1
|
Bremner JD, Russo SJ, Gallagher R, Simon NM. Acute and long-term effects of COVID-19 on brain and mental health: A narrative review. Brain Behav Immun 2025; 123:928-945. [PMID: 39500417 DOI: 10.1016/j.bbi.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/16/2024] [Accepted: 11/02/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND COVID infection has been associated with long term sequalae (Long COVID) which include neurological and behavioral effects in thousands of patients, but the etiology and scope of symptoms is not well understood. This paper reviews long term sequelae of COVID on brain and mental health in patients with the Long COVID syndrome. METHODS This was a literature review which queried databases for Pubmed, Psychinfo, and Medline for the following topics for January 1, 2020-July 15, 2023: Long COVID, PASC, brain, brain imaging, neurological, neurobiology, mental health, anxiety, depression. RESULTS Tens of thousands of patients have developed Long COVID, with the most common neurobehavioral symptoms anosmia (loss of smell) and fatigue. Anxiety and mood disorders are elevated and seen in about 25% of Long COVID patients. Neuropsychological testing studies show a correlation between symptom severity and cognitive dysfunction, while brain imaging studies show global decreases in gray matter and alterations in olfactory and other brain areas. CONCLUSIONS Studies to date show an increase in neurobehavioral disturbances in patients with Long COVID. Future research is needed to determine mechanisms.
Collapse
Affiliation(s)
- J Douglas Bremner
- Departments of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta Georgia, and the Atlanta VA Medical Center, Decatur, GA, USA; Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA.
| | - Scott J Russo
- Nash Family Department Neuroscience and Brain-Body Research Center, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Richard Gallagher
- Department of Child and Adolescent Psychiatry, New York University (NYU) Langone Health, New York, NY, USA; Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| | - Naomi M Simon
- Department of Psychiatry, New York University (NYU) Langone Health, New York, NY, USA
| |
Collapse
|
2
|
Schwarz A, Feldman M, Le V, Dawson J, Liu CY, Francisco GE, Wolf SL, Dixit A, Alexander J, Ali R, Brown BL, Feng W, DeMark L, Hochberg LR, Kautz SA, Majid A, O'Dell MW, Redgrave J, Turner DL, Kimberley TJ, Cramer SC. Association that Neuroimaging and Clinical Measures Have with Change in Arm Impairment in a Phase 3 Stroke Recovery Trial. Ann Neurol 2024. [PMID: 39676623 DOI: 10.1002/ana.27156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE Vagus nerve stimulation (VNS) paired with rehabilitation therapy improved motor status compared to rehabilitation alone in the phase III VNS-REHAB stroke trial, but treatment response was variable and not associated with any clinical measures acquired at baseline, such as age or side of paresis. We hypothesized that neuroimaging measures would be associated with treatment-related gains, examining performance of regional injury measures versus global brain health measures in parallel with clinical measures. METHODS Baseline magnetic resonance imaging (MRI) scans in the VNS-REHAB trial were used to derive regional injury measures (extent of injury to corticospinal tract, the primary regional measure; plus extent of injury to precentral gyrus and postcentral gyrus; lesion volume; and lesion topography) and global brain health measures (degree of white matter hyperintensities, the primary global brain measure; plus volumes of cerebrospinal fluid, cortical gray matter, white matter, each thalamus, and total brain). Eight clinical measures assessed at baseline were also evaluated (treatment group, age, race, gender, paretic side, pre-stroke dominant hand, time since stroke, and baseline Fugl-Meyer upper extremity score). Bivariate analyses compared each measure with the primary trial end point (change in Fugl-Meyer upper extremity score from baseline to end of 6 weeks of treatment) across all subjects, with secondary analyses examining trial groups separately. RESULTS MRIs were available from 80 patients (age = 59.8 ± 9.5 years, 29 women). Across all patients, less white matter hyperintensities (r = -0.25, p = 0.028) at baseline was associated with larger Fugl-Meyer score change. In the VNS group, less white matter hyperintensities (r = -0.37, p = 0.018) and larger ipsilesional thalamus volume (r = 0.33, p = 0.046) were each associated with larger Fugl-Meyer score change. Analysis of covariance (ANCOVA) analyses tested the interaction that each baseline measure had with treatment group and found that the model examining white matter hyperintensities had a significant interaction term, indicating 2.3 less change in Fugl-Meyer Upper Extremity (FM-UE) points in the VNS group relative to the control group for each point increase in modified Fazekas scale. INTERPRETATION Neuroimaging measures are associated with extent of gains on the primary endpoint of a phase III stroke recovery trial. Among the neuroimaging measures examined, a measure of global brain health (extent of white matter hyperintensities) was better at explaining the change in arm impairment as compared with measures of regional injury; this was true when examining all study subjects as well as only those in the VNS group and is consistent with the global mechanism of action that VNS has throughout the cerebrum. Future studies can evaluate additional measures that further predict response to VNS therapy. The current findings suggest that individual patient neuroimaging results may be useful for a personalized medicine approach to stroke recovery therapeutics. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Anne Schwarz
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Neurology, California Rehabilitation Institute, Los Angeles, CA
| | - Marc Feldman
- Department of Neurology, California Rehabilitation Institute, Los Angeles, CA
| | - Vu Le
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jesse Dawson
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charles Y Liu
- USC Neurorestoration Center and Department of Neurological Surgery, USC Keck School of Medicine, Los Angeles, CA
- Department of Neurological Surgery, Rancho Los Amigos National Rehabilitation Center, Downey, CA
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, The University of Texas Health Science Center McGovern Medical School, Houston, TX
- Department of Physical Medicine and Rehabilitation, The Institute for Rehabilitation and Research (TIRR) Memorial Hermann Hospital, Houston, TX
| | - Steven L Wolf
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, GA
| | - Anand Dixit
- Stroke Service, The Newcastle Upon Tyne Hospitals National Health Service Foundation Trust, Newcastle, United Kingdom
| | - Jen Alexander
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Rushna Ali
- Department of Neurosurgery, Mayo Clinic, Rochester, MN
| | | | - Wuwei Feng
- Department of Neurology, Duke University School of Medicine, Durham, NC
| | - Louis DeMark
- Department of Physical Therapy, Brooks Rehabilitation, Jacksonville, FL
| | - Leigh R Hochberg
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- School of Engineering and Carney Institute for Brain Science, Brown University, Providence, RI
- VA RR&D Center for Neurorestoration and Neurotechnology, VA Medical Center, Providence, RI
| | - Steven A Kautz
- Department of Rehabilitation, Ralph H Johnson VA Medical Center, Charleston, SC
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC
| | - Arshad Majid
- Sheffield Institute for Neurological Sciences (SITraN), University of Sheffield, Sheffield, United Kingdom
- Department of Neurological Sciences, Sheffield Teaching Hospitals National Health Service Foundation Trust, Sheffield, United Kingdom
| | - Michael W O'Dell
- Department of Rehabilitation Medicine, Weill Cornell Medicine, New York City, NY
| | - Jessica Redgrave
- Sheffield Institute for Neurological Sciences (SITraN), University of Sheffield, Sheffield, United Kingdom
- Department of Neurological Sciences, Sheffield Teaching Hospitals National Health Service Foundation Trust, Sheffield, United Kingdom
| | - Duncan L Turner
- School of Health, Sport and Bioscience, University of East London, London, United Kingdom
| | - Teresa J Kimberley
- Department of Physical Therapy, MGH Institute of Health Professions, Boston, MA
| | - Steven C Cramer
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Neurology, California Rehabilitation Institute, Los Angeles, CA
| |
Collapse
|
3
|
Chen L, Gao H, Wang Z, Gu B, Zhou W, Pang M, Zhang K, Liu X, Ming D. Vagus nerve electrical stimulation in the recovery of upper limb motor functional impairment after ischemic stroke. Cogn Neurodyn 2024; 18:3107-3124. [PMID: 39555282 PMCID: PMC11564590 DOI: 10.1007/s11571-024-10143-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/15/2024] [Indexed: 11/19/2024] Open
Abstract
Ischemic stroke (IS) is characterized by high mortality, disability rates, and a high risk of recurrence. Motor dysfunction, such as limb hemiparesis, dysphagia, auditory disorders, and speech disorders, usually persists after stroke, which imposes a heavy burden on society and the health care system. Traditional rehabilitation therapies may be ineffective in promoting functional recovery after stroke, and alternative strategies are urgently needed. The Food and Drug Administration (FDA) has approved invasive vagus nerve stimulation (iVNS) for the improvement of refractory epilepsy, treatment-resistant depression, obesity, and moderate to severe upper limb motor impairment following chronic ischemic stroke. Additionally, the FDA has approved transcutaneous vagus nerve stimulation (tVNS) for the improvement of cluster headaches and acute migraines. Recent studies have demonstrated that vagus nerve stimulation (VNS) has neuroprotective effects in both transient and permanent cerebral ischemia animal models, significantly improving upper limb motor impairments, auditory deficits, and swallowing difficulties. Firstly, this article reviews two potential neuronal death pathways following IS, including autophagy and inflammatory responses. Then delves into the current status of preclinical and clinical research on the functional recovery following IS with VNS, as well as the potential mechanisms mediating its neuroprotective effects. Finally, the optimal parameters and timing of VNS application are summarized, and the future challenges and directions of VNS in the treatment of IS are discussed. The application of VNS in stroke rehabilitation research has reached a critical stage, and determining how to safely and effectively translate this technology into clinical practice is of utmost importance. Further preclinical and clinical studies are needed to elucidate the therapeutic mechanisms of VNS.
Collapse
Affiliation(s)
- Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Huixin Gao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Zhongpeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Bin Gu
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Wanqi Zhou
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Meijun Pang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Kuo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Xiuyun Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, 300392 China
| |
Collapse
|
4
|
Haakana P, Nätkynmäki A, Kirveskari E, Mäkelä JP, Kilgard MP, Tarvainen MP, Shulga A. Effects of auricular vagus nerve stimulation and electrical earlobe stimulation on motor-evoked potential changes induced by paired associative stimulation. Eur J Neurosci 2024; 60:5949-5965. [PMID: 39258329 DOI: 10.1111/ejn.16539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Paired associative stimulation (PAS) is a combination of transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS). PAS can induce long-term potentiation (LTP)-like plasticity in humans, manifested as motor-evoked potential (MEP) enhancement. We have developed a variant of PAS ("high-PAS"), which consists of high-frequency PNS and high-intensity TMS and targets spinal plasticity and promotes rehabilitation after spinal cord injury (SCI). Vagus nerve stimulation (VNS) promotes LTP-like plasticity and enhances recovery in SCI and stroke in humans and animals when combined with repetitive motor training. We combined high-PAS with simultaneous noninvasive transcutaneous auricular VNS (aVNS) to determine if aVNS enhances the extent of PAS-induced MEP amplitude increase. Sixteen healthy participants were stimulated for 20 min in four different sessions (PAS, PAS + aVNS, PAS + shamVNS, and aVNS) in a randomized single-blind setup. MEPs were measured before, immediately after, and at 30, 60, and 90 min post-stimulation. Stimulation protocols with PAS significantly potentiated MEPs (p = 0.005) when compared with aVNS (p = 0.642). Although not significant, MEP enhancement observed after PAS (43.5%) is further increased by aVNS (49.7%) and electrical earlobe stimulation (63.9%). Our aVNS setup failed to significantly enhance the effect of PAS, but sham VNS revealed a trend towards enhanced plasticity. Optimization of auricular VNS stimulation setup is required for possible tests of patients with SCI.
Collapse
Affiliation(s)
- Piia Haakana
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- Motion Analysis Laboratory, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Physiology, University of Helsinki, Helsinki, Finland
| | - Anna Nätkynmäki
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| | - Erika Kirveskari
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- HUS Medical Imaging Center, Clinical Neurophysiology; Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jyrki P Mäkelä
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
| | - Michael P Kilgard
- Texas Biomedical Device Center, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Mika P Tarvainen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Anastasia Shulga
- BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland
- Department of Physical and Rehabilitation Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Białoń MN, Górka DHNOZD, Górka MM. The brain-gut axis: communication mechanisms and the role of the microbiome as a neuroprotective factor in the development of neurodegenerative diseases: A literature overview. AIMS Neurosci 2024; 11:289-311. [PMID: 39431278 PMCID: PMC11486619 DOI: 10.3934/neuroscience.2024019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/22/2024] Open
Abstract
The study of the brain-gut axis and its impact on cognitive function and in the development of neurodegenerative diseases is a very timely topic of interest to researchers. This review summarizes information on the basic mechanisms of gut-brain communication. We then discuss the roles of the gut microbiome as a neuroprotective factor in neurodegeneration. The gut microbiota is extremely important in maintaining the body's homeostasis, shaping the human immune system and the proper functioning of the brain. The intestinal microflora affects the processes of neuroplasticity, synaptogenesis, and neuronal regeneration. This review aims to explain changes in the composition of the bacterial population of the intestinal microflora among patients with Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Abnormalities in gut microflora composition are also noted in stress, depression, or autism spectrum development. New observations on psychobiotic supplementation in alleviating the symptoms of neurodegenerative diseases are also presented.
Collapse
Affiliation(s)
- Mgr Natalia Białoń
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Dr Hab N O Zdr Dariusz Górka
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Mgr Mikołaj Górka
- Center for Experimental Medicine of the Silesian Medical University in Katowice, 4 Medyków St., 40-752 Katowice, Poland
| |
Collapse
|
6
|
Lin S, Rodriguez CO, Wolf SL. Vagus Nerve Stimulation Paired With Upper Extremity Rehabilitation for Chronic Ischemic Stroke: Contribution of Dosage Parameters. Neurorehabil Neural Repair 2024; 38:607-615. [PMID: 38836606 DOI: 10.1177/15459683241258769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
BACKGROUND Vagus nerve stimulation (VNS) combined with rehabilitation is a Food and Drug Administration approved intervention for moderate to severe upper extremity deficits in chronic ischemic stroke patients. Previous studies demonstrated that VNS improves upper extremity motor impairments, using the Fugl Meyer Assessment of Upper Extremity (FMA-UE); however, delineating where these improvements occur, and the role of VNS dosage parameters were not reported. OBJECTIVE This study explored the relationship between dosing (time over which task repetitions were executed and number of VNS stimulations) and changes within proximal and distal components of the FMA-UE. METHODS Participants underwent VNS implantation, with 1 group receiving VNS paired with rehabilitation (Active VNS) and the other group receiving rehabilitation with sham stimulation (Controls). Both groups received 6 weeks of in-clinic therapy followed by a 90-day at-home, self-rehabilitation program. Participants who completed at least 12 of 18 in-clinic sessions were included in the analyses (n = l06). Pearson correlations and analysis of covariance were used to investigate the relationship between dosing and FMA-UE outcome change along with the effect of covariates including baseline severity, time since stroke, age, and paretic side. RESULTS Compared to Controls, active VNS favorably influenced distal function with sustained improvement after the home program. Significant improvements were observed in only distal components (FMdist) at both post day-1 (1.80 points, 95% Cl [0.85, 2.73], P < .001) and post-day 90 (1.62 points, 95% CI [0.45, 2.80], P < .007). CONCLUSIONS VNS paired with rehabilitation resulted in significant improvements in wrist and hand impairment compared to Controls, despite similar in-clinic dosing across both groups.NCT03131960.
Collapse
Affiliation(s)
- Shiyu Lin
- Department of Rehabilitation Medicine, Division of Physical Therapy, Center for Movement Science and Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Chelsea O Rodriguez
- Department of Rehabilitation Medicine, Division of Physical Therapy, Center for Movement Science and Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven L Wolf
- Department of Rehabilitation Medicine, Division of Physical Therapy, Center for Movement Science and Physical Therapy, Emory University School of Medicine, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- Senior Research Scientist, Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care Center, Decatur, GA, USA
| |
Collapse
|
7
|
Xiao XZ, Li R, Xu C, Liang S, Yang M, Zhong H, Huang X, Ma J, Xie Q. Closed-loop transcutaneous auricular vagus nerve stimulation for the improvement of upper extremity motor function in stroke patients: a study protocol. Front Neurol 2024; 15:1379451. [PMID: 38903173 PMCID: PMC11188480 DOI: 10.3389/fneur.2024.1379451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Background Transcutaneous auricular vagus nerve stimulation (taVNS) has garnered attention for stroke rehabilitation, with studies demonstrating its benefits when combined with motor rehabilitative training or delivered before motor training. The necessity of concurrently applying taVNS with motor training for post-stroke motor rehabilitation remains unclear. We aimed to investigate the necessity and advantages of applying the taVNS concurrently with motor training by an electromyography (EMG)-triggered closed-loop system for post-stroke rehabilitation. Methods We propose a double-blinded, randomized clinical trial involving 150 stroke patients assigned to one of three groups: concurrent taVNS, sequential taVNS, or sham control condition. In the concurrent group, taVNS bursts will synchronize with upper extremity motor movements with EMG-triggered closed-loop system during the rehabilitative training, while in the sequential group, a taVNS session will precede the motor rehabilitative training. TaVNS intensity will be set below the pain threshold for both concurrent and sequential conditions and at zero for the control condition. The primary outcome measure is the Fugl-Meyer Assessment of Upper Extremity (FMA-UE). Secondary measures include standard upper limb function assessments, as well as EMG and electrocardiogram (ECG) features. Ethics and dissemination Ethical approval has been granted by the Medical Ethics Committee, affiliated with Zhujiang Hospital of Southern Medical University for Clinical Studies (2023-QX-012-01). This study has been registered on ClinicalTrials (NCT05943431). Signed informed consent will be obtained from all included participants. The findings will be published in peer-reviewed journals and presented at relevant stakeholder conferences and meetings. Discussion This study represents a pioneering effort in directly comparing the impact of concurrent taVNS with motor training to that of sequential taVNS with motor training on stroke rehabilitation. Secondly, the incorporation of an EMG-triggered closed-loop taVNS system has enabled the automation and individualization of both taVNS and diverse motor training tasks-a novel approach not explored in previous research. This technological advancement holds promise for delivering more precise and tailored training interventions for stroke patients. However, it is essential to acknowledge a limitation of this study, as it does not delve into examining the neural mechanisms underlying taVNS in the context of post-stroke rehabilitation.
Collapse
Affiliation(s)
- Xue-Zhen Xiao
- Zhuhai Fudan Innovation Institute, Zhuhai, Guangdong, China
- BrainClos Co., Ltd., Shenzhen, Guangdong, China
| | - Rongdong Li
- Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Rehabilitation Medicine School of Southern Medical University, Guangzhou, Guangdong, China
| | - Chengwei Xu
- Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Rehabilitation Medicine School of Southern Medical University, Guangzhou, Guangdong, China
| | - Siqi Liang
- BrainClos Co., Ltd., Shenzhen, Guangdong, China
| | - Meng Yang
- School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Haili Zhong
- Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Xiyan Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jingjing Ma
- Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Qiuyou Xie
- Department of Rehabilitation Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Rehabilitation Medicine School of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
9
|
Santucci NR, Beigarten AJ, Khalid F, El-Chammas KI, Graham K, Sahay R, Fei L, Rich K, Mellon M. Percutaneous Electrical Nerve Field Stimulation in Children and Adolescents With Functional Dyspepsia-Integrating a Behavioral Intervention. Neuromodulation 2024; 27:372-381. [PMID: 37589640 PMCID: PMC10869640 DOI: 10.1016/j.neurom.2023.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVES Functional dyspepsia (FD) includes postprandial distress and epigastric pain syndrome. Percutaneous electrical nerve field stimulation (PENFS) in addition to behavioral interventions (BI) has shown benefits in children with functional abdominal pain but not specifically in FD. We aimed to assess the efficacy of PENFS for treating FD and compare the outcomes with those who received the combination of PENFS + BI. MATERIALS AND METHODS Charts of patients with FD who completed four weeks of PENFS were evaluated. A subset of patients received concurrent BI. Demographic data, medical history, and symptoms were documented. Outcomes at different time points included subjective symptom responses and validated questionnaires collected clinically (Abdominal Pain Index [API], Nausea Severity Scale [NSS], Functional Disability Inventory [FDI], Pittsburgh Sleep Quality Index [PSQI], Children's Somatic Symptoms Inventory [CSSI], Patient-Reported Outcomes Measurement Information Systems [PROMIS] Pediatric Anxiety and Depression scales). RESULT Of 84 patients, 61% received PENFS + BI, and 39% received PENFS alone. In the entire cohort, API (p < 0.0001), NSS (p = 0.001), FDI (p = 0.001), CSSI (p < 0.0001), PSQI (p = 0.01), PROMIS anxiety (p = 0.02), and depression (p = 0.01) scores improved from baseline to three weeks and at three months. Subjective responses showed nausea improvement (p = 0.01) and a trend for improvement in abdominal pain (p = 0.07) at week three. Abdominal pain subjectively improved at week three and three months (p = 0.003 and 0.02, respectively), nausea at week three and three months (p = 0.01 and 0.04, respectively), and a trend for improvement in sleep disturbances at week three and three months (p = 0.08 and p = 0.07, respectively) in the PENFS + BI group vs PENFS alone. CONCLUSION Abdominal pain, nausea, functioning, somatization, sleep disturbances, anxiety, and depression improved at three weeks and three months after PENFS in pediatric FD. Subjective pain and nausea improvement were greater in the PENFS + BI group than in the group with PENFS alone, suggesting an additive effect of psychologic therapy.
Collapse
Affiliation(s)
- Neha R Santucci
- Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | - Alan J Beigarten
- Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Fatima Khalid
- Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Khalil I El-Chammas
- Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Kahleb Graham
- Gastroenterology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Rashmi Sahay
- Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lin Fei
- Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kristin Rich
- Pediatrics, University of Cincinnati, Cincinnati, OH, USA; Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Mellon
- Pediatrics, University of Cincinnati, Cincinnati, OH, USA; Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
10
|
Winter Y, Sandner K, Bassetti CLA, Glaser M, Ciolac D, Ziebart A, Karakoyun A, Saryyeva A, Krauss JK, Ringel F, Groppa S. Vagus nerve stimulation for the treatment of narcolepsy. Brain Stimul 2024; 17:83-88. [PMID: 38184192 DOI: 10.1016/j.brs.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND AND OBJECTIVE No study on neurostimulation in narcolepsy is available until now. Arousal- and wake-promoting effects of vagus nerve stimulation (VNS) have been demonstrated in animal experiments and are well-known as side effects of VNS therapy in epilepsy and depression. The objective was to evaluate the therapeutic effect of VNS on daily sleepiness and cataplexies in narcolepsy. METHODS In our open-label prospective comparative study, we included narcolepsy patients who were treated with VNS because of depression or epilepsy and compared them to controls without narcolepsy treated with VNS for depression or epilepsy (18 patients in each group, aged 31.5 ± 8.2 years). We evaluated daily sleepiness (Epworth Sleepiness Scale, ESS) and the number of cataplexies per week before the implantation of VNS and at three and six month follow-ups. RESULTS Compared to baseline (ESS: 15.9 ± 2.5) patients with narcolepsy showed a significant improvement on ESS after three months (11.2 ± 3.3, p < 0.05) and six months (9.6 ± 2.8, p < 0.001) and a trend to reduction of cataplexies. No significant ESS-improvement was observed in patients without narcolepsy (14.9 ± 3.9, 13.6 ± 3.7, 13.2 ± 3.5, p = 0.2 at baseline, three and six months, correspondingly). Side effects did not differ between the study groups. CONCLUSION In this first evaluation of VNS in narcolepsy, we found a significant improvement of daily sleepiness due to this type of neurostimulation. VNS could be a promising non-medical treatment in narcolepsy.
Collapse
Affiliation(s)
- Yaroslav Winter
- Mainz Comprehensive Epilepsy and Sleep Medicine Center, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Department of Neurology, Philipps-University Marburg, Germany.
| | - Katharina Sandner
- Mainz Comprehensive Epilepsy and Sleep Medicine Center, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claudio L A Bassetti
- Department of Neurology, Inselspital, University Hospital of Bern, University of Bern, Switzerland
| | - Martin Glaser
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dumitru Ciolac
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Ziebart
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ali Karakoyun
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, MHH, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, MHH, Hannover, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn(2)), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Jin Z, Dong J, Wang Y, Liu Y. Exploring the potential of vagus nerve stimulation in treating brain diseases: a review of immunologic benefits and neuroprotective efficacy. Eur J Med Res 2023; 28:444. [PMID: 37853458 PMCID: PMC10585738 DOI: 10.1186/s40001-023-01439-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
The vagus nerve serves as a critical connection between the central nervous system and internal organs. Originally known for its effectiveness in treating refractory epilepsy, vagus nerve stimulation (VNS) has shown potential for managing other brain diseases, including ischaemic stroke, traumatic brain injury, Parkinson's disease, and Alzheimer's disease. However, the precise mechanisms of VNS and its benefits for brain diseases are not yet fully understood. Recent studies have found that VNS can inhibit inflammation, promote neuroprotection, help maintain the integrity of the blood-brain barrier, have multisystemic modulatory effects, and even transmit signals from the gut flora to the brain. In this article, we will review several essential studies that summarize the current theories of VNS and its immunomodulatory effects, as well as the therapeutic value of VNS for brain disorders. By doing so, we aim to provide a better understanding of how the neuroimmune network operates and inspire future research in this field.
Collapse
Affiliation(s)
- Zeping Jin
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jing Dong
- Department of Medical Engineering, Tsinghua University Yuquan Hospital, Beijing, People's Republic of China
| | - Yang Wang
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yunpeng Liu
- Department of Neurosurgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
12
|
Choudhary T, Elliott M, Euliano NR, Gurel NZ, Rivas AG, Wittbrodt MT, Vaccarino V, Shah AJ, Inan OT, Bremner JD. Effect of transcutaneous cervical vagus nerve stimulation on declarative and working memory in patients with Posttraumatic Stress Disorder (PTSD): A pilot study. J Affect Disord 2023; 339:418-425. [PMID: 37442455 DOI: 10.1016/j.jad.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/10/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is associated with changes in multiple neurophysiological systems, including verbal declarative memory deficits. Vagus Nerve Stimulation (VNS) has been shown in preliminary studies to enhance function when paired with cognitive and motor tasks. The purpose of this study was to analyze the effect of transcutaneous cervical VNS (tcVNS) on attention, declarative and working memory in PTSD patients. METHODS Fifteen PTSD patients were randomly assigned to active tcVNS (N = 8) or sham (N = 7) stimulation in a double-blinded fashion. Memory assessment tests including paragraph recall and N-back tests were performed to assess declarative and working memory function when paired with active/sham tcVNS once per month in a longitudinal study during which patients self-administered tcVNS/sham twice daily. RESULTS Active tcVNS stimulation resulted in a significant improvement in paragraph recall performance following pairing with paragraph encoding for PTSD patients at two months (p < 0.05). It resulted in a 91 % increase in paragraph recall performance within group (p = 0.03), while sham tcVNS exhibited no such trend in performance improvement. In the N-back study, positive deviations in accuracy, precision and recall measures on different day visits (7,34,64,94) of patients with respect to day 1 revealed a pattern of better performance of the active tcVNS population compared to sham VNS which did not reach statistical significance. LIMITATIONS Our sample size was small. CONCLUSIONS These preliminary results suggest that tcVNS improves attention, declarative and working memory, which may improve quality of life and productivity for patients with PTSD. Future studies are required to confirm these results.
Collapse
Affiliation(s)
- Tilendra Choudhary
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA.
| | | | | | - Nil Z Gurel
- Reality Labs, Meta Platforms Inc., Menlo Park, CA, USA
| | - Amanda G Rivas
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew T Wittbrodt
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Medicine, Cardiology Division, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit J Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Medicine, Cardiology Division, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Omer T Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
13
|
Bremner JD, Gazi AH, Lambert TP, Nawar A, Harrison AB, Welsh JW, Vaccarino V, Walton KM, Jaquemet N, Mermin-Bunnell K, Mesfin H, Gray TA, Ross K, Saks G, Tomic N, Affadzi D, Bikson M, Shah AJ, Dunn KE, Giordano NA, Inan OT. Noninvasive Vagal Nerve Stimulation for Opioid Use Disorder. ANNALS OF DEPRESSION AND ANXIETY 2023; 10:1117. [PMID: 38074313 PMCID: PMC10699253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Background Opioid Use Disorder (OUD) is an escalating public health problem with over 100,000 drug overdose-related deaths last year most of them related to opioid overdose, yet treatment options remain limited. Non-invasive Vagal Nerve Stimulation (nVNS) can be delivered via the ear or the neck and is a non-medication alternative to treatment of opioid withdrawal and OUD with potentially widespread applications. Methods This paper reviews the neurobiology of opioid withdrawal and OUD and the emerging literature of nVNS for the application of OUD. Literature databases for Pubmed, Psychinfo, and Medline were queried for these topics for 1982-present. Results Opioid withdrawal in the context of OUD is associated with activation of peripheral sympathetic and inflammatory systems as well as alterations in central brain regions including anterior cingulate, basal ganglia, and amygdala. NVNS has the potential to reduce sympathetic and inflammatory activation and counter the effects of opioid withdrawal in initial pilot studies. Preliminary studies show that it is potentially effective at acting through sympathetic pathways to reduce the effects of opioid withdrawal, in addition to reducing pain and distress. Conclusions NVNS shows promise as a non-medication approach to OUD, both in terms of its known effect on neurobiology as well as pilot data showing a reduction in withdrawal symptoms as well as physiological manifestations of opioid withdrawal.
Collapse
Affiliation(s)
- J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
- Atlanta Veterans Affairs Healthcare System, Decatur GA
| | - Asim H Gazi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Tamara P Lambert
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Afra Nawar
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Anna B Harrison
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Justine W Welsh
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta GA
| | - Kevin M Walton
- Clinical Research Grants Branch, Division of Therapeutics and Medical Consequences, National Institute on Drug Abuse, Bethesda, MD
| | - Nora Jaquemet
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Kellen Mermin-Bunnell
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Hewitt Mesfin
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Trinity A Gray
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Keyatta Ross
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Georgia Saks
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Nikolina Tomic
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Danner Affadzi
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta GA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY
| | - Amit J Shah
- Atlanta Veterans Affairs Healthcare System, Decatur GA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta GA
| | - Kelly E Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore MD
| | | | - Omer T Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
14
|
Divani AA, Salazar P, Ikram HA, Taylor E, Wilson CM, Yang Y, Mahmoudi J, Seletska A, SantaCruz KS, Torbey MT, Liebler EJ, Bragina OA, Morton RA, Bragin DE. Non-Invasive Vagus Nerve Stimulation Improves Brain Lesion Volume and Neurobehavioral Outcomes in a Rat Model of Traumatic Brain Injury. J Neurotrauma 2023; 40:1481-1494. [PMID: 36869619 PMCID: PMC10294566 DOI: 10.1089/neu.2022.0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Abstract Traumatic brain injury (TBI) continues to be a major cause of death and disability worldwide. This study assessed the effectiveness of non-invasive vagus nerve stimulation (nVNS) in reducing brain lesion volume and improving neurobehavioral performance in a rat model of TBI. Animals were randomized into three experimental groups: (1) TBI with sham stimulation treatment (Control), (2) TBI treated with five lower doses (2-min) nVNS, and (3) TBI treated with five higher doses (2 × 2-min) nVNS. We used the gammaCore nVNS device to deliver stimulations. Magnetic resonance imaging studies were performed 1 and 7 days post-injury to confirm lesion volume. We observed smaller brain lesion volume in the lower dose nVNS group compared with the control group on days 1 and 7. The lesion volume for the higher dose nVNS group was significantly smaller than either the lower dose nVNS or the control groups on days 1 and 7 post-injury. The apparent diffusion coefficient differences between the ipsilateral and contralateral hemispheres on day 1 were significantly smaller for the higher dose (2 × 2 min) nVNS group than for the control group. Voxel-based morphometry analysis revealed an increase in the ipsilateral cortical volume in the control group caused by tissue deformation and swelling. On day 1, these abnormal volume changes were 13% and 55% smaller in the lower dose and higher dose nVNS groups, respectively, compared with the control group. By day 7, nVNS dampened cortical volume loss by 35% and 89% in the lower dose and higher dose nVNS groups, respectively, compared with the control group. Rotarod, beam walking, and anxiety performances were significantly improved in the higher-dose nVNS group on day 1 compared with the control group. The anxiety indices were also improved on day 7 post-injury compared with the control and the lower-dose nVNS groups. In conclusion, the higher dose nVNS (five 2 × 2-min stimulations) reduced brain lesion volume to a level that further refined the role of nVNS therapy for the acute treatment of TBI. Should nVNS prove effective in additional pre-clinical TBI models and later in clinical settings, it would have an enormous impact on the clinical practice of TBI in both civilian and military settings, as it can easily be adopted into routine clinical practice.
Collapse
Affiliation(s)
- Afshin A. Divani
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Pascal Salazar
- Canon Medical Informatics, Inc., Minnetonka, Minnesota, USA
| | - Hafiz A. Ikram
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Erik Taylor
- Department of Radiology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Colin M. Wilson
- Department of Radiology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Yirong Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alina Seletska
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Karen S. SantaCruz
- Department of Pathology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Michel T. Torbey
- Department of Neurology, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Olga A. Bragina
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| | - Russel A. Morton
- Department of Neuroscience, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Denis E. Bragin
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, USA
| |
Collapse
|
15
|
González-González MA, Alemansour H, Maroufi M, Coskun MB, Lloyd D, Reza Moheimani SO, Romero-Ortega MI. Biomechanics Characterization of Autonomic and Somatic Nerves by High Dynamic Closed-Loop MEMS force sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.13.536752. [PMID: 37090537 PMCID: PMC10120675 DOI: 10.1101/2023.04.13.536752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The biomechanics of peripheral nerves are determined by the blood-nerve barrier (BNB), together with the epineural barrier, extracellular matrix, and axonal composition, which maintain structural and functional stability. These elements are often ignored in the fabrication of penetrating devices, and the implant process is traumatic due to the mechanical distress, compromising the function of neuroprosthesis for sensory-motor restoration in amputees. Miniaturization of penetrating interfaces offers the unique opportunity of decoding individual nerve fibers associated to specific functions, however, a main issue for their implant is the lack of high-precision standardization of insertion forces. Current automatized electromechanical force sensors are available; however, their sensitivity and range amplitude are limited (i.e. mN), and have been tested only in-vitro. We previously developed a high-precision bi-directional micro-electromechanical force sensor, with a closed-loop mechanism (MEMS-CLFS), that while measuring with high-precision (-211.7μN to 211.5μN with a resolution of 4.74nN), can be used in alive animal. Our technology has an on-chip electrothermal displacement sensor with a shuttle beam displacement amplification mechanism, for large range and high-frequency resolution (dynamic range of 92.9 dB), which eliminates the adverse effect of flexural nonlinearity measurements, observed with other systems, and reduces the mechanical impact on delicate biological tissue. In this work, we use the MEMS-CLFS for in-vivo bidirectional measurement of biomechanics in somatic and autonomic nerves. Furthermore we define the mechanical implications of irrigation and collagen VI in the BNB, which is different for both autonomic and somatic nerves (~ 8.5-8.6 fold density of collagen VI and vasculature CD31+ in the VN vs ScN). This study allowed us to create a mathematical approach to predict insertion forces. Our data highlights the necessity of nerve-customization forces to prevent injury when implanting interfaces, and describes a high precision MEMS technology and mathematical model for their measurements.
Collapse
Affiliation(s)
| | - Hammed Alemansour
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX. 75080
| | - Mohammad Maroufi
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX. 75080
| | - Mustafa Bulut Coskun
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX. 75080
| | - David Lloyd
- Biomedical Engineering and Biomedical Sciences. University of Houston, Houston TX. 77204-6064
| | - S. O. Reza Moheimani
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, TX. 75080
| | - Mario I. Romero-Ortega
- Biomedical Engineering and Biomedical Sciences. University of Houston, Houston TX. 77204-6064
| |
Collapse
|
16
|
Luckey AM, Adcock K, Vanneste S. Peripheral nerve stimulation: A neuromodulation-based approach. Neurosci Biobehav Rev 2023; 149:105180. [PMID: 37059406 DOI: 10.1016/j.neubiorev.2023.105180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Recent technological improvements have positioned us at the threshold of innovative discoveries that will assist in new perspectives and avenues of research. Increased attention has been directed towards peripheral nerve stimulation, particularly of the vagus, trigeminal, or greater occipital nerve, due to their unique pathway that engages neural circuits within networks involved in higher cognitive processes. Here, we question whether the effects of transcutaneous electrical stimulation are mediated by synergistic interactions of multiple neuromodulatory networks, considering this pathway is shared by more than one neuromodulatory system. By spotlighting this attractive transcutaneous pathway, this opinion piece aims to acknowledge the contributions of four vital neuromodulators and prompt researchers to consider them in future investigations or explanations.
Collapse
Affiliation(s)
- Alison M Luckey
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Katherine Adcock
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical & Integrative Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
17
|
Gao Y, Zhu Y, Lu X, Wang N, Zhu S, Gong J, Wang T, Tang SW. Vagus nerve stimulation paired with rehabilitation for motor function, mental health and activities of daily living after stroke: a systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2023; 94:257-266. [PMID: 36600569 DOI: 10.1136/jnnp-2022-329275] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Vagus nerve stimulation (VNS) plus rehabilitation (Rehab) has shown a potential effect on recovery with a stroke. We systematically synthesised studies examining VNS+Rehab for improving motor function, mental health and activities of daily living (ADL) postintervention and at the end of follow-up in patients with a stroke. METHODS The search was performed in electronic databases EMBASE, Medline, EBSCO, Cochrane Library, PubMed, PsycINFO, CINAHL, CNKI, and WANFANG and three clinical trial registries from inception to February 2022. Randomised controlled trials (RCTs) applied VNS+Rehab in stroke were included. RESULTS Seven RCTs involving 263 (analysed) participants was included. The effect size of VNS+Rehab over Rehab for motor function was medium postintervention (g=0.432; 95% CI 0.186 to 0.678) and large at the end of follow-up (g=0.840; 95% CI 0.288 to 1.392). No difference was found in the effect of VNS+Rehab over traditional rehabilitation for ADL, mental health or safety outcomes. Subgroup analyses revealed larger effects for patients received taVNS (transcutaneous auricular VNS) devices (at acute/subacute phase of stroke, with lower VNS stimulation frequency or pluses per session, greater VNS on-off time or sessions, higher VNS intervention weekly frequency). CONCLUSION The results suggest VNS+Rehab showed better motor function outcomes in patients after stroke, while no better than Rehab on mental health or ADL. Combinations of phase of stroke, specific parameters of VNS and VNS intervention frequency are key modulators of VNS effects. TRIAL REGISTRATION NUMBER CRD42022310194.
Collapse
Affiliation(s)
- Yong Gao
- Department of Rehabilitation, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Yi Zhu
- Department of Rehabilitation, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Xiao Lu
- Department of Rehabilitation, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Nannan Wang
- Department of Epidemiology and Biostatistics, Nanjing Medical University School of Public Health, Nanjing, Jiangsu, China
| | - Shizhe Zhu
- Department of Rehabilitation, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Jianqiu Gong
- Department of Rehabilitation, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | - Tong Wang
- Department of Rehabilitation, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Shao-Wen Tang
- Department of Epidemiology and Biostatistics, Nanjing Medical University School of Public Health, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Ploughman M, Melam GR, Buragadda S, Lohse KR, Clift F, Stefanelli M, Levin M, Donkers SJ. Translingual neurostimulation combined with physical therapy to improve walking and balance in multiple sclerosis (NeuroMSTraLS): Study protocol for a randomized controlled trial. Contemp Clin Trials 2023; 127:107142. [PMID: 36878390 DOI: 10.1016/j.cct.2023.107142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
INTRODUCTION Physical rehabilitation restores lost function and promotes brain plasticity in people with Multiple Sclerosis (MS). Research groups worldwide are testing the therapeutic effects of combining non-invasive neuromodulation with physical therapy (PT) to further improve functional outcomes in neurological disorders but with mixed results. Whether such devices enhance function is not clear. We present the rationale and study design for a randomized controlled trial evaluating if there is additional benefit to the synergistic pairing of translingual neurostimulation (TLNS) with PT to improve walking and balance in MS. METHODS AND ANALYSIS A parallel group [PT + TLNS or PT + Sham], quadruple-blinded, randomized controlled trial. Participants (N = 52) with gait and balance deficits due to relapsing-remitting or progressive MS, who are between 18 and 70 years of age, will be recruited through patient registries in Newfoundland & Labrador and Saskatchewan, Canada. All participants will receive 14 weeks of PT while wearing either a TLNS or sham device. Dynamic Gait Index is the primary outcome. Secondary outcomes include fast walking speed, subjective ratings of fatigue, MS impact, and quality of life. Outcomes are assessed at baseline (Pre), after 14 weeks of therapy (Post), and 26 weeks (Follow Up). We employ multiple methods to ensure treatment fidelity including activity and device use monitoring. Primary and secondary outcomes will be analyzed using linear mixed-effect models. We will control for baseline score and site to test the effects of Time (Post vs. Follow-Up), Group and the Group x Time interaction as fixed effects. A random intercept of participant will account for the repeated measures in the Time variable. Participants must complete the Post testing to be included in the analysis. ETHICS AND DISSEMINATION The Human Research Ethics Boards in Newfoundland & Labrador (HREB#2021.085) & Saskatchewan (HREB Bio 2578) approved the protocol. Dissemination avenues include peer-reviewed journals, conferences and patient-oriented communications.
Collapse
Affiliation(s)
- Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, 100 Forest Rd., St. John's, NL A1A 1E5, Canada.
| | - Ganeswara Rao Melam
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, 100 Forest Rd., St. John's, NL A1A 1E5, Canada
| | - Syamala Buragadda
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, 100 Forest Rd., St. John's, NL A1A 1E5, Canada
| | - Keith R Lohse
- Program in Physical Therapy, Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Fraser Clift
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mark Stefanelli
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael Levin
- Department of Neurology and Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Sarah J Donkers
- School of Rehabilitation Science, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
19
|
D'Agostini M, Burger AM, Franssen M, Perkovic A, Claes S, von Leupoldt A, Murphy PR, Van Diest I. Short bursts of transcutaneous auricular vagus nerve stimulation enhance evoked pupil dilation as a function of stimulation parameters. Cortex 2023; 159:233-253. [PMID: 36640622 DOI: 10.1016/j.cortex.2022.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a neurostimulatory technique hypothesised to enhance central noradrenaline. Currently, there is scarce evidence in support of a noradrenergic mechanism of taVNS and limited knowledge on its stimulation parameters (i.e., intensity and pulse width). Therefore, the present study aimed to test whether taVNS enhances pupil dilation, a noradrenergic biomarker, as a function of stimulation parameters. Forty-nine participants received sham (i.e., left ear earlobe) and taVNS (i.e., left ear cymba concha) stimulation in two separate sessions, in a counterbalanced order. We administered short bursts (5s) of seven stimulation settings varying as a function of pulse width and intensity and measured pupil size in parallel. Each stimulation setting was administered sixteen times in separate blocks. We expected short bursts of stimulation to elicit phasic noradrenergic activity as indexed by event-related pupil dilation and event-related temporal derivative. We hypothesised higher stimulation settings, quantified as the total charge per pulse (pulse width x intensity), to drive greater event-related pupil dilation and temporal derivative in the taVNS compared to sham condition. Specifically, we expected stimulation settings in the taVNS condition to be associated with a linear increase in event-related pupil dilation and temporal derivative. We found stimulation settings to linearly increase both pupil measures. In line with our hypothesis, the observed dose-dependent effect was stronger in the taVNS condition. We also found taVNS to elicit more intense and unpleasant sensations than sham stimulation. These results support the hypothesis of a noradrenergic mechanism of taVNS. However, future studies should disentangle whether stimulation elicited sensations mediate the effect of taVNS on evoked pupil dilation.
Collapse
Affiliation(s)
| | | | | | - Ana Perkovic
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | - Stephan Claes
- The Mind Body Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium.
| | | | - Peter R Murphy
- Department of Psychology, Maynooth University, Co. Kildare, Ireland; Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Ireland.
| | - Ilse Van Diest
- Research Group Health Psychology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
Pruitt DT, Duong-Nguyen YN, Meyers EC, Epperson JD, Wright JM, Hudson RA, Wigginton JG, Rennaker II RL, Hays SA, Kilgard MP. Usage of RePlay as a Take-Home System to Support High-Repetition Motor Rehabilitation After Neurological Injury. Games Health J 2023; 12:73-85. [PMID: 36318505 PMCID: PMC9894604 DOI: 10.1089/g4h.2022.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Stroke is a leading cause of chronic motor disability. While physical rehabilitation can promote functional recovery, several barriers prevent patients from receiving optimal rehabilitative care. Easy access to at-home rehabilitative tools could increase patients' ability to participate in rehabilitative exercises, which may lead to improved outcomes. Toward achieving this goal, we developed RePlay: a novel system that facilitates unsupervised rehabilitative exercises at home. RePlay leverages available consumer technology to provide a simple tool that allows users to perform common rehabilitative exercises in a gameplay environment. RePlay collects quantitative time series force and movement data from handheld devices, which provide therapists the ability to quantify gains and individualize rehabilitative regimens. RePlay was developed in C# using Visual Studio. In this feasibility study, we assessed whether participants with neurological injury are capable of using the RePlay system in both a supervised in-office setting and an unsupervised at-home setting, and we assessed their adherence to the unsupervised at-home rehabilitation assignment. All participants were assigned a set of 18 games and exercises to play each day. Participants produced on average 698 ± 36 discrete movements during the initial 1 hour in-office visit. A subset of participants who used the system at home produced 1593 ± 197 discrete movements per day. Participants demonstrated a high degree of engagement while using the system at home, typically completing nearly double the number of assigned exercises per day. These findings indicate that the open-source RePlay system may be a feasible tool to facilitate access to rehabilitative exercises and potentially improve overall patient outcomes.
Collapse
Affiliation(s)
- David T. Pruitt
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, USA
| | - Y.-Nhy Duong-Nguyen
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, USA
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Eric C. Meyers
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, USA
| | - Joseph D. Epperson
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, USA
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas, USA
| | - Joel M. Wright
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, USA
| | - Rachael A. Hudson
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, USA
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Jane G. Wigginton
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, USA
- Department of Emergency Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert L. Rennaker II
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, USA
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A. Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, USA
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas, USA
| | - Michael P. Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, USA
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
21
|
Medel-Matus JS, Santana-Gómez CE, Puig-Lagunes ÁA. Drug-Resistant Epilepsy and the Influence of Age, Gender, and Comorbid Disorders. PHARMACORESISTANCE IN EPILEPSY 2023:391-413. [DOI: 10.1007/978-3-031-36526-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
22
|
Kanatome A, Takara T, Umeda S, Ano Y. Effects of matured hop bitter acids on heart rate variability and cognitive performance: A randomized placebo-controlled crossover trial. J Funct Foods 2023. [DOI: 10.1016/j.jff.2022.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
23
|
Rodenkirch C, Carmel JB, Wang Q. Rapid Effects of Vagus Nerve Stimulation on Sensory Processing Through Activation of Neuromodulatory Systems. Front Neurosci 2022; 16:922424. [PMID: 35864985 PMCID: PMC9294458 DOI: 10.3389/fnins.2022.922424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
After sensory information is encoded into neural signals at the periphery, it is processed through multiple brain regions before perception occurs (i.e., sensory processing). Recent work has begun to tease apart how neuromodulatory systems influence sensory processing. Vagus nerve stimulation (VNS) is well-known as an effective and safe method of activating neuromodulatory systems. There is a growing body of studies confirming VNS has immediate effects on sensory processing across multiple sensory modalities. These immediate effects of VNS on sensory processing are distinct from the more well-documented method of inducing lasting neuroplastic changes to the sensory pathways through repeatedly delivering a brief VNS burst paired with a sensory stimulus. Immediate effects occur upon VNS onset, often disappear upon VNS offset, and the modulation is present for all sensory stimuli. Conversely, the neuroplastic effect of pairing sub-second bursts of VNS with a sensory stimulus alters sensory processing only after multiple pairing sessions, this alteration remains after cessation of pairing sessions, and the alteration selectively affects the response properties of neurons encoding the specific paired sensory stimulus. Here, we call attention to the immediate effects VNS has on sensory processing. This review discusses existing studies on this topic, provides an overview of the underlying neuromodulatory systems that likely play a role, and briefly explores the potential translational applications of using VNS to rapidly regulate sensory processing.
Collapse
Affiliation(s)
- Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Jacobs Technion-Cornell Institute, Cornell Tech, New York, NY, United States
- *Correspondence: Charles Rodenkirch,
| | - Jason B. Carmel
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY, United States
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Qi Wang,
| |
Collapse
|
24
|
Liu Y, Zhang L, Zhang X, Ma J, Jia G. Effect of Combined Vagus Nerve Stimulation on Recovery of Upper Extremity Function in Patients with Stroke: A Systematic Review and Meta-Analysis. J Stroke Cerebrovasc Dis 2022; 31:106390. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 10/18/2022] Open
|
25
|
Chen H, Feng Z, Min L, Deng W, Tan M, Hong J, Gong Q, Zhang D, Liu H, Hou J. Vagus Nerve Stimulation Reduces Neuroinflammation Through Microglia Polarization Regulation to Improve Functional Recovery After Spinal Cord Injury. Front Neurosci 2022; 16:813472. [PMID: 35464311 PMCID: PMC9022634 DOI: 10.3389/fnins.2022.813472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/11/2022] [Indexed: 01/02/2023] Open
Abstract
BackgroundSpinal cord injury (SCI) is a devastating disease that lacks effective treatment. Interestingly, recent studies indicated that vagus nerve stimulation (VNS), neuromodulation that is widely used in a variety of central nervous system (CNS) diseases, improved motor function recovery after SCI. But the exact underlying mechanism of how VNS ameliorates SCI is unclear. This study aimed to confirm the efficacy and further explore the potential therapeutic mechanism of VNS in SCI.MethodA T10 spinal cord compression model was established in adult female Sprague-Dawley rats. Then the stimulation electrode was placed in the left cervical vagus nerve (forming Sham-VNS, VNS, and VNS-MLA groups). Basso-Beattie-Bresnahan (BBB) behavioral scores and Motor evoked potentials (MEPs) analysis were used to detect motor function. A combination of histological and molecular methods was used to clarify the relevant mechanism.ResultsCompared with the Sham-VNS group, the VNS group exhibited better functional recovery, reduced scar formation (both glial and fibrotic scars), tissue damage, and dark neurons, but these beneficial effects of VNS were diminished after alpha 7 nicotinic acetylcholine receptor (α7nAchR) blockade. Specifically, VNS inhibited the pro-inflammatory factors TNF-α, IL-1β, and IL-6 and increased the expression of the anti-inflammatory factors IL-10. Furthermore, we found that VNS promotes the shift of M1-polarized Iba-1+/CD86+ microglia to M2-polarized Iba-1+/CD206+ microglia via upregulating α7nAchR to alleviate neuroinflammation after SCI.ConclusionOur results demonstrated that VNS promotes microglial M2 polarization through upregulating α7nAChR to reduce neuroinflammation, thus improving motor function recovery after SCI. These findings indicate VNS might be a promising neuromodulation strategy for SCI.
Collapse
|
26
|
Plasticity of the Central Nervous System Involving Peripheral Nerve Transfer. Neural Plast 2022; 2022:5345269. [PMID: 35342394 PMCID: PMC8956439 DOI: 10.1155/2022/5345269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Peripheral nerve injury can lead to partial or complete loss of limb function, and nerve transfer is an effective surgical salvage for patients with these injuries. The inability of deprived cortical regions representing damaged nerves to overcome corresponding maladaptive plasticity after the reinnervation of muscle fibers and sensory receptors is thought to be correlated with lasting and unfavorable functional recovery. However, the concept of central nervous system plasticity is rarely elucidated in classical textbooks involving peripheral nerve injury, let alone peripheral nerve transfer. This article is aimed at providing a comprehensive understanding of central nervous system plasticity involving peripheral nerve injury by reviewing studies mainly in human or nonhuman primate and by highlighting the functional and structural modifications in the central nervous system after peripheral nerve transfer. Hopefully, it will help surgeons perform successful nerve transfer under the guidance of modern concepts in neuroplasticity.
Collapse
|
27
|
Ganzer PD, Loeian MS, Roof SR, Teng B, Lin L, Friedenberg DA, Baumgart IW, Meyers EC, Chun KS, Rich A, Tsao AL, Muir WW, Weber DJ, Hamlin RL. Dynamic detection and reversal of myocardial ischemia using an artificially intelligent bioelectronic medicine. SCIENCE ADVANCES 2022; 8:eabj5473. [PMID: 34985951 PMCID: PMC8730601 DOI: 10.1126/sciadv.abj5473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Myocardial ischemia is spontaneous, frequently asymptomatic, and contributes to fatal cardiovascular consequences. Importantly, myocardial sensory networks cannot reliably detect and correct myocardial ischemia on their own. Here, we demonstrate an artificially intelligent and responsive bioelectronic medicine, where an artificial neural network (ANN) supplements myocardial sensory networks, enabling reliable detection and correction of myocardial ischemia. ANNs were first trained to decode spontaneous cardiovascular stress and myocardial ischemia with an overall accuracy of ~92%. ANN-controlled vagus nerve stimulation (VNS) significantly mitigated major physiological features of myocardial ischemia, including ST depression and arrhythmias. In contrast, open-loop VNS or ANN-controlled VNS following a caudal vagotomy essentially failed to reverse cardiovascular pathophysiology. Last, variants of ANNs were used to meet clinically relevant needs, including interpretable visualizations and unsupervised detection of emerging cardiovascular stress. Overall, these preclinical results suggest that ANNs can potentially supplement deficient myocardial sensory networks via an artificially intelligent bioelectronic medicine system.
Collapse
Affiliation(s)
- Patrick D. Ganzer
- Medical Devices and Neuromodulation, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
- Department of Biomedical Engineering, University of Miami, 1320 S Dixie Hwy., Coral Gables, FL 33146, USA
- The Miami Project to Cure Paralysis, University of Miami, 1095 NW 14th Terrace #48, Miami, FL 33136, USA
- Corresponding author.
| | - Masoud S. Loeian
- Medical Devices and Neuromodulation, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - Steve R. Roof
- QTest Labs, 6456 Fiesta Dr., Columbus, OH 43235, USA
| | - Bunyen Teng
- QTest Labs, 6456 Fiesta Dr., Columbus, OH 43235, USA
| | - Luan Lin
- Health Analytics, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - David A. Friedenberg
- Health Analytics, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - Ian W. Baumgart
- Medical Devices and Neuromodulation, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - Eric C. Meyers
- Medical Devices and Neuromodulation, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - Keum S. Chun
- Medical Devices and Neuromodulation, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - Adam Rich
- Health Analytics, Battelle Memorial Institute, 505 King Ave., Columbus, OH 43201, USA
| | - Allison L. Tsao
- Cardiovascular Section, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - William W. Muir
- QTest Labs, 6456 Fiesta Dr., Columbus, OH 43235, USA
- College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA
| | - Doug J. Weber
- Department of Mechanical Engineering and Neuroscience, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA
| | - Robert L. Hamlin
- QTest Labs, 6456 Fiesta Dr., Columbus, OH 43235, USA
- Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus, OH 43201, USA
| |
Collapse
|
28
|
Brougher J, Aziz U, Adari N, Chaturvedi M, Jules A, Shah I, Syed S, Thorn CA. Self-Administration of Right Vagus Nerve Stimulation Activates Midbrain Dopaminergic Nuclei. Front Neurosci 2022; 15:782786. [PMID: 34975384 PMCID: PMC8716493 DOI: 10.3389/fnins.2021.782786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Left cervical vagus nerve stimulation (l-VNS) is an FDA-approved treatment for neurological disorders including epilepsy, major depressive disorder, and stroke, and l-VNS is increasingly under investigation for a range of other neurological indications. Traditional l-VNS is thought to induce therapeutic neuroplasticity in part through the coordinated activation of multiple broadly projecting neuromodulatory systems in the brain. Recently, it has been reported that striking lateralization exists in the anatomical and functional connectivity between the vagus nerves and the dopaminergic midbrain. These emerging findings suggest that VNS-driven activation of this important plasticity-promoting neuromodulatory system may be preferentially driven by targeting the right, rather than the left, cervical nerve. Objective: To compare the effects of right cervical VNS (r-VNS) vs. traditional l-VNS on self-administration behavior and midbrain dopaminergic activation in rats. Methods: Rats were implanted with a stimulating cuff electrode targeting either the right or left cervical vagus nerve. After surgical recovery, rats underwent a VNS self-administration assay in which lever pressing was paired with r-VNS or l-VNS delivery. Self-administration was followed by extinction, cue-only reinstatement, and stimulation reinstatement sessions. Rats were sacrificed 90 min after completion of behavioral training, and brains were removed for immunohistochemical analysis of c-Fos expression in the dopaminergic ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), as well as in the noradrenergic locus coeruleus (LC). Results: Rats in the r-VNS cohort performed significantly more lever presses throughout self-administration and reinstatement sessions than did rats in the l-VNS cohort. Moreover, this appetitive behavioral responding was associated with significantly greater c-Fos expression among neuronal populations within the VTA, SNc, and LC. Differential c-Fos expression following r-VNS vs. l-VNS was particularly prominent within dopaminergic midbrain neurons. Conclusion: Our results support the existence of strong lateralization within vagal-mesencephalic signaling pathways, and suggest that VNS targeted to the right, rather than left, cervical nerve preferentially activates the midbrain dopaminergic system. These findings raise the possibility that r-VNS could provide a promising strategy for enhancing dopamine-dependent neuroplasticity, opening broad avenues for future research into the efficacy and safety of r-VNS in the treatment of neurological disease.
Collapse
Affiliation(s)
- Jackson Brougher
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Umaymah Aziz
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Nikitha Adari
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Muskaan Chaturvedi
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Aryela Jules
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Iqra Shah
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Saba Syed
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Catherine A Thorn
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
29
|
Shaping plasticity with non-invasive brain stimulation in the treatment of psychiatric disorders: Present and future. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:497-507. [PMID: 35034757 PMCID: PMC9985830 DOI: 10.1016/b978-0-12-819410-2.00028-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The final chapter of this book addresses plasticity in the setting of treating psychiatric disorders. This chapter largely focuses on the treatment of depression and reviews the established antidepressant brain stimulation treatments, focusing on plasticity and maladaptive plasticity. Depression is a unique neuropsychiatric disease in that the brain goes from a healthy state into a pathologic state, and then, with appropriate treatment, can return to health often without permanent sequelae. Depression thus differs fundamentally from neurodegenerative brain diseases like Parkinson's disease or stroke. Some have theorized that depression involves a lack of flexibility or a lack of plasticity. The proven brain stimulation methods for treating depression cause plastic changes and include acute and maintenance electroconvulsive therapy (ECT), acute and maintenance transcranial magnetic stimulation (TMS), and chronically implanted cervical vagus nerve stimulation (VNS). These treatments vary widely in their speed of onset and durability. This variability in onset speed and durability raises interesting, and so far, largely unanswered questions about the underlying neurobiological mechanisms and forms of plasticity being invoked. The chapter also covers exciting recent work with vagus nerve stimulation (VNS) that is delivered paired with behaviors to cause learning and memory and plasticity changes. Taken together these current and future brain stimulation treatments for psychiatric disorders are especially promising. They are unlocking how to shape the brain in diseases to restore balance and health, with an increasing understanding of how to effectively and precisely induce therapeutic neuroplastic changes in the brain.
Collapse
|
30
|
Wang Z, Yuan X, Zhang Q, Wen J, Cheng T, Qin X, Ji T, Shu X, Jiang Y, Liao J, Hao H, Li L, Wu Y. Effects of Stable Vagus Nerve Stimulation Efficacy on Autistic Behaviors in Ten Pediatric Patients With Drug Resistant Epilepsy: An Observational Study. Front Pediatr 2022; 10:846301. [PMID: 35311037 PMCID: PMC8924444 DOI: 10.3389/fped.2022.846301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Vagus nerve stimulation (VNS) is a safe and effective therapy for pediatric patients with drug-resistant epilepsy (DRE). However, in children with DRE, the effects of VNS on autistic behaviors remain controversial. We retrospectively collected data from 10 children with DRE who underwent VNS implantation and regular parameter regulation in three pediatric epilepsy centers, and completed the behavioral assessments, including the autistic behavior checklist and the child behavior checklist, at follow-ups 1 (mean 2.16 years) and 2 (mean 2.98 years). The 10 children maintained stable seizure control between the two follow-ups. Their autistic behaviors, especially in language, social and self-help, were reduced at follow-up 2 compared to follow-up 1 (p = 0.01, p = 0.01, respectively). Moreover, these improvements were not associated with their seizure control, whether it was positive or negative. These results suggested that the VNS had a positive effect on autistic behaviors, which provided a preliminary clinical basis that VNS may benefit to younger children with DRE comorbidity autism spectrum disorder (ASD).
Collapse
Affiliation(s)
- Zhiyan Wang
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Xing Yuan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jialun Wen
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Tungyang Cheng
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Xiaoya Qin
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Taoyun Ji
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaomei Shu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Hongwei Hao
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
- Precision Medicine & Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- IDG/McGovern Institute for Brain Research at Tsinghua University, Beijing, China
- Institute of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
- Luming Li
| | - Ye Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- *Correspondence: Ye Wu
| |
Collapse
|
31
|
Chang JL, Coggins AN, Saul M, Paget-Blanc A, Straka M, Wright J, Datta-Chaudhuri T, Zanos S, Volpe BT. Transcutaneous Auricular Vagus Nerve Stimulation (tAVNS) Delivered During Upper Limb Interactive Robotic Training Demonstrates Novel Antagonist Control for Reaching Movements Following Stroke. Front Neurosci 2021; 15:767302. [PMID: 34899170 PMCID: PMC8655845 DOI: 10.3389/fnins.2021.767302] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Implanted vagus nerve stimulation (VNS) delivered concurrently with upper limb rehabilitation has been shown to improve arm function after stroke. Transcutaneous auricular VNS (taVNS) offers a non-invasive alternative to implanted VNS and may provide similar therapeutic benefit. There is much discussion about the optimal approach for combining VNS and physical therapy, as such we sought to determine whether taVNS administered during robotic training, specifically delivered during the premotor planning stage for arm extension movements, would confer additional motor improvement in patients with chronic stroke. Thirty-six patients with chronic, moderate-severe upper limb hemiparesis (>6 months; mean Upper Extremity Fugl-Meyer score = 25 ± 2, range 13-48), were randomized to receive 9 sessions (1 h in length, 3x/week for 3 weeks) of active (N = 18) or sham (N = 18) taVNS (500 ms bursts, frequency 30 Hz, pulse width 0.3 ms, max intensity 5 mA, ∼250 stimulated movements per session) delivered during robotic training. taVNS was triggered by the onset of a visual cue prior to center-out arm extension movements. Clinical assessments and surface electromyography (sEMG) measures of the biceps and triceps brachii were collected during separate test sessions. Significant motor improvements were measured for both the active and sham taVNS groups, and these improvements were robust at 3 month follow-up. Compared to the sham group, the active taVNS group showed a significant reduction in spasticity of the wrist and hand at discharge (Modified Tardieu Scale; taVNS = -8.94% vs. sham = + 2.97%, p < 0.05). The EMG results also demonstrated significantly increased variance for the bicep peak sEMG amplitude during extension for the active taVNS group compared to the sham group at discharge (active = 26.29% MVC ± 3.89, sham = 10.63% MVC ± 3.10, mean absolute change admission to discharge, p < 0.01), and at 3-month follow-up, the bicep peak sEMG amplitude was significantly reduced in the active taVNS group (P < 0.05). Thus, robot training improved the motor capacity of both groups, and taVNS, decreased spasticity. taVNS administered during premotor planning of movement may play a role in improving coordinated activation of the agonist-antagonist upper arm muscle groups by mitigating spasticity and increasing motor control following stroke. Clinical Trial Registration: www.ClinicalTrials.gov, identifier (NCT03592745).
Collapse
Affiliation(s)
- Johanna L Chang
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ashley N Coggins
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Maira Saul
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Alexandra Paget-Blanc
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Malgorzata Straka
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Jason Wright
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Timir Datta-Chaudhuri
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Stavros Zanos
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Bruce T Volpe
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
32
|
Tseng CT, Gaulding SJ, Dancel CLE, Thorn CA. Local activation of α2 adrenergic receptors is required for vagus nerve stimulation induced motor cortical plasticity. Sci Rep 2021; 11:21645. [PMID: 34737352 PMCID: PMC8568982 DOI: 10.1038/s41598-021-00976-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
Vagus nerve stimulation (VNS) paired with rehabilitation training is emerging as a potential treatment for improving recovery of motor function following stroke. In rats, VNS paired with skilled forelimb training results in significant reorganization of the somatotopic cortical motor map; however, the mechanisms underlying this form of VNS-dependent plasticity remain unclear. Recent studies have shown that VNS-driven cortical plasticity is dependent on noradrenergic innervation of the neocortex. In the central nervous system, noradrenergic α2 receptors (α2-ARs) are widely expressed in the motor cortex and have been critically implicated in synaptic communication and plasticity. In current study, we examined whether activation of cortical α2-ARs is necessary for VNS-driven motor cortical reorganization to occur. Consistent with previous studies, we found that VNS paired with motor training enlarges the map representation of task-relevant musculature in the motor cortex. Infusion of α2-AR antagonists into M1 blocked VNS-driven motor map reorganization from occurring. Our results suggest that local α2-AR activation is required for VNS-induced cortical reorganization to occur, providing insight into the mechanisms that may underlie the neuroplastic effects of VNS therapy.
Collapse
Affiliation(s)
- Ching-Tzu Tseng
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Solomon J Gaulding
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Canice Lei E Dancel
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Catherine A Thorn
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
33
|
Brougher J, Sanchez CA, Aziz US, Gove KF, Thorn CA. Vagus Nerve Stimulation Induced Motor Map Plasticity Does Not Require Cortical Dopamine. Front Neurosci 2021; 15:693140. [PMID: 34497484 PMCID: PMC8420970 DOI: 10.3389/fnins.2021.693140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Vagus nerve stimulation (VNS) paired with motor rehabilitation is an emerging therapeutic strategy to enhance functional recovery after neural injuries such as stroke. Training-paired VNS drives significant neuroplasticity within the motor cortex (M1), which is thought to underlie the therapeutic effects of VNS. Though the mechanisms are not fully understood, VNS-induced cortical plasticity is known to depend on intact signaling from multiple neuromodulatory nuclei that innervate M1. Cortical dopamine (DA) plays a key role in mediating M1 synaptic plasticity and is critical for motor skill acquisition, but whether cortical DA contributes to VNS efficacy has not been tested. Objective: To determine the impact of cortical DA depletion on VNS-induced cortical plasticity. Methods: Rats were trained on a skilled reaching lever press task prior to implantation of VNS electrodes and 6-hydroxydopamine (6-OHDA) mediated DA depletion in M1. Rats then underwent training-paired VNS treatment, followed by cortical motor mapping and lesion validation. Results: In both intact and DA-depleted rats, VNS significantly increased the motor map representation of task-relevant proximal forelimb musculature and reduced task-irrelevant distal forelimb representations. VNS also significantly increased tyrosine hydroxylase (TH+) fiber density in intact M1, but this effect was not observed in lesioned hemispheres. Conclusion: Our results reveal that though VNS likely upregulates catecholaminergic signaling in intact motor cortices, DA itself is not required for VNS-induced plasticity to occur. As DA is known to critically support M1 plasticity during skill acquisition, our findings suggest that VNS may engage a unique set of neuromodulatory signaling pathways to promote neocortical plasticity.
Collapse
Affiliation(s)
- Jackson Brougher
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Camilo A Sanchez
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Umaymah S Aziz
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Kiree F Gove
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Catherine A Thorn
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
34
|
De Martino ML, De Bartolo M, Leemhuis E, Pazzaglia M. Rebuilding Body-Brain Interaction from the Vagal Network in Spinal Cord Injuries. Brain Sci 2021; 11:brainsci11081084. [PMID: 34439702 PMCID: PMC8391959 DOI: 10.3390/brainsci11081084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injuries (SCIs) exert devastating effects on body awareness, leading to the disruption of the transmission of sensory and motor inputs. Researchers have attempted to improve perceived body awareness post-SCI by intervening at the multisensory level, with the integration of somatic sensory and motor signals. However, the contributions of interoceptive-visceral inputs, particularly the potential interaction of motor and interoceptive signals, remain largely unaddressed. The present perspective aims to shed light on the use of interoceptive signals as a significant resource for patients with SCI to experience a complete sense of body awareness. First, we describe interoceptive signals as a significant obstacle preventing such patients from experiencing body awareness. Second, we discuss the multi-level mechanisms associated with the homeostatic stability of the body, which creates a unified, coherent experience of one's self and one's body, including real-time updates. Body awareness can be enhanced by targeting the vagus nerve function by, for example, applying transcutaneous vagus nerve stimulation. This perspective offers a potentially useful insight for researchers and healthcare professionals, allowing them to be better equipped in SCI therapy. This will lead to improved sensory motor and interoceptive signals, a decreased likelihood of developing deafferentation pain, and the successful implementation of modern robotic technologies.
Collapse
Affiliation(s)
- Maria Luisa De Martino
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mina De Bartolo
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
| | - Erik Leemhuis
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
| | - Mariella Pazzaglia
- Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Rome, Italy; (M.L.D.M.); (M.D.B.); (E.L.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179 Rome, Italy
- Correspondence: ; Tel.: +39-6-49917633
| |
Collapse
|
35
|
Cervical transcutaneous vagal nerve stimulation (ctVNS) improves human cognitive performance under sleep deprivation stress. Commun Biol 2021; 4:634. [PMID: 34112935 PMCID: PMC8192899 DOI: 10.1038/s42003-021-02145-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Fatigue is a pervasive public health and safety issue. Common fatigue countermeasures include caffeine or other chemical stimulants. These can be effective in limited circumstances but other non-pharmacological fatigue countermeasures such as non-invasive electrical neuromodulation have shown promise. It is reasonable to suspect that other types of non-invasive neuromodulation may be similarly effective or perhaps even superior. The objective of this research was to evaluate the efficacy of cervical transcutaneous vagal nerve stimulation (ctVNS) to mitigate the negative effects of fatigue on cognition and mood. Two groups (active or sham stimulation) of twenty participants in each group completed 34 h of sustained wakefulness. The ctVNS group performed significantly better on arousal, multi-tasking, and reported significantly lower fatigue ratings compared to sham for the duration of the study. CtVNS could be a powerful fatigue countermeasure tool that is easy to administer, long-lasting, and has fewer side-effects compared to common pharmacological interventions.
Collapse
|
36
|
Collins L, Boddington L, Steffan PJ, McCormick D. Vagus nerve stimulation induces widespread cortical and behavioral activation. Curr Biol 2021; 31:2088-2098.e3. [DOI: 10.1016/j.cub.2021.02.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 01/02/2023]
|
37
|
Abstract
Background: Reviving patients with prolonged disorders of consciousness (DOCs) has always been focused and challenging in medical research. Owing to the limited effectiveness of available medicine, recent research has increasingly turned towards neuromodulatory therapies, involving the stimulation of neural circuits. We summarised the progression of research regarding neuromodulatory therapies in the field of DOCs, compared the differences among different studies, in an attempt to explore optimal stimulation patterns and parameters, and analyzed the major limitations of the relevant studies to facilitate future research. Methods: We performed a search in the PubMed database, using the concepts of DOCs and neuromodulation. Inclusion criteria were: articles in English, published after 2002, and reporting clinical trials of neuromodulatory therapies in human patients with DOCs. Results: Overall, 187 published articles met the search criteria, and 60 articles met the inclusion criteria. There are differences among these studies regarding the clinical efficacies of neurostimulation techniques for patients with DOCs, and large-sample studies are still lacking. Conclusions: Neuromodulatory techniques were used as trial therapies for DOCs wherein their curative effects were controversial. The difficulties in detecting residual consciousness, the confounding effect between the natural course of the disease and therapeutic effect, and the heterogeneity across patients are the major limitations. Large-sample, well-designed studies, and innovations for both treatment and assessment are anticipated in future research.
Collapse
|
38
|
Łuc M, Misiak B, Pawłowski M, Stańczykiewicz B, Zabłocka A, Szcześniak D, Pałęga A, Rymaszewska J. Gut microbiota in dementia. Critical review of novel findings and their potential application. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110039. [PMID: 32687964 DOI: 10.1016/j.pnpbp.2020.110039] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/19/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
Abstract
There is a great deal of impetus for the comprehensive understanding of the complete pathological function, genetic information, and functional diversity of the gut microbiota that favors the development of dementia. It has been reported that patients with mild cognitive impairment and Alzheimer's disease present with several metabolic and immune-inflammatory alterations. The recently highlighted aspects of human health linked to cognitive decline include insulin-resistance, obesity, and chronic low-grade inflammation. Gut microbiota is known to produce neurotransmitters, such as GABA, acetylcholine, dopamine or serotonin, vitamins, intestinal toxins, and modulate nerve signaling - with emphasis on the vagus nerve. Additionally, gut dysbiosis results in impaired synthesis of signaling proteins affecting metabolic processes relevant to the development of Alzheimer's disease. Due to numerous links of gut microbiota to crucial metabolic and inflammatory pathways, attempts aimed at correcting the gut microflora composition may affect dementia pathology in a pleiotropic manner. Taking advantage of the metabolic effects of cold exposure on organisms by the introduction of whole-body cryostimulation in dementia patients could lead to alterations in gut microbiota and, therefore, decrease of an inflammatory response and insulin resistance, which remain one of the critical metabolic features of dementia. Further studies are needed in order to explore the potential application of recent findings and ways of achieving the desired goals.
Collapse
Affiliation(s)
- Mateusz Łuc
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-368 Wroclaw, Poland.
| | - Błażej Misiak
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland
| | - Marcin Pawłowski
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-368 Wroclaw, Poland
| | | | - Agnieszka Zabłocka
- Laboratory of Microbiome Immunobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Dorota Szcześniak
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-368 Wroclaw, Poland
| | - Anna Pałęga
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-368 Wroclaw, Poland
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, Pasteura 10, 50-368 Wroclaw, Poland
| |
Collapse
|
39
|
Li C, Liu SY, Pi W, Zhang PX. Cortical plasticity and nerve regeneration after peripheral nerve injury. Neural Regen Res 2021; 16:1518-1523. [PMID: 33433465 PMCID: PMC8323687 DOI: 10.4103/1673-5374.303008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
With the development of neuroscience, substantial advances have been achieved in peripheral nerve regeneration over the past decades. However, peripheral nerve injury remains a critical public health problem because of the subsequent impairment or absence of sensorimotor function. Uncomfortable complications of peripheral nerve injury, such as chronic pain, can also cause problems for families and society. A number of studies have demonstrated that the proper functioning of the nervous system depends not only on a complete connection from the central nervous system to the surrounding targets at an anatomical level, but also on the continuous bilateral communication between the two. After peripheral nerve injury, the interruption of afferent and efferent signals can cause complex pathophysiological changes, including neurochemical alterations, modifications in the adaptability of excitatory and inhibitory neurons, and the reorganization of somatosensory and motor regions. This review discusses the close relationship between the cerebral cortex and peripheral nerves. We also focus on common therapies for peripheral nerve injury and summarize their potential mechanisms in relation to cortical plasticity. It has been suggested that cortical plasticity may be important for improving functional recovery after peripheral nerve damage. Further understanding of the potential common mechanisms between cortical reorganization and nerve injury will help to elucidate the pathophysiological processes of nerve injury, and may allow for the reduction of adverse consequences during peripheral nerve injury recovery. We also review the role that regulating reorganization mechanisms plays in functional recovery, and conclude with a suggestion to target cortical plasticity along with therapeutic interventions to promote peripheral nerve injury recovery.
Collapse
Affiliation(s)
- Ci Li
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Song-Yang Liu
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Wei Pi
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing, China
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital; Key Laboratory of Trauma and Neural Regeneration, Peking University; National Center for Trauma Medicine, Beijing, China
| |
Collapse
|
40
|
Tseng CT, Brougher J, Gaulding SJ, Hassan BS, Thorn CA. Vagus nerve stimulation promotes cortical reorganization and reduces task-dependent calorie intake in male and female rats. Brain Res 2020; 1748:147099. [DOI: 10.1016/j.brainres.2020.147099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 12/29/2022]
|
41
|
Conlon B, Langguth B, Hamilton C, Hughes S, Meade E, Connor CO, Schecklmann M, Hall DA, Vanneste S, Leong SL, Subramaniam T, D’Arcy S, Lim HH. Bimodal neuromodulation combining sound and tongue stimulation reduces tinnitus symptoms in a large randomized clinical study. Sci Transl Med 2020; 12:12/564/eabb2830. [DOI: 10.1126/scitranslmed.abb2830] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 09/09/2020] [Indexed: 12/29/2022]
Abstract
Tinnitus is a phantom auditory perception coded in the brain that can be bothersome or debilitating, affecting 10 to 15% of the population. Currently, there is no clinically recommended drug or device treatment for this major health condition. Animal research has revealed that sound paired with electrical somatosensory stimulation can drive extensive plasticity within the brain for tinnitus treatment. To investigate this bimodal neuromodulation approach in humans, we evaluated a noninvasive device that delivers sound to the ears and electrical stimulation to the tongue in a randomized, double-blinded, exploratory study that enrolled 326 adults with chronic subjective tinnitus. Participants were randomized into three parallel arms with different stimulation settings. Clinical outcomes were evaluated over a 12-week treatment period and a 12-month posttreatment phase. For the primary endpoints, participants achieved a statistically significant reduction in tinnitus symptom severity at the end of treatment based on two commonly used outcome measures, Tinnitus Handicap Inventory (Cohen’s d effect size: −0.87 to −0.92 across arms; P < 0.001) and Tinnitus Functional Index (−0.77 to −0.87; P < 0.001). Therapeutic improvements continued for 12 months after treatment for specific bimodal stimulation settings, which had not previously been demonstrated in a large cohort for a tinnitus intervention. The treatment also achieved high compliance and satisfaction rates with no treatment-related serious adverse events. These positive therapeutic and long-term results motivate further clinical trials toward establishing bimodal neuromodulation as a clinically recommended device treatment for tinnitus.
Collapse
Affiliation(s)
- Brendan Conlon
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
- School of Medicine, Trinity College, Dublin D02 R590, Ireland
- Department of Otolaryngology, St. James’s Hospital, Dublin D08 NHY1, Ireland
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg 93053, Germany
- Interdisciplinary Tinnitus Center of University of Regensburg, Regensburg 93053, Germany
| | | | | | - Emma Meade
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
| | | | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg 93053, Germany
- Interdisciplinary Tinnitus Center of University of Regensburg, Regensburg 93053, Germany
| | - Deborah A. Hall
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK
- Hearing Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham NG7 2RD, UK
- University of Nottingham Malaysia, Selangor 43500, Malaysia
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
- Global Brain Health Institute, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Sook Ling Leong
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin D02 PN40, Ireland
| | | | - Shona D’Arcy
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
| | - Hubert H. Lim
- Neuromod Devices Limited, Dublin D08 R2YP, Ireland
- Department of Otolaryngology—Head and Neck Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
42
|
Luckey AM, McLeod SL, Robertson IH, To WT, Vanneste S. Greater Occipital Nerve Stimulation Boosts Associative Memory in Older Individuals: A Randomized Trial. Neurorehabil Neural Repair 2020; 34:1020-1029. [DOI: 10.1177/1545968320943573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcutaneous electrical stimulation (tES) is a new approach that aims to stimulate the brain. Recently, we have developed tES approaches to enhance plasticity that modulate cortical activity via the greater occipital nerve (ON) in a “bottom-up” way. Thirty subjects between the ages of 55 and 70 years were enrolled and tested using a double-blind, sham-controlled, and randomized design. Half of the participants received active stimulation, while the other half received sham stimulation. Our results demonstrate that ON-tES can enhance memory in older individuals after one session, with effects persisting up to 28 days after stimulation. The hypothesized mechanism by which ON-tES enhances memory is activation of the locus coeruleus–noradrenaline (LC-NA) pathway. It is likely that this pathway was activated after ON-tES, as supported by observed changes in α-amylase concentrations, a biomarker for noradrenaline. There were no significant or long-lasting side effects observed during stimulation. Clinicaltrial.gov (NCT03467698).
Collapse
Affiliation(s)
| | | | | | | | - Sven Vanneste
- Trinity College Dublin, Dublin, Ireland
- University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
43
|
Bremner JD, Gurel NZ, Wittbrodt MT, Shandhi MH, Rapaport MH, Nye JA, Pearce BD, Vaccarino V, Shah AJ, Park J, Bikson M, Inan OT. Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders. J Pers Med 2020; 10:E119. [PMID: 32916852 PMCID: PMC7563188 DOI: 10.3390/jpm10030119] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Vagal Nerve Stimulation (VNS) has been shown to be efficacious for the treatment of depression, but to date, VNS devices have required surgical implantation, which has limited widespread implementation. METHODS New noninvasive VNS (nVNS) devices have been developed which allow external stimulation of the vagus nerve, and their effects on physiology in patients with stress-related psychiatric disorders can be measured with brain imaging, blood biomarkers, and wearable sensing devices. Advantages in terms of cost and convenience may lead to more widespread implementation in psychiatry, as well as facilitate research of the physiology of the vagus nerve in humans. nVNS has effects on autonomic tone, cardiovascular function, inflammatory responses, and central brain areas involved in modulation of emotion, all of which make it particularly applicable to patients with stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD) and depression, since dysregulation of these circuits and systems underlies the symptomatology of these disorders. RESULTS This paper reviewed the physiology of the vagus nerve and its relevance to modulating the stress response in the context of application of nVNS to stress-related psychiatric disorders. CONCLUSIONS nVNS has a favorable effect on stress physiology that is measurable using brain imaging, blood biomarkers of inflammation, and wearable sensing devices, and shows promise in the prevention and treatment of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- James Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Mobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
| | - Mark H. Rapaport
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; (M.T.W.); (M.H.R.)
| | - Jonathon A. Nye
- Department of Radiology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Epidemiology, Rollins School of Public Health, Atlanta, GA 30322, USA; (B.D.P.); (V.V.)
- Department of Medicine, Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeanie Park
- Atlanta VA Medical Center, Decatur, GA 30033, USA; (A.J.S.); (J.P.)
- Department of Medicine, Renal Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City University of New York, New York, NY 10010, USA;
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.G.); (M.H.S.); (O.T.I.)
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
44
|
Adair D, Truong D, Esmaeilpour Z, Gebodh N, Borges H, Ho L, Bremner JD, Badran BW, Napadow V, Clark VP, Bikson M. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul 2020; 13:717-750. [PMID: 32289703 PMCID: PMC7196013 DOI: 10.1016/j.brs.2020.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The cranial nerves are the pathways through which environmental information (sensation) is directly communicated to the brain, leading to perception, and giving rise to higher cognition. Because cranial nerves determine and modulate brain function, invasive and non-invasive cranial nerve electrical stimulation methods have applications in the clinical, behavioral, and cognitive domains. Among other neuromodulation approaches such as peripheral, transcranial and deep brain stimulation, cranial nerve stimulation is unique in allowing axon pathway-specific engagement of brain circuits, including thalamo-cortical networks. In this review we amalgamate relevant knowledge of 1) cranial nerve anatomy and biophysics; 2) evidence of the modulatory effects of cranial nerves on cognition; 3) clinical and behavioral outcomes of cranial nerve stimulation; and 4) biomarkers of nerve target engagement including physiology, electroencephalography, neuroimaging, and behavioral metrics. Existing non-invasive stimulation methods cannot feasibly activate the axons of only individual cranial nerves. Even with invasive stimulation methods, selective targeting of one nerve fiber type requires nuance since each nerve is composed of functionally distinct axon-types that differentially branch and can anastomose onto other nerves. None-the-less, precisely controlling stimulation parameters can aid in affecting distinct sets of axons, thus supporting specific actions on cognition and behavior. To this end, a rubric for reproducible dose-response stimulation parameters is defined here. Given that afferent cranial nerve axons project directly to the brain, targeting structures (e.g. thalamus, cortex) that are critical nodes in higher order brain networks, potent effects on cognition are plausible. We propose an intervention design framework based on driving cranial nerve pathways in targeted brain circuits, which are in turn linked to specific higher cognitive processes. State-of-the-art current flow models that are used to explain and design cranial-nerve-activating stimulation technology require multi-scale detail that includes: gross anatomy; skull foramina and superficial tissue layers; and precise nerve morphology. Detailed simulations also predict that some non-invasive electrical or magnetic stimulation approaches that do not intend to modulate cranial nerves per se, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS), may also modulate activity of specific cranial nerves. Much prior cranial nerve stimulation work was conceptually limited to the production of sensory perception, with individual titration of intensity based on the level of perception and tolerability. However, disregarding sensory emulation allows consideration of temporal stimulation patterns (axon recruitment) that modulate the tone of cortical networks independent of sensory cortices, without necessarily titrating perception. For example, leveraging the role of the thalamus as a gatekeeper for information to the cerebral cortex, preventing or enhancing the passage of specific information depending on the behavioral state. We show that properly parameterized computational models at multiple scales are needed to rationally optimize neuromodulation that target sets of cranial nerves, determining which and how specific brain circuitries are modulated, which can in turn influence cognition in a designed manner.
Collapse
Affiliation(s)
- Devin Adair
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Dennis Truong
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| | - Nigel Gebodh
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Helen Borges
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Libby Ho
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - J Douglas Bremner
- Department of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Bashar W Badran
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Vitaly Napadow
- Martinos Center for Biomedical Imaging, Department of Radiology, MGH, Harvard medical school, Boston, MA, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA.
| |
Collapse
|
45
|
Bahr-Hosseini M, Saver JL. Mechanisms of action of acute and subacute sphenopalatine ganglion stimulation for ischemic stroke. Int J Stroke 2020; 15:839-848. [PMID: 32326842 DOI: 10.1177/1747493020920739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Sphenopalatine ganglion stimulation (SPG-Stim) for ischemic stroke, starting 8-24 h after onset and continuing through five days in a pooled analysis of two recent, randomized, sham-controlled trials, improved outcome of acute ischemic stroke patients with confirmed cortical involvement. As a neuromodulatory therapy, SPG-Stim differs substantially from existing pharmacologic (lytic and antiplatelets) and device (endovascular thrombectomy) acute ischemic stroke treatments. AIM Focused review of SPG anatomy, physiology, and neurovascular and neurobiologic mechanisms of action mediating benefit of SPG-Stim in acute ischemic stroke. SUMMARY OF REVIEW Located posterior to the maxillary sinus, the SPG is the main source of parasympathetic innervation to the anterior circulation. Preclinical and human studies delineate four distinct mechanisms of action by which the SPG-Stim may confer benefit in acute ischemic stroke: (1) collateral vasodilation and enhanced cerebral blood flow, mediated by release of neurotransmitters with vasodilatory effects, nitric oxide, and acetylcholine, (2) stimulation frequency- and intensity-dependent stabilization of the blood-brain barrier, reducing edema (3) direct acute neuroprotection from activation of the central cholinergic system with resulting anti-inflammatory, anti-apoptotic, and anti-excitatory effects; and (4) neuroplasticity enhancement from enhanced central cholinergic and adrenergic neuromodulation of cortical networks and nitrous oxide release stimulating neurogenesis. CONCLUSION The benefit of SPG-Stim in acute ischemic stroke is likely conferred not only by potent collateral augmentation, but also blood-barrier stabilization, direct neuroprotection, and neuroplasticity enhancement. Further studies clarifying the relative contribution of these mechanisms and the stimulation protocols that maximize each may help optimize SPG-Stim as a therapy for acute ischemic stroke.
Collapse
Affiliation(s)
- Mersedeh Bahr-Hosseini
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at 8783UCLA, Los Angeles, CA, USA
| | - Jeffrey L Saver
- Department of Neurology and Comprehensive Stroke Center, David Geffen School of Medicine at 8783UCLA, Los Angeles, CA, USA
| |
Collapse
|
46
|
Sachdeva R, Krassioukov AV, Bucksot JE, Hays SA. Acute Cardiovascular Responses to Vagus Nerve Stimulation after Experimental Spinal Cord Injury. J Neurotrauma 2020; 37:1149-1155. [PMID: 31973660 DOI: 10.1089/neu.2019.6828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pairing vagus nerve stimulation (VNS) with rehabilitation has emerged as a potential strategy to enhance plasticity and improve recovery in a range of neurological disorders. A recent study highlights the therapeutic promise of VNS in promoting motor recovery after spinal cord injury (SCI). We investigated the safety of acute VNS in a rat model of chronic SCI. We measured the cardiovascular response to various VNS paradigms following chronic high-thoracic SCI that is known to deleteriously impact cardiovascular control. Dose-response experiments with continuous VNS revealed an SCI-dependent increase in sensitivity for heart rate (HR) and blood pressure (BP) compared with controls. A clinically relevant intermittent VNS resulted in transient reduction in HR in rats with SCI; however, BP remained unaltered. In all experiments, the effect lasted only while the VNS stimulus train was present, as HR and BP restored to baseline values as soon as VNS ended. No prolonged episodes of persisting hypotension were seen in either group. Further, VNS did not trigger autonomic dysreflexia or exacerbate the severity of autonomic dysreflexia when induced during or after stimulation sessions. Overall, these findings provide initial evidence that intermittent VNS at parameters used for targeted plasticity therapy (30 Hz, 0.8 mA) appears safe and supports further investigation of this potential therapy for use following SCI.
Collapse
Affiliation(s)
- Rahul Sachdeva
- International Collaboration on Repair Discoveries (ICORD), Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada.,G.F. Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, British Columbia, Canada
| | - Jesse E Bucksot
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A Hays
- Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, Richardson, Texas, USA.,Texas Biomedical Device Center, The University of Texas at Dallas, Richardson, Texas, USA.,School of Behavioral Brain Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
47
|
Darrow MJ, Mian TM, Torres M, Haider Z, Danaphongse T, Rennaker RL, Kilgard MP, Hays SA. Restoration of Somatosensory Function by Pairing Vagus Nerve Stimulation with Tactile Rehabilitation. Ann Neurol 2020; 87:194-205. [PMID: 31875975 PMCID: PMC9624178 DOI: 10.1002/ana.25664] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/22/2019] [Accepted: 12/23/2019] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Sensory dysfunction is a common consequence of many forms of neurological injury, including stroke and nerve damage. Rehabilitative paradigms that incorporate sensory retraining can provide modest benefits, but the majority of patients are left with lasting sensory loss. We have developed a novel strategy that uses closed-loop vagus nerve stimulation (VNS) paired with tactile rehabilitation to enhance synaptic plasticity and facilitate recovery of sensory function. METHODS A clinical case report provides initial evidence that a similar implementation of closed-loop VNS paired with a tactile rehabilitation regimen could improve recovery of somatosensory function. Here, we sought to build on these promising initial clinical data and rigorously evaluate the ability of VNS paired with tactile rehabilitation to improve recovery in an animal model of chronic sensory loss. The study design, including planned sample size, assessments, and statistical comparisons, was preregistered prior to beginning data collection (https://osf.io/xsnj5/). RESULTS VNS paired with tactile rehabilitation resulted in a significant and nearly complete recovery of mechanosensory withdrawal thresholds. Equivalent tactile rehabilitation without VNS failed to improve sensory function. This VNS-dependent restoration of sensory thresholds was maintained for several months after the cessation of stimulation, illustrating long-term benefits. Moreover, VNS paired with tactile rehabilitation resulted in significant generalized improvements in other measures of sensorimotor forepaw function. INTERPRETATION Given the safety and tolerability of VNS therapy, these findings suggest that incorporating VNS paired with sensory retraining into rehabilitative regimens may represent a fundamentally new method to increase recovery of sensory function after neurological injury. ANN NEUROL 2020;87:194-205.
Collapse
Affiliation(s)
- Michael J. Darrow
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021
| | - Tabarak M. Mian
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021
| | - Miranda Torres
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021
| | - Zainab Haider
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021
| | - Tanya Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
| | - Robert L. Rennaker
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021
| | - Michael P. Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021
| | - Seth A. Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, Erik Jonsson School of Engineering and Computer Science, Department of Bioengineering, 800 West Campbell Road, Richardson, TX 75080-3021
- The University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021
| |
Collapse
|
48
|
Darrow MJ, Torres M, Sosa MJ, Danaphongse TT, Haider Z, Rennaker RL, Kilgard MP, Hays SA. Vagus Nerve Stimulation Paired With Rehabilitative Training Enhances Motor Recovery After Bilateral Spinal Cord Injury to Cervical Forelimb Motor Pools. Neurorehabil Neural Repair 2020; 34:200-209. [PMID: 31969052 DOI: 10.1177/1545968319895480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Closed-loop vagus nerve stimulation (VNS) paired with rehabilitative training has emerged as a strategy to enhance recovery after neurological injury. Previous studies demonstrate that brief bursts of closed-loop VNS paired with rehabilitative training substantially improve recovery of forelimb motor function in models of unilateral and bilateral contusive spinal cord injury (SCI) at spinal level C5/6. While these findings provide initial evidence of the utility of VNS for SCI, the injury model used in these studies spares the majority of alpha motor neurons originating in C7-T1 that innervate distal forelimb muscles. Because the clinical manifestation of SCI in many patients involves damage at these levels, it is important to define whether damage to the distal forelimb motor neuron pools limits VNS-dependent recovery. In this study, we assessed recovery of forelimb function in rats that received a bilateral incomplete contusive SCI at C7/8 and underwent extensive rehabilitative training with or without paired VNS. The study design, including planned sample size, assessments, and statistical comparisons, was preregistered prior to beginning data collection ( https://osf.io/ysvgf/ ). VNS paired with rehabilitative training significantly improved recovery of volitional forelimb strength compared to equivalent rehabilitative training without VNS. Additionally, VNS-dependent enhancement of recovery generalized to 2 similar, but untrained, forelimb tasks. These findings indicate that damage to alpha motor neurons does not prevent VNS-dependent enhancement of recovery and provides additional evidence to support the evaluation of closed-loop VNS paired with rehabilitation in patients with incomplete cervical SCI.
Collapse
Affiliation(s)
| | | | - Maria J Sosa
- The University of Texas at Dallas, Richardson, TX, USA
| | | | - Zainab Haider
- The University of Texas at Dallas, Richardson, TX, USA
| | | | | | - Seth A Hays
- The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
49
|
Xiang XJ, Sun LZ, Xu CB, Xie Y, Pan MY, Ran J, Hu Y, Nong BX, Shen Q, Huang H, Huang SH, Yu YZ. The clinical effect of vagus nerve stimulation in the treatment of patients with a minimally conscious state. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective: Vagus nerve stimulation (VNS) has recently been used in neurorehabilitation and the recovery of consciousness based on its effects on cortical plasticity. The aim of this study was to examine the therapeutic effects of VNS on patients with a minimally conscious state (MCS). Methods: All patients included in the study were assessed more than 5 months after injury and were receiving regular rehabilitation at our hospital from August 2018 to October 2019. Ten patients diagnosed with MCS by Coma Recovery Scale-Revised (CRS-R) test who underwent VNS surgery were enrolled. The scores on CRS-R evaluation at baseline (before VNS implantation) and 1, 3, and 6 months after VNS treatment were recorded. The stimulation parameters were chosen according to a previous study. All clinical rehabilitation protocols remained unchanged during the study. Furthermore, safety was assessed by analyzing treatment-emergent adverse events (TEAEs). Results: No significant improvement in the total CRS-R scores at the end of the 1-month follow-up was observed (p > 0.05). After 3 months of stimulation, a significant difference (p = 0.0078) was observed in the total CRS-R scores compared with the baseline. After 6 months of VNS treatment, CRS-R assessments showed a continuous significant improvement (p = 0.0039); one patient emerged from the MCS and recovered functional communication and object use. Interestingly, one item of CRS-R scores on visual domain was sensitive to VNS treatment (p = 0.0039). Furthermore, no serious adverse event occurred throughout the study. Conclusion: This exploratory study provides preliminary evidence suggesting that VNS is a safe and effective tool for consciousness recovery in patients with MCS.
Collapse
|
50
|
Meyers EC, Kasliwal N, Solorzano BR, Lai E, Bendale G, Berry A, Ganzer PD, Romero-Ortega M, Rennaker RL, Kilgard MP, Hays SA. Enhancing plasticity in central networks improves motor and sensory recovery after nerve damage. Nat Commun 2019; 10:5782. [PMID: 31857587 PMCID: PMC6923364 DOI: 10.1038/s41467-019-13695-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022] Open
Abstract
Nerve damage can cause chronic, debilitating problems including loss of motor control and paresthesia, and generates maladaptive neuroplasticity as central networks attempt to compensate for the loss of peripheral connectivity. However, it remains unclear if this is a critical feature responsible for the expression of symptoms. Here, we use brief bursts of closed-loop vagus nerve stimulation (CL-VNS) delivered during rehabilitation to reverse the aberrant central plasticity resulting from forelimb nerve transection. CL-VNS therapy drives extensive synaptic reorganization in central networks paralleled by improved sensorimotor recovery without any observable changes in the nerve or muscle. Depleting cortical acetylcholine blocks the plasticity-enhancing effects of CL-VNS and consequently eliminates recovery, indicating a critical role for brain circuits in recovery. These findings demonstrate that manipulations to enhance central plasticity can improve sensorimotor recovery and define CL-VNS as a readily translatable therapy to restore function after nerve damage. Peripheral nerve damage generates maladaptive neuroplasticity as central networks attempt to compensate for the loss of peripheral connectivity. Here, the authors reverse the aberrant plasticity via vagus nerve stimulation to elicit synaptic reorganization and to improve sensorimotor recovery.
Collapse
Affiliation(s)
- Eric C Meyers
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
| | - Nimit Kasliwal
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Bleyda R Solorzano
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Elaine Lai
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Geetanjali Bendale
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Abigail Berry
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Patrick D Ganzer
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Mario Romero-Ortega
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| |
Collapse
|