
|
Martínez-Aguirre C, Cinar R, Rocha L. Targeting Endocannabinoid System in Epilepsy: For Good or for Bad. Neuroscience 2021; 482:172-185. [PMID: 34923038 DOI: 10.1016/j.neuroscience.2021.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Epilepsy is a neurological disorder with a high prevalence worldwide. Several studies carried out during the last decades indicate that the administration of cannabinoids as well as the activation of the endocannabinoid system (ECS) represent a therapeutic strategy to control epilepsy. However, there are controversial studies indicating that activation of ECS results in cell damage, inflammation and neurotoxicity, conditions that facilitate the seizure activity. The present review is focused to present findings supporting this issue. According to the current discrepancies, it is relevant to elucidate the different effects induced by the activation of ECS and determine the conditions under which it facilitates the seizure activity.
Collapse
Affiliation(s)
| | - Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Rockville, USA
| | - Luisa Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies, Mexico City, Mexico.
| |
Collapse
|
46
|
Alonso C, Satta V, Díez-Gutiérrez P, Fernández-Ruiz J, Sagredo O. Preclinical investigation of β-caryophyllene as a therapeutic agent in an experimental murine model of Dravet syndrome. Neuropharmacology 2021; 205:108914. [PMID: 34875285 DOI: 10.1016/j.neuropharm.2021.108914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022]
Abstract
Dravet Syndrome (DS) is caused by mutations in the Scn1a gene encoding the α1 subunit of the sodium channel Nav1.1, which results in febrile seizures that progress to severe tonic-clonic seizures and associated comorbidities. Treatment with cannabidiol has been approved for the management of seizures in DS patients, but it appears to be also active against associated comorbidities. In this new study, we have investigated β-caryophyllene (BCP), a cannabinoid with terpene structure that appears to also have a broad-spectrum profile, as a useful therapy against both seizuring activity and progression of associated comorbidities. This has been studied in heterozygous conditional knock-in mice carrying a missense mutation (A1783V) in Scn1a gene expressed exclusively in neurons of the Central Nervous System (Syn-Cre/Scn1aWT/A1783V), using two experimental approaches. In the first approach, an acute treatment with BCP was effective against seizuring activity induced by pentylenetetrazole (PTZ) in wildtype (Scn1aWT/WT) and also in Syn-Cre/Scn1aWT/A1783V mice, with these last animals having a greater susceptibility to PTZ. Such benefits were paralleled by a BCP-induced reduction in PTZ-induced reactive astrogliosis (labelled with GFAP) and microgliosis (labelled with Iba-1) in the prefrontal cortex and the hippocampal dentate gyrus, which were visible in both wildtype (Scn1aWT/WT) and Syn-Cre/Scn1aWT/A1783V mice. In the second approach, both genotypes were treated repeatedly with BCP to investigate its effects on several DS comorbidities. Thus, BCP corrected important behavioural abnormalities of Syn-Cre/Scn1aWT/A1783V mice (e.g. delayed appearance of hindlimb grasp reflex, induction of clasping response, motor hyperactivity, altered social interaction and memory impairment), attenuated weight loss, and slightly delayed premature mortality. Again, these benefits were paralleled by a BCP-induced reduction in reactive astrogliosis and microgliosis in the prefrontal cortex and the hippocampal dentate gyrus typical of Syn-Cre/Scn1aWT/A1783V mice. In conclusion, BCP was active in Syn-Cre/Scn1aWT/A1783V mice against seizuring activity (acute treatment) and against several comorbidities (repeated treatment), in both cases in association with its capability to reduce glial reactivity in areas related to these behavioural abnormalities. This situates BCP in a promising position for further preclinical evaluation towards a close translation to DS patients.
Collapse
Affiliation(s)
- Cristina Alonso
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Valentina Satta
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Paula Díez-Gutiérrez
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Onintza Sagredo
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
47
|
Srinivasan M, Hamouda RK, Ambedkar B, Arzoun HI, Sahib I, Fondeur J, Escudero Mendez L, Mohammed L. The Effect of Marijuana on the Incidence and Evolution of Male Infertility: A Systematic Review. Cureus 2021; 13:e20119. [PMID: 34984155 PMCID: PMC8720305 DOI: 10.7759/cureus.20119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 11/05/2022] Open
Abstract
Over the past decade, the consumption of marijuana or any other form of cannabis, whether medically, recreationally, or illegally, has been escalating worldwide. The additive effect of marijuana and the easy availability could make this increasing trend possible for imperceptible outcomes affecting one's physiology on multiple levels. The rationale of this review is to study and enumerate several effects marijuana may have on male reproductive organs, especially in men who are dealing with subfertility or infertility issues. A literature search was done from September 1, 2021, to September 14, 2021, using the following databases: PubMed, Google Scholar, Bielefeld Academic Search Engine (BASE), University of California, Santa Barbara Library, and PubMed Central. The studies included in this review comprised systematic reviews, cross-sectional, case-control, cohort, and longitudinal studies published during 2010-2021 in the English language. After an extensive review of all studies, the quality was assessed using appropriate quality appraisal tools, and 15 eligible reports were identified and included. In-depth research on the final studies concluded that marijuana seems to have specific adverse effects on the sperm parameters, namely, sperm count, concentration, motility, morphology, capacitation, and viability, thus affecting fertility in men. Certain hormone levels, including testosterone, luteinizing hormone, and follicle-stimulating hormone, also drew attention, potentially impacting men's fertility; however, a finite inference could not be substantiated by the studies. Although the studies show significant effects in sperm parameters and organic sexual dysfunction, it is also to be noted that these studies are observational only and are conducted in small groups in multicenter geographical locations where other lifestyle patterns could be confounding. Given this restriction, it is suggested that further human trials on a larger scale be conducted to provide an even more concrete conclusion, especially after considering other factors that may affect the generalization of these trials.
Collapse
Affiliation(s)
- Mirra Srinivasan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ranim K Hamouda
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Baba Ambedkar
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hadia I Arzoun
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Isra Sahib
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jack Fondeur
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
48
|
Adapa S, Gayam V, Konala VM, Annangi S, Raju MP, Bezwada V, McMillan C, Dalal H, Mandal A, Naramala S. Cannabis Vaping-Induced Acute Pulmonary Toxicity: Case Series and Review of Literature. J Investig Med High Impact Case Rep 2021; 8:2324709620947267. [PMID: 32755249 PMCID: PMC7543135 DOI: 10.1177/2324709620947267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The use of cannabis for recreational as well as medicinal use is on the rise
recently with more states legalizing it. We conducted a review analysis of the
literature published on acute respiratory failure from vaping cannabis oil. We
have also summarized the clinical details (age, length of stay, mode of
ventilation, common clinical findings, and steroid use) along with common
laboratory abnormalities. This article aims to educate health care providers on
the clinical manifestations and management strategies for vaping-induced acute
respiratory failure. We also discussed the different available formulations of
cannabis oil and key ingredients responsible for the vaping-associated lung
injury.
Collapse
Affiliation(s)
| | - Vijay Gayam
- Interfaith Medical Center, Brooklyn, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cannabidiol Inhibition of Murine Primary Nociceptors: Tight Binding to Slow Inactivated States of Na v1.8 Channels. J Neurosci 2021; 41:6371-6387. [PMID: 34131037 DOI: 10.1523/jneurosci.3216-20.2021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/11/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The nonpsychoactive phytocannabinoid cannabidiol (CBD) has been shown to have analgesic effects in animal studies but little is known about its mechanism of action. We examined the effects of CBD on intrinsic excitability of primary pain-sensing neurons. Studying acutely dissociated capsaicin-sensitive mouse DRG neurons at 37°C, we found that CBD effectively inhibited repetitive action potential firing, from 15-20 action potentials evoked by 1 s current injections in control to 1-3 action potentials with 2 μm CBD. Reduction of repetitive firing was accompanied by a reduction of action potential height, widening of action potentials, reduction of the afterhyperpolarization, and increased propensity to enter depolarization block. Voltage-clamp experiments showed that CBD inhibited both TTX-sensitive and TTX-resistant (TTX-R) sodium currents in a use-dependent manner. CBD showed strong state-dependent inhibition of TTX-R channels, with fast binding to inactivated channels during depolarizations and slow unbinding on repolarization. CBD alteration of channel availability at various voltages suggested that CBD binds especially tightly [K d (dissociation constant), ∼150 nm] to the slow inactivated state of TTX-R channels, which can be substantially occupied at voltages as negative as -40 mV. Remarkably, CBD was more potent in inhibiting TTX-R channels and inhibiting action potential firing than the local anesthetic bupivacaine. We conclude that CBD might produce some of its analgesic effects by direct effects on neuronal excitability, with tight binding to the slow inactivated state of Nav1.8 channels contributing to effective inhibition of repetitive firing by modest depolarizations.SIGNIFICANCE STATEMENT Cannabidiol (CBD) has been shown to inhibit pain in various rodent models, but the mechanism of this effect is unknown. We describe the ability of CBD to inhibit repetitive action potential firing in primary nociceptive neurons from mouse dorsal root ganglia and analyze the effects on voltage-dependent sodium channels. We find that CBD interacts with TTX-resistant sodium channels in a state-dependent manner suggesting particularly tight binding to slow inactivated states of Nav1.8 channels, which dominate the overall inactivation of Nav1.8 channels for small maintained depolarizations from the resting potential. The results suggest that CBD can exert analgesic effects in part by directly inhibiting repetitive firing of primary nociceptors and suggest a strategy of identifying compounds that bind selectively to slow inactivated states of Nav1.8 channels for developing effective analgesics.
Collapse
|
50
|
Ożarowski M, Karpiński TM, Zielińska A, Souto EB, Wielgus K. Cannabidiol in Neurological and Neoplastic Diseases: Latest Developments on the Molecular Mechanism of Action. Int J Mol Sci 2021; 22:4294. [PMID: 33919010 PMCID: PMC8122338 DOI: 10.3390/ijms22094294] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
As the major nonpsychotropic constituent of Cannabis sativa, cannabidiol (CBD) is regarded as one of the most promising therapeutic agents due to its proven effectiveness in clinical trials for many human diseases. Due to the urgent need for more efficient pharmacological treatments for several chronic diseases, in this review, we discuss the potential beneficial effects of CBD for Alzheimer's disease, epilepsy, multiple sclerosis, and neurological cancers. Due to its wide range of pharmacological activities (e.g., antioxidant, anti-inflammatory, and neuroprotective properties), CBD is considered a multimodal drug for the treatment of a range of neurodegenerative disorders, and various cancer types, including neoplasms of the neural system. The different mechanisms of action of CBD are here disclosed, together with recent progress in the use of this cannabis-derived constituent as a new therapeutic approach.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—State Research Institute, Wojska Polskiego 71B, 60-630 Poznań, Poland; (M.O.); (K.W.)
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| | - Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB—Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Karolina Wielgus
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—State Research Institute, Wojska Polskiego 71B, 60-630 Poznań, Poland; (M.O.); (K.W.)
| |
Collapse
|