1
|
Dannesboe J, Bastrup JA, Nielsen KH, Munck P, Thomsen MB, Hawkins CL, Jepps TA. Paracetamol metabolism by endothelial cells - Potential mechanism underlying intravenous paracetamol-induced hypotension. Pharmacol Res 2025; 211:107540. [PMID: 39653302 DOI: 10.1016/j.phrs.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/24/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
It was shown previously that a metabolite of acetaminophen (APAP), N-acetyl-p-benzoquinone imine (NAPQI), is a potent vasodilator, which could underlie the hypotension observed when APAP is administered intravenously. However, it is unknown whether APAP metabolism to NAPQI is possible in the vasculature. In this study, we examine the hypothesis that APAP is metabolized by cytochrome P450 enzymes within the endothelium, which may be accelerated in critically ill patients by the presence of elevated myeloperoxidase (MPO). Exposure of human coronary artery endothelial cells (HCAECs) to APAP resulted in the formation of protein-bound APAP adducts. Proteomic analysis of HCAECs exposed to APAP showed upregulation of CYP20A1, together with proteins involved in the pentose phosphate pathway and maintaining redox homeostasis. Proteomic analyses of mesenteric arteries from rats administered intravenous APAP are consistent with a key role of the vascular wall in APAP metabolism, with similar proteomic pathway changes identified in HCAECs. These changes occurred over a short timeframe and were not seen in the corresponding proteomic analyses of liver tissue. Intracellular thiols were depleted in HCAECs upon APAP treatment, which was partially attenuated by ketoconazole, consistent with the involvement of cytochrome P450 enzymes in the metabolism of APAP to a thiol-reactive metabolite such as NAPQI. Evidence was also obtained for the metabolism of APAP to a thiol-reactive intermediate by MPO in the absence of chloride ions, consistent with NAPQI formation. Taken together, these data provide a putative mechanism to explain the presentation of hypotension in critically ill patients following IV APAP administration.
Collapse
Affiliation(s)
- Johs Dannesboe
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Joakim A Bastrup
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Kathrine Holm Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Pelle Munck
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Morten B Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Thomas A Jepps
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark.
| |
Collapse
|
2
|
Leitch AC, Abdelghany TM, Charlton A, Cooke M, Wright MC. Ionic Liquid 1-Octyl-3-Methylimidazolium (M8OI) Is Mono-Oxygenated by CYP3A4 and CYP3A5 in Adult Human Liver. J Xenobiot 2024; 14:907-922. [PMID: 39051346 PMCID: PMC11270251 DOI: 10.3390/jox14030050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Environmental sampling around a landfill site in the UK previously identified the methylimidazolium ionic liquid, 1-octyl-3-methylimidazolium (M8OI), in the soil. More recently, M8OI was shown to be detectable in sera from 5/20 PBC patients and 1/10 controls and to be oxidised on the alkyl chain in the human liver. The objective of this study was to examine the metabolism of M8OI in humans in more detail. In human hepatocytes, M8OI was mono-oxygenated to 1-(8-Hydroxyoctyl)-3-methyl-imidazolium (HO8IM) then further oxidised to 1-(7-carboxyheptyl)-3-methyl-1H-imidazol-3-ium (COOH7IM). The addition of ketoconazole-in contrast to a range of other cytochrome P450 inhibitors-blocked M8OI metabolism, suggesting primarily CYP3A-dependent mono-oxygenation of M8OI. Hepatocytes from one donor produced negligible and low levels of HO8IM and COOH7IM, respectively, on incubation with M8OI, when compared to hepatocytes from other donors. This donor had undetectable levels of CYP3A4 protein and low CYP3A enzyme activity. Transcript expression levels for other adult CYP3A isoforms-CYP3A5 and CYP3A43-suggest that a lack of CYP3A4 accounted primarily for this donor's low rate of M8OI oxidation. Insect cell (supersome) expression of various human CYPs identified CYP3A4 as the most active CYP mediating M8OI mono-oxygenation, followed by CYP3A5. HO8IM and COOH7IM were not toxic to human hepatocytes, in contrast to M8OI, and using a pooled preparation of human hepatocytes from five donors, ketoconazole potentiated M8OI toxicity. These data demonstrate that CYP3A initiates the mono-oxygenation and detoxification of M8OI in adult human livers and that CYP3A4 likely plays a major role in this process.
Collapse
Affiliation(s)
- Alistair C. Leitch
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4AA, UK
| | - Tarek M. Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt;
- Institute of Education in Healthcare and Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Alex Charlton
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 8QB, UK; (A.C.); (M.C.)
| | - Martin Cooke
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne NE1 8QB, UK; (A.C.); (M.C.)
| | - Matthew C. Wright
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4AA, UK
| |
Collapse
|
3
|
Baker JR, Gilbert J, O’Brien NS, Russell CC, McCluskey A, Sakoff JA. Next-generation of BBQ analogues that selectively target breast cancer. Front Chem 2024; 12:1396105. [PMID: 38974991 PMCID: PMC11224556 DOI: 10.3389/fchem.2024.1396105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024] Open
Abstract
We previously reported on the interaction of 10-chloro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one (10-Cl-BBQ) with the Aryl hydrocarbon Receptor (AhR) and selective growth inhibition in breast cancer cell lines. We now report on a library of BBQ analogues with substituents on the phenyl and naphthyl rings for biological screening. Herein, we show that absence of the phenyl Cl of 10-Cl-BBQ to produce the simple BBQ molecule substantially enhanced the growth inhibitory effect with GI50 values of 0.001-2.1 μM in select breast cancer cell lines MCF-7, T47D, ZR-75-1, SKBR3, MDA-MB-468, BT20, BT474 cells, while having modest effects of 2.1-7 μM in other cell lines including HT29, U87, SJ-G2, A2780, DU145, BE2-C, MIA, MDA-MB-231 or normal breast cells, MCF10A (3.2 μM). The most potent growth inhibitory effect of BBQ was observed in the triple negative cell line, MDA-MB-468 with a GI50 value of 0.001 μM, presenting a 3,200-fold greater response than in the normal MCF10A breast cells. Additions of Cl, CH3, CN to the phenyl ring and ring expansion from benzoimidazole to dihydroquinazoline hindered the growth inhibitory potency of the BBQ analogues by blocking potential sites of CYP1 oxidative metabolism, while addition of Cl or NO2 to the naphthyl rings restored potency. In a cell-based reporter assay all analogues induced 1.2 to 10-fold AhR transcription activation. Gene expression analysis confirmed the induction of CYP1 oxygenases by BBQ. The CYP1 inhibitor α-naphthoflavone, and the SULT1A1 inhibitor quercetin significantly reduced the growth inhibitory effect of BBQ, confirming the importance of both phase I and II metabolic activation for growth inhibition. Conventional molecular modelling/docking revealed no significant differences between the binding poses of the most and least active analogues. More detailed DFT analysis at the DSD-PBEP86/Def-TZVPP level of theory could not identify significant geometric or electronic changes which would account for this varied AhR activation. Generation of Fukui functions at the same level of theory showed that CYP1 metabolism will primarily occur at the phenyl head group of the analogues, and substituents within this ring lead to lower cytotoxicity.
Collapse
Affiliation(s)
- Jennifer R. Baker
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Jayne Gilbert
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| | - Nicholas S. O’Brien
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Cecilia C. Russell
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Jennette A. Sakoff
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Experimental Therapeutics Group, Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, NSW, Australia
| |
Collapse
|
4
|
Chi Y, Zhu X, Chen Y, Li X, Jiang Z, Jian X, Lian M, Wu X, Wang L, Sun M, Shi X. Metabolic activation and cytochrome P450 inhibition of piperlonguminine mediated by CYP3A4. Int J Biol Macromol 2024; 268:131502. [PMID: 38626834 DOI: 10.1016/j.ijbiomac.2024.131502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Piperlonguminine (PLG) is a major alkaloid found in Piper longum fruits. It has been shown to possess a variety of biological activities, including anti-tumor, anti-hyperlipidemic, anti-renal fibrosis and anti-inflammatory properties. Previous studies have reported that PLG inhibits various CYP450 enzymes. The main objective of this study was to identify reactive metabolites of PLG in vitro and assess its ability to inhibit CYP450. In rat and human liver microsomal incubation systems exposed to PLG, two oxidized metabolites (M1 and M2) were detected. Additionally, in microsomes where N-acetylcysteine was used as a trapping agent, N-acetylcysteine conjugates (M3, M4, M5 and M6) of four isomeric O-quinone-derived reactive metabolites were found. The formation of metabolites was dependent on NADPH. Inhibition and recombinant CYP450 enzyme incubation experiments showed that CYP3A4 was the primary enzyme responsible for the metabolic activation of PLG. This study characterized the O-dealkylated metabolite (M1) through chemical synthesis. The IC50 shift assay showed time-dependent inhibition of CYP3A4, 2C9, 2E1, 2C8 and 2D6 by PLG. This research contributes to the understanding of PLG-induced enzyme inhibition and bioactivation.
Collapse
Affiliation(s)
- Yuqian Chi
- Hebei Key Laboratory of Innovative Drug Development and Evaluation, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China; National Demonstration Center for Experimental Pharmacy Education, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoliang Zhu
- Hebei Key Laboratory of Innovative Drug Development and Evaluation, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China; National Demonstration Center for Experimental Pharmacy Education, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Yaxuan Chen
- Hebei Key Laboratory of Innovative Drug Development and Evaluation, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China; National Demonstration Center for Experimental Pharmacy Education, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Xin Li
- Hebei Key Laboratory of Innovative Drug Development and Evaluation, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China; National Demonstration Center for Experimental Pharmacy Education, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Ziyi Jiang
- Hebei Key Laboratory of Innovative Drug Development and Evaluation, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China; National Demonstration Center for Experimental Pharmacy Education, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoyang Jian
- Hebei Key Laboratory of Innovative Drug Development and Evaluation, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China; National Demonstration Center for Experimental Pharmacy Education, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Mengyuan Lian
- Hebei Key Laboratory of Innovative Drug Development and Evaluation, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China; National Demonstration Center for Experimental Pharmacy Education, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaodi Wu
- Hebei Key Laboratory of Innovative Drug Development and Evaluation, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China; National Demonstration Center for Experimental Pharmacy Education, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Lei Wang
- Hebei Key Laboratory of Innovative Drug Development and Evaluation, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China; National Demonstration Center for Experimental Pharmacy Education, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China; National Key Laboratory of New Pharmaceutical Preparations and excipients, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Mengmeng Sun
- General Practice Department, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Xiaowei Shi
- Hebei Key Laboratory of Innovative Drug Development and Evaluation, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China; National Demonstration Center for Experimental Pharmacy Education, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China; National Key Laboratory of New Pharmaceutical Preparations and excipients, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
5
|
Liu S, Jing T, Jia R, Zhang JL, Bai FQ. MD investigation on the differences in the dynamic interactions between the specific ligand azamulin and two CYP3A isoforms, 3A4 and 3A5. J Biomol Struct Dyn 2024:1-10. [PMID: 38533567 DOI: 10.1080/07391102.2024.2331100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
The unmarked potential drug molecule azamulin has been found to be a specific inhibitor of CYP3A4 and CYP3A5 in recent years, but this molecule also shows different binding ability and affinity to the two CYP3A isoforms. In order to explore the microscopic mechanism, conventional molecular dynamics (MD) simulation methods were performed to study the dynamic interactions between two isoforms and azamulin. The simulation results show that the binding of the ligand leads to different structural properties of two CYP3A proteins. First of all, compared with apo-CYP3A4, the binding of the ligand azamulin can lead to changes in the structural flexibility of CYP3A4, i.e., holo-CYP3A4 is more flexible than apo-CYP3A4. The structural changes of CYP3A5 are just the opposite. The ligand binding increases the rigidity of CYP3A5. Furthermore, the representative structures of the production phase in the MD simulation were in details analyzed to obtain the microscopic interactions between the ligand azamulin and two CYP3A isoforms at the atomic level. It is speculated that the difference of composition and interaction of the active sites is the fundamental cause of the change of structural properties of the two proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shuhui Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
- School and Hospital of Stomatology, Jilin University, Changchun, People's Republic of China
| | - Tao Jing
- Depatment of Radiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ran Jia
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Ji-Long Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
| | - Fu-Quan Bai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
6
|
Zhang YY, Huang JW, Liu YH, Zhang JN, Huang Z, Liu YS, Zhao JL, Ying GG. In vitro metabolism of the emerging contaminant 6PPD-quinone in human and rat liver microsomes: Kinetics, pathways, and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123514. [PMID: 38346634 DOI: 10.1016/j.envpol.2024.123514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/15/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) is an ozonation product of the rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD). 6PPD-Q has recently been detected in various environmental media, which may enter the human body via inhalation and skin contact pathways. However, the human metabolism of 6PPD-Q has remained unknown. This study investigated the in vitro Cytochrome P450-mediated metabolism of 6PPD-Q in human and rat liver microsomes (HLMs and RLMs). 6PPD-Q was significantly metabolized at lower concentrations but slowed at high concentrations. The intrinsic clearance (CLint) of 6PPD-Q was 21.10 and 18.58 μL min-1 mg-1 protein of HLMs and RLMs, respectively, suggesting low metabolic ability compared with other reported pollutants. Seven metabolites and one intermediate were identified, and metabolites were predicted immunotoxic or mutagenic toxicity. Mono- and di-oxygenation reactions were the main phase I in vitro metabolic pathways. Enzyme inhibition experiments and molecular docking techniques were further used to reveal the metabolic mechanism. CYP1A2, 3A4, and 2C19, especially CYP1A2, play critical roles in 6PPD-Q metabolism in HLMs, whereas 6PPD-Q is extensively metabolized in RLMs. Our study is the first to demonstrate the in vitro metabolic profile of 6PPD-Q in HLMs and RLMs. The results will significantly contribute to future human health management targeting the emerging pollutant 6PPD-Q.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jun-Wei Huang
- School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yue-Hong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jin-Na Zhang
- School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Zheng Huang
- School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China; School of Environment, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
7
|
Lee J, Beers JL, Geffert RM, Jackson KD. A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. Biomolecules 2024; 14:99. [PMID: 38254699 PMCID: PMC10813492 DOI: 10.3390/biom14010099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Drug metabolism is a major determinant of drug concentrations in the body. Drug-drug interactions (DDIs) caused by the co-administration of multiple drugs can lead to alteration in the exposure of the victim drug, raising safety or effectiveness concerns. Assessment of the DDI potential starts with in vitro experiments to determine kinetic parameters and identify risks associated with the use of comedication that can inform future clinical studies. The diverse range of experimental models and techniques has significantly contributed to the examination of potential DDIs. Cytochrome P450 (CYP) enzymes are responsible for the biotransformation of many drugs on the market, making them frequently implicated in drug metabolism and DDIs. Consequently, there has been a growing focus on the assessment of DDI risk for CYPs. This review article provides mechanistic insights underlying CYP inhibition/induction and an overview of the in vitro assessment of CYP-mediated DDIs.
Collapse
Affiliation(s)
- Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| | | | | | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| |
Collapse
|
8
|
Zhou Y, Dong H, Fan J, Zhu M, Liu L, Wang Y, Tang P, Chen X. Cytochrome P450 2B6 and UDP-Glucuronosyltransferase Enzyme-Mediated Clearance of Ciprofol (HSK3486) in Humans: The Role of Hepatic and Extrahepatic Metabolism. Drug Metab Dispos 2024; 52:106-117. [PMID: 38071562 DOI: 10.1124/dmd.123.001484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
Ciprofol (HSK3486) is a novel intravenous agent for general anesthesia. In humans, HSK3486 mainly undergoes glucuronidation to form M4 [fraction of clearance (fCL): 62.6%], followed by the formation of monohydroxylated metabolites that further undergo glucuronidation and sulfation to produce M5-1, M5-2, M5-3, and M3 (summed fCL: 35.2%). However, the complete metabolic pathways of HSK3486 in humans remain unclear. In this study, by comparison with chemically synthesized reference standards, three monohydroxylated metabolites [M7-1, 4-hydroxylation with an unbound intrinsic clearance (CLint,u) of 2211 μl/min/mg; M7-2, ω-hydroxylation with a CLint,u of 600 μl/min/mg; and M7-3, (ω-1)-hydroxylation with a CLint,u of 78.4 μl/min/mg] were identified in human liver microsomes, and CYP2B6 primarily catalyzed their formation. In humans, M7-1 was shown to undergo glucuronidation at the 4-position and 1-position by multiple UDP-glucuronosyltransferases (UGTs) to produce M5-1 and M5-3, respectively, or was metabolized to M3 by cytosolic sulfotransferases. M7-2 was glucuronidated at the ω position by UGT1A9, 2B4, and 2B7 to form M5-2. UGT1A9 predominantly catalyzed the glucuronidation of HSK3486 (M4). The CLint,u values for M4 formation in human liver and kidney microsomes were 1028 and 3407 μl/min/mg, respectively. In vitro to in vivo extrapolation analysis suggested that renal glucuronidation contributed approximately 31.4% of the combined clearance. In addition to HSK3486 glucuronidation (M4), 4-hydroxylation (M7-1) was identified as another crucial oxidative metabolic pathway (fCL: 34.5%). Further attention should be paid to the impact of CYP2B6- and UGT1A9-mediated drug interactions and gene polymorphisms on the exposure and efficacy of HSK3486. SIGNIFICANCE STATEMENT: This research elucidates the major oxidative metabolic pathways of HSK3486 (the formation of three monohydroxylated metabolites: M7-1, M7-2, M7-3) as well as definitive structures and formation pathways of these monohydroxylated metabolites and their glucuronides or sulfate in humans. This research also identifies major metabolizing enzymes responsible for the glucuronidation (UGT1A9) and oxidation (CYP2B6) of HSK3486 and characterizes the mechanism of extrahepatic metabolism. The above information is helpful in guiding the safe use of HSK3486 in the clinic.
Collapse
Affiliation(s)
- Yufan Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Hongjiao Dong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Jiang Fan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Mingshe Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Lu Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Yongbin Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Pingming Tang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (Y.Z., L.L., Y.W., X.C.); University of Chinese Academy of Sciences, Beijing, China (Y.Z., X.C.); Haisco Pharmaceutical Group Co., Ltd., Chengdu, Sichuan Province, China (H.D., J.F., M.Z., P.T.); and MassDefect Technologies, Princeton, New Jersey (M.Z.)
| |
Collapse
|
9
|
Jia L, Gao F, Hu G, Fang Y, Tang L, Wen Q, Gao N, Xu H, Qiao H. A Novel Cytochrome P450 2E1 Inhibitor Q11 Is Effective on Lung Cancer via Regulation of the Inflammatory Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303975. [PMID: 37875398 PMCID: PMC10724398 DOI: 10.1002/advs.202303975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Indexed: 10/26/2023]
Abstract
Lung cancer is the leading cause of death among all cancers. A persistent chronic inflammatory microenvironment is highly correlated with lung cancer. However, there are no anti-inflammatory agents effective against lung cancer. Cytochrome P450 2E1 (CYP2E1) plays an important role in the inflammatory response. Here, it is found that CYP2E1 is significantly higher in the peritumoral tissue of non-small cell lung cancer (NSCLC) patients and lung tumor growth is significantly impeded in Cyp2e1-/- mice. The novel CYP2E1 inhibitor Q11, 1-(4-methyl-5-thialzolyl) ethenone, is effective in the treatment of lung cancer in mice, which can inhibit cancer cells by changing macrophage polarization rather than directly act on the cancer cells. It is also clarify that the benefit of Q11 may associated with the IL-6/STAT3 and MAPK/ERK pathways. The data demonstrate that CYP2E1 may be a novel inflammatory target and that Q11 is effective on lung cancer by regulation of the inflammatory microenvironment. These findings provide a molecular basis for targeting CYP2E1 and illustrate the potential druggability of the CYP2E1 inhibitor Q11.
Collapse
Affiliation(s)
- Lin Jia
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| | - Fei Gao
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| | - Guiming Hu
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| | - Yan Fang
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| | - Liming Tang
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| | - Qiang Wen
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| | - Na Gao
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| | - Haiwei Xu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouHenan450001China
| | - Hailing Qiao
- Institute of Clinical PharmacologyZhengzhou UniversityZhengzhouHenan450001China
| |
Collapse
|
10
|
Gao N, Chen J, Li Y, Ding Y, Han Z, Xu H, Qiao H. The CYP2E1 inhibitor Q11 ameliorates LPS-induced sepsis in mice by suppressing oxidative stress and NLRP3 activation. Biochem Pharmacol 2023:115638. [PMID: 37290597 DOI: 10.1016/j.bcp.2023.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023]
Abstract
Sepsis is an infection-induced, multi-organ system failure with a pathophysiology related to inflammation and oxidative stress. Increasing evidence indicates that cytochrome P450 2E1 (CYP2E1) is involved in the incidence and development of inflammatory diseases. However, a role for CYP2E1 in lipopolysaccharide (LPS)-induced sepsis has not been completely explored. Here we use Cyp2e1 knockout (cyp2e1-/-) mice to determine if CYP2E1 could be a therapeutic target for sepsis. We also evaluated the ability of Q11, a new specific CYP2E1 inhibitor, to prevent and ameliorate LPS-induced sepsis in mice and in LPS-treated J774A.1 and RAW264.7 cells. Cyp2e1 deletion significantly reduced hypothermia, multi-organ dysfunction and histological abnormalities in LPS-treated mice; consistent with this finding, the CYP2E1 inhibitor Q11 significantly prolonged the survival time of septic mice and ameliorated multi-organ injury induced by LPS. CYP2E1 activity in liver correlated with indicators of multi-organ injury, such as the level of lactate dehydrogenase (LDH) and blood urea nitrogen (BUN) (P<0.05). Q11 significantly suppressed the expression of NLRP3 in tissues after LPS injection; in vitro studies revealed that activation of NLRP3 signaling and increase of ROS was attenuated by Q11 in LPS-stimulated macrophages, which was reflected by reduced expression of caspase-1 and formation of ASC specks. Overall, our results indicate that Q11 improves the survival of mice with LPS-induced sepsis and attenuates sepsis-induced multiple-organ injury, suggesting that CYP2E1 could be a therapeutic target for sepsis.
Collapse
Affiliation(s)
- Na Gao
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China.
| | - Jingjing Chen
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Yunchao Li
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Ding
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Zixinying Han
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiwei Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hailing Qiao
- Institute of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
McGill MR, Kaufman YJ, LoBianco FV, Schleiff MA, Aykin-Burns N, Miller GP. The role of cytochrome P450 3A4-mediated metabolism in sorafenib and lapatinib hepatotoxicity. LIVERS 2023; 3:310-321. [PMID: 38037613 PMCID: PMC10688230 DOI: 10.3390/livers3020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are increasingly popular drugs used to treat more than a dozen different diseases, including some forms of cancer. Despite having fewer adverse effects than traditional chemotherapies, they are not without risks. Liver injury is a particular concern. Of the FDA-approved TKIs, approximately 40% cause hepatotoxicity. However, little is known about the underlying pathophysiology. The leading hypothesis is that TKIs are converted by cytochrome P450 3A4 (CYP3A4) to reactive metabolites that damage proteins. Indeed, there is strong evidence for this bioactivation of TKIs in in vitro reactions. However, the actual toxic effects are underexplored. Here, we measured the cytotoxicity of several TKIs in primary mouse hepatocytes, HepaRG cells, and HepG2 cells with and without CYP3A4 modulation. To our surprise, the data indicate that CYP3A4 increases resistance to sorafenib and lapatinib hepatotoxicity. The results have implications for the mechanism of toxicity of these drugs in patients and underline the importance of selecting an appropriate experimental model.
Collapse
Affiliation(s)
- Mitchell R. McGill
- Dept. of Environmental Health Sciences, Fay W. Boozman College of Public Health; Depts. of Pharma-cology & Toxicology and Pathology, College of Medicine; University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Yihong J. Kaufman
- Dept. of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Francesca V. LoBianco
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Mary A. Schleiff
- Dept. of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Nukhet Aykin-Burns
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Grover P. Miller
- Dept. of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| |
Collapse
|
12
|
Bansal S, Ladumor MK, Paine MF, Unadkat JD. A Physiologically-Based Pharmacokinetic Model for Cannabidiol in Healthy Adults, Hepatically-Impaired Adults, and Children. Drug Metab Dispos 2023; 51:743-752. [PMID: 36972999 PMCID: PMC10197200 DOI: 10.1124/dmd.122.001128] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Cannabidiol (CBD) is available as a prescription oral drug that is indicated for the treatment of some types of epilepsy in children and adults. CBD is also available over-the-counter and is used to self-treat a variety of other ailments, including pain, anxiety, and insomnia. Accordingly, CBD may be consumed with other medications, resulting in possible CBD-drug interactions. Such interactions can be predicted in healthy and hepatically-impaired (HI) adults and in children through physiologically based pharmacokinetic (PBPK) modeling and simulation. These PBPK models must be populated with CBD-specific parameters, including the enzymes that metabolize CBD in adults. In vitro reaction phenotyping experiments showed that UDP-glucuronosyltransferases (UGTs, 80%), particularly UGT2B7 (64%), were the major contributors to CBD metabolism in adult human liver microsomes. Among the cytochrome P450s (CYPs) tested, CYP2C19 (5.7%) and CYP3A (6.5%) were the major CYPs responsible for CBD metabolism. Using these and other physicochemical parameters, a CBD PBPK model was developed and validated for healthy adults. This model was then extended to predict CBD systemic exposure in HI adults and children. Our PBPK model successfully predicted CBD systemic exposure in both populations within 0.5- to 2-fold of the observed values. In conclusion, we developed and validated a PBPK model to predict CBD systemic exposure in healthy and HI adults and children. This model can be used to predict CBD-drug or CBD-drug-disease interactions in these populations. SIGNIFICANCE STATEMENT: Our PBPK model successfully predicted CBD systemic exposure in healthy and hepatically-impaired adults, as well as children with epilepsy. This model could be used in the future to predict CBD-drug or CBD-drug-disease interactions in these special populations.
Collapse
Affiliation(s)
- Sumit Bansal
- Department of Pharmaceutics, University of Washington, Seattle, Washington (S.B., M.K.L., J.D.U.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research (M.F.P., J.D.U.)
| | - Mayur K Ladumor
- Department of Pharmaceutics, University of Washington, Seattle, Washington (S.B., M.K.L., J.D.U.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research (M.F.P., J.D.U.)
| | - Mary F Paine
- Department of Pharmaceutics, University of Washington, Seattle, Washington (S.B., M.K.L., J.D.U.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research (M.F.P., J.D.U.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (S.B., M.K.L., J.D.U.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research (M.F.P., J.D.U.)
| |
Collapse
|
13
|
Liu X, Wang Q, Chen M, Tao J, Wang J, Liu S, Hou J, Li D, Wang R. Interaction between Changan Granule and its main components in the plasma and CYP450 enzymes. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116303. [PMID: 36841379 DOI: 10.1016/j.jep.2023.116303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Changan Granule (CAG) is a Chinese patent drug developed based on an empirical prescription in accordance with the formulation theory of Traditional Chinese Medicine. The prescription is composed of eight herbal drugs which have been traditionally used by Chinese people for a long history. It has effects of invigorating spleen and supplementing qi, as well as regulating liver and ceasing diarrhea, and is indicated for the treatment of irritable bowel syndrome (IBS). AIM OF THE STUDY This study was aimed to investigate the interaction between CAG and its main components and cytochrome P450 (CYP450) enzymes so as to characterize the major metabolites and metabolic enzymes and evaluate the safety concerns to its clinical use. MATERIALS AND METHODS Both in vivo and in vitro experiments using such as diarrhea-predominant IBS (IBS-D) rat model, HepG2 cells, and human liver microsomes (HLM) were carried out to investigate the interaction between CAG and its main components and CYP450 enzymes. Real-time quantitative PCR (qPCR), ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and cocktail probes were employed to qualitatively or quantitatively measure the metabolites and metabolic enzymes. RESULTS CAG inhibited the enzyme activities of CYP1A2, CYP2E1, CYP2D6, CYP2C9, and CYP3A4 and the mRNA expressions of CYP2E1, CYP2C9, CYP3A4, and CYP2D6 in vitro. CAG down-regulated the increased expression of CYP1A2 and up-regulated the decreased expression of CYP3A1 in vivo. Twenty-two metabolites were characterized from the main components of CAG after incubation with HLM in vitro. CYP2D6, CYP2E1, CYP3A4 and CYP2C9 were identified as the characteristic metabolic enzymes. CONCLUSIONS This study provides a reference for clinical application of CAG in safety. CAG and CYP450 enzymes are interacted. CAG is mainly metabolized by CYP2E1 and CYP2D6. The expression of CYP2E1 and CYP2D6 are more susceptible to be influenced by CAG in comparison with that of CYP3A4, CYP2C9 and CYP1A2. It implies the potential risk of interaction when CAG is taken together with the drugs metabolized by CYP2E1 and CYP2D6.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Qiaoxia Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Meng Chen
- China National Institute of Standardization, Beijing, 100191, China
| | - Jiayue Tao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jing Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Siqi Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jincai Hou
- Hebei Shineway Pharmaceutical Co., Ltd., Langfang, 065201, China
| | - Dan Li
- Hebei Shineway Pharmaceutical Co., Ltd., Langfang, 065201, China.
| | - Rufeng Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
14
|
Li Y, Sun C, Zhang Y, Chen X, Huang H, Han L, Xing H, Zhao D, Chen X, Zhang Y. Phase I Metabolism of Pterostilbene, a Dietary Resveratrol Derivative: Metabolite Identification, Species Differences, Isozyme Contribution, and Further Bioactivation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:331-346. [PMID: 36538288 DOI: 10.1021/acs.jafc.2c05334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pterostilbene (PTE), a dietary derivative of resveratrol, displayed pleiotropic health-promoting activities. This study aimed to explore the metabolic profiles and species differences of the phase I metabolism of PTE and to investigate subsequent detoxification after PTE bioactivation. PTE was found to be biotransformed to two pharmacologically active metabolites, pinostilbene and 3'-hydroxypterostilbene, in vivo and in vitro with substantial species differences. Human CYP1A2 was proved to be mainly responsible for the demethylation and 3'-hydroxylation of PTE, with its contribution to a demethylation of 94.5% and to a 3'-hydroxylation of 97.9%. An in vitro glutathione trapping experiment revealed the presence of an ortho-quinone intermediate formed by further oxidation of 3'-hydroxypterostilbene. Human glutathione S-transferase isoforms A2, T1, and A1 inactivated the ortho-quinone intermediate by catalyzing glutathione conjugation, implicating a potential protective pathway against PTE bioactivation-derived toxicity. Overall, this study provided a comprehensive view of PTE phase I metabolism and facilitated its further development as a promising nutraceutical.
Collapse
Affiliation(s)
- Ying Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Changcheng Sun
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yutian Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Xiang Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haoyan Huang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Luyao Han
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
15
|
Lipid mediators generated by the cytochrome P450—Epoxide hydrolase pathway. ADVANCES IN PHARMACOLOGY 2023; 97:327-373. [DOI: 10.1016/bs.apha.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Mishin V, Heck DE, Jan YH, Richardson JR, Laskin JD. Distinct effects of form selective cytochrome P450 inhibitors on cytochrome P450-mediated monooxygenase and hydrogen peroxide generating NADPH oxidase. Toxicol Appl Pharmacol 2022; 455:116258. [PMID: 36174671 DOI: 10.1016/j.taap.2022.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
Abstract
A characteristic of cytochrome P450 (CYP) enzymes is their ability to generate H2O2, either directly or indirectly via superoxide anion, a reaction referred to as "NADPH oxidase" activity. H2O2 production by CYPs can lead to the accumulation of cytotoxic reactive oxygen species which can compromise cellular functioning and contribute to tissue injury. Herein we determined if form selective CYP inhibitors could distinguish between the activities of the monooxygenase and NADPH oxidase activities of rat recombinant CYP1A2, CYP2E1, CYP3A1 and CYP3A2 and CYP1A1/2-enriched β-naphthoflavone-induced rat liver microsomes, CYP2E1-enriched isoniazide-induced rat liver microsomes and CYP3A subfamily-enriched dexamethasone-induced rat liver microsomes. In the presence of 7,8-benzoflavone (2.0 μM) for CYP1A2 and 4-methylpyrazole (32 μM) or DMSO (16 mM) for CYP2E1, monooxygenase activity was blocked without affecting NADPH oxidase activity for both the recombinant enzymes and microsomal preparations. Ketoconazole (1.0 μM), a form selective inhibitor for CYP3A subfamily enzymes, completely inhibited monooxygenase activity of rat recombinant CYP3A1/3A2 and CYP3A subfamily in rat liver microsomes; it also partially inhibited NADPH oxidase activity. 7,8-benzoflavone is a type I ligand, which competes with substrate binding, while 4-methylpyrazole and DMSO are type II heme binding ligands. Interactions of heme with these type II ligands was not sufficient to interfere with oxygen activation, which is required for NADPH oxidase activity. Ketoconazole, a type II ligand known to bind multiple sites on CYP3A subfamily enzymes in close proximity to heme, also interfered, at least in part, with oxygen activation. These data indicate that form specific inhibitors can be used to distinguish between monooxygenase reactions and H2O2 generating NADPH oxidase of CYP1A2 and CYP2E1. Mechanisms by which ketoconazole inhibits CYP3A NADPH oxidase remain to be determined.
Collapse
Affiliation(s)
- Vladimir Mishin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Diane E Heck
- Department of Public Health, New York Medical College, Valhalla, NY 10595, USA
| | - Yi-Hua Jan
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, USA
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, Rutgers University School of Public Health, Piscataway, NJ 08854, USA.
| |
Collapse
|
17
|
Doran AC, Burchett W, Landers C, Gualtieri GM, Balesano A, Eng H, Dantonio AL, Goosen TC, Obach RS. Defining the Selectivity of Chemical Inhibitors Used for Cytochrome P450 Reaction Phenotyping: Overcoming Selectivity Limitations with a Six-Parameter Inhibition Curve-Fitting Approach. Drug Metab Dispos 2022; 50:DMD-AR-2022-000884. [PMID: 35777846 DOI: 10.1124/dmd.122.000884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
The utility of chemical inhibitors in cytochrome P450 (CYP) reaction phenotyping is highly dependent on their selectivity and potency for their target CYP isoforms. In the present study, seventeen inhibitors of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4/5 commonly used in reaction phenotyping were evaluated for their cross-enzyme selectivity in pooled human liver microsomes. The data were evaluated using a statistical desirability analysis to identify (1) inhibitors of superior selectivity for reaction phenotyping and (2) optimal concentrations for each. Among the inhibitors evaluated, α-naphthoflavone, furafylline, sulfaphenazole, tienilic acid, N-benzylnirvanol, and quinidine were most selective, such that their respective target enzymes were inhibited by ~95% without inhibiting any other CYP enzyme by more than 10%. Other commonly employed inhibitors, such as ketoconazole and montelukast, among others, were of insufficient selectivity to yield a concentration that could adequately inhibit their target enzymes without affecting other CYP enzymes. To overcome these shortcomings, an experimental design was developed wherein dose response data from a densely sampled multi-concentration inhibition curve are analyzed by a six-parameter inhibition curve function, allowing accounting of the inhibition of off-target CYP isoforms inhibition and more reliable determination of maximum targeted enzyme inhibition. The approach was exemplified using rosiglitazone N-demethylation, catalyzed by both CYP2C8 and 3A4, and was able to discern the off-target inhibition by ketoconazole and montelukast from the inhibition of the targeted enzyme. This methodology yields more accurate estimates of CYP contributions in reaction phenotyping. Significance Statement Isoform-selective chemical inhibitors are important tools for identifying and quantifying enzyme contributions as part of a CYP reaction phenotyping assessment for projecting drug-drug interactions. However, currently employed practices fail to adequately compensate for shortcomings in inhibitor selectivity and the resulting confounding impact on estimates of the CYP enzyme contribution to drug clearance. In this report, we describe a detailed IC50 study design with 6-parameter modeling approach that yields more accurate estimates of enzyme contribution.
Collapse
Affiliation(s)
| | | | | | | | | | - Heather Eng
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Global Research and Development, United States
| | | | - Theunis C Goosen
- Pharmacokinetics, Dynamics & Metabolism, Pfizer, Inc, United States
| | | |
Collapse
|
18
|
Doran AC, Dantonio AL, Gualtieri GM, Balesano A, Landers C, Burchett W, Goosen TC, Obach RS. An improved method for cytochrome p450 reaction phenotyping using a sequential qualitative-then-quantitative approach. Drug Metab Dispos 2022; 50:DMD-AR-2022-000883. [PMID: 35777845 DOI: 10.1124/dmd.122.000883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 reaction phenotyping to determine the fraction of metabolism values (fm) for individual enzymes is a standard study in the evaluation of a new drug. However, there are technical challenges in these studies caused by shortcomings in the selectivity of P450 inhibitors and unreliable scaling procedures for recombinant P450 (rCYP) data. In this investigation, a two-step "qualitative-then-quantitative" approach to P450 reaction phenotyping is described. In the first step, each rCYP is tested qualitatively for potential to generate metabolites. In the second step, selective inhibitors for the P450s identified in step1 are tested for their effects on metabolism using full inhibition curves. Forty-eight drugs were evaluated in step 1 and there were no examples of missing an enzyme important to in vivo clearance. Five drugs (escitalopram, fluvastatin, pioglitazone, propranolol, and risperidone) were selected for full phenotyping in step2 to determine fm values, with findings compared to fm values estimated from single inhibitor concentration data and rCYP with intersystem-extrapolation-factor corrections. The two-step approach yielded fm values for major drug clearing enzymes that are close to those estimated from clinical data: escitalopram and CYP2C19 (0.42 vs 0.36-0.82), fluvastatin and CYP2C9 (0.76 vs 0.76), pioglitazone and CYP2C8 (0.72 vs 0.73), propranolol and CYP2D6 (0.68 vs 0.37-0.56) and risperidone and CYP2D6 (0.60 vs 0.66-0.88). Reaction phenotyping data generated in this fashion should offer better input to physiologically-based pharmacokinetic models for prediction of DDI and impact of genetic polymorphisms on drug clearance. The qualitative-then-quantitative approach is proposed as a replacement to standard reaction phenotyping strategies. Significance Statement P450 reaction phenotyping is important for projecting drug-drug interactions and interpatient variability in drug exposure. However, currently recommended practices can frequently fail to provide reliable estimates of the fractional contributions of specific P450 enzymes (fm) to drug clearance. In this report, we describe a two-step qualitative-then-quantitative reaction phenotyping approach that yields more accurate estimates of fm.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Theunis C Goosen
- Pharmacokinetics, Dynamics & Metabolism, Pfizer, Inc, United States
| | | |
Collapse
|
19
|
Kumar AR, Patilea-Vrana GI, Anoshchenko O, Unadkat JD. Characterizing and Quantifying Extrahepatic Metabolism of (-)-Δ 9-Tetrahydrocannabinol (THC) and Its Psychoactive Metabolite, (±)-11-Hydroxy-Δ 9-THC (11-OH-THC). Drug Metab Dispos 2022; 50:734-740. [PMID: 35370140 PMCID: PMC9199115 DOI: 10.1124/dmd.122.000868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/31/2022] [Indexed: 11/12/2023] Open
Abstract
(-)-Δ9-Tetrahydrocannabinol (THC) is the psychoactive constituent of cannabis, a drug recreationally consumed orally or by inhalation. Physiologically based pharmacokinetic (PBPK) modeling can be used to predict systemic and tissue exposure to THC and its psychoactive metabolite, (±)-11-hydroxy-Δ9-THC (11-OH-THC). To populate a THC/11-OH-THC PBPK model, we previously characterized the depletion clearance of THC (by CYP2C9) and 11-OH-THC (by UDP-glucuronosyltransferase (UGT), CYP3A, and CYP2C9) in adult human liver microsomes. Here we focused on quantifying extrahepatic depletion clearance of THC/11-OH-THC, important after oral (intestine) and inhalational (lung) consumption of THC as well as prenatal THC use (placenta and fetal liver). THC (500 nM) was metabolized in adult human intestinal microsomes (n = 3-5) by CYP2C9 [Vmax: 1.1 ± 0.38 nmol/min/mg; Michaelis-Menten constant (Km): 70 nM; intrinsic clearance (CLint): 15 ± 5.4 ml/min/mg; fraction metabolized (fm): 0.89 ± 0.31 at concentration ≪ 70 nM] and CYP3A (CLint: 2.0 ± 0.86 ml/min/mg; fm: 0.11 ± 0.050). 11-OH-THC (50 nM) was metabolized by CYP3A (CLint: 0.26 ± 0.058 ml/min/mg; fm: 0.51 ± 0.11) and UGT2B7 (CLint: 0.13 ± 0.027 ml/min/mg; fm: 0.25 ± 0.053). THC at 500 nM (CLint: 4.7 ± 0.22 ml/min/mg) and 11-OH-THC at 50 nM (CLint: 2.4 ± 0.13 ml/min/mg) were predominately (fm: 0.99 and 0.80, respectively) metabolized by CYP3A in human fetal liver microsomes (n = 3). However, we did not observe significant depletion of THC/11-OH-THC in adult lung, first trimester, second trimester, or term placentae microsomes. Using PBPK modeling and simulation, these data could be used in the future to predict systemic and tissue THC/11-OH-THC exposure in healthy and special populations. SIGNIFICANCE STATEMENT: This is the first characterization and quantification of (-)-Δ9-tetrahydrocannabinol (THC) and (±)-11-hydroxy-Δ9-THC (11-OH-THC) depletion clearance by cytochrome P450 and UDP-glucuronosyltransferase enzymes in extrahepatic human tissues: intestine, fetal liver, lung, and placenta. These data can be used to predict, through physiologically based pharmacokinetic modeling and simulation, systemic and tissue THC/11-OH-THC exposure after inhalational and oral THC use in both healthy and special populations (e.g., pregnant women).
Collapse
Affiliation(s)
- Aditya R Kumar
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | - Olena Anoshchenko
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
20
|
Towards the Elucidation of the Pharmacokinetics of Voriconazole: A Quantitative Characterization of Its Metabolism. Pharmaceutics 2022; 14:pharmaceutics14030477. [PMID: 35335853 PMCID: PMC8948939 DOI: 10.3390/pharmaceutics14030477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/28/2022] Open
Abstract
The small-molecule drug voriconazole (VRC) shows a complex and not yet fully understood metabolism. Consequently, its in vivo pharmacokinetics are challenging to predict, leading to therapy failures or adverse events. Thus, a quantitative in vitro characterization of the metabolism and inhibition properties of VRC for human CYP enzymes was aimed for. The Michaelis-Menten kinetics of voriconazole N-oxide (NO) formation, the major circulating metabolite, by CYP2C19, CYP2C9 and CYP3A4, was determined in incubations of human recombinant CYP enzymes and liver and intestine microsomes. The contribution of the individual enzymes to NO formation was 63.1% CYP2C19, 13.4% CYP2C9 and 29.5% CYP3A4 as determined by specific CYP inhibition in microsomes and intersystem extrapolation factors. The type of inhibition and inhibitory potential of VRC, NO and hydroxyvoriconazole (OH-VRC), emerging to be formed independently of CYP enzymes, were evaluated by their effects on CYP marker reactions. Time-independent inhibition by VRC, NO and OH-VRC was observed on all three enzymes with NO being the weakest and VRC and OH-VRC being comparably strong inhibitors of CYP2C9 and CYP3A4. CYP2C19 was significantly inhibited by VRC only. Overall, the quantitative in vitro evaluations of the metabolism contributed to the elucidation of the pharmacokinetics of VRC and provided a basis for physiologically-based pharmacokinetic modeling and thus VRC treatment optimization.
Collapse
|
21
|
Biological Activity and Stability of Aeruginosamides from Cyanobacteria. Mar Drugs 2022; 20:md20020093. [PMID: 35200623 PMCID: PMC8878463 DOI: 10.3390/md20020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Aeruginosamides (AEGs) are classified as cyanobactins, ribosomally synthesized peptides with post-translational modifications. They have been identified in cyanobacteria of genera Microcystis, Oscillatoria, and Limnoraphis. In this work, the new data on the in vitro activities of three AEG variants, AEG A, AEG625 and AEG657, and their interactions with metabolic enzymes are reported. Two aeruginosamides, AEG625 and AEG657, decreased the viability of human breast cancer cell line T47D, but neither of the peptides was active against human liver cancer cell line Huh7. AEGs also did not change the expression of MIR92b-3p, but for AEG625, the induction of oxidative stress was observed. In the presence of a liver S9 fraction containing microsomal and cytosolic enzymes, AEG625 and AEG657 showed high stability. In the same assays, quick removal of AEG A was recorded. The peptides had mild activity against three cytochrome P450 enzymes, CYP2C9, CYP2D6 and CYP3A4, but only at the highest concentration used in the study (60 µM). The properties of AEGs, i.e., cytotoxic activity and in vitro interactions with important metabolic enzymes, form a good basis for further studies on their pharmacological potential.
Collapse
|
22
|
Muñoz M, López-Oliva E, Pinilla E, Rodríguez C, Martínez MP, Contreras C, Gómez A, Benedito S, Sáenz-Medina J, Rivera L, Prieto D. Differential contribution of renal cytochrome P450 enzymes to kidney endothelial dysfunction and vascular oxidative stress in obesity. Biochem Pharmacol 2022; 195:114850. [PMID: 34822809 DOI: 10.1016/j.bcp.2021.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA)-derived cytochrome P450 (CYP) derivatives, epoxyeicosatrienoic acids (EETs) and 20-hidroxyeicosatetranoic acid (20-HETE), play a key role in kidney tubular and vascular functions and blood pressure. Altered metabolism of CYP epoxygenases and CYP hydroxylases has differentially been involved in the pathogenesis of metabolic disease-associated vascular complications, although the mechanisms responsible for the vascular injury are unclear. The present study aimed to assess whether obesity-induced changes in CYP enzymes may contribute to oxidative stress and endothelial dysfunction in kidney preglomerular arteries. Endothelial function and reactive oxygen species (ROS) production were assessed in interlobar arteries of obese Zucker rats (OZR) and their lean counterparts lean Zucker rats (LZR) and the effects of CYP2C and CYP4A inhibitors sulfaphenazole and HET0016, respectively, were examined on the endothelium-dependent relaxations and O2- and H2O2 levels of preglomerular arteries. Non-nitric oxide (NO) non-prostanoid endothelium-derived hyperpolarization (EDH)-type responses were preserved but resistant to the CYP epoxygenase blocker sulfaphenazole in OZR in contrast to those in LZR. Sulfaphenazole did not further inhibit reduced arterial H2O2 levels, and CYP2C11/CYP2C23 enzymes were downregulated in intrarenal arteries from OZR. Renal EDH-mediated relaxations were preserved in obese rats by the enhanced activity and expression of endothelial calcium-activated potassium channels (KCa). CYP4A blockade restored impaired NO-mediated dilatation and inhibited augmented O2- production in kidney arteries from OZR. The current data demonstrate that both decreased endothelial CYP2C11/ CYP2C23-derived vasodilator H2O2 and augmented CYP4A-derived 20-HETE contribute to endothelial dysfunction and vascular oxidative stress in obesity. CYP4A inhibitors ameliorate arterial oxidative stress and restore endothelial function which suggests its therapeutic potential for the vascular complications of obesity-associated kidney injury.
Collapse
Affiliation(s)
- Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Elvira López-Oliva
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Estéfano Pinilla
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - María Pilar Martínez
- Departamento de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Alfonso Gómez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Sara Benedito
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
23
|
Zhang Y, Sato R, Fukami T, Nakano M, Nakajima M. Pirfenidone 5-hydroxylation is mainly catalysed by CYP1A2 and partly catalysed by CYP2C19 and CYP2D6 in the human liver. Xenobiotica 2021; 51:1352-1359. [PMID: 34779706 DOI: 10.1080/00498254.2021.2007553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pirfenidone is a first-line drug for the treatment of idiopathic pulmonary fibrosis. The primary metabolic pathways of pirfenidone in humans are 5-hydroxylation and subsequent oxidation to 5-carboxylpirfenidone. The aims of this study were to determine the cytochrome P450 isoforms responsible for pirfenidone 5-hydroxylation and to evaluate their contributions in human liver microsomes (HLM).Among the recombinant P450 isoforms, CYP1A2, CYP2D6, CYP2C19, CYP2A6, and CYP2B6 were shown to catalyse the 5-hydroxylation of pirfenidone. Pirfenidone 5-hydroxylase activity by HLM was inhibited by α-naphthoflavone (by 45%), 8-methoxypsolaren (by 84%), tranylcypromine (by 53%), and quinidine (by 15%), which are CYP1A2, CYP1A2/CYP2A6/CYP2C19, CYP2A6/CYP2C19, and CYP2D6 inhibitors, respectively.In 17 individual HLM donors, pirfenidone 5-hydroxylase activity was significantly correlated with phenacetin O-deethylase (r = 0.89, P < 0.001) and S-mephenytoin 4'-hydroxylase activities (r = 0.51, P < 0.05), which are CYP1A2 and CYP2C19 marker activities, respectively.By using the relative activity factors, the contributions of CYP1A2, CYP2C19, and CYP2D6 to pirfenidone 5-hydroxylation in the human liver were 72.8%, 11.8%, and 8.9%, respectively.In conclusion, we clearly demonstrated the predominant P450 involved in pirfenidone 5-hydroxylation in the human liver is CYP1A2, with CYP2C19 and CYP2D6 playing a minor role.
Collapse
Affiliation(s)
- Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Rei Sato
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan.,Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masataka Nakano
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan.,Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan.,Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
24
|
Schleiff MA, Crosby S, Blue M, Schleiff BM, Boysen G, Miller GP. CYP2C9 and 3A4 play opposing roles in bioactivation and detoxification of diphenylamine NSAIDs. Biochem Pharmacol 2021; 194:114824. [PMID: 34748821 DOI: 10.1016/j.bcp.2021.114824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
Diphenylamine NSAIDs are taken frequently for chronic pain conditions, yet their use may potentiate hepatotoxicity risks through poorly characterized metabolic mechanisms. Our previous work revealed that seven marketed or withdrawn diphenylamine NSAIDs undergo bioactivation into quinone-species metabolites, whose reaction specificities depended on halogenation and the type of acidic group on the diphenylamine. Herein, we identified cytochromes P450 responsible for those bioactivations, determined reaction specificities, and estimated relative contributions of enzymes to overall hepatic bioactivations and detoxifications. A qualitative activity screen revealed CYP2C8, 2C9, 2C19, and 3A4 played roles in drug bioactivation. Subsequent steady-state studies with recombinant CYPs recapitulated the importance of halogenation and acidic group type on bioactivations but importantly, showed patterns unique to each CYP. CYP2C9, 2C19 and 3A4 bioactivated all NSAIDs with CYP2C9 dominating all possible bioactivation pathways. For each CYP, specificities for overall oxidative metabolism were not impacted significantly by differences in NSAID structures but the values themselves differed among the enzymes such that CYP2C9 and 3A4 were more efficient than others. When considering hepatic CYP abundance, CYP2C9 almost exclusively accounted for diphenylamine NSAID bioactivations, whereas CYP3A4 provided a critical counterbalance favoring their overall detoxification. Preference for either outcome would depend on molecular structures favoring metabolism by the CYPs as well as the influence of clinical factors altering their expression and/or activity. While focused on NSAIDs, these findings have broader implications on bioactivation risks given the expansion of the diphenylamine scaffold to other drug classes such as targeted cancer therapeutics.
Collapse
Affiliation(s)
- Mary Alexandra Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Samantha Crosby
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Madison Blue
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Benjamin Mark Schleiff
- Independent Researcher, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Grover Paul Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
25
|
Habenschus MD, Carrão DB, de Albuquerque NCP, Perovani IS, Moreira da Silva R, Nardini V, Lopes NP, Dias LG, Moraes de Oliveira AR. In vitro enantioselective inhibition of the main human CYP450 enzymes involved in drug metabolism by the chiral pesticide tebuconazole. Toxicol Lett 2021; 351:1-9. [PMID: 34407455 DOI: 10.1016/j.toxlet.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022]
Abstract
Tebuconazole (TEB) is a chiral triazole fungicide worldwide employed to control plant pathogens and preserve wood. People can be exposed to TEB either through diet and occupational contamination. This work investigates the in vitro inhibitory potential of rac-TEB, S-(+)-TEB, and R-(-)-TEB over the main cytochrome P450 enzymes (CYP450) using human liver microsomes to predict TEB in vivo inhibition potential. The IC50 values showed that in vitro inhibition was enantioselective for CYP2C9, CYP2C19, and CYP2D6, but not for CYP3A4/5. Despite enantioselectivity, rac-TEB and its single enantiomers were always classified in the same category. The inhibition mechanisms and constants were determined for rac-TEB and it has shown to be a mixed inhibitor of CYP3A4/5 (Ki = 1.3 ± 0.3 μM, αKi = 3.2 ± 0.5 μM; Ki = 0.6 ± 0.3 μM, αKi = 1.3 ± 0.3 μM) and CYP2C9 (Ki = 0.7 ± 0.1 μM, αKi = 2.7 ± 0.5 μM), and a competitive inhibitor of CYP2D6 (Ki = 11.9 ± 0.7 μM) and CYP2C19 (Ki = 0.23 ± 0.02 μM), respectively, suggesting that in some cases, rac-TEB has a higher or comparable inhibitory potential than well-known strong inhibitors of CYP450 enzymes, especially for CYP2C9 and CYP2C19. In vitro-in vivo extrapolations (IVIVE) were conducted based on the results and data available in the literature about TEB absorption and metabolism. R1 values were estimated based on the Food and Drug Administration guideline and suggested that in a chronic oral exposure scenario considering the acceptable daily intake dose proposed by the European Food and Safety Authority, the hypothesis of rac-TEB to inhibit the activities of CYP3A4/5, CYP2C9, and CYP2C19 in vivo and cause pesticide-drug interactions cannot be disregarded.
Collapse
Affiliation(s)
- Maísa Daniela Habenschus
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Daniel Blascke Carrão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Nayara Cristina Perez de Albuquerque
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Icaro Salgado Perovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Moreira da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Viviani Nardini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Luís Gustavo Dias
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Unesp, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| |
Collapse
|
26
|
Shi Y, Meng D, Wang S, Geng P, Xu T, Zhou Q, Zhou Y, Li W, Chen X. Effects of Avitinib on CYP450 Enzyme Activity in vitro and in vivo in Rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3661-3673. [PMID: 34456561 PMCID: PMC8387736 DOI: 10.2147/dddt.s323186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/05/2021] [Indexed: 12/23/2022]
Abstract
Purpose Avitinib is the first third-generation epithelial growth factor receptor (EGFR) inhibitor independently developed in China and is mainly used for treating non-small cell lung cancer. However, pharmacokinetic details are limited. This study explored the in vivo and in vitro effects of avitinib on cytochrome CYP450 enzymes metabolic activity. Methods A rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for determining six probe substrates and their metabolites. Avitinib influence on activity levels of CYP isozymes was examined in vitro using human and rat liver microsomes (HLMs/RLMs). For in vivo studies, rats were pretreated with 30 mg/kg avitinib once daily for 7 days (avitinib multiple-doses group), 30 mg/kg avitinib on day 7 (avitinib single-dose group), or an equivalent amount of CMC-Na once daily for 7 days (control group), followed by intragastrical administration of the probe substrates (1 mg/kg tolbutamide and 10 mg/kg phenacetin, bupropion, chlorzoxazone, dextromethorphan, and midazolam). Plasma pharmacokinetics and IC50 values of the probe substrates were then compared. Pharmacokinetic parameters were determined using non-compartmental analysis implemented in a pharmacokinetic program. Results In vitro experiments revealed different inhibitory effects of avitinib on the six probe substrates with various IC50 values (bupropion, 6.39/22.64 μM; phenacetin, 15.79/48.36 μM; chlorzoxazone, 23.15/57.09 μM; midazolam, 27.64/59.6 μM; tolbutamide, 42.18/6.91 μM; dextromethorphan, 44.39/56.57 μM, in RLMs and HLMs respectively). In vivo analysis revealed significant differences (P <0.05) in distinct pharmacokinetic parameters (AUC(0-t), AUC (0-∞), Cmax, MRT(0-t), MRT (0-∞), and CLz/F) for the six probe substrates after avitinib pretreatment. Conclusion A sensitive and reliable UPLC-MS/MS method was established to determine the concentration of six probe substrates in rat plasma. Avitinib had inhibitory effects on CYP450 enzymes, especially cyp2b1, cyp1a2 in RLMs, CYP2C9 in HLMs, and cyp1a2, cyp2b1, cyp2d1, and cyp2e1 in vivo. Our data recommend caution when avitinib was taken simultaneously with drugs metabolized by CYP450 enzymes.
Collapse
Affiliation(s)
- Yong Shi
- Comprehensive Breast Health Center, Department of Thyroid and Breast Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, 323000, People's Republic of China
| | - Deru Meng
- Comprehensive Breast Health Center, Department of Thyroid and Breast Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, 323000, People's Republic of China
| | - Shuanghu Wang
- Comprehensive Breast Health Center, Department of Thyroid and Breast Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, 323000, People's Republic of China
| | - Peiwu Geng
- Comprehensive Breast Health Center, Department of Thyroid and Breast Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, 323000, People's Republic of China
| | - Tao Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Quan Zhou
- Comprehensive Breast Health Center, Department of Thyroid and Breast Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, 323000, People's Republic of China
| | - Yunfang Zhou
- Comprehensive Breast Health Center, Department of Thyroid and Breast Surgery, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, 323000, People's Republic of China
| | - Wanshu Li
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, 315010, Zhejiang, People's Republic of China
| | - Xugao Chen
- Department of Radiology, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui, 323000, People's Republic of China
| |
Collapse
|
27
|
Wu YJ, Meanwell NA. Geminal Diheteroatomic Motifs: Some Applications of Acetals, Ketals, and Their Sulfur and Nitrogen Homologues in Medicinal Chemistry and Drug Design. J Med Chem 2021; 64:9786-9874. [PMID: 34213340 DOI: 10.1021/acs.jmedchem.1c00790] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acetals and ketals and their nitrogen and sulfur homologues are often considered to be unconventional and potentially problematic scaffolding elements or pharmacophores for the design of orally bioavailable drugs. This opinion is largely a function of the perception that such motifs might be chemically unstable under the acidic conditions of the stomach and upper gastrointestinal tract. However, even simple acetals and ketals, including acyclic molecules, can be sufficiently robust under acidic conditions to be fashioned into orally bioavailable drugs, and these structural elements are embedded in many effective therapeutic agents. The chemical stability of molecules incorporating geminal diheteroatomic motifs can be modulated by physicochemical design principles that include the judicious deployment of proximal electron-withdrawing substituents and conformational restriction. In this Perspective, we exemplify geminal diheteroatomic motifs that have been utilized in the discovery of orally bioavailable drugs or drug candidates against the backdrop of understanding their potential for chemical lability.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Nicholas A Meanwell
- Department of Discovery and Chemistry and Molecular Technologies, Bristol-Myers Squibb PRI, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
28
|
Barnette DA, Schleiff MA, Datta A, Flynn N, Swamidass SJ, Miller GP. Meloxicam methyl group determines enzyme specificity for thiazole bioactivation compared to sudoxicam. Toxicol Lett 2020; 338:10-20. [PMID: 33253783 DOI: 10.1016/j.toxlet.2020.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
Meloxicam is a thiazole-containing NSAID that was approved for marketing with favorable clinical outcomes despite being structurally similar to the hepatotoxic sudoxicam. Introduction of a single methyl group on the thiazole results in an overall lower toxic risk, yet the group's impact on P450 isozyme bioactivation is unclear. Through analytical methods, we used inhibitor phenotyping and recombinant P450s to identify contributing P450s, and then measured steady-state kinetics for bioactivation of sudoxicam and meloxicam by the recombinant P450s to determine relative efficiencies. Experiments showed that CYP2C8, 2C19, and 3A4 catalyze sudoxicam bioactivation, and CYP1A2 catalyzes meloxicam bioactivation, indicating that the methyl group not only impacts enzyme affinity for the drugs, but also alters which isozymes catalyze the metabolic pathways. Scaling of relative P450 efficiencies based on average liver concentration revealed that CYP2C8 dominates the sudoxicam bioactivation pathway and CYP2C9 dominates meloxicam detoxification. Dominant P450s were applied for an informatics assessment of electronic health records to identify potential correlations between meloxicam drug-drug interactions and drug-induced liver injury. Overall, our findings provide a cautionary tale on assumed impacts of even simple structural modifications on drug bioactivation while also revealing specific targets for clinical investigations of predictive factors that determine meloxicam-induced idiosyncratic liver injury.
Collapse
Affiliation(s)
- Dustyn A Barnette
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States
| | - Mary A Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States
| | - Arghya Datta
- Department of Pathology and Immunology, 660 S Euclid Ave, Washington University, St. Louis, MO, 63130, United States
| | - Noah Flynn
- Department of Pathology and Immunology, 660 S Euclid Ave, Washington University, St. Louis, MO, 63130, United States
| | - S Joshua Swamidass
- Department of Pathology and Immunology, 660 S Euclid Ave, Washington University, St. Louis, MO, 63130, United States
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W Markham St, Little Rock, AR, 72205, United States.
| |
Collapse
|
29
|
In vitro evaluation of the metabolic enzymes and drug interaction potential of triapine. Cancer Chemother Pharmacol 2020; 86:633-640. [PMID: 32989483 DOI: 10.1007/s00280-020-04154-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate the metabolic pathways of triapine in primary cultures of human hepatocytes and human hepatic subcellular fractions; to investigate interactions of triapine with tenofovir and emtricitabine; and to evaluate triapine as a perpetrator of drug interactions. The results will better inform future clinical studies of triapine, a radiation sensitizer currently being studied in a phase III study. METHODS Triapine was incubated with human hepatocytes and subcellular fractions in the presence of a number of inhibitors of drug metabolizing enzymes. Triapine depletion was monitored by LC-MS/MS. Tenofovir and emtricitabine were co-incubated with triapine in primary cultures of human hepatocytes. Triapine was incubated with a CYP probe cocktail and human liver microsomes, followed by LC-MS/MS monitoring of CYP specific metabolite formation. RESULTS Triapine was not metabolized by FMO, AO/XO, MAO-A/B, or NAT-1/2, but was metabolized by CYP450s. CYP1A2 accounted for most of the depletion of triapine. Tenofovir and emtricitabine did not alter triapine depletion. Triapine reduced CYP1A2 activity and increased CYP2C19 activity. CONCLUSION CYP1A2 metabolism is the major metabolic pathway for triapine. Triapine may be evaluated in cancer patients in the setting of HIV with emtricitabine or tenofovir treatment. Confirmatory clinical trials may further define the in vivo triapine metabolic fate and quantify any drug-drug interactions.
Collapse
|
30
|
Yamane M, Igarashi F, Yamauchi T, Nakagawa T. Main contribution of UGT1A1 and CYP2C9 in the metabolism of UR-1102, a novel agent for the treatment of gout. Xenobiotica 2020; 51:61-71. [PMID: 32813611 DOI: 10.1080/00498254.2020.1812012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
UR-1102, a novel uricosuric agent for treating gout, has been confirmed to exhibit a pharmacological effect in patients. We clarified its metabolic pathway, estimated the contribution of each metabolic enzyme, and assessed the impact of genetic polymorphisms using human in vitro materials. Glucuronide, sulfate and oxidative metabolites of UR-1102 were detected in human hepatocytes. The intrinsic clearance by glucuronidation or oxidation in human liver microsomes was comparable, but sulfation in the cytosol was much lower, indicating that the rank order of contribution was glucuronidation ≥ oxidation > sulfation. Recombinant UGT1A1 and UGT1A3 showed high glucuronidation of UR-1102. We took advantage of a difference in the inhibitory sensitivity of atazanavir to the UGT isoforms and estimated the fraction metabolised (fm) with UGT1A1 to be 70%. Studies using recombinant CYPs and CYP isoform-specific inhibitors showed that oxidation was mediated exclusively by CYP2C9. The effect of UGT1A1 and CYP2C9 inhibitors on UR-1102 metabolism in hepatocytes did not differ markedly between the wild type and variants.
Collapse
Affiliation(s)
- Mizuki Yamane
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Japan
| | | | | | - Toshito Nakagawa
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Japan
| |
Collapse
|
31
|
Cuypers ML, Chanteux H, Gillent E, Bonnaillie P, Saunders K, Beckers C, Delatour C, Dell'Aiera S, Ungell AL, Nicolaï J. (-)- N-3-Benzylphenobarbital Is Superior to Omeprazole and (+)- N-3-Benzylnirvanol as a CYP2C19 Inhibitor in Suspended Human Hepatocytes. Drug Metab Dispos 2020; 48:1121-1128. [PMID: 32839278 DOI: 10.1124/dmd.120.000089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022] Open
Abstract
Early assessment of metabolism pathways of new chemical entities guides the understanding of drug-drug interactions. Selective enzyme inhibitors are indispensable in CYP reaction phenotyping. The most commonly applied CYP2C19 inhibitor, omeprazole, lacks selectivity. Two promising alternatives, (+)-N-3-benzylnirvanol and (-)-N-3-benzylphenobarbital, are already used as CYP2C19 inhibitors in some in vitro studies with suspended human hepatocytes. However, a full validation proving their suitability in terms of CYP and non-CYP selectivity has not been presented in literature. The present study provides a thorough comparison between omeprazole, (+)-N-3-benzylnirvanol, and (-)-N-3-benzylphenobarbital in terms of potency and selectivity and shows the superiority of (-)-N-3-benzylphenobarbital as a CYP2C19 inhibitor in suspended human hepatocytes. Furthermore, we evaluated the application of (-)-N-3-benzylphenobarbital to predict the in vivo contribution of CYP2C19 to drug metabolism [fraction metabolized (fm) of CYP2C19, fmCYP2C19]. A set of 10 clinically used CYP2C19 substrates with reported in vivo fmCYP2C19 data was evaluated. fmCYP2C19, which was predicted using data from suspended human hepatocyte incubations, underestimated the in vivo fmCYP2C19 The use of a different hepatocyte batch with a different CYP3A4/CYP2C19 activity ratio showed the impact of intrinsic CYP activities on the determination of fmCYP2C19 Overall, this study confirms the selective CYP2C19 inhibition by (-)-N-3-benzylphenobarbital over other CYP isoforms (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2D6, and CYP3A4) and clinically relevant non-CYP enzymes [aldehyde oxidase, flavin-containing monooxygenase 3, N-acetyltransferase 2, uridine diphosphate glucuronosyltransferase (UGT) 1A1, UGT1A4, UGT2B7, UGT2B15] in suspended human hepatocytes. (-)-N-3-benzylphenobarbital is therefore the preferred CYP2C19 inhibitor to assess fmCYP2C19 in suspended human hepatocytes in comparison with omeprazole and (+)-N-3-benzylnirvanol. SIGNIFICANCE STATEMENT: (-)-N-3-Benzylphenobarbital is a more potent and selective inhibitor of CYP2C19 in suspended human hepatocytes than omeprazole and (+)-N-3-benzylnirvanol. (-)-N-3-Benzylphenobarbital can be used to predict the fraction metabolized by CYP2C19 in suspended human hepatocytes.
Collapse
Affiliation(s)
- Marie-Lynn Cuypers
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Hugues Chanteux
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Eric Gillent
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Pierre Bonnaillie
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Kenneth Saunders
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Claire Beckers
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Claude Delatour
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Sylvie Dell'Aiera
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Anna-Lena Ungell
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| | - Johan Nicolaï
- Pharmaceutical Sciences, KU Leuven, Leuven, Belgium (M.-L.C., C.B.) and Development Science, UCB Biopharma SRL, Braine-l'Alleud, Belgium (H.C., E.G., P.B., K.S., C.D., S.D., A.-L.U., J.N.)
| |
Collapse
|
32
|
Gao M, Li H, Dang F, Chen L, Liu X, Gao J. Induction of proliferative and mutagenic activity by benzo(a)pyrene in PC-3 cells via JAK2/STAT3 pathway. Mutat Res 2020; 821:111720. [PMID: 32841893 DOI: 10.1016/j.mrfmmm.2020.111720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/26/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Environmental carcinogen benzo(a)pyrene (BaP) is a representative compound of polycyclic aromatic hydrocarbons (PAHs). BaP is strongly associated with prostate carcinogenesis. However, the molecular mechanism of BaP in development of prostate carcinoma remains largely unknown. The aim of this study was to investigate the effect and mechanism of BaP on the development in prostate cancer. PC-3 cells were exposed to different concentrations of BaP for 24, 48, 72 h, respectively. We analyzed the effect of BaP on PC-3 cell viability, cell cycle, DNA strand breaks, mutagenic activity, and migration. The expression of associated regulatory genes and the effect of JAK2/STAT3 signaling were also measured to explore the relationships among BaP metabolism, the JAK2/STAT3 pathway and proliferative activity in PC-3 cells. We observed significant effects on proliferation, DNA strand breaks and mutagenic activity after BaP exposure in PC-3 cells, and inhibitors of CYP1 and the AhR transcription factor α -naphthoflavone (ANF) and CH223191 treatment clearly reduced both cell survival and mutagenesis associated with BaP exposure. Reduction in G0-G1 phase population and elevation in S phase were observed after BaP exposure. Migratory cells for PC-3 were significantly increased. The results were further confirmed by the expression of mRNA levels in the significant increments of Snail, Slug, MMP-9, CYP1A1, CYP1B1, CycilnD1, CDK4 and significant reduction of E-cadherin. Significant enhancements were found in the expression of JAK2, STAT3 after BaP treatment. Additionally, activator IL-6 significantly enhanced the effect of BaP on cell survival, mutagenic activity, Cyclin D1, CDK4, Snail, and JAK2/STAT3 expression in PC-3 cells. Significant reductions in cell survival, mutagenic activity, Cyclin D1, CDK4, Snail, and JAK2/STAT3 expression were found after inhibitor AG490, ANF and CHJ223191 treatment. These findings reveal that BaP enhances the proliferative and mutagenic activity via JAK2-STAT3 pathway in PC-3 cells, and provide the additional evidence to understand the crucial role of BaP in prostate cancer carcinogenesis.
Collapse
Affiliation(s)
- Meili Gao
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China.
| | - Hong Li
- Ankang Blood Station, Shaanxi Province, 725000, China
| | - Fan Dang
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China
| | - Lan Chen
- Center of Shared Experimental Facilities, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaojing Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| | - Jianghong Gao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710004, China
| |
Collapse
|
33
|
Kapungu NN, Li X, Nhachi C, Masimirembwa C, Thelingwani RS. In vitro and in vivo human metabolism and pharmacokinetics of S- and R-praziquantel. Pharmacol Res Perspect 2020; 8:e00618. [PMID: 32700798 PMCID: PMC7376644 DOI: 10.1002/prp2.618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/11/2022] Open
Abstract
Racemic praziquantel (PZQ) is the drug of choice for the treatment of schistosomiasis. R-Praziquantel (R-PZQ) has been shown as the therapeutic form, whereas S-PZQ is less efficacious and responsible for the bitter taste of the tablet. This study aimed at investigating the metabolism of R- and S-PZQ as this could have implications on efficacy and safety of racemate and R-PZQ specific formulations under development. In vitro CYP reaction phenotyping assay using 10 recombinant CYP (rCYP) isoenzymes showed hepatic CYP1A2, 2C19, 2D6, 3A4, and 3A5 were the major enzymes involved in metabolism of PZQ. Enzyme kinetic studies were performed by substrate depletion and metabolite formation methods, by incubating PZQ and its R- or S-enantiomers in human liver microsomes (HLM) and the rCYP enzymes. The effect of selective CYP inhibitors on PZQ metabolism was assessed in HLM. CYP1A2, 2C19, and 3A4 exhibited different catalytic activity toward PZQ, R- and S-enantiomers. Metabolism of R-PZQ was mainly catalyzed by CYP1A2 and CYP2C19, whereas metabolism of S-PZQ was mainly by CYP2C19 and CYP3A4. Based on metabolic CLint obtained through formation of hydroxylated metabolites, CYP3A4 was estimated to contribute 89.88% to metabolism of S-PZQ using SIMCYP® IVIVE prediction. Reanalysis of samples from a human PZQ-ketoconazole (KTZ) drug-drug interaction pharmacokinetic study confirmed these findings in that KTZ, a potent inhibitor of CYP3A, selectively increased area under the curve of S-PZQ by 68% and that of R-PZQ by just 9%. Knowledge of enantioselective metabolism will enable better understanding of variable efficacy of PZQ in patients and the R-PZQ formulation under development.
Collapse
Affiliation(s)
- Nyasha Nicole Kapungu
- African Institute of Biomedical Science and Technology (AiBST)HarareZimbabwe
- Department of Clinical PharmacologyUniversity of Zimbabwe (UZ)HarareZimbabwe
| | - Xueqing Li
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Charles Nhachi
- Department of Clinical PharmacologyUniversity of Zimbabwe (UZ)HarareZimbabwe
| | - Collen Masimirembwa
- African Institute of Biomedical Science and Technology (AiBST)HarareZimbabwe
| | | |
Collapse
|
34
|
Heck CS, Seneviratne HK, Bumpus NN. Twelfth-Position Deuteration of Nevirapine Reduces 12-Hydroxy-Nevirapine Formation and Nevirapine-Induced Hepatocyte Death. J Med Chem 2020; 63:6561-6574. [PMID: 32065749 PMCID: PMC7959450 DOI: 10.1021/acs.jmedchem.9b01990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 01/08/2023]
Abstract
Cytochrome P450-dependent metabolism of the anti-HIV drug nevirapine (NVP) to 12-hydroxy-NVP (12-OHNVP) has been implicated in NVP toxicities. We investigated the impact of twelfth-position trideuteration (12-D3NVP) on the hepatic metabolism of and response to NVP. Formation of 12-OHNVP decreased in human (10.6-fold) and mouse (4.6-fold) hepatocytes incubated with 10 μM 12-D3NVP vs NVP. An observed kinetic isotope effect of 10.1 was measured in human liver microsomes. During mouse hepatocyte treatment (400 μM) with NVP or 12-D3NVP, cell death was reduced 30% with 12-D3NVP vs NVP, while glucuronidated and glutathione-conjugated metabolites increased with 12-D3NVP vs NVP. Using mass spectrometry proteomics, changes in hepatocyte protein expression, including an increase in stress marker insulin-like growth factor-binding protein 1 (IGFBP-1), were observed with 12-D3NVP vs NVP. These results demonstrate that while deuteration can reduce P450 metabolite formation, impacts on phase II metabolism and hepatocyte protein expression should be considered when employing deuteration to reduce P450 metabolite-related hepatotoxicity.
Collapse
Affiliation(s)
- Carley
J. S. Heck
- Department
of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Herana Kamal Seneviratne
- Department
of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Namandjé N. Bumpus
- Department
of Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Medicine, Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
35
|
Chanteux H, Rosa M, Delatour C, Nicolaï J, Gillent E, Dell'Aiera S, Ungell AL. Application of Azamulin to Determine the Contribution of CYP3A4/5 to Drug Metabolic Clearance Using Human Hepatocytes. Drug Metab Dispos 2020; 48:778-787. [PMID: 32532738 DOI: 10.1124/dmd.120.000017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022] Open
Abstract
Early determination of CYP3A4/5 contribution to the clearance of new chemical entities is critical to inform on the risk of drug-drug interactions with CYP3A inhibitors and inducers. Several in vitro approaches (recombinant P450 enzymes, correlation analysis, chemical and antibody inhibition in human liver microsomes) are available, but they are usually labor-intensive and/or suffer from specific limitations. In the present study, we have validated the use of azamulin as a specific CYP3A inhibitor in human hepatocytes. Azamulin (3 µM) was found to significantly inhibit CYP3A4/5 (>90%), whereas other P450 enzymes were not affected (less than 20% inhibition). Because human hepatocytes were used as a test system, the effect of azamulin on other key drug-metabolizing enzymes (aldehyde oxidase, carboxylesterase, UGT, flavin monooxygenase, and sulfotransferase) was also investigated. Apart from some UGTs showing minor inhibition (∼20%-30%), none of these non-P450 enzymes were inhibited by azamulin. Use of CYP3A5-genotyped human hepatocyte batches in combination with CYP3cide demonstrated that azamulin (at 3 µM) inhibits both CYP3A4 and CYP3A5 enzymes. Finally, 11 compounds with known in vivo CYP3A4/5 contribution have been evaluated in this human hepatocyte assay. Results showed that the effect of azamulin on the in vitro intrinsic clearance of these known CYP3A4/5 substrates was predictive of the in vivo CYP3A4/5 contribution. Overall, the study showed that human hepatocytes treated with azamulin provide a fast and accurate estimation of CYP3A4/5 contribution in metabolic clearance of new chemical entities. SIGNIFICANCE STATEMENT: Accurate estimation of CYP3A4/5 contribution in drug clearance is essential to anticipate risk of drug-drug interactions and select the appropriate candidate for clinical development. The present study validated the use of azamulin as selective CYP3A4/5 inhibitor in suspended human hepatocytes and demonstrated that this novel approach provides a direct and accurate determination of the contribution of CYP3A4/5 (fraction metabolized by CYP3A4/5) in the metabolic clearance of new chemical entities.
Collapse
Affiliation(s)
| | - Maria Rosa
- UCB Biopharma SRL, Braine-l'Alleud, Belgium
| | | | | | | | | | | |
Collapse
|
36
|
Chan TS, Scaringella YS, Raymond K, Taub ME. Evaluation of Erythromycin as a Tool to Assess CYP3A Contribution of Low Clearance Compounds in a Long-Term Hepatocyte Culture. Drug Metab Dispos 2020; 48:690-697. [PMID: 32503882 DOI: 10.1124/dmd.120.090951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Long-term hepatocyte culture systems such as HepatoPac are well suited to evaluate the metabolic turnover of low clearance (CL) drugs because of their sustained metabolic capacity and longer-term viability. Erythromycin (ERY), a moderate, mechanism-based inhibitor of CYP3A, was evaluated as a tool in the HepatoPac model to assess contribution of CYP3A to the clearance of drug candidates. ERY inhibited CYP3A activity by 58% and 80% at 3 and 10 μM, respectively, for up to 72 hours. At 30 µM, ERY inhibited midazolam hydroxylation by >85% for the entire 144-hour duration of the incubation. Alprazolam CLint was inhibited 58% by 3 μM of ERY, 75% by 15 μM of ERY, 89% by 30 μM of ERY, and 94% by 60 μM of ERY. ERY (30 μM) did not markedly affect CLint of substrates for several other major cytochrome P450 isoforms evaluated and did not markedly inhibit uridine diphosphoglucuronosyl transferase (UGT) isoforms 1A1, 1A3, 1A4, 1A6, 1A9, 2B7, or 2B15 as assessed using recombinant UGTs. ERY only mildly increased CYP3A4 gene expression by 2.1-fold (14% of rifampicin induction) at 120 µM, indicating that at effective concentrations for inhibition of CYP3A activity (30-60 µM), arylhydrocarbon receptor, constitutive androstane receptor, and pregnane-X-receptor activation are not likely to markedly increase levels of other drug-metabolizing enzymes or transporters. ERY at concentrations up to 60 µM was not toxic for up to 6 days of incubation. Use of ERY to selectively inhibit CYP3A in high-functioning, long-term hepatocyte models such as HepatoPac can be a valuable strategy to evaluate the contribution of CYP3A metabolism to the overall clearance of slowly metabolized drug candidates. SIGNIFICANCE STATEMENT: This work describes the use of erythromycin as a selective inhibitor of CYP3A to assess the contribution of CYP3A in the metabolism of compounds using long-term hepatocyte cultures.
Collapse
Affiliation(s)
- Tom S Chan
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Young-Sun Scaringella
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Klairynne Raymond
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| | - Mitchell E Taub
- Boehringer Ingelheim Pharmaceuticals Inc., Drug Metabolism and Pharmacokinetics, Ridgefield, Connecticut
| |
Collapse
|
37
|
Park SY, Nguyen PH, Kim G, Jang SN, Lee GH, Phuc NM, Wu Z, Liu KH. Strong and Selective Inhibitory Effects of the Biflavonoid Selamariscina A against CYP2C8 and CYP2C9 Enzyme Activities in Human Liver Microsomes. Pharmaceutics 2020; 12:pharmaceutics12040343. [PMID: 32290339 PMCID: PMC7238120 DOI: 10.3390/pharmaceutics12040343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Like flavonoids, biflavonoids, dimeric flavonoids, and polyphenolic plant secondary metabolites have antioxidant, antibacterial, antiviral, anti-inflammatory, and anti-cancer properties. However, there is limited data on their effects on cytochrome P450 (P450) and uridine 5'-diphosphoglucuronosyl transferase (UGT) enzyme activities. In this study we evaluate the inhibitory potential of five biflavonoids against nine P450 activities (P450s1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A) in human liver microsomes (HLMs) using cocktail incubation and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The most strongly inhibited P450 activity was CYP2C8-mediated amodiaquine N-dealkylation with IC50 ranges of 0.019~0.123 μM. In addition, the biflavonoids-selamariscina A, amentoflavone, robustaflavone, cupressuflavone, and taiwaniaflavone-noncompetitively inhibited CYP2C8 activity with respective Ki values of 0.018, 0.083, 0.084, 0.103, and 0.142 μM. As selamariscina A showed the strongest effects, we then evaluated it against six UGT isoforms, where it showed weaker inhibition (UGTs1A1, 1A3, 1A4, 1A6, 1A9, and 2B7, IC50 1.7 μM). Returning to the P450 activities, selamariscina A inhibited CYP2C9-mediated diclofenac hydroxylation and tolbutamide hydroxylation with respective Ki values of 0.032 and 0.065 μM in a competitive and noncompetitive manner. However, it only weakly inhibited CYP1A2, CYP2B6, and CYP3A with respective Ki values of 3.1, 7.9, and 4.5 μM. We conclude that selamariscina A has selective and strong inhibitory effects on the CYP2C8 and CYP2C9 isoforms. This information might be useful in predicting herb-drug interaction potential between biflavonoids and co-administered drugs mainly metabolized by CYP2C8 and CYP2C9. In addition, selamariscina A might be used as a strong CYP2C8 and CYP2C9 inhibitor in P450 reaction-phenotyping studies to identify drug-metabolizing enzymes responsible for the metabolism of new chemicals.
Collapse
Affiliation(s)
- So-Young Park
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-Y.P.); (G.-H.L.)
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (G.K.); (N.M.P.); (Z.W.)
| | - Phi-Hung Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam;
| | - Gahyun Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (G.K.); (N.M.P.); (Z.W.)
| | - Su-Nyeong Jang
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-Y.P.); (G.-H.L.)
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (G.K.); (N.M.P.); (Z.W.)
| | - Ga-Hyun Lee
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-Y.P.); (G.-H.L.)
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (G.K.); (N.M.P.); (Z.W.)
| | - Nguyen Minh Phuc
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (G.K.); (N.M.P.); (Z.W.)
- Vietnam Hightech of Medicinal and Pharmaceutical JSC, Group 11 Quang Minh town, Hanoi 100000, Vietnam
| | - Zhexue Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (G.K.); (N.M.P.); (Z.W.)
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-Y.P.); (G.-H.L.)
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (G.K.); (N.M.P.); (Z.W.)
- Correspondence: ; Tel.: +82-53-950-8567; Fax: +82-53-950-8557
| |
Collapse
|
38
|
Juvonen RO, Jokinen EM, Javaid A, Lehtonen M, Raunio H, Pentikäinen OT. Inhibition of human CYP1 enzymes by a classical inhibitor α-naphthoflavone and a novel inhibitor N-(3, 5-dichlorophenyl)cyclopropanecarboxamide: An in vitro and in silico study. Chem Biol Drug Des 2020; 95:520-533. [PMID: 32060993 DOI: 10.1111/cbdd.13669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 01/01/2023]
Abstract
Enzymes in the cytochrome P450 family 1 (CYP1) catalyze metabolic activation of procarcinogens and deactivation of certain anticancer drugs. Inhibition of these enzymes is a potential approach for cancer chemoprevention and treatment of CYP1-mediated drug resistance. We characterized inhibition of human CYP1A1, CYP1A2, and CYP1B1 enzymes by the novel inhibitor N-(3,5-dichlorophenyl)cyclopropanecarboxamide (DCPCC) and α-naphthoflavone (ANF). Depending on substrate, IC50 values of DCPCC for CYP1A1 or CYP1B1 were 10-95 times higher than for CYP1A2. IC50 of DCPCC for CYP1A2 was 100-fold lower than for enzymes in CYP2 and CYP3 families. DCPCC IC50 values were 10-680 times higher than the ones of ANF. DCPCC was a mixed-type inhibitor of CYP1A2. ANF was a competitive tight-binding inhibitor of CYP1A1, CYP1A2, and CYP1B1. CYP1A1 oxidized DCPCC more rapidly than CYP1A2 or CYP1B1 to the same metabolite. Molecular dynamics simulations and binding free energy calculations explained the differences of binding of DCPCC and ANF to the active sites of all three CYP1 enzymes. We conclude that DCPCC is a more selective inhibitor for CYP1A2 than ANF. DCPCC is a candidate structure to modulate CYP1A2-mediated metabolism of procarcinogens and anticancer drugs.
Collapse
Affiliation(s)
- Risto Olavi Juvonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Elmeri Matias Jokinen
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Adeel Javaid
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Hannu Raunio
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Olli Taneli Pentikäinen
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
39
|
Murray JL, Mercer SL, Jackson KD. Impact of cytochrome P450 variation on meperidine N-demethylation to the neurotoxic metabolite normeperidine. Xenobiotica 2020; 50:209-222. [PMID: 30902024 PMCID: PMC7755165 DOI: 10.1080/00498254.2019.1599465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
1. Meperidine is an opioid analgesic that undergoes N-demethylation to form the neurotoxic metabolite normeperidine. Previous studies indicate that meperidine N-demethylation is catalyzed by cytochrome P450 2B6 (CYP2B6), CYP3A4, and CYP2C19.2. The purpose of this study was to examine the relative P450 contributions to meperidine N-demethylation and to evaluate the effect of CYP2C19 polymorphism on normeperidine generation. Experiments were performed using recombinant P450 enzymes, selective chemical inhibitors, enzyme kinetic assays, and correlation analysis with individual CYP2C19-genotyped human liver microsomes.3. The catalytic efficiency (kcat/Km) for meperidine N-demethylation was similar between recombinant CYP2B6 and CYP2C19, but markedly lower by CYP3A4.4. In CYP2C19-genotyped human liver microsomes, normeperidine formation was significantly correlated with CYP2C19 activity (S-mephenytoin 4´-hydroxylation).5. CYP2C19 inhibitor (+)-N-3-benzylnirvanol and CYP3A inhibitor ketoconazole significantly reduced microsomal normeperidine generation by an individual donor with high CYP2C19 activity, whereas donors with lower CYP2C19 activity were sensitive to inhibition by ketoconazole but not benzylnirvanol.6. These findings demonstrate that the relative CYP3A4, CYP2B6, and CYP2C19 involvement in meperidine N-demethylation depends on the enzyme activities in individual human liver microsomal samples. CYP2C19 is likely an important contributor to normeperidine generation in individuals with high CYP2C19 activity, but additional factors influence inter-individual metabolite accumulation.
Collapse
Affiliation(s)
- Jessica L Murray
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, TN, USA
| | - Susan L Mercer
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Klarissa D Jackson
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
40
|
Structural Insights into the Interaction of Cytochrome P450 3A4 with Suicide Substrates: Mibefradil, Azamulin and 6',7'-Dihydroxybergamottin. Int J Mol Sci 2019; 20:ijms20174245. [PMID: 31480231 PMCID: PMC6747129 DOI: 10.3390/ijms20174245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 11/22/2022] Open
Abstract
Human cytochrome P450 3A4 (CYP3A4) is the most important drug-metabolizing enzyme. Some drugs and natural compounds can act as suicide (mechanism-based) inactivators of CYP3A4, leading to unanticipated drug-drug interactions, toxicity and therapeutic failures. Despite significant clinical and toxicological implications, the mechanism-based inactivation remains incompletely understood. This study provides the first direct insights into the interaction of CYP3A4 with three suicide substrates: mibefradil, an antihypertensive drug quickly withdrawn from the market; a semi-synthetic antibiotic azamulin; and a natural furanocoumarin, 6′,7′-dihydroxybergamottin. Novel structural findings help better understand the suicide substrate binding and inhibitory mechanism, and can be used to improve the predictability of the binding ability, metabolic sites and inhibitory/inactivation potential of newly developed drugs and other chemicals relevant to public health.
Collapse
|
41
|
Characterization of Porcine Hepatic and Intestinal Drug Metabolizing CYP450: Comparison with Human Orthologues from A Quantitative, Activity and Selectivity Perspective. Sci Rep 2019; 9:9233. [PMID: 31239454 PMCID: PMC6592956 DOI: 10.1038/s41598-019-45212-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Over the past two decades, the pig has gained attention as a potential model for human drug metabolism. Cytochrome P450 enzymes (CYP450), a superfamily of biotransformation enzymes, are pivotal in drug metabolism. Porcine CYP450 has been demonstrated to convert typical substrates of human CYP450. Nevertheless, knowledge and insight into porcine CYP450 quantity and substrate selectivity is scant, especially regarding intestinal CYP450. The current study aimed to map the quantities of hepatic and intestinal CYP450 in the conventional pig by using a proteomic approach. Moreover, the selectivity of the six most common used probe substrates (phenacetin, coumarin, midazolam, tolbutamide, dextromethorphan, and chlorzoxazone) for drug metabolizing enzyme subfamilies (CYP1A, CYP2A, CYP3A, CYP2C, CYP2D and CYP2E respectively), was investigated. Hepatic relative quantities were 4% (CYP1A), 31% (CYP2A), 14% (CYP3A), 10% (CYP2C), 28% (CYP2D) and 13% (CYP2E), whereas for the intestine only duodenal CYP450 could be determined with 88% for CYP3A and 12% for CYP2C. Furthermore, the results indicate that coumarin (CYP2A), midazolam (CYP3A), tolbutamide (CYP2C), and dextromethorphan (CYP2D) are as selective for porcine as for human CYP450. However, phenacetin (CYP1A2) and chlorzoxazone (CYP2E1) are less selective for the specific enzyme, despite similarities in selectivity towards the different enzymes involved compared to humans.
Collapse
|
42
|
Ji S, He DD, Su ZY, Du Y, Wang YJ, Gao SK, Guo MZ, Tang DQ. P450 enzymes-based metabolic interactions between monarch drugs and the other constituent herbs: A strategy to explore compatibility mechanism of Sangju-Yin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152866. [PMID: 30831464 DOI: 10.1016/j.phymed.2019.152866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/11/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Herbal compatibility of compound formulas can enhance therapeutic effects or reduce side effects of the monarch drugs, but majority of compatibility mechanisms are still unknown. Sangju-Yin, a well-known Chinese compound formula, is currently used to treat common cold in clinical. PURPOSE In this study, we proposed a strategy to explore the compatibility mechanism of Sangju-Yin by investigating P450 enzymes-based metabolic interactions between monarch drugs and the other constituent herbs. METHODS Under the guidance of traditional Chinese medicine theory, the constituent herbs of Sangju-Yin were divided into four groups, including monarch drugs, monarch drugs with addition of minister drugs, monarch drugs with addition of minister and adjuvant drugs, as well as the whole recipe, namely monarch drugs with addition of minister, adjuvant and conductant drugs. Their effects on rats in vivo P450 (CYP1A2, CYP2A3, CYP2C6, CYP2C11 and CYP3A1) activities after oral administration were evaluated using probe drug assay based on LC-MS/MS. Moreover, effects of the four groups of herbs on mRNA expression of P450 enzymes after oral administration, as well as in vitro P450 activities after co-incubation, were investigated to explore the underlying mechanisms. RESULTS Comparing with monarch drugs, addition of different constituent herbs significantly enhanced CYP1A2 and CYP2C6 activities, and inhibited CYP2A3 and CYP3A1 activities, indicating their possible influences on plasma concentrations of active constituents in the monarch drugs. Mechanism study suggested that these herbs affected P450 activities by transcriptional regulation and/or direct interaction with the enzymes. CONCLUSION This study clarified the compatibility mechanism of Sangju-Yin from the aspect of P450 enzymes-based metabolic interactions, which would benefit better understanding of the therapeutic basis of Sangju-Yin.
Collapse
Affiliation(s)
- Shuai Ji
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Dan-Dan He
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhen-Yu Su
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China
| | - Yan Du
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China
| | - Yu-Jie Wang
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China
| | - Shi-Kai Gao
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China
| | - Meng-Zhe Guo
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Dao-Quan Tang
- Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
43
|
Davis MA, Barnette DA, Flynn NR, Pidugu AS, Swamidass SJ, Boysen G, Miller GP. CYP2C19 and 3A4 Dominate Metabolic Clearance and Bioactivation of Terbinafine Based on Computational and Experimental Approaches. Chem Res Toxicol 2019; 32:1151-1164. [PMID: 30925039 DOI: 10.1021/acs.chemrestox.9b00006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lamisil (terbinafine) is an effective, widely prescribed antifungal drug that causes rare idiosyncratic hepatotoxicity. The proposed toxic mechanism involves a reactive metabolite, 6,6-dimethyl-2-hepten-4-ynal (TBF-A), formed through three N-dealkylation pathways. We were the first to characterize them using in vitro studies with human liver microsomes and modeling approaches, yet knowledge of the individual enzymes catalyzing reactions remained unknown. Herein, we employed experimental and computational tools to assess terbinafine metabolism by specific cytochrome P450 isozymes. In vitro inhibitor phenotyping studies revealed six isozymes were involved in one or more N-dealkylation pathways. CYP2C19 and 3A4 contributed to all pathways, and so, we targeted them for steady-state analyses with recombinant isozymes. N-Dealkylation yielding TBF-A directly was catalyzed by CYP2C19 and 3A4 similarly. Nevertheless, CYP2C19 was more efficient than CYP3A4 at N-demethylation and other steps leading to TBF-A. Unlike microsomal reactions, N-denaphthylation was surprisingly efficient for CYP2C19 and 3A4, which was validated by controls. CYP2C19 was the most efficient among all reactions. Nonetheless, CYP3A4 was more selective at steps leading to TBF-A, making it more effective in terbinafine bioactivation based on metabolic split ratios for competing pathways. Model predictions did not extrapolate to quantitative kinetic constants, yet some results for CYP3A4 and CYP2C19 agreed qualitatively with preferred reaction steps and pathways. Clinical data on drug interactions support the CYP3A4 role in terbinafine metabolism, while CYP2C19 remains understudied. Taken together, knowledge of P450s responsible for terbinafine metabolism and TBF-A formation provides a foundation for investigating and mitigating the impact of P450 variations in toxic risks posed to patients.
Collapse
Affiliation(s)
- Mary A Davis
- Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Dustyn A Barnette
- Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Noah R Flynn
- Department of Pathology and Immunology , Washington University , St. Louis , Missouri 63130 , United States
| | - Anirudh S Pidugu
- Department of Neuroscience and Behavioral Biology , Emory University , Atlanta , Georgia 30322 , United States
| | - S Joshua Swamidass
- Department of Pathology and Immunology , Washington University , St. Louis , Missouri 63130 , United States
| | - Gunnar Boysen
- Department of Environmental and Occupational Health , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas 72205 , United States
| |
Collapse
|
44
|
Dekker SJ, Dohmen F, Vermeulen NPE, Commandeur JNM. Characterization of kinetics of human cytochrome P450s involved in bioactivation of flucloxacillin: inhibition of CYP3A-catalysed hydroxylation by sulfaphenazole. Br J Pharmacol 2018; 176:466-477. [PMID: 30447161 PMCID: PMC6329626 DOI: 10.1111/bph.14548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 01/18/2023] Open
Abstract
Background and Purpose The aim of this study was to characterize the human cytochrome P450s (CYPs) involved in oxidative bioactivation of flucloxacillin to 5‐hydroxymethyl flucloxacillin, a metabolite with high cytotoxicity towards biliary epithelial cells. Experimental Approach The CYPs involved in hydroxylation of flucloxacillin were characterized using recombinant human CYPs, pooled liver microsomes in the presence of CYP‐specific inhibitors and by correlation analysis using a panel of liver microsomes from 16 donors. Key Results Recombinant CYPs showing the highest specific activity were CYP3A4, CYP3A7 and to lower extent CYP2C9 and CTP2C8. Michaelis–Menten enzyme kinetics were determined for pooled human liver microsomes, recombinant CYP3A4, CYP3A7 and CYP2C9. Surprisingly, sulfaphenazole appeared to be a potent inhibitor of 5′‐hydroxylation of flucloxacillin by both recombinant CYP3A4 and CYP3A7. Conclusions and Implications The combined results show that the 5′‐hydroxylation of flucloxacillin is primarily catalysed by CYP3A4, CYP3A7 and CYP2C9. The large variability of the hepatic expression of these enzymes could affect the formation of 5′‐hydroxymethyl flucloxacillin, which may determine the differences in susceptibility to flucloxacillin‐induced liver injury. Additionally, the strong inhibition in CYP3A‐catalysed flucloxacillin metabolism by sulfaphenazole suggests that unanticipated drug–drug interactions could occur with coadministered drugs.
Collapse
Affiliation(s)
- Stefan J Dekker
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicine and Systems (AIMMS), Vrije Universiteit, Amsterdam, The Netherlands
| | - Floor Dohmen
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicine and Systems (AIMMS), Vrije Universiteit, Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicine and Systems (AIMMS), Vrije Universiteit, Amsterdam, The Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicine and Systems (AIMMS), Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Cruz-Hurtado M, López-González MDL, Mondragón V, Sierra-Santoyo A. In vitro phase I metabolism of vinclozolin by human liver microsomes. Xenobiotica 2018; 49:895-904. [PMID: 30215542 DOI: 10.1080/00498254.2018.1523485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
1. Vinclozolin (Vin) is a fungicide used in agricultural settings and is classified as an endocrine disruptor. Vin is non-enzymatically hydrolyzed to 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1) and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2) metabolites. There is no information about Vin biotransformation in humans, therefore, the aim of this study was to characterize its in vitro metabolism using human liver microsomes. 2. Vin was metabolized to the [3-(3,5-dichlorophenyl)-5-methyl-5-(1,2-dihydroxyethyl)-1,3-oxazolidine-2,4-dione] (M4) and N-(2,3,4-trihydroxy-2-methyl-1-oxo)-3,5-dichlorophenyl-1-carbamic acid (M7) metabolites, which are unstable and gradually converted to 3',5'-dichloro-2,3,4-trihydroxy-2-methylbutyranilide (DTMBA, formerly denoted as M5). M4 and DTMBA metabolites co-eluted in the same HPLC peak; this co-elute peak exhibited a Michaelis-Menten kinetic, whereas M7 showed a substrate inhibition kinetics. The KM app for co-eluted M4/DTMBA and M7 was 24.2 ± 5.6 and 116.0 ± 52.6 μM, the VMax app was 0.280 ± 0.015 and 0.180 ± 0.060 nmoles/min/mg protein, and the CLint app was 11.5 and 1.5 mL/min/g protein, respectively. The Ki for M7 was 133.2 ± 63.9 μM. Cytochrome P450 (CYP) chemical inhibitors furafylline (CYP1A2), ketoconazole (CYP3A4), pilocarpine (CYP2A6) and sulfaphenazole (CYP2C9) inhibited M4/DTMBA and M7 formation, suggesting that Vin is metabolized in humans by CYP. 3. DTMBA is a stable metabolite and specific of Vin, therefore, it could be used as a biomarker of Vin exposure in humans to perform epidemiological studies.
Collapse
Affiliation(s)
- Marycarmen Cruz-Hurtado
- a Departamento de Toxicología , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav) , Ciudad de México , México
| | - Ma de Lourdes López-González
- a Departamento de Toxicología , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav) , Ciudad de México , México
| | - Victor Mondragón
- b Centro de Excelencia de Agilent Technologies México , Ciudad de México , México
| | - Adolfo Sierra-Santoyo
- a Departamento de Toxicología , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav) , Ciudad de México , México
| |
Collapse
|
46
|
Reinen J, Smit M, Wenker M. Evaluation of Strategies for the Assessment of Drug–Drug Interactions Involving Cytochrome P450 Enzymes. Eur J Drug Metab Pharmacokinet 2018; 43:737-750. [DOI: 10.1007/s13318-018-0485-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Hou R, Huang C, Rao K, Xu Y, Wang Z. Characterized in Vitro Metabolism Kinetics of Alkyl Organophosphate Esters in Fish Liver and Intestinal Microsomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3202-3210. [PMID: 29439571 DOI: 10.1021/acs.est.7b05825] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tris(2-butoxyethyl) phosphate (TBOEP) and tris( n-butyl) phosphate (TNBP) are the most commonly used alkyl organophosphate esters (alkyl-OPEs), and they increasingly accumulate in organisms and create potential health hazards. This study examined the metabolism of TNBP and TBOEP in Carassius carassius liver and intestinal microsomes and the production of their corresponding monohydroxylated and dealkylated metabolites. After 140 min of incubation with fish liver microsomes, the rapid depletion of TNBP and TBOEP were both best fitted to the Michaelis-Menten model (at administrated concentrations ranging from 0.5 to 200 μM), with a CLint (intrinsic clearance) of 3.1 and 3.9 μL·min-1·mg-1 protein, respectively. But no significant ( P > 0.05) biotransformation was observed for these compounds in intestinal microsomes at any administrated concentrations. In fish liver microsomes assay, bis(2-butoxyethyl) hydroxyethyl phosphate (BBOEHEP) and bis(2-butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate (3-OH-TBOEP) were the most abundant metabolites of TBOEP, and dibutyl-3-hydroxybutyl phosphate (3-OH-TNBP) was the predominant metabolite of TNBP. Similarly, the apparent Vmax values (maximum metabolic rate) of BBOEHEP and 3-OH-TNBP were also respectively highest among those of other metabolites. Further inhibition studies were conducted to identify the specific cytochrome P450 (CYP450) isozymes involved in the metabolism of TNBP and TBOEP in liver microsomes. It was confirmed that CYP3A4 and CYP1A were the significant CYP450 isoforms catalyzing the metabolism of TNBP and TBOEP in fish liver microsomes. Overall, this study emphasized the importance of hydroxylated metabolites as biomarkers for alkyl-OPEs exposure, and further research is needed to validate the in vivo formation and toxicological implications of these metabolites.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Chao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Kaifeng Rao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| |
Collapse
|
48
|
Wang Y, Yu YX, Luan Y, An J, Yin DG, Zhang XY. Bioactivation of 1-chloro-2-hydroxy-3-butene, an in vitro metabolite of 1,3-butadiene, by rat liver microsomes. Chem Biol Interact 2018; 282:36-44. [DOI: 10.1016/j.cbi.2018.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/03/2017] [Accepted: 01/05/2018] [Indexed: 01/15/2023]
|
49
|
Umehara KI, Huth F, Gu H, Schiller H, Heimbach T, He H. Estimation of fractions metabolized by hepatic CYP enzymes using a concept of inter-system extrapolation factors (ISEFs) - a comparison with the chemical inhibition method. Drug Metab Pers Ther 2017; 32:191-200. [PMID: 29176011 DOI: 10.1515/dmpt-2017-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND For estimation of fractions metabolized (fm) by different hepatic recombinant human CYP enzymes (rhCYP), calculation of inter-system extrapolation factors (ISEFs) has been proposed. METHODS ISEF values for CYP1A2, CYP2C19 and CYP3A4/5 were measured. A CYP2C9 ISEF was taken from a previous report. Using a set of compounds, fractions metabolized by CYP enzymes (fm,CYP) values calculated with the ISEFs based on rhCYP data were compared with those from the chemical inhibition data. Oral pharmacokinetics (PK) profiles of midazolam were simulated using the physiologically based pharmacokinetics (PBPK) model with the CYP3A ISEF. For other CYPs, the in vitro fm,CYP values were compared with the reference fm,CYP data back-calculated with, e.g. modeling of test substrates by feeding clinical PK data. RESULTS In vitro-in vitro fm,CYP3A4 relationship between the results from rhCYP incubation and chemical inhibition was drawn as an exponential correlation with R2=0.974. A midazolam PBPK model with the CYP3A4/5 ISEFs simulated the PK profiles within twofold error compared to the clinical observations. In a limited number of cases, the in vitro methods could not show good performance in predicting fm,CYP1A2, fm,CYP2C9 and fm,CYP2C19 values as reference data. CONCLUSIONS The rhCYP data with the measured ISEFs provided reasonable calculation of fm,CYP3A4 values, showing slight over-estimation compared to chemical inhibition.
Collapse
Affiliation(s)
- Ken-Ichi Umehara
- Department of PK Sciences, Computational and Biopharmaceutics Section, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland, Phone: +41-79-5054064
| | - Felix Huth
- Department of PK Sciences, In vitro ADME Section, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Helen Gu
- Department of PK Sciences, In vitro ADME Section, Novartis Institutes for BioMedical Research, East Hanover, NJ, USA
| | - Hilmar Schiller
- Department of PK Sciences, In vitro ADME Section, Novartis Institutes for BioMedical Research, 4002 Basel, Switzerland
| | - Tycho Heimbach
- Department of PK Sciences, Computational and Biopharmaceutics Section, Novartis Institutes for BioMedical Research, East Hanover, NJ, USA
| | - Handan He
- Department of PK Sciences, Computational and Biopharmaceutics Section, Novartis Institutes for BioMedical Research, East Hanover, NJ, USA
| |
Collapse
|
50
|
Wang X, Qiao Z, Liu J, Zheng M, Liu W, Wu C. Stereoselective in vitro metabolism of rhynchophylline and isorhynchophylline epimers of Uncaria rhynchophylla in rat liver microsomes. Xenobiotica 2017; 48:990-998. [PMID: 28990840 DOI: 10.1080/00498254.2017.1390627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
1. The objective was to investigate the underlying mechanism of the stereoselectivity in the metabolism of rhynchophylline (RIN) and isorhynchophylline (IRN) epimers in rat liver microsomes (RLM). 2. After incubation, eight metabolites of RIN (M1-5) and IRN (M6-8) reacted at A- and C-ring were identified using LC-Q-TOF/MS. Metabolic pathways included oxidation, hydroxylation, N-oxidation and dehydrogenation. In addition, hydroxylation at A-ring was the major metabolic pathway for RIN whereas the oxidation at C-ring was the major one for IRN. 3. Enzyme kinetics showed that the intrinsic clearance (CLint) for IRN elimination was 1.9-fold higher than RIN and the degradation half-life (T1/2) of RIN was 4.7-fold higher than that of IRN, indicating IRN was more favorable to be metabolized than RIN in RLM. 4. Data from chemical inhibition study demonstrated CYP3A was the predominant isoform involved in the metabolic elimination of both epimers, as well as the formation of M1-8. 5. In conclusion, data revealed that due to the spatial configurations at C-7 position, RIN and IRN epimers possessed different hepatic metabolic pathways and elimination rates which were mainly mediated by CYP3A.
Collapse
Affiliation(s)
- Xin Wang
- a Department of Pharmaceutical Analysis , China Pharmaceutical University , Nanjing , China
| | - Zhou Qiao
- a Department of Pharmaceutical Analysis , China Pharmaceutical University , Nanjing , China
| | - Jia Liu
- b Pharmic Laboratory Animal Center , China Pharmaceutical University , Nanjing , China , and
| | - Mei Zheng
- a Department of Pharmaceutical Analysis , China Pharmaceutical University , Nanjing , China
| | - Wenyuan Liu
- a Department of Pharmaceutical Analysis , China Pharmaceutical University , Nanjing , China.,c Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University , Nanjing , China
| | - Chunyong Wu
- a Department of Pharmaceutical Analysis , China Pharmaceutical University , Nanjing , China.,c Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University , Nanjing , China
| |
Collapse
|