1
|
Wu K, Shao S, Dong YT, Liu YY, Chen XH, Cheng P, Qin X, Peng XH, Zhang YM. Spinal astrocyte-derived M-CSF mediates microglial reaction and drives visceral hypersensitivity following DSS-induced colitis. Neuropharmacology 2025; 270:110373. [PMID: 39978590 DOI: 10.1016/j.neuropharm.2025.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Visceral hypersensitivity is one of the most prevalent symptoms of inflammatory bowel disease (IBD), and it can be difficult to cure despite achieving endoscopic remission. Accumulating studies have described that macrophage colony-stimulating factor (M-CSF) modulates neuroinflammation in the central nervous system (CNS) and the development of chronic pain, while the underlying mechanism for whether and how M-CSF/CSF1R signaling pathway regulates visceral hypersensitivity following colitis remains unknown. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we determined that microglial accumulation occurred in the spinal dorsal horn during remission phase. The reactive microglia released inflammatory factor, increased neuronal excitability in the dorsal horn, and produced chronic visceral pain behaviors in DSS-treated adult male mice. In addition, we also found significantly increased signaling mediated by astrocytic M-CSF and microglial CSF1R in dorsal horn in the mice with colitis. Exogenous M-CSF induced microglial activation, neuronal hyperactivity and behavioral hypersensitivity in the control group, inhibition of astrocyte/microglia by fluorocitrate/minocycline significantly suppressed microglial and neuronal activity, and relieved the visceral hypersensitivity in the model mice. Overall, our experimental study uncovers the critical involvement of spinal astrocyte-derived M-CSF and reactive microglia in the initiation and maintenance of visceral hypersensitivity following colitis, thereby identifying spinal M-CSF as a target for treating chronic visceral pain. This may provide more accurate theoretical guidance for clinical patients with IBD.
Collapse
Affiliation(s)
- Ke Wu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Department of Anesthesia, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuai Shao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ting Dong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Yue-Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xing-Han Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Peng Cheng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xia Qin
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiao-Han Peng
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Department of Anesthesia, Xuzhou Cancer Hospital, Xuzhou, China
| | - Yong-Mei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Zhou F, Engel P, Ruth P, Lukowski R, Schmidtko A, Lu R. Slack potassium channels in spinal dorsal horn neurons control neuropathic pain and acute itch. Pain 2025; 166:858-867. [PMID: 39382315 DOI: 10.1097/j.pain.0000000000003427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/27/2024] [Indexed: 10/10/2024]
Abstract
ABSTRACT The sodium-activated potassium channel Slack (K Na 1.1, Kcnt1) plays a critical role in tuning neuronal excitability. Previous studies have revealed that Slack is expressed in neurons of the superficial dorsal horn of the spinal cord. However, the precise role of Slack in spinal dorsal horn neurons is unclear. In this study, we used mice in which Slack is conditionally ablated in spinal dorsal horn neurons (Lbx1-Slack -/- mice) and analyzed their behaviors in various models of pain and itch. Lbx1-Slack -/- mice exhibited increased neuropathic pain behavior after peripheral nerve injury but normal responses in a model of inflammatory pain. Unexpectedly, Lbx1-Slack -/- mice demonstrated increased scratching after intradermal injection of chloroquine, LY344864, and histamine. Moreover, neuromedin B receptors are coexpressed with Slack in the dorsal horn, and scratching after intrathecal delivery of neuromedin B was increased in Lbx1-Slack -/- mice. Our study provides in vivo evidence that Slack expressed in spinal dorsal horn neurons inhibits nerve injury-induced allodynia and acute itch induced by various pruritogens.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Patrick Engel
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ruirui Lu
- Institute of Pharmacology and Clinical Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Zhang MD, Kupari J, Su J, Magnusson KA, Hu Y, Calvo-Enrique L, Usoskin D, Albisetti GW, Ceder MM, Henriksson K, Leavitt AD, Zeilhofer HU, Hökfelt T, Lagerström MC, Ernfors P. Neural ensembles that encode nocifensive mechanical and heat pain in mouse spinal cord. Nat Neurosci 2025:10.1038/s41593-025-01921-6. [PMID: 40128392 DOI: 10.1038/s41593-025-01921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/07/2025] [Indexed: 03/26/2025]
Abstract
Acute pain is an unpleasant experience caused by noxious stimuli. How the spinal neural circuits attribute differences in quality of noxious information remains unknown. By means of genetic capturing, activity manipulation and single-cell RNA sequencing, we identified distinct neural ensembles in the adult mouse spinal cord encoding mechanical and heat pain. Reactivation or silencing of these ensembles potentiated or stopped, respectively, paw shaking, lifting and licking within but not across the stimuli modalities. Within ensembles, polymodal Gal+ inhibitory neurons with monosynaptic contacts to A-fiber sensory neurons gated pain transmission independent of modality. Peripheral nerve injury led to inferred microglia-driven inflammation and an ensemble transition with decreased recruitment of Gal+ inhibitory neurons and increased excitatory drive. Forced activation of Gal+ neurons reversed hypersensitivity associated with neuropathy. Our results reveal the existence of a spinal representation that forms the neural basis of the discriminative and defensive qualities of acute pain, and these neurons are under the control of a shared feed-forward inhibition.
Collapse
Affiliation(s)
- Ming-Dong Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Jussi Kupari
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Jie Su
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Kajsa A Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Laura Calvo-Enrique
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
| | - Dmitry Usoskin
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Gioele W Albisetti
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Mikaela M Ceder
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Katharina Henriksson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Andrew D Leavitt
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Malin C Lagerström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Moura J, Rocchi L, Zandi M, Balint B, Bhatia KP, Latorre A. Neurophysiological Insights into the Pathophysiology of Stiff-Person Spectrum Disorders. Mov Disord Clin Pract 2025. [PMID: 39778012 DOI: 10.1002/mdc3.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Stiff Person Spectrum Disorders (SPSD) are classically defined by the presence of muscle stiffness, spasms and hyperactivity of the central nervous system. There is a notable correlation between neurophysiological features and the clinical hallmark of SPSD, which has greatly encouraged the use of these techniques for diagnostic purposes. Besides, electrophysiological techniques allow for a functional evaluation of the 'hyperactivity of the CNS', thus offering the opportunity to clarify the mechanisms underlying this disorder. This review delves into the current knowledge on the electrophysiological aspects of SPSD, highlighting the pivotal role of various studies in unravelling its pathophysiology. METHODS Literature review for studies on SPSD that included a neurophysiological evaluation. RESULTS We first examined the abnormal neurophysiological findings of SPSD across the central nervous system, from the spinal circuit to the motor cortex. Subsequently, we discussed their pathological implications and explored how these findings can be interpreted within the framework of an immune-mediated disorder. CONCLUSIONS Two primary questions remain unanswered: the localization of the primary abnormality within the central nervous system and the connection between the autoimmune basis of SPSD and its neurophysiological aspects. Addressing these questions could provide invaluable insights into SPSD etiology and targeted therapeutic strategies.
Collapse
Affiliation(s)
- João Moura
- Department of Neurology, Unidade Local de Saúde de Santo António, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Unit of Multidisciplinary Research in Biomedicine (UMIB), ICBAS, University of Porto, Porto, Portugal
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Michael Zandi
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Bettina Balint
- Department of Neurology, Zürich, University Hospital Zurich and University of Zurich, Switzerland
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
5
|
Hasan Zilani MN, Nahar N, Shome A, Tareq MMI, Biswas P, Bibi S, Alshammari A, Albekairi NA, Alqahtani HM, Hasan MN. Crotalaria quinquefolia L. Revealed as a Potential Source of Neuropharmacophore in Both Experimental and Computational Studies. Chem Biodivers 2025; 22:e202401257. [PMID: 39283969 DOI: 10.1002/cbdv.202401257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
Herbal remedies have shown great promise for improving human health. The plant Crotalaria quinquefolia is used in folk medicine to cure different diseases, including scabies, fever, discomfort, and lung infections. The present research was designed to explore bioactive compounds and evaluate the neuropharmacological effects of C. quinquefolia extract through in vivo and in silico approaches. Different secondary metabolites as well as the antioxidant activity were measured. Furthermore, chemical compounds were identified by HPLC and GCMS analysis. The neuropharmacological activity was examined by hole cross, hole board, open field, Y-maze, elevated plus maze, and thiopental sodium induced sleeping time tests in mice at doses of 100 mg/kg and 200 mg/kg b.w. (p.o). Besides, an in-silico study was performed on proteins related to Alzheimer disease. The extract showed a significant content of secondary metabolites and antioxidant potential. The in-silico analysis showed that myricetin, quercetin, rutin, and kaempferol have good binding affinity with studied proteins, and QSAR studies revealed potential benefits for treating dementia, and age-related macular degeneration. The findings of the present neurological activity collectively imply that the extract has strong CNS depressant and anxiolytic activity. Therefore, C. quinquefolia can be a potential source of compounds to treat Alzheimer disease.
Collapse
Affiliation(s)
- Md Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Nazmun Nahar
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Anamika Shome
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, 41000, Pakistan
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hosam M Alqahtani
- Directorate of Medical Service, Ministry of Interior, Riyadh, Kingdom of Saudi Arabia
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
6
|
Arokiaraj CM, Leone MJ, Kleyman M, Chamessian A, Noh MC, Phan BN, Lopes BC, Corrigan KA, Cherupally VK, Yeramosu D, Franusich ME, Podder R, Lele S, Shiers S, Kang B, Kennedy MM, Chen V, Chen Z, Mathys H, Dum RP, Lewis DA, Qadri Y, Price TJ, Pfenning AR, Seal RP. Spatial, transcriptomic, and epigenomic analyses link dorsal horn neurons to chronic pain genetic predisposition. Cell Rep 2024; 43:114876. [PMID: 39453813 PMCID: PMC11801220 DOI: 10.1016/j.celrep.2024.114876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 09/30/2024] [Indexed: 10/27/2024] Open
Abstract
Key mechanisms underlying chronic pain occur within the dorsal horn. Genome-wide association studies (GWASs) have identified genetic variants predisposed to chronic pain. However, most of these variants lie within regulatory non-coding regions that have not been linked to spinal cord biology. Here, we take a multi-species approach to determine whether chronic pain variants impact the regulatory genomics of dorsal horn neurons. First, we generate a large rhesus macaque single-nucleus RNA sequencing (snRNA-seq) atlas and integrate it with available human and mouse datasets to produce a single unified, species-conserved atlas of neuron subtypes. Cellular-resolution spatial transcriptomics in mouse shows the precise laminar location of these neuron subtypes, consistent with our analysis of neuron-subtype-selective markers in macaque. Using this cross-species framework, we generate a mouse single-nucleus open chromatin atlas of regulatory elements that shows strong and selective relationships between the neuron-subtype-specific chromatin regions and variants from major chronic pain GWASs.
Collapse
Affiliation(s)
- Cynthia M Arokiaraj
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael J Leone
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Michael Kleyman
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Alexander Chamessian
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27708, USA; Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Myung-Chul Noh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - BaDoi N Phan
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Bettega C Lopes
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kelly A Corrigan
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Vijay Kiran Cherupally
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Deepika Yeramosu
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Michael E Franusich
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Riya Podder
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sumitra Lele
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Byungsoo Kang
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Meaghan M Kennedy
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Viola Chen
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ziheng Chen
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hansruedi Mathys
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Richard P Dum
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Yawar Qadri
- Department of Anesthesiology, Emory University, Atlanta, GA 30038, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Andreas R Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
7
|
García-Domínguez M. Chronic pain in the elderly: Exploring cellular and molecular mechanisms and therapeutic perspectives. FRONTIERS IN AGING 2024; 5:1477017. [PMID: 39328834 PMCID: PMC11424521 DOI: 10.3389/fragi.2024.1477017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Chronic pain is a debilitating condition frequently observed in the elderly, involving numerous pathological mechanisms within the nervous system. Diminished local blood flow, nerve degeneration, variations in fiber composition, alterations in ion channels and receptors, accompanied by the sustained activation of immune cells and release of pro-inflammatory cytokines, lead to overactivation of the peripheral nervous system. In the central nervous system, chronic pain is strongly associated with the activation of glial cells, which results in central sensitization and increased pain perception. Moreover, age-related alterations in neural plasticity and disruptions in pain inhibitory pathways can exacerbate chronic pain in older adults. Finally, the environmental influences on the development of chronic pain in the elderly must be considered. An understanding of these mechanisms is essential for developing novel treatments for chronic pain, which can significantly improve the quality of life for this vulnerable population.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Program of Immunology and Immunotherapy, CIMA-Universidad de Navarra, Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
8
|
Qin Y, Chen X, Yu Z, Zhou X, Wang Y, Li Q, Dai W, Zhang Y, Wang S, Fan Y, Xiao J, Su D, Jiao Y, Yu W. Spinal RAMP1-mediated neuropathic pain sensitisation in the aged mice through the modulation of CGRP-CRLR pain signalling. Heliyon 2024; 10:e35862. [PMID: 39224276 PMCID: PMC11367041 DOI: 10.1016/j.heliyon.2024.e35862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Pain sensitivity varies depending on both the state and age of an individual. For example, chronic pain is more common in older individuals, but the underlying mechanisms remain unknown. This study revealed that 18-month-old mice (aged) experienced more severe and long-lasting allodynia and hyperalgesia in the chronic constriction injury (CCI)-induced pain state compared to 2-month-old mice. Interestingly, the aged mice had a higher baseline mechanical pain threshold than the adult mice. The expression of spinal receptor-active modification protein 1 (RAMP1), as a key component and regulator of the calcitonin gene-related peptide (CGRP) receptor for nociceptive transmission from the periphery to the spinal cord, was reduced in the physiological state but significantly increased after CCI in the aged mice compared to the adult mice. Moreover, when RAMP1 was knocked down using shRNA, the pain sensitivity of adult mice decreased significantly, and CCI-induced allodynia in aged mice was reduced. These findings suggest that spinal RAMP1 is involved in regulating pain sensitivity in a state- and age-dependent manner. Additionally, interfering with RAMP1 could be a promising strategy for alleviating chronic pain in older individuals.
Collapse
Affiliation(s)
- Yi Qin
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Xuemei Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Zhangjie Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Xiaoxin Zhou
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Yihao Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Qi Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Wanbing Dai
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Yizhe Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Sa Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Yinghui Fan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
| | - Diansan Su
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, China
| |
Collapse
|
9
|
Upadhyay A, Gradwell MA, Vajtay TJ, Conner J, Sanyal AA, Azadegan C, Patel KR, Thackray JK, Bohic M, Imai F, Ogundare SO, Yoshida Y, Abdus-Saboor I, Azim E, Abraira VE. The Dorsal Column Nuclei Scale Mechanical Sensitivity in Naive and Neuropathic Pain States. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.20.581208. [PMID: 38712022 PMCID: PMC11071288 DOI: 10.1101/2024.02.20.581208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Tactile perception relies on reliable transmission and modulation of low-threshold information as it travels from the periphery to the brain. During pathological conditions, tactile stimuli can aberrantly engage nociceptive pathways leading to the perception of touch as pain, known as mechanical allodynia. Two main drivers of peripheral tactile information, low-threshold mechanoreceptors (LTMRs) and postsynaptic dorsal column neurons (PSDCs), terminate in the brainstem dorsal column nuclei (DCN). Activity within the DRG, spinal cord, and DCN have all been implicated in mediating allodynia, yet the DCN remains understudied at the cellular, circuit, and functional levels compared to the other two. Here, we show that the gracile nucleus (Gr) of the DCN mediates tactile sensitivity for low-threshold stimuli and contributes to mechanical allodynia during neuropathic pain in mice. We found that the Gr contains local inhibitory interneurons in addition to thalamus-projecting neurons, which are differentially innervated by primary afferents and spinal inputs. Functional manipulations of these distinct Gr neuronal populations resulted in bidirectional changes to tactile sensitivity, but did not affect noxious mechanical or thermal sensitivity. During neuropathic pain, silencing Gr projection neurons or activating Gr inhibitory neurons was able to reduce tactile hypersensitivity, and enhancing inhibition was able to ameliorate paw withdrawal signatures of neuropathic pain, like shaking. Collectively, these results suggest that the Gr plays a specific role in mediating hypersensitivity to low-threshold, innocuous mechanical stimuli during neuropathic pain, and that Gr activity contributes to affective, pain-associated phenotypes of mechanical allodynia. Therefore, these brainstem circuits work in tandem with traditional spinal circuits underlying allodynia, resulting in enhanced signaling of tactile stimuli in the brain during neuropathic pain.
Collapse
Affiliation(s)
- Aman Upadhyay
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
- Neuroscience PhD program at Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Mark A Gradwell
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Thomas J Vajtay
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - James Conner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Arnab A Sanyal
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Chloe Azadegan
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Komal R Patel
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Joshua K Thackray
- Human Genetics Institute of New Jersey, Rutgers University, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Manon Bohic
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Fumiyasu Imai
- Burke Neurological Institute, White Plains, New York City, New York, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Simon O Ogundare
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York City, New York, USA
| | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, New York City, New York, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA
| | - Ishmail Abdus-Saboor
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York City, New York, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Victoria E Abraira
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA; Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey, USA
- Brain Health Institute, Rutgers University, Piscataway, New Jersey, USA
- Lead contact
| |
Collapse
|
10
|
Fitzgerald M. The Bayliss-Starling Prize Lecture: The developmental physiology of spinal cord and cortical nociceptive circuits. J Physiol 2024; 602:1003-1016. [PMID: 38426221 DOI: 10.1113/jp283994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
When do we first experience pain? To address this question, we need to know how the developing nervous system processes potential or real tissue-damaging stimuli in early life. In the newborn, nociception preserves life through reflex avoidance of tissue damage and engagement of parental help. Importantly, nociception also forms the starting point for experiencing and learning about pain and for setting the level of adult pain sensitivity. This review, which arose from the Bayliss-Starling Prize Lecture, focuses on the basic developmental neurophysiology of early nociceptive circuits in the spinal cord, brainstem and cortex that form the building blocks of our first pain experience.
Collapse
Affiliation(s)
- Maria Fitzgerald
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| |
Collapse
|
11
|
Rankin G, Chirila AM, Emanuel AJ, Zhang Z, Woolf CJ, Drugowitsch J, Ginty DD. Nerve injury disrupts temporal processing in the spinal cord dorsal horn through alterations in PV + interneurons. Cell Rep 2024; 43:113718. [PMID: 38294904 PMCID: PMC11101906 DOI: 10.1016/j.celrep.2024.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/13/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
How mechanical allodynia following nerve injury is encoded in patterns of neural activity in the spinal cord dorsal horn (DH) remains incompletely understood. We address this in mice using the spared nerve injury model of neuropathic pain and in vivo electrophysiological recordings. Surprisingly, despite dramatic behavioral over-reactivity to mechanical stimuli following nerve injury, an overall increase in sensitivity or reactivity of DH neurons is not observed. We do, however, observe a marked decrease in correlated neural firing patterns, including the synchrony of mechanical stimulus-evoked firing, across the DH. Alterations in DH temporal firing patterns are recapitulated by silencing DH parvalbumin+ (PV+) interneurons, previously implicated in mechanical allodynia, as are allodynic pain-like behaviors. These findings reveal decorrelated DH network activity, driven by alterations in PV+ interneurons, as a prominent feature of neuropathic pain and suggest restoration of proper temporal activity as a potential therapeutic strategy to treat chronic neuropathic pain.
Collapse
Affiliation(s)
- Genelle Rankin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Anda M Chirila
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alan J Emanuel
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Zihe Zhang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jan Drugowitsch
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Villalobos N. Disinhibition Is an Essential Network Motif Coordinated by GABA Levels and GABA B Receptors. Int J Mol Sci 2024; 25:1340. [PMID: 38279339 PMCID: PMC10816949 DOI: 10.3390/ijms25021340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Network dynamics are crucial for action and sensation. Changes in synaptic physiology lead to the reorganization of local microcircuits. Consequently, the functional state of the network impacts the output signal depending on the firing patterns of its units. Networks exhibit steady states in which neurons show various activities, producing many networks with diverse properties. Transitions between network states determine the output signal generated and its functional results. The temporal dynamics of excitation/inhibition allow a shift between states in an operational network. Therefore, a process capable of modulating the dynamics of excitation/inhibition may be functionally important. This process is known as disinhibition. In this review, we describe the effect of GABA levels and GABAB receptors on tonic inhibition, which causes changes (due to disinhibition) in network dynamics, leading to synchronous functional oscillations.
Collapse
Affiliation(s)
- Nelson Villalobos
- Academia de Fisiología, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de México 11340, Mexico;
- Sección de Estudios Posgrado e Investigación de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
13
|
Charron A, Pepino L, Malapert P, Debrauwer V, Castets F, Salio C, Moqrich A. Sex-related exacerbation of injury-induced mechanical hypersensitivity in GAD67 haplodeficient mice. Pain 2024; 165:192-201. [PMID: 37578506 PMCID: PMC10723643 DOI: 10.1097/j.pain.0000000000003012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Decreased GABA levels in injury-induced loss of spinal inhibition are still under intense interest and debate. Here, we show that GAD67 haplodeficient mice exhibited a prolonged injury-induced mechanical hypersensitivity in postoperative, inflammatory, and neuropathic pain models. In line with this, we found that loss of 1 copy of the GAD67-encoding gene Gad1 causes a significant decrease in GABA contents in spinal GABAergic neuronal profiles. Consequently, GAD67 haplodeficient males and females were unresponsive to the analgesic effect of diazepam. Remarkably, all these phenotypes were more pronounced in GAD67 haplodeficient females. These mice had significantly much lower amount of spinal GABA content, exhibited an exacerbated pain phenotype during the second phase of the formalin test, developed a longer lasting mechanical hypersensitivity in the chronic constriction injury of the sciatic nerve model, and were unresponsive to the pain relief effect of the GABA-transaminase inhibitor phenylethylidenehydrazine. Our study provides strong evidence for a role of GABA levels in the modulation of injury-induced mechanical pain and suggests a potential role of the GABAergic system in the prevalence of some painful diseases among females.
Collapse
Affiliation(s)
- Aude Charron
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| | - Lucie Pepino
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| | - Pascale Malapert
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| | - Vincent Debrauwer
- Aix-Marseille-université, CNRS, Institut des Sciences Moléculaires de Marseille, UMR 7313, Campus Scientifique de St Jérôme, Marseille, France
| | - Francis Castets
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Aziz Moqrich
- Aix-Marseille-université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Marseille, France
| |
Collapse
|
14
|
Ji H, Kim KR, Park JJ, Lee JY, Sim Y, Choi H, Kim S. Combination Gene Delivery Reduces Spinal Cord Pathology in Rats With Peripheral Neuropathic Pain. THE JOURNAL OF PAIN 2023; 24:2211-2227. [PMID: 37442406 DOI: 10.1016/j.jpain.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Although peripheral neuropathic pain is caused by peripheral nerve injury, it is not simply a peripheral nervous system disease. It causes abnormalities in both the central and peripheral nervous systems. Pathological phenomena, such as hyperactivation of sensory neurons and inflammation, are observed in both the dorsal root ganglion and spinal cord. Pain signals originating from the periphery are transmitted to the brain via the SC, and the signals are modulated by pathologically changing SC conditions. Therefore, the modulation of SC pathology is important for peripheral NP treatment. We investigated the effects of KLS-2031 (recombinant adeno-associated viruses expressing glutamate decarboxylase 65, glial cell-derived neurotrophic factor, and interleukin-10) delivered to the dorsal root ganglion on aberrant neuronal excitability and neuroinflammation in the SC of rats with peripheral NP. Results showed that KLS-2031 administration restored excessive excitatory transmission and inhibitory signals in substantia gelatinosa neurons. Moreover, KLS-2031 restored the in vivo hypersensitivity of wide dynamic range neurons and mitigated neuroinflammation in the SC by regulating microglia and astrocytes. Collectively, these findings demonstrated that KLS-2031 efficiently suppressed pathological pain signals and inflammation in the SC of peripheral NP model, and is a potential novel therapeutic approach for NP in clinical settings. PERSPECTIVE: Our study demonstrated that KLS-2031, a combination gene therapy delivered by transforaminal epidural injection, not only mitigates neuroinflammation but also improves SC neurophysiological function, including excitatory-inhibitory balance. These findings support the potential of KLS-2031 as a novel modality that targets multiple aspects of the complex pathophysiology of neuropathic pain.
Collapse
Affiliation(s)
- Hyelin Ji
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Kyung-Ran Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Jang-Joon Park
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Ju Youn Lee
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| | - Yeomoon Sim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea; Business Development, Handok Inc., Seoul, Republic of Korea
| | - Heonsik Choi
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea; Healthcare Research Institute, Kolon Advanced Research Center, Kolon Industries, Seoul, Republic of Korea
| | - Sujeong Kim
- Institute of BioInnovation Research, Kolon Life Science, Seoul, Republic of Korea
| |
Collapse
|
15
|
Veshchitskii A, Merkulyeva N. Calcium-binding protein parvalbumin in the spinal cord and dorsal root ganglia. Neurochem Int 2023; 171:105634. [PMID: 37967669 DOI: 10.1016/j.neuint.2023.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/20/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Parvalbumin is one of the calcium-binding proteins. In the spinal cord, it is mainly expressed in inhibitory neurons; in the dorsal root ganglia, it is expressed in proprioceptive neurons. In contrast to in the brain, weak systematization of parvalbumin-expressing neurons occurs in the spinal cord. The aim of this paper is to provide a systematic review of parvalbumin-expressing neuronal populations throughout the spinal cord and the dorsal root ganglia of mammals, regarding their mapping, co-expression with some functional markers. The data reviewed are mostly concerning rodentia species because they are predominantly presented in literature.
Collapse
Affiliation(s)
- Aleksandr Veshchitskii
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia
| | - Natalia Merkulyeva
- Neuromorphology Lab, Pavlov Institute of Physiology Russian Academy of Sciences, Saint Petersburg, Russia.
| |
Collapse
|
16
|
Davis OC, Dickie AC, Mustapa MB, Boyle KA, Browne TJ, Gradwell MA, Smith KM, Polgár E, Bell AM, Kókai É, Watanabe M, Wildner H, Zeilhofer HU, Ginty DD, Callister RJ, Graham BA, Todd AJ, Hughes DI. Calretinin-expressing islet cells are a source of pre- and post-synaptic inhibition of non-peptidergic nociceptor input to the mouse spinal cord. Sci Rep 2023; 13:11561. [PMID: 37464016 PMCID: PMC10354228 DOI: 10.1038/s41598-023-38605-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023] Open
Abstract
Unmyelinated non-peptidergic nociceptors (NP afferents) arborise in lamina II of the spinal cord and receive GABAergic axoaxonic synapses, which mediate presynaptic inhibition. However, until now the source of this axoaxonic synaptic input was not known. Here we provide evidence that it originates from a population of inhibitory calretinin-expressing interneurons (iCRs), which correspond to lamina II islet cells. The NP afferents can be assigned to 3 functionally distinct classes (NP1-3). NP1 afferents have been implicated in pathological pain states, while NP2 and NP3 afferents also function as pruritoceptors. Our findings suggest that all 3 of these afferent types innervate iCRs and receive axoaxonic synapses from them, providing feedback inhibition of NP input. The iCRs also form axodendritic synapses, and their targets include cells that are themselves innervated by the NP afferents, thus allowing for feedforward inhibition. The iCRs are therefore ideally placed to control the input from non-peptidergic nociceptors and pruritoceptors to other dorsal horn neurons, and thus represent a potential therapeutic target for the treatment of chronic pain and itch.
Collapse
Affiliation(s)
- Olivia C Davis
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Allen C Dickie
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marami B Mustapa
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, 57000, Kuala Lumpur, Malaysia
| | - Kieran A Boyle
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tyler J Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Mark A Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Kelly M Smith
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Erika Polgár
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew M Bell
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Éva Kókai
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zürich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zürich, Switzerland
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.
| | - Andrew J Todd
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - David I Hughes
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
17
|
Davis OC, Dickie AC, Mustapa MB, Boyle KA, Browne TJ, Gradwell MA, Smith KM, Polgár E, Bell AM, Kókai É, Watanabe M, Wildner H, Zeilhofer HU, Ginty DD, Callister RJ, Graham BA, Todd AJ, Hughes DI. Calretinin-expressing islet cells: a source of pre- and post-synaptic inhibition of non-peptidergic nociceptor input to the mouse spinal cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543241. [PMID: 37333120 PMCID: PMC10274676 DOI: 10.1101/2023.06.01.543241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Unmyelinated non-peptidergic nociceptors (NP afferents) arborise in lamina II of the spinal cord and receive GABAergic axoaxonic synapses, which mediate presynaptic inhibition. However, until now the source of this axoaxonic synaptic input was not known. Here we provide evidence that it originates from a population of inhibitory calretinin-expressing interneurons (iCRs), which correspond to lamina II islet cells. The NP afferents can be assigned to 3 functionally distinct classes (NP1-3). NP1 afferents have been implicated in pathological pain states, while NP2 and NP3 afferents also function as pruritoceptors. Our findings suggest that all 3 of these afferent types innervate iCRs and receive axoaxonic synapses from them, providing feedback inhibition of NP input. The iCRs also form axodendritic synapses, and their targets include cells that are themselves innervated by the NP afferents, thus allowing for feedforward inhibition. The iCRs are therefore ideally placed to control the input from non-peptidergic nociceptors and pruritoceptors to other dorsal horn neurons, and thus represent a potential therapeutic target for the treatment of chronic pain and itch.
Collapse
Affiliation(s)
- Olivia C. Davis
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Allen C. Dickie
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Marami B. Mustapa
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
- Present address: Faculty of Medicine and Defence Health, National Defence University of Malaysia, 57000, Kuala Lumpur, Malaysia
| | - Kieran A. Boyle
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tyler J. Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Mark A. Gradwell
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Kelly M. Smith
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Erika Polgár
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew M. Bell
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Éva Kókai
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Hendrik Wildner
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zürich, Switzerland
| | - David D. Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Robert J. Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Brett A. Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Andrew J. Todd
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - David I. Hughes
- School of Psychology and Neuroscience, Sir James Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
18
|
Caspi Y, Mazar M, Kushnir Y, Mazor Y, Katz B, Lev S, Binshtok AM. Structural plasticity of axon initial segment in spinal cord neurons underlies inflammatory pain. Pain 2023; 164:1388-1401. [PMID: 36645177 DOI: 10.1097/j.pain.0000000000002829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/19/2022] [Indexed: 01/17/2023]
Abstract
ABSTRACT Physiological or pathology-mediated changes in neuronal activity trigger structural plasticity of the action potential generation site-the axon initial segment (AIS). These changes affect intrinsic neuronal excitability, thus tuning neuronal and overall network output. Using behavioral, immunohistochemical, electrophysiological, and computational approaches, we characterized inflammation-related AIS plasticity in rat's superficial (lamina II) spinal cord dorsal horn (SDH) neurons and established how AIS plasticity regulates the activity of SDH neurons, thus contributing to pain hypersensitivity. We show that in naive conditions, AIS in SDH inhibitory neurons is located closer to the soma than in excitatory neurons. Shortly after inducing inflammation, when the inflammatory hyperalgesia is at its peak, AIS in inhibitory neurons is shifted distally away from the soma. The shift in AIS location is accompanied by the decrease in excitability of SDH inhibitory neurons. These AIS location and excitability changes are selective for inhibitory neurons and reversible. We show that AIS shift back close to the soma, and SDH inhibitory neurons' excitability increases to baseline levels following recovery from inflammatory hyperalgesia. The computational model of SDH inhibitory neurons predicts that the distal shift of AIS is sufficient to decrease the intrinsic excitability of these neurons. Our results provide evidence of inflammatory pain-mediated AIS plasticity in the central nervous system, which differentially affects the excitability of inhibitory SDH neurons and contributes to inflammatory hyperalgesia.
Collapse
Affiliation(s)
- Yaki Caspi
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Mazar
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yishai Kushnir
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoav Mazor
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Gastroenterology, Rambam Health Care Campus, Haifa, Israel
| | - Ben Katz
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shaya Lev
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alexander M Binshtok
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah School of Medicine, Jerusalem, Israel
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
19
|
Temple S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell 2023; 30:512-529. [PMID: 37084729 PMCID: PMC10201979 DOI: 10.1016/j.stem.2023.03.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/23/2023]
Abstract
Cell-based therapies are being developed for various neurodegenerative diseases that affect the central nervous system (CNS). Concomitantly, the roles of individual cell types in neurodegenerative pathology are being uncovered by genetic and single-cell studies. With a greater understanding of cellular contributions to health and disease and with the arrival of promising approaches to modulate them, effective therapeutic cell products are now emerging. This review examines how the ability to generate diverse CNS cell types from stem cells, along with a deeper understanding of cell-type-specific functions and pathology, is advancing preclinical development of cell products for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sally Temple
- Neural Stem Cell Institute, Rensselaer, NY 12144, USA.
| |
Collapse
|
20
|
Kuo SW, Zhang T, Esteller R, Grill WM. In Vivo Measurements reveal that both low- and high-frequency spinal cord stimulation heterogeneously modulate superficial dorsal horn neurons. Neuroscience 2023; 520:119-131. [PMID: 37085007 DOI: 10.1016/j.neuroscience.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/01/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023]
Abstract
Current sub-perception spinal cord stimulation (SCS) is characterized by the use of high-frequency pulses to achieve paresthesia-free analgesic effects. High-frequency SCS demonstrates distinctive properties from paresthesia-based SCS, such as a longer time course to response, implying the existence of alternative mechanism(s) of action beyond gate control theory. We quantified the responses to SCS of single neurons within the superficial dorsal horn (SDH), a structure in close proximity to SCS electrodes, to investigate the mechanisms underlying high-frequency SCS in 62 urethane-anesthetized male rats. Sciatic nerve stimulation was delivered to isolate lumbar SDH neurons with evoked C-fiber activity. The evoked C-fiber activity before and after the application of SCS was compared to quantify the effects of SCS across stimulation intensity and stimulation duration at three different stimulation frequencies. We observed heterogeneous responses of SDH neurons which depended primarily on the type of unit. Low-threshold units with spontaneous activity, putatively inhibitory interneurons, tended to be facilitated by SCS while the other unit types were suppressed. The effects of SCS were more prominent with increased stimulation duration from 30 s to 30 m across frequencies. Our results highlight the importance of inhibitory interneurons in modulating local circuits of the SDH and the importance of local circuit contributions to the analgesic mechanisms of SCS.
Collapse
Affiliation(s)
- Su-Wei Kuo
- Department of Biomedical Engineering, Duke University, Durham, NC
| | - Tianhe Zhang
- Division of Neuromodulation, Boston Scientific Corporation, CA
| | - Rosana Esteller
- Division of Neuromodulation, Boston Scientific Corporation, CA
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC; Departments of Electrical and Computer Engineering, Neurobiology, and Neurosurgery, Duke University, Durham, NC.
| |
Collapse
|
21
|
Sharma A, Behl T, Sharma L, Shah OP, Yadav S, Sachdeva M, Rashid S, Bungau SG, Bustea C. Exploring the molecular pathways and therapeutic implications of angiogenesis in neuropathic pain. Biomed Pharmacother 2023; 162:114693. [PMID: 37062217 DOI: 10.1016/j.biopha.2023.114693] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/26/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Recently, much attention has been paid to chronic neuro-inflammatory condition underlying neuropathic pain. It is generally linked with thermal hyperalgesia and tactile allodynia. It results due to injury or infection in the nervous system. The neuropathic pain spectrum covers a variety of pathophysiological states, mostly involved are ischemic injury viral infections associated neuropathies, chemotherapy-induced peripheral neuropathies, autoimmune disorders, traumatic origin, hereditary neuropathies, inflammatory disorders, and channelopathies. In CNS, angiogenesis is evident in inflammation of neurons and pain in bone cancer. The role of chemokines and cytokines is dualistic; their aggressive secretion produces detrimental effects, leading to neuropathic pain. However, whether the angiogenesis contributes and exists in neuropathic pain remains doubtful. In the present review, we elucidated summary of diverse mechanisms of neuropathic pain associated with angiogenesis. Moreover, an overview of multiple targets that have provided insights on the VEGF signaling, signaling through Tie-1 and Tie-2 receptor, erythropoietin pathway promoting axonal growth are also discussed. Because angiogenesis as a result of these signaling, results in inflammation, we focused on the mechanisms of neuropathic pain. These factors are mainly responsible for the activation of post-traumatic regeneration of the PNS and CNS. Furthermore, we also reviewed synthetic and herbal treatments targeting angiogenesis in neuropathic pain.
Collapse
Affiliation(s)
- Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, 248007 Dehradun, Uttarakhand, India.
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Om Prakash Shah
- School of Pharmaceutical Sciences, Shoolini University, Solan 173211, Himachal Pradesh, India
| | - Shivam Yadav
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Chhatrapati Shahu ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain 00000, United Arab Emirates
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410028, Romania; Doctoral School of Biomedical Sciences, University of Oradea, Oradea 410028, Romania.
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, Oradea 410073, Romania
| |
Collapse
|
22
|
Miranda CO, Hegedüs K, Kis G, Antal M. Synaptic Targets of Glycinergic Neurons in Laminae I-III of the Spinal Dorsal Horn. Int J Mol Sci 2023; 24:ijms24086943. [PMID: 37108107 PMCID: PMC10139066 DOI: 10.3390/ijms24086943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A great deal of evidence supports the inevitable importance of spinal glycinergic inhibition in the development of chronic pain conditions. However, it remains unclear how glycinergic neurons contribute to the formation of spinal neural circuits underlying pain-related information processing. Thus, we intended to explore the synaptic targets of spinal glycinergic neurons in the pain processing region (laminae I-III) of the spinal dorsal horn by combining transgenic technology with immunocytochemistry and in situ hybridization accompanied by light and electron microscopy. First, our results suggest that, in addition to neurons in laminae I-III, glycinergic neurons with cell bodies in lamina IV may contribute substantially to spinal pain processing. On the one hand, we show that glycine transporter 2 immunostained glycinergic axon terminals target almost all types of excitatory and inhibitory interneurons identified by their neuronal markers in laminae I-III. Thus, glycinergic postsynaptic inhibition, including glycinergic inhibition of inhibitory interneurons, must be a common functional mechanism of spinal pain processing. On the other hand, our results demonstrate that glycine transporter 2 containing axon terminals target only specific subsets of axon terminals in laminae I-III, including nonpeptidergic nociceptive C fibers binding IB4 and nonnociceptive myelinated A fibers immunoreactive for type 1 vesicular glutamate transporter, indicating that glycinergic presynaptic inhibition may be important for targeting functionally specific subpopulations of primary afferent inputs.
Collapse
Affiliation(s)
- Camila Oliveira Miranda
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Hegedüs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gréta Kis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
23
|
Rankin G, Chirila AM, Emanuel AJ, Zhang Z, Woolf CJ, Drugowitsch J, Ginty DD. Nerve injury disrupts temporal processing in the spinal cord dorsal horn through alterations in PV + interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533541. [PMID: 36993199 PMCID: PMC10055222 DOI: 10.1101/2023.03.20.533541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
How mechanical allodynia following nerve injury is encoded in patterns of neural activity in the spinal cord dorsal horn (DH) is not known. We addressed this using the spared nerve injury model of neuropathic pain and in vivo electrophysiological recordings. Surprisingly, despite dramatic behavioral over-reactivity to mechanical stimuli following nerve injury, an overall increase in sensitivity or reactivity of DH neurons was not observed. We did, however, observe a marked decrease in correlated neural firing patterns, including the synchrony of mechanical stimulus-evoked firing, across the DH. Alterations in DH temporal firing patterns were recapitulated by silencing DH parvalbumin + (PV + ) inhibitory interneurons, previously implicated in mechanical allodynia, as were allodynic pain-like behaviors in mice. These findings reveal decorrelated DH network activity, driven by alterations in PV + interneurons, as a prominent feature of neuropathic pain, and suggest that restoration of proper temporal activity is a potential treatment for chronic neuropathic pain.
Collapse
|
24
|
Increased GABAergic projections in the paraventricular nucleus regulate colonic hypersensitivity via oxytocin in a rat model of irritable bowel syndrome. Neuroreport 2023; 34:108-115. [PMID: 36608164 DOI: 10.1097/wnr.0000000000001867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Irritable bowel syndrome (IBS) is characterized by gastrointestinal dysmotility and visceral hyperalgesia, and the impaired brain-gut axis is accepted as a crucial cause for the onset of IBS. The objective of this study is to investigate the effects of the adaptive changes in the central neural system induced by stress on IBS-like syndromes in rats. Long-term water avoidance stress (WAS) was used to prepare IBS animals. The changes in neuronal excitation and GABA expression were shown by immunohistochemistry. The mRNA and protein expressions of neurotransmitters were detected with Quantitative reverse-transcription PCR (qRT-PCR) and Enzyme-linked immunosorbent assay (ELISA). The intestinal transit time, fecal moisture content, and abdominal withdrawal reflex scores of rats were recorded to monitor intestinal motility and visceral hyperalgesia. In the WAS-treated rats with enhanced intestinal motility and visceral hypersensitivity, more GABAergic projections were found in the paraventricular nucleus (PVN) of the hypothalamus, which inhibited the firing rate of neurons and decreased the expression of oxytocin. Exogenous oxytocin improved gut motility and decreased AWR scores. The inhibition of oxytocin by the adaptive GABAergic projection in the PVN might be an important mediator of IBS, which indicates a potential novel therapeutic target.
Collapse
|
25
|
Cao B, Scherrer G, Chen L. Spinal cord retinoic acid receptor signaling gates mechanical hypersensitivity in neuropathic pain. Neuron 2022; 110:4108-4124.e6. [PMID: 36223767 PMCID: PMC9789181 DOI: 10.1016/j.neuron.2022.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/27/2022] [Accepted: 09/22/2022] [Indexed: 02/08/2023]
Abstract
Central sensitization caused by spinal disinhibition is a key mechanism of mechanical allodynia in neuropathic pain. However, the molecular mechanisms underlying spinal disinhibition after nerve injury remain unclear. Here, we show in mice that spared nerve injury (SNI), which induces mechanical hypersensitivity and neuropathic pain, triggers homeostatic reduction of inhibitory outputs from dorsal horn parvalbumin-positive (PV+) interneurons onto both primary afferent terminals and excitatory interneurons. The reduction in inhibitory outputs drives hyperactivation of the spinal cord nociceptive pathway, causing mechanical hypersensitivity. We identified the retinoic acid receptor RARα, a central regulator of homeostatic plasticity, as the key molecular mediator for this synaptic disinhibition. Deletion of RARα in spinal PV+ neurons or application of an RARα antagonist in the spinal cord prevented the development of SNI-induced mechanical hypersensitivity. Our results identify RARα as a crucial molecular effector for neuropathic pain and a potential target for its treatment.
Collapse
Affiliation(s)
- Bing Cao
- Department of Neurosurgery, Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gregory Scherrer
- Department of Cell Biology and Physiology, UNC Neuroscience Center, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lu Chen
- Department of Neurosurgery, Wu Tsai Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Ishibashi T, Sueto D, Yoshikawa Y, Koga K, Yamaura K, Tsuda M. Identification of Spinal Inhibitory Interneurons Required for Attenuating Effect of Duloxetine on Neuropathic Allodynia-like Signs in Rats. Cells 2022; 11:cells11244051. [PMID: 36552814 PMCID: PMC9777279 DOI: 10.3390/cells11244051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Neuropathic pain is a chronic pain condition that occurs after nerve damage; allodynia, which refers to pain caused by generally innocuous stimuli, is a hallmark symptom. Although allodynia is often resistant to analgesics, the antidepressant duloxetine has been used as an effective therapeutic option. Duloxetine increases spinal noradrenaline (NA) levels by inhibiting its transporter at NAergic terminals in the spinal dorsal horn (SDH), which has been proposed to contribute to its pain-relieving effect. However, the mechanism through which duloxetine suppresses neuropathic allodynia remains unclear. Here, we identified an SDH inhibitory interneuron subset (captured by adeno-associated viral (AAV) vectors incorporating a rat neuropeptide Y promoter; AAV-NpyP+ neurons) that is mostly depolarized by NA. Furthermore, this excitatory effect was suppressed by pharmacological blockade or genetic knockdown of α1B-adrenoceptors (ARs) in AAV-NpyP+ SDH neurons. We found that duloxetine suppressed Aβ fiber-mediated allodynia-like behavioral responses after nerve injury and that this effect was not observed in AAV-NpyP+ SDH neuron-selective α1B-AR-knockdown. These results indicate that α1B-AR and AAV-NpyP+ neurons are critical targets for spinal NA and are necessary for the therapeutic effect of duloxetine on neuropathic pain, which can support the development of novel analgesics.
Collapse
Affiliation(s)
- Tadayuki Ishibashi
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Daichi Sueto
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yu Yoshikawa
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keisuke Koga
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Kyushu University Institute for Advanced Study, Fukuoka 819-0395, Japan
- Correspondence:
| |
Collapse
|
27
|
Aravagiri K, Ali A, Wang HC, Candido KD, Knezevic NN. Identifying molecular mechanisms of acute to chronic pain transition and potential drug targets. Expert Opin Ther Targets 2022; 26:801-810. [DOI: 10.1080/14728222.2022.2137404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kannan Aravagiri
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Adam Ali
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Hank C Wang
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
- Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kenneth D Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA
- Department of Surgery, University of Illinois, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA
- Department of Surgery, University of Illinois, Chicago, IL, USA
| |
Collapse
|
28
|
Domínguez-Oliva A, Mota-Rojas D, Hernández-Avalos I, Mora-Medina P, Olmos-Hernández A, Verduzco-Mendoza A, Casas-Alvarado A, Whittaker AL. The neurobiology of pain and facial movements in rodents: Clinical applications and current research. Front Vet Sci 2022; 9:1016720. [PMID: 36246319 PMCID: PMC9556725 DOI: 10.3389/fvets.2022.1016720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
One of the most controversial aspects of the use of animals in science is the production of pain. Pain is a central ethical concern. The activation of neural pathways involved in the pain response has physiological, endocrine, and behavioral consequences, that can affect both the health and welfare of the animals, as well as the validity of research. The strategy to prevent these consequences requires understanding of the nociception process, pain itself, and how assessment can be performed using validated, non-invasive methods. The study of facial expressions related to pain has undergone considerable study with the finding that certain movements of the facial muscles (called facial action units) are associated with the presence and intensity of pain. This review, focused on rodents, discusses the neurobiology of facial expressions, clinical applications, and current research designed to better understand pain and the nociceptive pathway as a strategy for implementing refinement in biomedical research.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master in Science Program “Maestría en Ciencias Agropecuarias”, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
- *Correspondence: Daniel Mota-Rojas
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
29
|
Garcia-Ramirez DL, Singh S, McGrath JR, Ha NT, Dougherty KJ. Identification of adult spinal Shox2 neuronal subpopulations based on unbiased computational clustering of electrophysiological properties. Front Neural Circuits 2022; 16:957084. [PMID: 35991345 PMCID: PMC9385948 DOI: 10.3389/fncir.2022.957084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Spinal cord neurons integrate sensory and descending information to produce motor output. The expression of transcription factors has been used to dissect out the neuronal components of circuits underlying behaviors. However, most of the canonical populations of interneurons are heterogeneous and require additional criteria to determine functional subpopulations. Neurons expressing the transcription factor Shox2 can be subclassified based on the co-expression of the transcription factor Chx10 and each subpopulation is proposed to have a distinct connectivity and different role in locomotion. Adult Shox2 neurons have recently been shown to be diverse based on their firing properties. Here, in order to subclassify adult mouse Shox2 neurons, we performed multiple analyses of data collected from whole-cell patch clamp recordings of visually-identified Shox2 neurons from lumbar spinal slices. A smaller set of Chx10 neurons was included in the analyses for validation. We performed k-means and hierarchical unbiased clustering approaches, considering electrophysiological variables. Unlike the categorizations by firing type, the clusters displayed electrophysiological properties that could differentiate between clusters of Shox2 neurons. The presence of clusters consisting exclusively of Shox2 neurons in both clustering techniques suggests that it is possible to distinguish Shox2+Chx10- neurons from Shox2+Chx10+ neurons by electrophysiological properties alone. Computational clusters were further validated by immunohistochemistry with accuracy in a small subset of neurons. Thus, unbiased cluster analysis using electrophysiological properties is a tool that can enhance current interneuronal subclassifications and can complement groupings based on transcription factor and molecular expression.
Collapse
Affiliation(s)
| | | | | | | | - Kimberly J. Dougherty
- Department of Neurobiology and Anatomy, Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
30
|
Zhang Y, Ke J, Zhou Y, Liu X, Huang T, Wang F. Sex-specific characteristics of cells expressing the cannabinoid 1 receptor in the dorsal horn of the lumbar spinal cord. J Comp Neurol 2022; 530:2451-2473. [PMID: 35580011 DOI: 10.1002/cne.25342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022]
Abstract
It is becoming increasingly clear that robust sex differences exist in the processing of acute and chronic pain in both rodents and humans. However, the underlying mechanism has not been well characterized. The dorsal horn of the lumbar spinal cord is the fundamental building block of ascending and descending pain pathways. It has been shown that numerous neurotransmitter and neuromodulator systems in the spinal cord, including the endocannabinoid system and its main receptor, the cannabinoid 1 receptor (CB1 R), play vital roles in processing nociceptive information. Our previous findings have shown that CB1 R mRNA is widely expressed in the brain in sex-dependent patterns. However, the sex-, lamina-, and cell-type-specific characteristics of CB1 R expression in the spinal cord have not been fully described. In this study, the CB1 R-iCre-EGFP mouse strain was generated to label and identify CB1 R-positive (CB1 RGFP ) cells. We reported no sex difference in CB1 R expression in the lumbar dorsal horn of the spinal cord, but a dynamic distribution within superficial laminae II and III in female mice between estrus and nonestrus phases. Furthermore, the cell-type-specific CB1 R expression pattern in the dorsal horn was similar in both sexes. Over 50% of CB1 RGFP cells were GABAergic neurons, and approximately 25% were glycinergic and 20-30% were glutamatergic neurons. The CB1 R-expressing cells also represented a subset of spinal projection neurons. Overall, our work indicates a highly consistent distribution pattern of CB1 RGFP cells in the dorsal horn of lumbar spinal cord in males and females.
Collapse
Affiliation(s)
- Yulin Zhang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Ke
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zhou
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Liu
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tianwen Huang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
31
|
Bouchenaki H, Bernard A, Bessaguet F, Frachet S, Richard L, Sturtz F, Magy L, Bourthoumieu S, Demiot C, Danigo A. Neuroprotective Effect of Ramipril Is Mediated by AT2 in a Mouse MODEL of Paclitaxel-Induced Peripheral Neuropathy. Pharmaceutics 2022; 14:pharmaceutics14040848. [PMID: 35456682 PMCID: PMC9030366 DOI: 10.3390/pharmaceutics14040848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Paclitaxel (PTX)-induced peripheral neuropathy (PIPN) induces numerous symptoms affecting patient quality of life, leading to decreased doses or even to cessation of anticancer therapy. Previous studies have reported that a widely used drug, ramipril, improves neuroprotection in several rodent models of peripheral neuropathy. The protective role of the angiotensin II type 2 receptor (AT2) in the central and peripheral nervous systems is well-established. Here, we evaluate the effects of ramipril in the prevention of PIPN and the involvement of AT2 in this effect. Paclitaxel was administered in wild type or AT2-deficient mice on alternate days for 8 days, at a cumulative dose of 8 mg/kg (2 mg/kg per injection). Ramipril, PD123319 (an AT2 antagonist), or a combination of both were administered one day before PTX administration, and daily for the next twenty days. PTX-administered mice developed mechanical allodynia and showed a loss of sensory nerve fibers. Ramipril prevented the functional and morphological alterations in PTX mice. The preventive effect of ramipril against tactile allodynia was completely absent in AT2-deficient mice and was counteracted by PD123319 administration in wild type mice. Our work highlights the potential of ramipril as a novel preventive treatment for PIPN, and points to the involvement of AT2 in the neuroprotective role of ramipril in PIPN.
Collapse
Affiliation(s)
- Hichem Bouchenaki
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| | - Amandine Bernard
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| | - Flavien Bessaguet
- INSERM 1083 CNRS UMR 6015 Mitovasc Laboratory, CarMe Team, University of Angers, 49045 Angers, France;
| | - Simon Frachet
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Laurence Richard
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Franck Sturtz
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Biochemistry and Molecular Genetics, University Hospital of Limoges, 87000 Limoges, France
| | - Laurent Magy
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Neurology, Reference Center for Rare Peripheral Neuropathies, University Hospital of Limoges, 87000 Limoges, France
| | - Sylvie Bourthoumieu
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Department of Cytogenetic, Medical Genetic and Reproduction Biology, University Hospital of Limoges, 87000 Limoges, France
| | - Claire Demiot
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
- Correspondence: ; Tel.: +33-5554-35915
| | - Aurore Danigo
- UR 20218-NeurIT, Faculties of Medicine and Pharmacy, University of Limoges, 87025 Limoges, France; (H.B.); (A.B.); (S.F.); (L.R.); (F.S.); (L.M.); (S.B.); (A.D.)
| |
Collapse
|
32
|
Slick Potassium Channels Control Pain and Itch in Distinct Populations of Sensory and Spinal Neurons in Mice. Anesthesiology 2022; 136:802-822. [PMID: 35303056 DOI: 10.1097/aln.0000000000004163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Slick, a sodium-activated potassium channel, has been recently identified in somatosensory pathways, but its functional role is poorly understood. The authors of this study hypothesized that Slick is involved in processing sensations of pain and itch. METHODS Immunostaining, in situ hybridization, Western blot, and real-time quantitative reverse transcription polymerase chain reaction were used to investigate the expression of Slick in dorsal root ganglia and the spinal cord. Mice lacking Slick globally (Slick-/-) or conditionally in neurons of the spinal dorsal horn (Lbx1-Slick-/-) were assessed in behavioral models. RESULTS The authors found Slick to be enriched in nociceptive Aδ-fibers and in populations of interneurons in the spinal dorsal horn. Slick-/- mice, but not Lbx1-Slick-/- mice, showed enhanced responses to noxious heat in the hot plate and tail-immersion tests. Both Slick-/- and Lbx1-Slick-/- mice demonstrated prolonged paw licking after capsaicin injection (mean ± SD, 45.6 ± 30.1 s [95% CI, 19.8 to 71.4]; and 13.1 ± 16.1 s [95% CI, 1.8 to 28.0]; P = 0.006 [Slick-/- {n = 8} and wild-type {n = 7}, respectively]), which was paralleled by increased phosphorylation of the neuronal activity marker extracellular signal-regulated kinase in the spinal cord. In the spinal dorsal horn, Slick is colocalized with somatostatin receptor 2 (SSTR2), and intrathecal preadministration of the SSTR2 antagonist CYN-154806 prevented increased capsaicin-induced licking in Slick-/- and Lbx1-Slick-/- mice. Moreover, scratching after intrathecal delivery of the somatostatin analog octreotide was considerably reduced in Slick-/- and Lbx1-Slick-/- mice (Slick-/- [n = 8]: 6.1 ± 6.7 bouts [95% CI, 0.6 to 11.7]; wild-type [n =8]: 47.4 ± 51.1 bouts [95% CI, 4.8 to 90.2]; P = 0.039). CONCLUSIONS Slick expressed in a subset of sensory neurons modulates heat-induced pain, while Slick expressed in spinal cord interneurons inhibits capsaicin-induced pain but facilitates somatostatin-induced itch. EDITOR’S PERSPECTIVE
Collapse
|
33
|
Todd AJ. An Historical Perspective: The Second Order Neuron in the Pain Pathway. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:845211. [PMID: 35295811 PMCID: PMC8915774 DOI: 10.3389/fpain.2022.845211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022]
|
34
|
Ma Q. A functional subdivision within the somatosensory system and its implications for pain research. Neuron 2022; 110:749-769. [PMID: 35016037 PMCID: PMC8897275 DOI: 10.1016/j.neuron.2021.12.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/07/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Somatosensory afferents are traditionally classified by soma size, myelination, and their response specificity to external and internal stimuli. Here, we propose the functional subdivision of the nociceptive somatosensory system into two branches. The exteroceptive branch detects external threats and drives reflexive-defensive reactions to prevent or limit injury. The interoceptive branch senses the disruption of body integrity, produces tonic pain with strong aversive emotional components, and drives self-caring responses toward to the injured region to reduce suffering. The central thesis behind this functional subdivision comes from a reflection on the dilemma faced by the pain research field, namely, the use of reflexive-defensive behaviors as surrogate assays for interoceptive tonic pain. The interpretation of these assays is now being challenged by the discovery of distinct but interwoven circuits that drive exteroceptive versus interoceptive types of behaviors, with the conflation of these two components contributing partially to the poor translation of therapies from preclinical studies.
Collapse
Affiliation(s)
- Qiufu Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Larsson M, Nagi SS. Role of C-tactile fibers in pain modulation: animal and human perspectives. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Oliva V, Hartley-Davies R, Moran R, Pickering AE, Brooks JC. Simultaneous brain, brainstem and spinal cord pharmacological-fMRI reveals involvement of an endogenous opioid network in attentional analgesia. eLife 2022; 11:71877. [PMID: 35080494 PMCID: PMC8843089 DOI: 10.7554/elife.71877] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pain perception is decreased by shifting attentional focus away from a threatening event. This attentional analgesia engages parallel descending control pathways from anterior cingulate (ACC) to locus coeruleus, and ACC to periaqueductal grey (PAG) – rostral ventromedial medulla (RVM), indicating possible roles for noradrenergic or opioidergic neuromodulators. To determine which pathway modulates nociceptive activity in humans, we used simultaneous whole brain-spinal cord pharmacological-fMRI (N = 39) across three sessions. Noxious thermal forearm stimulation generated somatotopic-activation of dorsal horn (DH) whose activity correlated with pain report and mirrored attentional pain modulation. Activity in an adjacent cluster reported the interaction between task and noxious stimulus. Effective connectivity analysis revealed that ACC interacts with PAG and RVM to modulate spinal cord activity. Blocking endogenous opioids with Naltrexone impairs attentional analgesia and disrupts RVM-spinal and ACC-PAG connectivity. Noradrenergic augmentation with Reboxetine did not alter attentional analgesia. Cognitive pain modulation involves opioidergic ACC-PAG-RVM descending control which suppresses spinal nociceptive activity.
Collapse
Affiliation(s)
- Valeria Oliva
- Department of Anesthesiology, University of California, San Diego, La Jolla, United States
| | - Ron Hartley-Davies
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Rosalyn Moran
- Department of Neuroimaging, King's College London, London, United Kingdom
| | - Anthony E Pickering
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
37
|
Spinal integration of hot and cold nociceptive stimuli by wide-dynamic-range neurons in anesthetized adult rats. Pain Rep 2021; 6:e983. [PMID: 34938936 PMCID: PMC8687733 DOI: 10.1097/pr9.0000000000000983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/07/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction Early neuronal processing of thermal noxious information relies mostly on molecular detectors of the transient receptor potential family expressed by specific subpopulation of sensory neurons. This information may converge to second-order wide-dynamic-range (WDR) neurons located in the deep layer of the dorsal horn of the spinal cord. Method Using a micro-Peltier thermode thermal contact stimulator II delivering various cold and hot noxious stimulations, we have characterized the extracellular electrophysiological responses of mechanosensitive WDR neurons in anesthetized adult male and female Wistar rats. Results Most of the WDR neurons were activated after hot and cold noxious stimulations, at mean temperature thresholds corresponding to 43 and 20°C, respectively. If the production of action potential was not different in frequency between the 2 thermal modalities, the latency to observe the first action potential was significantly different (cold: 212 ms; hot: 490 ms, unpaired Student t-test: t = 8.041; df = 32; P < 0.0001), suggesting that different fiber types and circuits were involved. The temporal summation was also different because no facilitation was seen for cold noxious stimulations contrary to hot noxious ones. Conclusion Altogether, this study helps better understand how short-lasting and long-lasting hot or cold noxious stimuli are integrated by mechanosensitive WDR neurons. In our experimental conditions, we found WDR neurons to be nociceptive specific for C-fiber-mediated hot stimuli. We also found that cold nonnoxious and noxious information, triggered at glabrous skin areas, are likely taken in charge by A-type sensory neurons. This study will be helpful to establish working hypothesis explaining the thermal pain symptoms displayed by animal models and patients in a translational extent.
Collapse
|
38
|
Jayakar S, Shim J, Jo S, Bean BP, Singeç I, Woolf CJ. Developing nociceptor-selective treatments for acute and chronic pain. Sci Transl Med 2021; 13:eabj9837. [PMID: 34757806 PMCID: PMC9964063 DOI: 10.1126/scitranslmed.abj9837] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite substantial efforts dedicated to the development of new, nonaddictive analgesics, success in treating pain has been limited. Clinically available analgesic agents generally lack efficacy and may have undesirable side effects. Traditional target-based drug discovery efforts that generate compounds with selectivity for single targets have a high rate of attrition because of their poor clinical efficacy. Here, we examine the challenges associated with the current analgesic drug discovery model and review evidence in favor of stem cell–derived neuronal-based screening approaches for the identification of analgesic targets and compounds for treating diverse forms of acute and chronic pain.
Collapse
Affiliation(s)
- Selwyn Jayakar
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Jaehoon Shim
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH); Bethesda, MD 20892, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| |
Collapse
|
39
|
Ran C, Kamalani GNA, Chen X. Modality-Specific Modulation of Temperature Representations in the Spinal Cord after Injury. J Neurosci 2021; 41:8210-8219. [PMID: 34408066 PMCID: PMC8482863 DOI: 10.1523/jneurosci.1104-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
Different types of tissue injury, such as inflammatory and neuropathic conditions, cause modality-specific alternations on temperature perception. There are profound changes in peripheral sensory neurons after injury, but how patterned neuronal activities in the CNS encode injury-induced sensitization to temperature stimuli is largely unknown. Using in vivo calcium imaging and mouse genetics, we show that formalin- and prostaglandin E2-induced inflammation dramatically increase spinal responses to heating and decrease responses to cooling in male and female mice. The reduction of cold response is largely eliminated on ablation of TRPV1-expressing primary sensory neurons, indicating a crossover inhibition of cold response from the hyperactive heat inputs in the spinal cord. Interestingly, chemotherapy medication oxaliplatin can rapidly increase spinal responses to cooling and suppress responses to heating. Together, our results suggest a push-pull mechanism in processing cold and heat inputs and reveal a synergic mechanism to shift thermosensation after injury.SIGNIFICANCE STATEMENT In this paper, we combine our novel in vivo spinal cord two-photon calcium imaging, mouse genetics, and persistent pain models to study how tissue injury alters the sensation of temperature. We discover modality-specific changes of spinal temperature responses in different models of injury. Chemotherapy medication oxaliplatin leads to cold hypersensitivity and heat hyposensitivity. By contrast, inflammation increases heat sensitivity and decreases cold sensitivity. This decrease in cold sensitivity results from the stronger crossover inhibition from the hyperactive heat inputs. Our work reveals the bidirectional change of thermosensitivity by injury and suggests that the crossover inhibitory circuit underlies the shifted thermosensation, providing a mechanism to the biased perception toward a unique thermal modality that was observed clinically in chronic pain patients.
Collapse
Affiliation(s)
- Chen Ran
- Department of Biology, Stanford University, Stanford, California 94305
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, California 94305
| |
Collapse
|
40
|
Russ DE, Cross RBP, Li L, Koch SC, Matson KJE, Yadav A, Alkaslasi MR, Lee DI, Le Pichon CE, Menon V, Levine AJ. A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat Commun 2021; 12:5722. [PMID: 34588430 PMCID: PMC8481483 DOI: 10.1038/s41467-021-25125-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Single-cell RNA sequencing data can unveil the molecular diversity of cell types. Cell type atlases of the mouse spinal cord have been published in recent years but have not been integrated together. Here, we generate an atlas of spinal cell types based on single-cell transcriptomic data, unifying the available datasets into a common reference framework. We report a hierarchical structure of postnatal cell type relationships, with location providing the highest level of organization, then neurotransmitter status, family, and finally, dozens of refined populations. We validate a combinatorial marker code for each neuronal cell type and map their spatial distributions in the adult spinal cord. We also show complex lineage relationships among postnatal cell types. Additionally, we develop an open-source cell type classifier, SeqSeek, to facilitate the standardization of cell type identification. This work provides an integrated view of spinal cell types, their gene expression signatures, and their molecular organization.
Collapse
Affiliation(s)
- Daniel E Russ
- Division of Cancer Epidemiology and Genetics, Data Science Research Group, National Cancer Institute, NIH, Rockville, MD, USA
| | - Ryan B Patterson Cross
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Li Li
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Stephanie C Koch
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London, UK
| | - Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Archana Yadav
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Mor R Alkaslasi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.,Department of Neuroscience, Brown University, Providence, RI, USA
| | - Dylan I Lee
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| |
Collapse
|
41
|
Karnup S. Spinal interneurons of the lower urinary tract circuits. Auton Neurosci 2021; 235:102861. [PMID: 34391124 DOI: 10.1016/j.autneu.2021.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
The storage and elimination of urine requires coordinated activity between muscles of the bladder and the urethra. This coordination is orchestrated by a complex system containing spinal, midbrain and forebrain networks. Normally there is a reciprocity between patterns of activity in urinary bladder sacral parasympathetic efferents and somatic motoneurons innervating the striatal external urethral sphincter muscle. At the spinal level this reciprocity is mediated by ensembles of excitatory and inhibitory interneurons located in the lumbar-sacral segments. In this review I will present an overview of currently identified spinal interneurons and circuits relevant to the lower urinary tract and will discuss their established or hypothetical roles in the cycle of micturition. In addition, a recently discovered auxiliary spinal neuronal ensemble named lumbar spinal coordinating center will be described. Sexual dimorphism and developmental features of the lower urinary tract which may play a significant role in designing treatments for patients with urine storage and voiding dysfunctions are also considered. Spinal cord injuries seriously damage or even eliminate the ability to urinate. Treatment of this abnormality requires detailed knowledge of supporting neural mechanisms, therefore various experiments in normal and spinalized animals will be discussed. Finally, a possible intraspinal mechanism will be proposed for organization of external urethral sphincter (EUS) bursting which represents a form of intermittent EUS relaxation in rats and mice.
Collapse
Affiliation(s)
- Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop St. BST, R.1303, Pittsburgh, 15213, PA, United States.
| |
Collapse
|
42
|
Freiwald J, Magni A, Fanlo-Mazas P, Paulino E, Sequeira de Medeiros L, Moretti B, Schleip R, Solarino G. A Role for Superficial Heat Therapy in the Management of Non-Specific, Mild-to-Moderate Low Back Pain in Current Clinical Practice: A Narrative Review. Life (Basel) 2021; 11:780. [PMID: 34440524 PMCID: PMC8401625 DOI: 10.3390/life11080780] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022] Open
Abstract
Low back pain (LBP) is a leading cause of disability. It significantly impacts the patient's quality of life, limits their daily living activities, and reduces their work productivity. To reduce the burden of LBP, several pharmacological and non-pharmacological treatment options are available. This review summarizes the role of superficial heat therapy in the management of non-specific mild-to-moderate LBP. First, we outline the common causes of LBP, then discuss the general mechanisms of heat therapy on (LBP), and finally review the published evidence regarding the impact of superficial heat therapy in patients with acute or chronic non-specific LBP. This review demonstrates that continuous, low-level heat therapy provides pain relief, improves muscular strength, and increases flexibility. Therefore, this effective, safe, easy-to-use, and cost-effective non-pharmacological pain relief option is relevant for the management of non-specific mild or moderate low back pain in current clinical practice.
Collapse
Affiliation(s)
- Jürgen Freiwald
- Department of Movement and Training Science, Bergische University Wuppertal, 42119 Wuppertal, Germany;
| | - Alberto Magni
- S.I.M.G. Società Italiana di Medicina Generale, 50242 Florence, Italy;
| | - Pablo Fanlo-Mazas
- Faculty of Health Sciences, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Ema Paulino
- Farmácia Nuno Álvares, 2800-179 Almada, Portugal;
| | - Luís Sequeira de Medeiros
- Nova Medical School, Nova University Lisbon, 1099-085 Lisbon, Portugal;
- Physical Medicine and Rehabilitation Department, Centro Hospitalar Universitário de Lisboa Central, 1150-199 Lisbon, Portugal
| | - Biagio Moretti
- Orthopedic & Trauma Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (B.M.); (G.S.)
| | - Robert Schleip
- Department of Sport and Health Sciences, Associate Professorship of Conservative and Rehabilitative Orthopedics, Technical University of Munich, 80992 Munich, Germany
- Department for Medical Professions, Diploma University of Applied Sciences Bad Sooden-Allendorf, 37242 Bad Sooden-Allendorf, Germany
| | - Giuseppe Solarino
- Orthopedic & Trauma Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (B.M.); (G.S.)
| |
Collapse
|
43
|
Duan-Mu CL, Zhang XN, Shi H, Su YS, Wan HY, Wang Y, Qu ZY, He W, Wang XY, Jing XH. Electroacupuncture-Induced Muscular Inflammatory Pain Relief Was Associated With Activation of Low-Threshold Mechanoreceptor Neurons and Inhibition of Wide Dynamic Range Neurons in Spinal Dorsal Horn. Front Neurosci 2021; 15:687173. [PMID: 34305519 PMCID: PMC8295590 DOI: 10.3389/fnins.2021.687173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Acupuncture is an effective alternative therapy for pain management. Evidence suggests that acupuncture relieves pain by exciting somatic afferent nerve fibers. However, the mechanism underlying the interaction between neurons in different layers of the spinal dorsal horn induced by electroacupuncture (EA) remains unclear. The aim of this study was to explore the mechanism of EA relieving inflammatory muscle pain, which was associated with activation of the spontaneous firing of low-threshold mechanoreceptor (LTM) neurons and inhibition of wide dynamic range (WDR) neuronal activities in the spinal dorsal horn of rats. Inflammatory muscle pain was induced by injecting complete Freund’s adjuvant into the right biceps femoris muscle. EA with intensity of threshold of A fibers (Ta) in Liangqiu (ST34) muscle considerably inhibited the abnormal spontaneous activities of electromyography (EMG) due to muscle inflammation. While EA with intensity of C-fiber threshold (Tc) increased the abnormal activities of EMG. EA with Ta also ameliorated the imbalance of weight-bearing behavior. A microelectrode array with 750-μm depth covering 32 channels was used to record the neuronal activities of WDR and LTM in different layers of the spinal dorsal horn. The spontaneous firing of LTM neurons was enhanced by EA-Ta, while the spontaneous firing of WDR neurons was inhibited. Moreover, EA-Ta led to a significant inverse correlation between changes in the frequency of WDR and LTM neurons (r = −0.64, p < 0.05). In conclusion, the results indicated that EA could alleviate inflammatory muscle pain, which was associated with facilitation of the spontaneous firing of LTM neurons and inhibition of WDR neuronal activities. This provides a promising evidence that EA-Ta could be applied to relieve muscular inflammatory pain in clinical practice.
Collapse
Affiliation(s)
- Cheng-Lin Duan-Mu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Ning Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong Shi
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang-Shuai Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hong-Ye Wan
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zheng-Yang Qu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang-Hong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
44
|
Schmidt H, Böttcher A, Gross T, Schmidtko A. cGMP signalling in dorsal root ganglia and the spinal cord: Various functions in development and adulthood. Br J Pharmacol 2021; 179:2361-2377. [PMID: 33939841 DOI: 10.1111/bph.15514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/27/2022] Open
Abstract
Cyclic GMP (cGMP) is a second messenger that regulates numerous physiological and pathophysiological processes. In recent years, more and more studies have uncovered multiple roles of cGMP signalling pathways in the somatosensory system. Accumulating evidence suggests that cGMP regulates different cellular processes from embryonic development through to adulthood. During embryonic development, a cGMP-dependent signalling cascade in the trunk sensory system is essential for axon bifurcation, a specific form of branching of somatosensory axons. In adulthood, various cGMP signalling pathways in distinct cell populations of sensory neurons and dorsal horn neurons in the spinal cord play an important role in the processing of pain and itch. Some of the involved enzymes might serve as a target for future therapies. In this review, we summarise the knowledge regarding cGMP-dependent signalling pathways in dorsal root ganglia and the spinal cord during embryonic development and adulthood, and the potential of targeting these pathways.
Collapse
Affiliation(s)
- Hannes Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Alexandra Böttcher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Tilman Gross
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical Pharmacy, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
45
|
Genaro K, Prado WA. The role of the anterior pretectal nucleus in pain modulation: A comprehensive review. Eur J Neurosci 2021; 54:4358-4380. [PMID: 33909941 DOI: 10.1111/ejn.15255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/27/2022]
Abstract
Descending pain modulation involves multiple encephalic sites and pathways that range from the cerebral cortex to the spinal cord. Behavioral studies conducted in the 1980s revealed that electrical stimulation of the pretectal area causes antinociception dissociation from aversive responses. Anatomical and physiological studies identified the anterior pretectal nucleus and its descending projections to several midbrain, pontine, and medullary structures. The anterior pretectal nucleus is morphologically divided into a dorsal part that contains a dense neuron population (pars compacta) and a ventral part that contains a dense fiber band network (pars reticulata). Connections of the two anterior pretectal nucleus parts are broad and include prominent projections to and from major encephalic systems associated with somatosensory processes. Since the first observation that acute or chronic noxious stimuli activate the anterior pretectal nucleus, it has been established that numerous mediators participate in this response through distinct pathways. Recent studies have confirmed that at least two pain inhibitory pathways are activated from the anterior pretectal nucleus. This review focuses on rodent anatomical, behavioral, molecular, and neurochemical data that have helped to identify mediators of the anterior pretectal nucleus and pathways related to its role in pain modulation.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology, University of California, Irvine, CA, USA
| | - Wiliam A Prado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Motojima Y, Ueta Y, Sakai A. Analysis of the proportion and neuronal activity of excitatory and inhibitory neurons in the rat dorsal spinal cord after peripheral nerve injury. Neurosci Lett 2021; 749:135707. [PMID: 33600905 DOI: 10.1016/j.neulet.2021.135707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
The dorsal spinal cord contains projection neurons that transmit somatosensory information to the brain and interneurons which then modulate neuronal activity of these projection neurons and/or other interneurons. Interneurons can be subdivided into two groups: excitatory and inhibitory neurons. While inhibitory interneurons are thought to play a crucial role in analgesia, it is unclear whether they are involved in neuropathic pain. In the present study, we aimed to assess the proportion and neuronal activity of excitatory/inhibitory neurons in the dorsal spinal cord using a neuropathic pain model in rats. Following partial sciatic nerve ligation (PSNL), rats showed significant mechanical hyperalgesia, and subsequent immunohistochemical studies were conducted in laminae I-III of the dorsal spinal cord. We found that the number of FosB-immunoreactive cells was significantly higher; there was no change in the percentage of Pax2 positive/negative neurons in NeuN positive neurons; Pax2 negative neurons, but not Pax2 positive neurons, were predominantly activated in PSNL rats; and the immunofluorescence intensity of the calcium channel α2δ1 subunit was significantly higher. These results indicate that while peripheral nerve injury might not affect the proportion of excitatory and inhibitory neurons, it predominantly activates excitatory neurons in laminae I-III of the rat dorsal spinal cord.
Collapse
Affiliation(s)
- Yasuhito Motojima
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan.
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Akinori Sakai
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| |
Collapse
|
47
|
Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways. Int J Mol Sci 2021; 22:ijms22052667. [PMID: 33800863 PMCID: PMC7961554 DOI: 10.3390/ijms22052667] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
The ability to sense and move within an environment are complex functions necessary for the survival of nearly all species. The spinal cord is both the initial entry site for peripheral information and the final output site for motor response, placing spinal circuits as paramount in mediating sensory responses and coordinating movement. This is partly accomplished through the activation of complex spinal microcircuits that gate afferent signals to filter extraneous stimuli from various sensory modalities and determine which signals are transmitted to higher order structures in the CNS and to spinal motor pathways. A mechanistic understanding of how inhibitory interneurons are organized and employed within the spinal cord will provide potential access points for therapeutics targeting inhibitory deficits underlying various pathologies including sensory and movement disorders. Recent studies using transgenic manipulations, neurochemical profiling, and single-cell transcriptomics have identified distinct populations of inhibitory interneurons which express an array of genetic and/or neurochemical markers that constitute functional microcircuits. In this review, we provide an overview of identified neural components that make up inhibitory microcircuits within the dorsal and ventral spinal cord and highlight the importance of inhibitory control of sensorimotor pathways at the spinal level.
Collapse
|
48
|
Chronic BDNF simultaneously inhibits and unmasks superficial dorsal horn neuronal activity. Sci Rep 2021; 11:2249. [PMID: 33500423 PMCID: PMC7838274 DOI: 10.1038/s41598-021-81269-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is critically involved in the pathophysiology of chronic pain. However, the mechanisms of BDNF action on specific neuronal populations in the spinal superficial dorsal horn (SDH) requires further study. We used chronic BDNF treatment (200 ng/ml, 5–6 days) of defined-medium, serum-free spinal organotypic cultures to study intracellular calcium ([Ca2+]i) fluctuations. A detailed quantitative analysis of these fluctuations using the Frequency-independent biological signal identification (FIBSI) program revealed that BDNF simultaneously depressed activity in some SDH neurons while it unmasked a particular subpopulation of ‘silent’ neurons causing them to become spontaneously active. Blockade of gap junctions disinhibited a subpopulation of SDH neurons and reduced BDNF-induced synchrony in BDNF-treated cultures. BDNF reduced neuronal excitability assessed by measuring spontaneous excitatory postsynaptic currents. This was similar to the depressive effect of BDNF on the [Ca2+]i fluctuations. This study reveals novel regulatory mechanisms of SDH neuronal excitability in response to BDNF.
Collapse
|
49
|
Peirs C, Williams SPG, Zhao X, Arokiaraj CM, Ferreira DW, Noh MC, Smith KM, Halder P, Corrigan KA, Gedeon JY, Lee SJ, Gatto G, Chi D, Ross SE, Goulding M, Seal RP. Mechanical Allodynia Circuitry in the Dorsal Horn Is Defined by the Nature of the Injury. Neuron 2021; 109:73-90.e7. [PMID: 33181066 PMCID: PMC7806207 DOI: 10.1016/j.neuron.2020.10.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/16/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
The spinal dorsal horn is a major site for the induction and maintenance of mechanical allodynia, but the circuitry that underlies this clinically important form of pain remains unclear. The studies presented here provide strong evidence that the neural circuits conveying mechanical allodynia in the dorsal horn differ by the nature of the injury. Calretinin (CR) neurons in lamina II inner convey mechanical allodynia induced by inflammatory injuries, while protein kinase C gamma (PKCγ) neurons at the lamina II/III border convey mechanical allodynia induced by neuropathic injuries. Cholecystokinin (CCK) neurons located deeper within the dorsal horn (laminae III-IV) are important for both types of injuries. Interestingly, the Maf+ subset of CCK neurons is composed of transient vesicular glutamate transporter 3 (tVGLUT3) neurons, which convey primarily dynamic allodynia. Identification of an etiology-based circuitry for mechanical allodynia in the dorsal horn has important implications for the mechanistic and clinical understanding of this condition.
Collapse
Affiliation(s)
- Cedric Peirs
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Sean-Paul G Williams
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Xinyi Zhao
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Cynthia M Arokiaraj
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - David W Ferreira
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Myung-Chul Noh
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Kelly M Smith
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Priyabrata Halder
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Kelly A Corrigan
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Jeremy Y Gedeon
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Suh Jin Lee
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Graziana Gatto
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - David Chi
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Sarah E Ross
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
50
|
Presynaptic Inhibition of Pain and Touch in the Spinal Cord: From Receptors to Circuits. Int J Mol Sci 2021; 22:ijms22010414. [PMID: 33401784 PMCID: PMC7795800 DOI: 10.3390/ijms22010414] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Sensory primary afferent fibers, conveying touch, pain, itch, and proprioception, synapse onto spinal cord dorsal horn neurons. Primary afferent central terminals express a wide variety of receptors that modulate glutamate and peptide release. Regulation of the amount and timing of neurotransmitter release critically affects the integration of postsynaptic responses and the coding of sensory information. The role of GABA (γ-aminobutyric acid) receptors expressed on afferent central terminals is particularly important in sensory processing, both in physiological conditions and in sensitized states induced by chronic pain. During the last decade, techniques of opto- and chemogenetic stimulation and neuronal selective labeling have provided interesting insights on this topic. This review focused on the recent advances about the modulatory effects of presynaptic GABAergic receptors in spinal cord dorsal horn and the neural circuits involved in these mechanisms.
Collapse
|