1
|
Pichetpongtorn P, Ruangdachsuwan S, Churod T, Komaikul J, Masrinoul P, Yusakul G, Kitisripanya T. Curcuma sp. "Khamin Oi" extracts inhibit human coronavirus OC43 replication in HCT-8 colorectal cell line. Heliyon 2024; 10:e40569. [PMID: 39654703 PMCID: PMC11625121 DOI: 10.1016/j.heliyon.2024.e40569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Plants belonging to the genus Curcuma have shown promise in exerting antiviral activity. In this study, Curcuma sp. "Khamin Oi" (CKO), a traditional Thai medicinal herb listed in Thai herbal pharmacopoeia, was subjected to extraction using a variety of solvents. Consequently, LC-MS/MS and GC-MS/MS analyses were conducted to assess the phytochemical profiles of all the crude extracts and identify the compounds potentially responsible for their antiviral effects. The antiviral effects of these extracts against the human coronavirus OC43 (HCoV-OC43) were also investigated. An in-cell ELISA was used to investigate the anti-HCoV-OC43 replication activity of the crude rhizome extracts of CKO. Among the extracts, the crude hexane extract of CKO exhibited the lowest IC50 (3.62 μg/mL), with a high selectivity index (SI) of 31.90, despite having the lowest curcuminoid content. While the methanolic extract of Curcuma longa L., known for its high curcuminoid content among Curcuma species, showed an IC50 of 14.83 μg/mL with an SI of 2.80. Further in vitro and in vivo investigations of CKO crude extract are necessary to understand its potential anti-HCoV-OC43 properties.
Collapse
Affiliation(s)
| | - Sasiporn Ruangdachsuwan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Theeraporn Churod
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Jukrapun Komaikul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Promsin Masrinoul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, Thailand
| | - Tharita Kitisripanya
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Kota S, Nelapati AK, Govada VR. Plant resources for immunonutrients and immunomodulators to combat infectious respiratory viral diseases: a review. 3 Biotech 2024; 14:302. [PMID: 39554986 PMCID: PMC11568085 DOI: 10.1007/s13205-024-04143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024] Open
Abstract
Boosting the immune system has become a crucial aspect in the global battle against the COVID-19 pandemic and other similar infections to protect oneself against symptoms, especially in the prevention of viral infections of the lower respiratory tract. The importance of conducting more studies to create successful herbal formulations as infection prevention measures is emphasized in this review, which looks at the function of immune-boosting nutrients, medicinal plants, and herbal treatments. We reviewed and analyzed 207 studies published from 1946 to the present using reputable databases like Google Scholar, PubMed, and NCBI. The review examined 115 plant species in total and identified 12 key nutrients, including vitamins A, D, C, omega-3 fatty acids, iron, and zinc, while noting that four plant families, Rosaceae, Asteraceae, Amaryllidaceae, and Acanthaceae, show potential against respiratory infections like influenza, RSV, and SARS-CoV. To lower the risk of infection, it is recommended to consume nutritious meals that have immune-modulating qualities. Information on the bioactive components of medicinal herbs, spices, and plants that have been effective in treating respiratory viral infections and related conditions is compiled in this review, which highlights phytoactive substances with antibacterial and antiviral activity as effective modulators to lower the risk of infections. Furthermore, it is highlighted that ancient knowledge systems, like Ayurveda and Naturopathy, should be integrated to help develop new herbal formulations. To improve immunity and lessen vulnerability to serious respiratory infections, the results highlight the need for including immune-modulating foods and plant-based medicines into everyday routines.
Collapse
Affiliation(s)
- Sobha Kota
- Department of Chemical Engineering, RVR & JC College of Engineering, Guntur, Andhra Pradesh 522 019 India
| | - Anand Kumar Nelapati
- Department of Biotechnology, Vignan’s Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522 213 India
| | - Vayunandana Rao Govada
- Department of Chemical Engineering, RVR & JC College of Engineering, Guntur, Andhra Pradesh 522 019 India
| |
Collapse
|
3
|
Libin KV, Debnath M, Sisodiya S, Rathod SB, Prajapati PB, Lisina KV, Bhuyan R, Evanjelene VK. Bioefficacy, chromatographic profiling and drug-likeness analysis of flavonoids and terpenoids as potential inhibitors of H1N1 influenza viral proteins. Int J Biol Macromol 2024; 281:136125. [PMID: 39357733 DOI: 10.1016/j.ijbiomac.2024.136125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Considering medicinal plants, natural products present in these plants are the best sources of medications for combating viral infection. The possible drug target against viral H1N1 influenza proteins lead to identification of selected secondary metabolites from potential plants Tinospora cordifolia, Ocimum sanctum, and Piper nigrum. On analysis of in vitro cell based antiviral activity of the selected plant extracts, an indication for a possible lead compound against neuraminidase activity was evident. Potent ligands were selected using drug docking and ADMET analysis, and the screened lead metabolites were ultimately identified as terpenoid (Columbin) and, flavonoid (Cubebin, and Apigenin). Among the selected ligands, the drug binding activity of Cubebin with all the 6 proteins of H1N1 influenza type A virus, HA (4r8w), NA (4qn7), M2 (3lbw), PA (4wsb), PB1 (2znl) and PB2 (3wil), was pronounced. In addition, physicochemical and pharmacokinetic parameters linked to absorption, distribution, metabolism, excretion and toxicity (ADMET) have been evaluated and corroborate with our in vitro results. Molecular dynamics modelling indicated Cubebin can be a potential phytochemical in a drug discovery pipeline for the development of neuraminidase inhibitors. Further studies can provide a possibility for an alternative therapy against Influenza viruses.
Collapse
Affiliation(s)
- K V Libin
- Department of Biosciences and Biotechnology, Banasthali Vidyapith Jaipur, Rajasthan 304802, India
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India.
| | - Smita Sisodiya
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India
| | - Shravan B Rathod
- Department of Chemistry, Smt. S. M. Panchal Science College, Talod, Gujarat, India
| | - Pravin B Prajapati
- Department of Chemistry, Sheth M. N. Science College, Patan, Gujarat, India
| | - K V Lisina
- Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Rajabrata Bhuyan
- Department of Biosciences and Biotechnology, Banasthali Vidyapith Jaipur, Rajasthan 304802, India
| | | |
Collapse
|
4
|
Venable KE, Lee CC, Francis J. Addressing Mental Health in Rural Settings: A Narrative Review of Blueberry Supplementation as a Natural Intervention. Nutrients 2024; 16:3539. [PMID: 39458533 PMCID: PMC11510281 DOI: 10.3390/nu16203539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Depression and anxiety are major public health issues; however, there is an unmet need for novel, effective, and accessible treatments, particularly in rural communities. Blueberries are an unexplored nutraceutical for these conditions due to their excellent nutritional profile, with particularly high levels of polyphenols and anthocyanins and benefits on mood, cognition, and health. Here, we present a narrative review of the literature concerning the etiology and treatments of major depressive disorder (MDD) and generalized anxiety disorder (GAD). In both animal and human studies, blueberry supplementation can ameliorate behavioral symptoms of both anxiety and depression. The mechanistic underpinnings of these behavioral improvements are not fully defined, but likely involve biochemical alterations in the gut-brain axis, including to inflammatory cytokines, reactive oxygen species, and growth factors. We also review the limitations of traditional therapies in rural settings. Finally, we assess the potential benefit of nutraceutical interventions, particularly blueberries, as novel therapeutics for these distinct, yet related mental health issues.
Collapse
Affiliation(s)
- Katy E. Venable
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.C.L.); (J.F.)
| | | | | |
Collapse
|
5
|
Amtaghri S, Slaoui M, Eddouks M. Phytomedical compounds as promising therapeutic agents for COVID-19 targeting angiotensin-converting enzyme 2: a review. J Pharm Pharmacol 2024; 76:1239-1268. [PMID: 39018169 DOI: 10.1093/jpp/rgae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/07/2024] [Indexed: 07/19/2024]
Abstract
AIMS The aim of the present review was to highlight natural product investigations in silico and in vitro to find plants and chemicals that inhibit or stimulate angiotensin-converting enzyme 2 (ACE-2). BACKGROUND The global reduction of incidents and fatalities attributable to infections with SARS-CoV-2 is one of the most public health problems. In the absence of specific therapy for coronavirus disease 2019 (COVID-19), phytocompounds generated from plant extracts may be a promising strategy worth further investigation, motivating researchers to evaluate the safety and anti-SARS-CoV-2 effectiveness of these ingredients. OBJECTIVE To review phytochemicals in silico for anti-SARS-CoV-2 activity and to assess their safety and effectiveness in vitro and in vivo. METHODS The present review was conducted using various scientific databases and studies on anti-SARS-CoV-2 phytochemicals were analyzed and summarized. The results obtained from the in silico screening were subjected to extraction, isolation, and purification. The in vitro studies on anti-SarcoV-2 were also included in this review. In addition, the results of this research were interpreted, analyzed, and documented on the basis of the bibliographic information obtained. RESULTS This review discusses recent research on using natural remedies to cure or prevent COVID-19 infection. The literature analysis shows that the various herbal preparations (extracts) and purified compounds can block the replication or entrance of the virus directly to carry out their anti-SARS-CoV-2 effects. It is interesting to note that certain items can prevent SARS-CoV-2 from infecting human cells by blocking the ACE-2 receptor or the serine protease TMPRRS2. Moreover, natural substances have been demonstrated to block proteins involved in the SARS-CoV-2 life cycle, such as papain- or chymotrypsin-like proteases. CONCLUSION The natural products may have the potential for use singly or in combination as alternative drugs to treat/prevent COVID-19 infection, including blocking or stimulating ACE-2. In addition, their structures may provide indications for the development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Smail Amtaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco
- Energy, Materials and Sustainable Development (EMDD) Team-Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Miloudia Slaoui
- Energy, Materials and Sustainable Development (EMDD) Team-Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia 52000, Morocco
| |
Collapse
|
6
|
Chakraborty S, Chauhan A. Fighting the flu: a brief review on anti-influenza agents. Biotechnol Genet Eng Rev 2024; 40:858-909. [PMID: 36946567 DOI: 10.1080/02648725.2023.2191081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
The influenza virus causes one of the most prevalent and lethal infectious viral diseases of the respiratory system; the disease progression varies from acute self-limiting mild fever to disease chronicity and death. Although both the preventive and treatment measures have been vital in protecting humans against seasonal epidemics or sporadic pandemics, there are several challenges to curb the influenza virus such as limited or poor cross-protection against circulating virus strains, moderate protection in immune-compromised patients, and rapid emergence of resistance. Currently, there are four US-FDA-approved anti-influenza drugs to treat flu infection, viz. Rapivab, Relenza, Tamiflu, and Xofluza. These drugs are classified based on their mode of action against the viral replication cycle with the first three being Neuraminidase inhibitors, and the fourth one targeting the viral polymerase. The emergence of the drug-resistant strains of influenza, however, underscores the need for continuous innovation towards development and discovery of new anti-influenza agents with enhanced antiviral effects, greater safety, and improved tolerability. Here in this review, we highlighted commercially available antiviral agents besides those that are at different stages of development including under clinical trials, with a brief account of their antiviral mechanisms.
Collapse
Affiliation(s)
| | - Ashwini Chauhan
- Department of Microbiology, Tripura University, Agartala, India
| |
Collapse
|
7
|
Rabaan AA, Halwani MA, Garout M, Alotaibi J, AlShehail BM, Alotaibi N, Almuthree SA, Alshehri AA, Alshahrani MA, Othman B, Alqahtani A, Alissa M. Exploration of phytochemical compounds against Marburg virus using QSAR, molecular dynamics, and free energy landscape. Mol Divers 2024; 28:3261-3278. [PMID: 37925643 DOI: 10.1007/s11030-023-10753-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
Marburg virus disease (MVD) is caused by the Marburg virus, a one-of-a-kind zoonotic RNA virus from the genus Filovirus. Thus, this current study employed AI-based QSAR and molecular docking-based virtual screening for identifying potential binders against the target protein (nucleoprotein (NP)) of the Marburg virus. A total of 2727 phytochemicals were used for screening, out of which the top three compounds (74977521, 90470472, and 11953909) were identified based on their predicted bioactivity (pIC50) and binding score (< - 7.4 kcal/mol). Later, MD simulation in triplicates and trajectory analysis were performed which showed that 11953909 and 74977521 had the most stable and consistent complex formations and had the most significant interactions with the highest number of hydrogen bonds. PCA (principal component analysis) and FEL (free energy landscape) analysis indicated that these compounds had favourable energy states for most of the conformations. The total binding free energy of the compounds using the MM/GBSA technique showed that 11953909 (ΔGTOTAL = - 30.78 kcal/mol) and 74977521 (ΔGTOTAL = - 30 kcal/mol) had the highest binding affinity with the protein. Overall, this in silico pipeline proposed that the phytochemicals 11953909 and 74977521 could be the possible binders of NP. This study aimed to find phytochemicals inhibiting the protein's function and potentially treating MVD.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, 31311, Dhahran, Saudi Arabia.
- College of Medicine, Alfaisal University, 11533, Riyadh, Saudi Arabia.
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan.
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, 4781, Al Baha, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Jawaher Alotaibi
- Infectious diseases Unit, Department of Medicine, King Faisal Specialist Hospital and Research Center, 11564, Riyadh, Saudi Arabia
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Nouf Alotaibi
- Clinical pharmacy Department, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Souad A Almuthree
- Department of Infectious Disease, King Abdullah Medical City, 43442, Makkah, Saudi Arabia
| | - Ahmad A Alshehri
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Mohammed Abdulrahman Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia
| | - Basim Othman
- Department of Public Health, Faculty of Applied Medical Sciences, Al Baha University, 65779, Al Baha, Saudi Arabia
| | - Abdulaziz Alqahtani
- Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, 61321, Abha, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia.
| |
Collapse
|
8
|
Amri M, Jubinville É, Goulet-Beaulieu V, Fliss I, Jean J. Evaluation of inhibitory activity of essential oils and natural extracts on foodborne viruses. J Appl Microbiol 2024; 135:lxae221. [PMID: 39174457 DOI: 10.1093/jambio/lxae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
AIMS Enteric viruses are recognized as a major concern in health care and in the food sector in Canada. Novel clean-label strategies for controlling enteric viruses are sought in the food industry. In this study, we examined the antiviral potential of plant extracts and essential oils on murine norovirus 1 (MNV-1), hepatitis A virus (HAV), and herpes simplex virus 1 (HSV-1). METHODS AND RESULTS Inactivation of the viruses by grape seed, blueberry, green tea, and cranberry extracts and by rosemary and thyme essential oils was measured using plaque formation assay. Concentrations ranging from 50 to 200 000 ppm with a contact time of 90 min were tested. Grape seed extract at 10 000 ppm was the most effective (P < 0.05) at reducing MNV-1 and HAV infectious titers, respectively, by 2.85 ± 0.44 log10 and 1.94 ± 0.17 log10. HSV-1 titer was reduced by 3.81 ± 0.40 log10 at 1000 ppm grape seed extract. CONCLUSIONS Among the plant products tested, grape seed extract was found the most effective at reducing the infectious titers of MNV-1, HAV, and HSV.
Collapse
Affiliation(s)
- Mariem Amri
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Éric Jubinville
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Valérie Goulet-Beaulieu
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Ismail Fliss
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| | - Julie Jean
- Department of Food Sciences, Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, PQ, G1V 0A6, Canada
| |
Collapse
|
9
|
Mehta SK, Pradhan RB. Phytochemicals in antiviral drug development against human respiratory viruses. Drug Discov Today 2024; 29:104107. [PMID: 39032810 DOI: 10.1016/j.drudis.2024.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/30/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
This review explores the potential antiviral properties of various plant-based compounds, including polyphenols, phytochemicals, and terpenoids. It emphasizes the diverse functionalities of compounds such as epigallocatechin-3-gallate (EGCG), quercetin, griffithsin (GRFT,) resveratrol, linalool, and carvacrol in the context of respiratory virus infections, including SARS-CoV-2. Emphasizing their effectiveness in modulating immune responses, disrupting viral envelopes, and influencing cellular signaling pathways, the review underlines the imperative for thorough research to establish safety and efficacy. Additionally, the review underscores the necessity of well-designed clinical trials to evaluate the efficacy and safety of these compounds as potential antiviral agents. This approach would establish a robust framework for future drug development efforts focused on bolstering host defense mechanisms against human respiratory viral infections.
Collapse
Affiliation(s)
- Surya Kant Mehta
- Laboratory of Algal Biology, Department of Botany, School of Life Sciences, Mizoram University, Aizawl, PIN 796004, Mizoram, India.
| | - Ran Bahadur Pradhan
- Laboratory of Algal Biology, Department of Botany, School of Life Sciences, Mizoram University, Aizawl, PIN 796004, Mizoram, India
| |
Collapse
|
10
|
Muralitharan I, Sahoo AK, Augusthian PD, Samal A. Computational prediction of phytochemical inhibitors against the cap-binding domain of Rift Valley fever virus. Mol Divers 2024; 28:2637-2650. [PMID: 37481749 DOI: 10.1007/s11030-023-10702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
Rift Valley fever is a zoonotic disease that can spread through livestock and mosquitoes, and its symptoms include retinitis, photophobia, hemorrhagic fever and neurological effects. The World Health Organization has identified Rift Valley fever as one of the viral infections that has potential to cause a future epidemic. Hence, efforts are urgently needed toward development of therapeutics and vaccine against this infectious disease. Notably, the causative virus namely, the Rift Valley fever virus (RVFV), utilizes the cap-snatching mechanism for viral transcription, rendering its cap-binding domain (CBD) as an effective antiviral target. To date, there are no published studies towards identification of potential small molecule inhibitors for the CBD of RVFV. Here, we employ a virtual screening workflow comprising of molecular docking and molecular dynamics (MD) simulation, to identify 5 potential phytochemical inhibitors of the CBD of RVFV. These 5 phytochemical inhibitors can be sourced from Indian medicinal plants, Ferula assa-foetida, Glycyrrhiza glabra and Leucas cephalotes, used in traditional medicine. In sum, the 5 phytochemical inhibitors of the CBD of RVFV identified by this purely computational study are promising drug lead molecules which can be considered for detailed experimental validation against RVFV infection.
Collapse
Affiliation(s)
- Ishwarya Muralitharan
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
| | - Ajaya Kumar Sahoo
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Priya Dharshini Augusthian
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
| | - Areejit Samal
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India.
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
11
|
Saha O, Siddiquee NH, Akter R, Sarker N, Bristi UP, Sultana KF, Remon SMLR, Sultana A, Shishir TA, Rahaman MM, Ahmed F, Hossen F, Amin MR, Akter MS. Antiviral Activity, Pharmacoinformatics, Molecular Docking, and Dynamics Studies of Azadirachta indica Against Nipah Virus by Targeting Envelope Glycoprotein: Emerging Strategies for Developing Antiviral Treatment. Bioinform Biol Insights 2024; 18:11779322241264145. [PMID: 39072258 PMCID: PMC11283663 DOI: 10.1177/11779322241264145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
The Nipah virus (NiV) belongs to the Henipavirus genus is a serious public health concern causing numerous outbreaks with higher fatality rate. Unfortunately, there is no effective medication available for NiV. To investigate possible inhibitors of NiV infection, we used in silico techniques to discover treatment candidates in this work. As there are not any approved treatments for NiV infection, the NiV-enveloped attachment glycoprotein was set as target for our study, which is responsible for binding to and entering host cells. Our in silico drug design approach included molecular docking, post-docking molecular mechanism generalised born surface area (MM-GBSA), absorption, distribution, metabolism, excretion/toxicity (ADME/T), and molecular dynamics (MD) simulations. We retrieved 418 phytochemicals associated with the neem plant (Azadirachta indica) from the IMPPAT database, and molecular docking was used to ascertain the compounds' binding strength. The top 3 phytochemicals with binding affinities of -7.118, -7.074, and -6.894 kcal/mol for CIDs 5280343, 9064, and 5280863, respectively, were selected for additional study based on molecular docking. The post-docking MM-GBSA of those 3 compounds was -47.56, -47.3, and -43.15 kcal/mol, respectively. As evidence of their efficacy and safety, all the chosen drugs had favorable toxicological and pharmacokinetic (Pk) qualities. We also performed MD simulations to confirm the stability of the ligand-protein complex structures and determine whether the selected compounds are stable at the protein binding site. All 3 phytochemicals, Quercetin (CID: 5280343), Cianidanol (CID: 9064), and Kaempferol (CID: 5280863), appeared to have outstanding binding stability to the target protein than control ribavirin, according to the molecular docking, MM-GBSA, and MD simulation outcomes. Overall, this work offers a viable approach to developing novel medications for treating NiV infection.
Collapse
Affiliation(s)
- Otun Saha
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Noimul Hasan Siddiquee
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Rahima Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Nikkon Sarker
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Uditi Paul Bristi
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - SM Lutfor Rahman Remon
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Afroza Sultana
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Tushar Ahmed Shishir
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | | | - Firoz Ahmed
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Foysal Hossen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mohammad Ruhul Amin
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mir Salma Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Li Z, Wang J, Wang S, Zhao W, Hou X, Wang J, Dong H, Zhou S, Gao Y, Yao W, Li H, Liu X. A dicoumarol-graphene oxide quantum dot polymer inhibits porcine reproductive and respiratory syndrome virus through the JAK-STAT signaling pathway. Front Microbiol 2024; 15:1417404. [PMID: 38962129 PMCID: PMC11221364 DOI: 10.3389/fmicb.2024.1417404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction Porcine reproductive and respiratory syndrome virus (PRRSV) causes substantial economic losses in the global swine industry. The current vaccine options offer limited protection against PRRSV transmission, and there are no effective commercial antivirals available. Therefore, there is an urgent need to develop new antiviral strategies that slow global PRRSV transmission. Methods In this study, we synthesized a dicoumarol-graphene oxide quantum dot (DIC-GQD) polymer with excellent biocompatibility. This polymer was synthesized via an electrostatic adsorption method using the natural drug DIC and GQDs as raw materials. Results Our findings demonstrated that DIC exhibits high anti-PRRSV activity by inhibiting the PRRSV replication stage. The transcriptome sequencing analysis revealed that DIC treatment stimulates genes associated with the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway. In porcine alveolar macrophages (PAMs), DIC-GQDs induce TYK2, JAK1, STAT1, and STAT2 phosphorylation, leading to the upregulation of JAK1, STAT1, STAT2, interferon-β (IFN-β) and interferon-stimulated genes (ISGs). Animal challenge experiments further confirmed that DIC-GQDs effectively alleviated clinical symptoms and pathological reactions in the lungs, spleen, and lymph nodes of PRRSV-infected pigs. Discussion These findings suggest that DIC-GQDs significantly inhibits PRRSV proliferation by activating the JAK/STAT signalling pathway. Therefore, DIC-GQDs hold promise as an alternative treatment for PRRSV infection.
Collapse
Affiliation(s)
- Zhuowei Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Junjun Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Siyu Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Wei Zhao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiaolin Hou
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jianfang Wang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Hong Dong
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Shuanghai Zhou
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuan Gao
- Liaoning Agricultural Development Service Center Province, Shenyang, China
| | - Wei Yao
- Liaoning Agricultural Development Service Center Province, Shenyang, China
| | - Huanrong Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xuewei Liu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
13
|
El Sayed AM, El-Abd EA, Afifi AH, Hashim FA, Kutkat O, Ali MA, El Raey MA, El Hawary SS. Comparative metabolomics analysis of Citrus medica var. sarcodactylis Swingle and Limonia acidissima Linn. Fruits and leaves cultivated in Egypt in context to their antiviral effects. Heliyon 2024; 10:e32335. [PMID: 38933965 PMCID: PMC11200356 DOI: 10.1016/j.heliyon.2024.e32335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
A comprehensive study of fruits and leaves extracts of Citrus medica var. sarcodactylis Swingle and Limonia acidissima L. family Rutaceae was accomplished to investigate their antiviral activity along with their zinc oxide nanoparticles formulation (ZnONPs) against the avian influenza H5N1 virus. A thorough comparative phytochemical investigation of C. medica and L.acidissima leaves and fruits was performed using UPLC-QTOF-MS-MS. Antiviral effects further aided by molecular docking proved the highly significant potential of using C. medica and L.acidissima extracts as medicinal agents. Antiviral potency is ascendingly arranged as L. acidissima leaves (LAL) > L. acidissima fruits (LAF) > C. medica leaves (CML) at 160 μg. Nano formulation of LAF has the most splendid antiviral upshot. The metabolomic profiling of CMF and LAL revealed the detection of 48 & 74 chromatographic peaks respectively. Docking simulation against five essential proteins in survival and replication of the influenza virus revealed that flavonoid di-glycosides (hesperidin, kaempferol-3-O-rutinoside, and kaempferol-7-neohesperidoside) have shown great affinity toward the five investigated proteins and achieved docking scores which approached or even exceeded that achieved by the native ligands. Hesperidin has demonstrated the best binding affinity toward neuraminidase (NA), haemagglutinin (HA), and polymerase protein PB2 (-10.675, -8.131, and -10.046 kcal/mol respectively. We propose using prepared crude methanol extracts of both plants as an antiviral agent.
Collapse
Affiliation(s)
- Abeer M. El Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| | - Eman A.W. El-Abd
- Department of Pharmacognosy, National Research Centre, 33-Elbohouth St, (Former El-Tahrir St.), Dokki, P.O.12622, Giza, ID: 60014618, Egypt
| | - Ahmed H. Afifi
- Department of Pharmacognosy, National Research Centre, 33-Elbohouth St, (Former El-Tahrir St.), Dokki, P.O.12622, Giza, ID: 60014618, Egypt
| | - Fatma A. Hashim
- Department of Pharmacognosy, National Research Centre, 33-Elbohouth St, (Former El-Tahrir St.), Dokki, P.O.12622, Giza, ID: 60014618, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, 12311, Cairo, Egypt
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, 12311, Cairo, Egypt
| | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Dokki, Cairo, Egypt
| | - Seham S. El Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
14
|
Mishra S, Rout M, Singh MK, Dehury B, Pati S. Classical molecular dynamics simulation identifies catechingallate as a promising antiviral polyphenol against MPOX palmitoylated surface protein. Comput Biol Chem 2024; 110:108070. [PMID: 38678726 DOI: 10.1016/j.compbiolchem.2024.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 05/01/2024]
Abstract
Cumulative global prevalence of the emergent monkeypox (MPX) infection in the non-endemic countries has been professed as a global public health predicament. Lack of effective MPX-specific treatments sets the baseline for designing the current study. This research work uncovers the effective use of known antiviral polyphenols against MPX viral infection, and recognises their mode of interaction with the target F13 protein, that plays crucial role in formation of enveloped virions. Herein, we have employed state-of-the-art machine learning based AlphaFold2 to predict the three-dimensional structure of F13 followed by molecular docking and all-atoms molecular dynamics (MD) simulations to investigate the differential mode of F13-polyphenol interactions. Our extensive computational approach identifies six potent polyphenols Rutin, Epicatechingallate, Catechingallate, Quercitrin, Isoquecitrin and Hyperoside exhibiting higher binding affinity towards F13, buried inside a positively charged binding groove. Intermolecular contact analysis of the docked and MD simulated complexes divulges three important residues Asp134, Ser137 and Ser321 that are observed to be involved in ligand binding through hydrogen bonds. Our findings suggest that ligand binding induces minor conformational changes in F13 to affect the conformation of the binding site. Concomitantly, essential dynamics of the six-MD simulated complexes reveals Catechin gallate, a known antiviral agent as a promising polyphenol targeting F13 protein, dominated with a dense network of hydrophobic contacts. However, assessment of biological activities of these polyphenols need to be confirmed through in vitro and in vivo assays, which may pave the way for development of new novel antiviral drugs.
Collapse
Affiliation(s)
- Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - Mahender Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana 122052, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India; Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, Odisha 751023, India.
| |
Collapse
|
15
|
Todorov SD, Alves VF, Popov I, Weeks R, Pinto UM, Petrov N, Ivanova IV, Chikindas ML. Antimicrobial Compounds in Wine. Probiotics Antimicrob Proteins 2024; 16:763-783. [PMID: 37855943 DOI: 10.1007/s12602-023-10177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
Ipsum vinum est potestas et possession (wine itself is power and possession). Wine is a complex system that triggers multisensory cognitive stimuli. Wine and its consumption are thoroughly intertwined with the development of human society. The beverage was appreciated in many ancient mythologies and plays an essential part in Christianity and rituals to this day. Wine has been said to enlighten and inspire artists and has even been prohibited by law and some religions, but has nevertheless played a role in human civilizations since the beginning. Winemaking is also a prospering and economically important industry and a longtime symbol of status and luxury. In winemaking, the formation of the final product is influenced by several factors that contribute to the chemical and sensory complexity often associated with quality vintages. Factors such as terroir, climatic conditions, variety of the grape, all aspects of the winemaking process to the smallest details, including metabolic processes carried out by yeast and malolactic bacteria, and the conditions for the maturation and storage of the final product, up to, and even beyond the point of deciding to open the bottle and enjoy the wine. In conjunction with the empiric and scientific process of winemaking, different molecules with antibacterial activity can be identified in wine during the production process, and several of them are clearly present in the final product. Some of these antibacterial components are phytochemicals, such as flavonoids and phenolic compounds, that may be delivered to the final product (wine) as a part of the grape, a variety of potential additive compounds, or from the oak barrels or clay amphoras used during the maturation process. Others are produced by yeasts and malolactic bacteria and play a role not only in the moderation of the fermentation process but contributing to the microbiological safety and beneficial properties spectra of the final product. Lactic acid bacteria, responsible for conducting malolactic fermentation, contribute to the final balance of the wine but are also directly involved in the production of different compounds exhibiting antibacterial activity. Some examples of these compounds include bacteriocins (antibacterial peptides), diacetyl, organic acids, reuterin, hydrogen peroxide, and carbon dioxide. Major aspects of these different beneficial metabolites are the subject of discussion in this review with the aim of highlighting their beneficial functions.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
- Food Research Center (FoRC), Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.
- CISAS- Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347, Viana do Castelo, Portugal.
| | - Virginia Farias Alves
- Faculdade de Farmácia, Universidade Federal de Goiás (UFG), 74605-170, Goiânia, GO, Brazil
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, 344000, Gagarina Sq., 1, Rostov-On-Don, Russia
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Olimpijskij av., 1, 354340, Federal Territory Sirius, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, 08901, New Brunswick, NJ, USA
| | - Uelinton Manoel Pinto
- Food Research Center (FoRC), Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Nikolay Petrov
- Laboratory of Virology, New Bulgarian University, Montevideo str. 21, 1618, Sofia, Bulgaria
| | - Iskra Vitanova Ivanova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8, Bul. Dragan Tzankov, 1164, Sofia, Bulgaria
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, 344000, Gagarina Sq., 1, Rostov-On-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, 65 Dudley Road, 08901, New Brunswick, NJ, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| |
Collapse
|
16
|
Vaiss DP, Rodrigues JL, Yurgel VC, do Carmo Guedes F, da Matta LLM, Barros PAB, Vaz GR, Dos Santos RN, Matte BF, Kupski L, Garda-Buffon J, Bidone J, Muccillo-Baisch AL, Sonvico F, Dora CL. Curcumin and quercetin co-encapsulated in nanoemulsions for nasal administration: A promising therapeutic and prophylactic treatment for viral respiratory infections. Eur J Pharm Sci 2024; 197:106766. [PMID: 38615970 DOI: 10.1016/j.ejps.2024.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/19/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
One of the most frequent causes of respiratory infections are viruses. Viruses reaching the airways can be absorbed by the human body through the respiratory mucosa and mainly infect lung cells. Several viral infections are not yet curable, such as coronavirus-2 (SARS-CoV-2). Furthermore, the side effect of synthetic antiviral drugs and reduced efficacy against resistant variants have reinforced the search for alternative and effective treatment options, such as plant-derived antiviral molecules. Curcumin (CUR) and quercetin (QUE) are two natural compounds that have been widely studied for their health benefits, such as antiviral and anti-inflammatory activity. However, poor oral bioavailability limits the clinical applications of these natural compounds. In this work, nanoemulsions (NE) co-encapsulating CUR and QUE designed for nasal administration were developed as promising prophylactic and therapeutic treatments for viral respiratory infections. The NEs were prepared by high-pressure homogenization combined with the phase inversion temperature technique and evaluated for their physical and chemical characteristics. In vitro assays were performed to evaluate the nanoemulsion retention into the porcine nasal mucosa. In addition, the CUR and QUE-loaded NE antiviral activity was tested against a murine β-COV, namely MHV-3. The results evidenced that CUR and QUE loaded NE had a particle size of 400 nm and retention in the porcine nasal mucosa. The antiviral activity of the NEs showed a percentage of inhibition of around 99 %, indicating that the developed NEs has interesting properties as a therapeutic and prophylactic treatment against viral respiratory infections.
Collapse
Affiliation(s)
- Daniela Pastorim Vaiss
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Jamile Lima Rodrigues
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900 Brazil, RS, Brazil
| | - Virginia Campello Yurgel
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Frank do Carmo Guedes
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | | | | | - Gustavo Richter Vaz
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Raíssa Nunes Dos Santos
- Virology Laboratory of the Biotechnology Startup Núcleo Vitro, Porto Alegre 91040-600, Brazil; Laboratory of Bioinformatics and Biotechnology, Campus de Gurupi, Federal University of Tocantins, Gurupi 77402-970, Brazil
| | - Bibiana Franzen Matte
- Virology Laboratory of the Biotechnology Startup Núcleo Vitro, Porto Alegre 91040-600, Brazil
| | - Larine Kupski
- Laboratory for Mycotoxins and Food Science, School of Chemistry and Food, Federal University of Rio Grande - FURG, Italy Avenue 8 km, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Jaqueline Garda-Buffon
- Laboratory for Mycotoxins and Food Science, School of Chemistry and Food, Federal University of Rio Grande - FURG, Italy Avenue 8 km, Campus Carreiros, 96203-900 Rio Grande, RS, Brazil
| | - Juliana Bidone
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Campus Capão do Leão, 96010-610 Pelotas, RS, Brazil
| | - Ana Luiza Muccillo-Baisch
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parma, Italy.
| | - Cristiana Lima Dora
- Postgraduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil.
| |
Collapse
|
17
|
Fazel MF, Abu IF, Mohamad MHN, Mat Daud NA, Hasan AN, Aboo Bakkar Z, Md Khir MAN, Juliana N, Das S, Mohd Razali MR, Zainal Baharin NH, Ismail AA. Physicochemistry, Nutritional, and Therapeutic Potential of Ficus carica - A Promising Nutraceutical. Drug Des Devel Ther 2024; 18:1947-1968. [PMID: 38831870 PMCID: PMC11146627 DOI: 10.2147/dddt.s436446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 03/21/2024] [Indexed: 06/05/2024] Open
Abstract
In an era where synthetic supplements have raised concerns regarding their effects on human health, Ficus carica has emerged as a natural alternative rich in polyphenolic compounds with potent therapeutic properties. Various studies on F. carica focusing on the analysis and validation of its pharmacological and nutritional properties are emerging. This paper summarizes present data and information on the phytochemical, nutritional values, therapeutic potential, as well as the toxicity profile of F. carica. An extensive search was conducted from various databases, including PubMed, ScienceDirect, Scopus, and Google Scholar. A total of 126 studies and articles related to F. carica that were published between 1999 and 2023 were included in this review. Remarkably, F. carica exhibits a diverse array of advantageous effects, including, but not limited to, antioxidant, anti-neurodegenerative, antimicrobial, antiviral, anti-inflammatory, anti-arthritic, antiepileptic, anticonvulsant, anti-hyperlipidemic, anti-angiogenic, antidiabetic, anti-cancer, and antimutagenic properties. Among the highlights include that antioxidants from F. carica were demonstrated to inhibit cholinesterase, potentially protecting neurons in Alzheimer's disease and other neurodegenerative conditions. The antimicrobial activities of F. carica were attributed to its high flavonoids and terpenoids content, while its virucidal action through the inhibition of DNA and RNA replication was postulated due to its triterpenes content. Inflammatory and arthritic conditions may also benefit from its anti-inflammatory and anti-arthritic properties through the modulation of various signalling proteins. Studies have also shown that F. carica extracts were generally safe and exhibit low toxicity profile, although more research in this aspect is required, specifically its effects on the skin. In conclusion, this study highlights the potential of F. carica as a valuable natural therapeutic agent and dietary supplement. However, continued exploration on F. carica's safety and efficacy is still required prior to embarking on clinical trials, as its role in personalized nutrition and medication will open a new paradigm to improve health outcomes.
Collapse
Affiliation(s)
- Muhammad Fattah Fazel
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
- Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Izuddin Fahmy Abu
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Mohamad Haiqal Nizar Mohamad
- Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, Alor Gajah, Malacca, Malaysia
| | - Noor Arniwati Mat Daud
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Ahmad Najib Hasan
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Zainie Aboo Bakkar
- Institute of Medical Science Technology, Universiti Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Muhammad Alif Naim Md Khir
- Tropical Infectious Diseases Research and Education Centre (TIDREC), University of Malaya, Kuala Lumpur, Malaysia
| | - Norsham Juliana
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | | | | | | |
Collapse
|
18
|
Borah P, Deka H. Polycyclic aromatic hydrocarbon (PAH) accumulation in selected medicinal plants: a mini review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36532-36550. [PMID: 38753233 DOI: 10.1007/s11356-024-33548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/28/2024] [Indexed: 06/20/2024]
Abstract
The use of plant-based products in healthcare systems has experienced a tremendous rise leading to a substantial increase in global demand. However, the quality and effectiveness of such plant-based treatments are often affected due to contamination of various pollutants including polycyclic aromatic hydrocarbons (PAHs). Like other plants, medicinal plants also uptake and accumulate PAHs when exposed to a contaminated environment. The consumption of such medicinal plants and/or plant-based products causes negative effects on health rather than providing any therapeutic advantages. Unfortunately, research focusing on PAH accumulation in medicinal plants has received very limited attention. This review discusses a sizable number of literature regarding the concentration of sixteen priority PAH pollutants as recognised by the US Environmental Protection Agency (USEPA) in different medicinal plants. The review also highlights the risk assessment of cancer associated with some medicinal plants in terms of benzo[a]pyrene (BaP) equivalent concentrations.
Collapse
Affiliation(s)
- Priya Borah
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati-14, Assam, India
| | - Hemen Deka
- Ecology and Environmental Remediation Laboratory, Department of Botany, Gauhati University, Guwahati-14, Assam, India.
| |
Collapse
|
19
|
Hadian M, Fathi M, Mohammadi A, Eskandari MH, Asadsangabi M, Pouraghajan K, Shohrati M, Mohammadpour M, Samadi M. Characterization of chitosan/Persian gum nanoparticles for encapsulation of Nigella sativa extract as an antiviral agent against avian coronavirus. Int J Biol Macromol 2024; 265:130749. [PMID: 38467218 DOI: 10.1016/j.ijbiomac.2024.130749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
The aim of this study was to investigate the physicochemical characteristics of nanoparticles formed by the ionic gelation method between chitosan and water-soluble fraction of Persian gum (WPG) for encapsulation of Nigella sativa extract (NSE) as an antiviral agent. Our findings revealed that the particle size, polydispersity index (PDI), and zeta potential of the particles were in the range of 316.7-476.6 nm, 0.259-0.466, and 37.0-58.1 mV, respectively. The amounts of chitosan and WPG as the wall material and the NSE as the core had a considerable impact on the nanoparticle properties. The proper samples were detected at 1:1 chitosan:WPG mixing ratio (MR) and NSE concentration of 6.25 mg/mL. Fourier-transformed infrared (FTIR) spectroscopy proved the interactions between the two biopolymers. The effect of NSE on infectious bronchitis virus (IBV) known as avian coronavirus, was performed by the in-ovo method determining remarkable antiviral activity of NSE (25 mg/mL) and its enhancement through encapsulation in the nanoparticles. These nanoparticles containing NSE could have a promising capability for application in both poultry industry and human medicine as an antiviral product.
Collapse
Affiliation(s)
- Mohammad Hadian
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Fathi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Asadsangabi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Khadijeh Pouraghajan
- Bioinformatics Laboratory, Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Majid Shohrati
- Research Center of Chemical Injuries, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoomeh Mohammadpour
- Department of Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Samadi
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Dávila-Rangel IE, Charles-Rodríguez AV, López-Romero JC, Flores-López ML. Plants from Arid and Semi-Arid Zones of Mexico Used to Treat Respiratory Diseases: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:792. [PMID: 38592789 PMCID: PMC10974781 DOI: 10.3390/plants13060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
Medicinal plants have been a traditional remedy for numerous ailments for centuries. However, their usage is limited due to a lack of evidence-based studies elucidating their mechanisms of action. In some countries, they are still considered the first treatment due to their low cost, accessibility, and minor adverse effects. Mexico is in second place, after China, in inventoried plants for medicinal use. It has around 4000 species of medicinal plants; however, pharmacological studies have only been carried out in 5% of its entirety. The species of the Mexican arid zones, particularly in semi-desert areas, exhibit outstanding characteristics, as their adverse growing conditions (e.g., low rainfall and high temperatures) prompt these plants to produce interesting metabolites with diverse biological activities. This review explores medicinal plants belonging to the arid and semi-arid zones of Mexico, focusing on those that have stood out for their bioactive potential, such as Jatropha dioica, Turnera diffusa, Larrea tridentata, Opuntia ficus-indica, Flourensia cernua, Fouquieria splendes, and Prosopis glandulosa. Their extraction conditions, bioactive compounds, mechanisms of action, and biological efficacy are presented, with emphasis on their role in the treatment of respiratory diseases. Additionally, current research, novel applications, and perspectives concerning medicinal plants from these zones are also discussed.
Collapse
Affiliation(s)
| | - Ana V. Charles-Rodríguez
- Departamento de Ciencia y Tecnología de Alimentos, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Mexico
| | - Julio C. López-Romero
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Caborca 83600, Mexico;
| | - María L. Flores-López
- Universidad Interserrana del Estado de Puebla Ahuactlán, Ahuacatlán 73330, Mexico;
- Centro de Investigación e Innovación Científica y Tecnológica, Universidad Autónoma de Coahuila, Saltillo 25070, Mexico
| |
Collapse
|
21
|
Labaran AN, Zango ZU, Tailor G, Alsadig A, Usman F, Mukhtar MT, Garba AM, Alhathlool R, Ibnaouf KH, Aldaghri OA. Biosynthesis of copper nanoparticles using Alstonia scholaris leaves and its antimicrobial studies. Sci Rep 2024; 14:5589. [PMID: 38453990 PMCID: PMC10920664 DOI: 10.1038/s41598-024-56052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024] Open
Abstract
The utilization of plants for the production of metallic nanoparticles is gaining significant attention in research. In this study, we conducted phytochemical screening of Alstonia scholaris (A. scholaris) leaves extracts using various solvents, including chloroform, ethyl acetate, n-hexane, methanol, and water. Our findings revealed higher proportions of flavonoids and alkaloids in both solvents compared to other phytochemical species. In the methanol, extract proteins, anthraquinone and reducing sugar were not detected. On the other hand, the aqueous extract demonstrated the presence of amino acids, reducing sugar, phenolic compounds, anthraquinone, and saponins. Notably, ethyl acetate and chloroform extracts displayed the highest levels of bioactive compounds among all solvents. Intrigued by these results, we proceeded to investigate the antibacterial properties of the leaf extracts against two major bacterial strains, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). All extracts exhibited significant zones of inhibition against both bacterial isolates, with S. aureus showing higher susceptibility compared to E. coli. Notably, the methanol extract displayed the most potent I hibitory effect against all organisms. Inspired by the bioactivity of the methanol extract, we employed it as a plant-based material for the green synthesis of copper nanoparticles (Cu-NPs). The synthesized Cu-NPs were characterized using Fourier infrared spectroscopy (FT-IR), UV-visible spectroscopic analysis, and scanning electron microscopy (SEM). The observed color changes confirmed the successful formation of Cu-NPs, while the FTIR analysis matched previously reported peaks, further verifying the synthesis. The SEM micrographs indicated the irregular shapes of the surface particles. From the result obtained by energy dispersive X-ray spectroscopic analysis, Cu has the highest relative abundance of 67.41 wt%. Confirming the purity of the Cu-NPs colloid. These findings contribute to the growing field of eco-friendly nanotechnology and emphasize the significance of plant-mediated approaches in nanomaterial synthesis and biomedical applications.
Collapse
Affiliation(s)
- Ahmad Nasir Labaran
- Department of Chemistry, Faculty of Science and Technology, Mewar University, Gangrar, Chittorgarh, Rajasthan, 312901, India
| | - Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University, Katsina, Nigeria.
| | - Giriraj Tailor
- Department of Chemistry, Faculty of Science and Technology, Mewar University, Gangrar, Chittorgarh, Rajasthan, 312901, India
| | - Ahmed Alsadig
- CNR NANOTEC Institute of Nanotechnology, Via Monteroni, 73100, Lecce, Italy
| | - Fahad Usman
- Engineering Unit, Department of Mathematics, Connecticut State Community College Norwalk, Connecticut State Colleges and Universities (CSCU), Hartford, USA
| | - Muhammad Tukur Mukhtar
- Department of Chemistry, Faculty of Science and Technology, Mewar University, Gangrar, Chittorgarh, Rajasthan, 312901, India
| | - Alhassan Muhammad Garba
- Department of Chemistry, Faculty of Science and Technology, Mewar University, Gangrar, Chittorgarh, Rajasthan, 312901, India
| | - Raed Alhathlool
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Saudi Arabia.
| | - Khalid Hassan Ibnaouf
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Saudi Arabia
| | - Osamah A Aldaghri
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 13318, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Alipour Z, Zarezadeh S, Ghotbi-Ravandi AA. The Potential of Anti-coronavirus Plant Secondary Metabolites in COVID-19 Drug Discovery as an Alternative to Repurposed Drugs: A Review. PLANTA MEDICA 2024; 90:172-203. [PMID: 37956978 DOI: 10.1055/a-2209-6357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In early 2020, a global pandemic was announced due to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), known to cause COVID-19. Despite worldwide efforts, there are only limited options regarding antiviral drug treatments for COVID-19. Although vaccines are now available, issues such as declining efficacy against different SARS-CoV-2 variants and the aging of vaccine-induced immunity highlight the importance of finding more antiviral drugs as a second line of defense against the disease. Drug repurposing has been used to rapidly find COVID-19 therapeutic options. Due to the lack of clinical evidence for the therapeutic benefits and certain serious side effects of repurposed antivirals, the search for an antiviral drug against SARS-CoV-2 with fewer side effects continues. In recent years, numerous studies have included antiviral chemicals from a variety of plant species. A better knowledge of the possible antiviral natural products and their mechanism against SARS-CoV-2 will help to develop stronger and more targeted direct-acting antiviral agents. The aim of the present study was to compile the current data on potential plant metabolites that can be investigated in COVID-19 drug discovery and development. This review represents a collection of plant secondary metabolites and their mode of action against SARS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
- Zahra Alipour
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Somayeh Zarezadeh
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
23
|
Pei Y, Leng L, Sun W, Liu B, Feng X, Li X, Chen S. Whole-genome sequencing in medicinal plants: current progress and prospect. SCIENCE CHINA. LIFE SCIENCES 2024; 67:258-273. [PMID: 37837531 DOI: 10.1007/s11427-022-2375-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/23/2023] [Indexed: 10/16/2023]
Abstract
Advancements in genomics have dramatically accelerated the research on medicinal plants, and the development of herbgenomics has promoted the "Project of 1K Medicinal Plant Genome" to decipher their genetic code. However, it is difficult to obtain their high-quality whole genomes because of the prevalence of polyploidy and/or high genomic heterozygosity. Whole genomes of 123 medicinal plants were published until September 2022. These published genome sequences were investigated in this review, covering their classification, research teams, ploidy, medicinal functions, and sequencing strategies. More than 1,000 institutes or universities around the world and 50 countries are conducting research on medicinal plant genomes. Diploid species account for a majority of sequenced medicinal plants. The whole genomes of plants in the Poaceae family are the most studied. Almost 40% of the published papers studied species with tonifying, replenishing, and heat-cleaning medicinal effects. Medicinal plants are still in the process of domestication as compared with crops, thereby resulting in unclear genetic backgrounds and the lack of pure lines, thus making their genomes more difficult to complete. In addition, there is still no clear routine framework for a medicinal plant to obtain a high-quality whole genome. Herein, a clear and complete strategy has been originally proposed for creating a high-quality whole genome of medicinal plants. Moreover, whole genome-based biological studies of medicinal plants, including breeding and biosynthesis, were reviewed. We also advocate that a research platform of model medicinal plants should be established to promote the genomics research of medicinal plants.
Collapse
Affiliation(s)
- Yifei Pei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Baocai Liu
- Institute of Agricultural Bioresource, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
24
|
Hegazy A, Soltane R, Alasiri A, Mostafa I, Metwaly AM, Eissa IH, Mahmoud SH, Allayeh AK, Shama NMA, Khalil AA, Barre RS, El-Shazly AM, Ali MA, Martinez-Sobrido L, Mostafa A. Anti-rheumatic colchicine phytochemical exhibits potent antiviral activities against avian and seasonal Influenza A viruses (IAVs) via targeting different stages of IAV replication cycle. BMC Complement Med Ther 2024; 24:49. [PMID: 38254071 PMCID: PMC10804494 DOI: 10.1186/s12906-023-04303-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/10/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The continuous evolution of drug-resistant influenza viruses highlights the necessity for repurposing naturally-derived and safe phytochemicals with anti-influenza activity as novel broad-spectrum anti-influenza medications. METHODS In this study, nitrogenous alkaloids were tested for their viral inhibitory activity against influenza A/H1N1 and A/H5N1 viruses. The cytotoxicity of tested alkaloids on MDCK showed a high safety range (CC50 > 200 µg/ml), permitting the screening for their anti-influenza potential. RESULTS Herein, atropine sulphate, pilocarpine hydrochloride and colchicine displayed anti-H5N1 activities with IC50 values of 2.300, 0.210 and 0.111 µg/ml, respectively. Validation of the IC50 values was further depicted by testing the three highly effective alkaloids, based on their potent IC50 values against seasonal influenza A/H1N1 virus, showing comparable IC50 values of 0.204, 0.637 and 0.326 µg/ml, respectively. Further investigation suggests that colchicine could suppress viral infection by primarily interfering with IAV replication and inhibiting viral adsorption, while atropine sulphate and pilocarpine hydrochloride could directly affect the virus in a cell-free virucidal effect. Interestingly, the in silico molecular docking studies suggest the abilities of atropine, pilocarpine, and colchicine to bind correctly inside the active sites of the neuraminidases of both influenza A/H1N1 and A/H5N1 viruses. The three alkaloids exhibited good binding energies as well as excellent binding modes that were similar to the co-crystallized ligands. On the other hand, consistent with in vitro results, only colchicine could bind correctly against the M2-proton channel of influenza A viruses (IAVs). This might explicate the in vitro antiviral activity of colchicine at the replication stage of the virus replication cycle. CONCLUSION This study highlighted the anti-influenza efficacy of biologically active alkaloids including colchicine. Therefore, these alkaloids should be further characterized in vivo (preclinical and clinical studies) to be developed as anti-IAV agents.
Collapse
Affiliation(s)
- Akram Hegazy
- Department of Agricultural Microbiology, Faculty of Agriculture, Cairo University, Giza, 12613, Giza District, Egypt
| | - Raya Soltane
- Department of Biology, Adham University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Ahlam Alasiri
- Department of Biology, Adham University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Islam Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Abdou Kamal Allayeh
- Virology Lab 176, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Noura M Abo Shama
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | - Ahmed A Khalil
- Agriculture Research Center (ARC), Veterinary Sera and Vaccines Research Institute (VSVRI), Cairo, 11435, Egypt
| | - Ramya S Barre
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Assem Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida , Sharkia, 44813, Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt
| | | | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, 12622, Egypt.
- Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
25
|
Shahrajabian MH, Sun W. Iranian Traditional Medicine (ITM) and Natural Remedies for Treatment of the Common Cold and Flu. Rev Recent Clin Trials 2024; 19:91-100. [PMID: 38047364 DOI: 10.2174/0115748871275500231127065053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023]
Abstract
Traditional Iranian medicine is usually used for both prevention and relief of cold and flu symptoms in China, Iran, and many other Asian countries all over the world. There are 4 kinds of influenza viruses. Unlike type B, which may cause seasonal epidemics, type A viruses can cause pandemics, and influenza C may lead to mild human infection with little public health effects. A literature review was done by using multiple databases such as ISI Web of knowledge, PubMed, Science Direct and Google Scholar. The most notable antiviral medicinal plants for flu and cold are honeysuckle flowers, thyme leaf, green chiretta, andrographis, peppermint oil and leaf and calendula. The most important expectorant medicinal plants for cold and flu are snake root, tulsi, licorice root, slippery elm, clove, and sage leaf. Recommended immunostimulant medicinal plants for cold and flu are eucalyptus, Echinacea root, ginseng, garlic, slippery elm, marshmallow, Usnea lichen, Isatis root, ginger root, and myrrh resin. Iranian traditional medicine, which is one of the oldest schools of traditional medicine, is one of the main concepts of disease and health, and it can be considered as an important complementary and alternative medicine, as in some cases, modern medicine has many side effects, low efficiency, and high costs. Medicinal plants and herbs, which are included in many traditional systems, have significant and promising bioactive components in organic life.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
26
|
Singh S, Murti Y, Semwal B. Antiviral Activity of Natural Herbs and their Isolated BioactiveCompounds: A Review. Comb Chem High Throughput Screen 2024; 27:2013-2042. [PMID: 37957899 DOI: 10.2174/0113862073267048231027070537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 08/10/2023] [Indexed: 11/15/2023]
Abstract
Viruses are the cause of many human pathogenesis-related conditions. A serious hazard to public health has been created because of the increase in worldwide travel, fast urbanization, and infectious epidemics. At the same time, no preventative vaccines or antiviral treatments are currently available. Resources for developing new antiviral medications can be found in enhanced natural products and herbal medicines. These natural substances have aided the research on developing preventive vaccines and antiviral treatments. Based primarily on in vitro and in vivo searches, this review aims to explore the antiviral properties of plant extracts and some isolated plant natural products. Only a few antiviral medications have been given clinical approval, while numerous viruses continue to elude adequate immunization. Therefore, developing novel antiviral medicines is crucial, and natural substances make excellent sources for these new drugs. This review highlights various natural herbal drugs possessing antiviral properties.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P, 281406, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P, 281406, India
| | - Bhupesh Semwal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P, 281406, India
| |
Collapse
|
27
|
Singh Dagur H, Behmard E, Rajakumara E, Barzegari E. Identifying potent inhibitory phytocompounds from Lagerstroemia speciosa against SARS-Coronavirus-2: structure-based virtual screening. J Biomol Struct Dyn 2024; 42:806-818. [PMID: 37170794 DOI: 10.1080/07391102.2023.2205942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
The ongoing spillover of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for expedited countermeasure through developing therapeutics from natural reservoirs and/or the use of less time-consuming drug discovery methodologies. This study aims to apply these approaches to identify potential blockers of the virus from the longstanding medicinal herb, Lagerstroemia speciosa, through comprehensive computational-based screening. Nineteen out of 22 L. speciosa phytochemicals were selected on the basis of their pharmacokinetic properties. SARS-CoV-2 Main protease (Mpro), RNA-directed RNA polymerase (RdRp), Envelope viroporin protein (Evp) and receptor-binding domain of Spike glycoprotein (S-RBD), as well as the human receptor Angiotensin-converting enzyme-2 (hACE2) were chosen as targets. The screening was performed by molecular docking, followed by 100-ns molecular dynamic simulations and free energy calculations. 24-Methylene cycloartanol acetate (24MCA) was found as the best inhibitor for both Evp and RdRp, and sitosterol acetate (SA) as the best hit for Mpro, S-RBD and hACE2. Dynamic simulations, binding mode analyses, free energy terms and share of key amino acids in protein-drug interactions confirmed the stable binding of these phytocompounds to the hotspot sites on the target proteins. With their possible multi-targeting capability, the introduced phytoligands might offer promising lead compounds for persistent fight with the rapidly evolving coronavirus. Therefore, experimental verification of their safety and efficacy is recommended.
Collapse
Affiliation(s)
- Hanuman Singh Dagur
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Esmaeil Behmard
- School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
28
|
Khazir J, Ahmed S, Thakur RK, Hussain M, Gandhi SG, Babbar S, Mir SA, Shafi N, Tonfack LB, Rajpal VR, Maqbool T, Mir BA, Peer LA. Repurposing of Plant-based Antiviral Molecules for the Treatment of COVID-19. Curr Top Med Chem 2024; 24:614-633. [PMID: 38477206 DOI: 10.2174/0115680266276749240206101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
COVID-19, stemming from SARS-CoV-2, poses a formidable threat to global healthcare, with a staggering 77 million confirmed cases and 690,067 deaths recorded till December 24, 2023. Given the absence of specific drugs for this viral infection, the exploration of novel antiviral compounds becomes imperative. High-throughput technologies are actively engaged in drug discovery, and there is a parallel effort to repurpose plant-based molecules with established antiviral properties. In this context, the review meticulously delves into the potential of plant-based folk remedies and existing molecules. These substances have showcased substantial viral inhibition in diverse in vivo, in silico, and in vitro studies, particularly against critical viral protein targets, including SARS-CoV-2. The findings position these plant-based molecules as promising antiviral drug candidates for the swift advancement of treatments for COVID-19. It is noteworthy that the inherent attributes of these plant-based molecules, such as their natural origin, potency, safety, and cost-effectiveness, contribute to their appeal as lead candidates. The review advocates for further exploration through comprehensive in vivo studies conducted on animal models, emphasizing the potential of plant-based compounds to help in the ongoing quest to develop effective antivirals against COVID-19.
Collapse
Affiliation(s)
- Jabeena Khazir
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Sajad Ahmed
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Rakesh Kr Thakur
- Amity Institute of Biotechnology, Amity University, Noida, 201313, India
| | - Manzoor Hussain
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Sadhana Babbar
- Department of Botany, Swami Shradhanand College, University of Delhi, Delhi, 110036, India
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Nusrat Shafi
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Libert Brice Tonfack
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Vijay Rani Rajpal
- Department of Botany, Hans Raj College, University of Delhi, Delhi, 110007, India
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, University of Kashmir, Srinagar, 190006, India
| | - Bilal Ahmad Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Latif Ahmad Peer
- Department of Botany, University of Kashmir, Srinagar, J&K, 190006, India
| |
Collapse
|
29
|
Ghosh S, Singha PS, Das LK, Ghosh D. Systematic Review on Major Antiviral Phytocompounds from Common Medicinal Plants against SARS-CoV-2. Med Chem 2024; 20:613-629. [PMID: 38317467 DOI: 10.2174/0115734064262843231120051452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 09/14/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Viral infections are rising around the globe and with evolving virus types and increasing varieties of viral invasions; the human body is developing antimicrobial resistance continuously. This is making the fight of mankind against viruses weak and unsecured. On the other hand, changing lifestyle, globalization and human activities adversely affecting the environment are opening up risks for new viral predominance on human race. In this context the world has witnessed the pandemic of the human Coronavirus disease (COVID-19) recently. The disease is caused by the Coronavirus namely Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV- 2). METHODS AND MATERIALS Developing potential and effective vaccine is also time consuming and challenging. The huge resource of plants around us has rich source of potent antiviral compounds. Some of these molecules may serve as tremendously potent lead molecules whose slight structural modifications may give us highly bioactive antiviral derivatives of phytocompounds. Every geographical region is rich in unique plant biodiversity and hence every corner of the world with rich plant biodiversity can serve as abode for potential magical phytocompounds most of which have not been extensively explored for development of antiviral drug formulations against various viruses like the HIV, HPV etc., and the Coronavirus, also known as SARS-CoV-2 which causes the disease COVID-19. RESULTS Several phytocompounds from various medicinal plants have already been screened using in silico tools and some of them have yielded promising results establishing themselves as potent lead molecules for development of drugs against the highly mutating SARS-CoV-2 virus and thus these phytocompounds may be beneficial in treating COVID-19 and help human to win the life threatening battle against the deadly virus. CONCLUSION The best advantage is that these phytocompounds being derived from nature in most of the cases, come with minimum or no side effects compared to that of chemically synthesized conventional bioactive compounds and are indigenously available hence are the source of cost effective drug formulations with strong therapeutic potentials.
Collapse
Affiliation(s)
- Suvendu Ghosh
- Department of Physiology, Hooghly Mohsin College, Chinsura, Hooghly 712 101, West Bengal, India
| | - Partha Sarathi Singha
- Department of Chemistry, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| | - Lakshmi Kanta Das
- Department of Chemistry, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| | - Debosree Ghosh
- Department of Physiology, Government General Degree College, Kharagpur II, P.O Madpur, Dist, Paschim Medinipur, Pin: 721149, West Bengal, India
| |
Collapse
|
30
|
Ali SI, Salama A. Natural Immunomodulatory Agents as a Complementary Therapy for Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:337-354. [PMID: 38801589 DOI: 10.1007/978-3-031-57165-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses target innate immunity mediators such as tumor necrosis factors, interleukins, interferons, complement, and chemokines. It also targets adaptive immunity such as CD4+ T cells, CD4+ T cells, and B cells. Emerging of the recent epidemic of monkeypox virus (MPXV), a zoonotic disease native to Central and Western Africa, besides the lack of permitted treatments for poxviruses infections, encouraged researchers to identify effective inhibitors to help in preventing and treating poxviruses infections. Natural bioactive components, particularly polyphenolics, are promising for creating powerful antioxidants, anti-inflammatory, immune-stimulating, and antiviral agents. As a result, they are potentially effective therapies for preventing and treating viral diseases, such as infections caused by poxviruses including the recent pandemic MPXV. Polyphenolics: rosmarinic acid, caffeic acid, resveratrol, quercitrin, myricitrin, gingerol, gallotannin, and propolis-benzofuran A, as well as isoquinoline alkaloids: galanthamine and thalimonine represent prospective antiviral agents against MPXV, they can inhibit MPXV and other poxviruses via targeting different viral elements including DNA Topoisomerase I (TOP1), Thymidine Kinase (TK), serine/threonine protein kinase (Ser/Thr kinase), and protein A48R. The bioactive extracts of different traditional plants including Guiera senegalensis, Larrea tridentata, Sarracenia purpurea, Kalanchoe pinnata (Lam.) Pers., Zingiber officinale Roscoe, Quercus infectoria, Rhus chinensis, Prunella vulgaris L., Salvia rosmarinus, and Origanum vulgare also can inhibit the growth of different poxviruses including MPXV, vaccinia virus (VACV), variola virus, buffalopox virus, fowlpox virus, and cowpox virus. There is an urgent need for additional molecular studies to identify and confirm the anti-poxviruses properties of various natural bioactive components, especially those that showed potent antiviral activity against other viruses.
Collapse
Affiliation(s)
- Sami I Ali
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| |
Collapse
|
31
|
Azizah NS, Irawan B, Kusmoro J, Safriansyah W, Farabi K, Oktavia D, Doni F, Miranti M. Sweet Basil ( Ocimum basilicum L.)-A Review of Its Botany, Phytochemistry, Pharmacological Activities, and Biotechnological Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:4148. [PMID: 38140476 PMCID: PMC10748370 DOI: 10.3390/plants12244148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
An urgent demand for natural compound alternatives to conventional medications has arisen due to global health challenges, such as drug resistance and the adverse effects associated with synthetic drugs. Plant extracts are considered an alternative due to their favorable safety profiles and potential for reducing side effects. Sweet basil (Ocimum basilicum L.) is a valuable plant resource and a potential candidate for the development of pharmaceutical medications. A single pure compound or a combination of compounds exhibits exceptional medicinal properties, including antiviral activity against both DNA and RNA viruses, antibacterial effects against both Gram-positive and Gram-negative bacteria, antifungal properties, antioxidant activity, antidiabetic potential, neuroprotective qualities, and anticancer properties. The plant contains various phytochemical constituents, which mostly consist of linalool, eucalyptol, estragole, and eugenol. For centuries, community and traditional healers across the globe have employed O. basilicum L. to treat a wide range of ailments, including flu, fever, colds, as well as issues pertaining to digestion, reproduction, and respiration. In addition, the current research presented underscores the significant potential of O. basilicum-related nanotechnology applications in addressing diverse challenges and advancing numerous fields. This promising avenue of exploration holds great potential for future scientific and technological advancements, promising improved utilization of medicinal products derived from O. basilicum L.
Collapse
Affiliation(s)
- Nabilah Sekar Azizah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Budi Irawan
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Joko Kusmoro
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Wahyu Safriansyah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (W.S.); (K.F.)
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (W.S.); (K.F.)
| | - Dina Oktavia
- Department of Transdisciplinary, Graduate School, Universitas Padjadjaran, Bandung 40132, Indonesia;
| | - Febri Doni
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| | - Mia Miranti
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia; (N.S.A.); (B.I.); (J.K.); (F.D.)
| |
Collapse
|
32
|
Hinkov A, Tsvetkov V, Shkondrov A, Krasteva I, Shishkov S, Shishkova K. Effect of a Total Extract and Saponins from Astragalus glycyphyllos L. on Human Coronavirus Replication In Vitro. Int J Mol Sci 2023; 24:16525. [PMID: 38003714 PMCID: PMC10671514 DOI: 10.3390/ijms242216525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Members of the family Coronaviridae cause diseases in mammals, birds, and wildlife (bats), some of which may be transmissible to humans or specific to humans. In the human population, they can cause a wide range of diseases, mainly affecting the respiratory and digestive systems. In the scientific databases, there are huge numbers of research articles about the antiviral, antifungal, antibacterial, antiviral, and anthelmintic activities of medicinal herbs and crops with different ethnobotanical backgrounds. The subject of our research is the antiviral effect of isolated saponins, a purified saponin mixture, and a methanol extract of Astragalus glycyphyllos L. In the studies conducted for the cytotoxic effect of the substances, CC50 (cytotoxic concentration 50) and MTC (maximum tolerable concentration) were determined by the colorimetric method (MTT assay). The virus was cultured in the MDBK cell line. As a result of the experiments carried out on the influence of substances on viral replication (using MTT-based colorimetric assay for detection of human Coronavirus replication inhibition), it was found that the extract and the purified saponin mixture inhibited 100% viral replication. The calculated selective indices are about 13 and 18, respectively. The obtained results make them promising for a preparation with anti-Coronavirus action.
Collapse
Affiliation(s)
- Anton Hinkov
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (V.T.); (S.S.)
| | - Venelin Tsvetkov
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (V.T.); (S.S.)
| | - Aleksandar Shkondrov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (A.S.); (I.K.)
| | - Ilina Krasteva
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (A.S.); (I.K.)
| | - Stoyan Shishkov
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (V.T.); (S.S.)
| | - Kalina Shishkova
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (V.T.); (S.S.)
| |
Collapse
|
33
|
Bibi S, Nisar M, Rafique S, Waqas M, Zahoor M, Idrees M, Nazir N, Ihsan M, Salmen SH, Alharbi SA, Khan A, Al-Harrasi A. Harnessing Nature's Gifts: Salix nigra and Its Potential for Combating Hepatitis C Virus (HCV). ACS OMEGA 2023; 8:42987-42999. [PMID: 38024752 PMCID: PMC10653063 DOI: 10.1021/acsomega.3c06193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 12/01/2023]
Abstract
Hepatitis C virus (HCV) causes various liver complications, including fibrosis, cirrhosis, and steatosis, and finally progresses toward hepatocellular carcinoma (HCC). The current study aimed to explore the antiviral activity of the traditional Pakistani medicinal plant Salix nigra (S. nigra) known as black willow against the hepatitis C virus (HCV). The anti-HCV activity of S. nigra was established against stable Hep G2 cell lines expressing the HCV NS3 gene. Various plant-derived compounds with anti-HCV activity were identified, making phytotherapy a promising alternative to conventional treatments due to their cost-effectiveness and milder side effects. The two extraction methods (Maceration and Soxhlet) and four solvents (n-hexane, methanol, ethyl acetate, and water) were used to obtain crude extracts from S. nigra. Cytotoxicity testing showed that methanol (CC50 25 μg/mL) and water (CC50 30 μg/mL) extracts were highly toxic, while ethyl acetate and n-hexane (CC50 > 200 μg/mL) extracts were nontoxic at low concentrations (10-50 μg/mL), making them suitable for further anti-HCV investigations. Stable transfection of the NS3 gene was successfully performed in Hep G2 cells, creating a cellular expression system for studying virus-host interaction. The ethyl acetate extract of S. nigra exhibited significant inhibition of NS3 gene expression (mRNA and protein levels). The phytochemical analysis of S. nigra was also performed using the high-performance liquid chromatography (HPLC) technique. The phytochemical analysis identified several polyphenolic substances in the extracts of S. nigra. Our results concluded that the extracts of S. nigra have significantly reduced the expression of the NS3 gene at mRNA and protein levels. These findings contribute to the global efforts to combat hepatitis C by offering plant-based treatment options for HCV management.
Collapse
Affiliation(s)
- Sadia Bibi
- Department
of Botany, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Mohammad Nisar
- Department
of Botany, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Shazia Rafique
- Division
of Molecular Virology, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Waqas
- Department
of Biotechnology and Genetic Engineering, Hazara University Mansehra, Mansehra 2100, Pakistan
- Natural and
Medical Sciences Research Center, University
of Nizwa, Birkat Al Mauz, P.O Box 33, 616Nizwa, Sultanate of Oman
| | - Muhammad Zahoor
- Department
of Biochemistry, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Muhammad Idrees
- Division
of Molecular Virology, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore 54590, Pakistan
| | - Nausheen Nazir
- Department
of Biochemistry, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Mohammad Ihsan
- Department
of Botany, University of Malakand, Dir (Lower), Chakdara 18800, Khyber
Pakhtunkhwa, Pakistan
| | - Saleh H. Salmen
- Department
of Botany and Microbiology, College of Science, King Saud University, PO Box −2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department
of Botany and Microbiology, College of Science, King Saud University, PO Box −2455, Riyadh 11451, Saudi Arabia
| | - Ajmal Khan
- Natural and
Medical Sciences Research Center, University
of Nizwa, Birkat Al Mauz, P.O Box 33, 616Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and
Medical Sciences Research Center, University
of Nizwa, Birkat Al Mauz, P.O Box 33, 616Nizwa, Sultanate of Oman
| |
Collapse
|
34
|
Thakur M, Singh M, Kumar S, Dwivedi VP, Dakal TC, Yadav V. A Reappraisal of the Antiviral Properties of and Immune Regulation through Dietary Phytochemicals. ACS Pharmacol Transl Sci 2023; 6:1600-1615. [PMID: 37974620 PMCID: PMC10644413 DOI: 10.1021/acsptsci.3c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Indexed: 11/19/2023]
Abstract
In the present era of the COVID-19 pandemic, viral infections remain a major cause of morbidity and mortality worldwide. In this day and age, viral infections are rampant and spreading rapidly. Among the most aggressive viral infections are ebola, AIDS (acquired immunodeficiency syndrome), influenza, and SARS (severe acute respiratory syndrome). Even though there are few treatment options for viral diseases, most of the antiviral therapies are ineffective owing to frequent mutations, the development of more aggressive strains, drug resistance, and possible side effects. Traditionally, herbal remedies have been used by healers, including for dietary and medicinal purposes. Many clinical and scientific studies have demonstrated the therapeutic potential of plant-derived natural compounds. Because of unsafe practices like blood transfusions and organ transplants from infected patients, medical supply contamination. Our antiviral therapies cannot achieve sterile immunity, and we have yet to find a cure for these pernicious infections. Herbs have been shown to improve therapeutic efficacy against a wide variety of viral diseases because of their high concentration of immunomodulatory phytochemicals (both immunoinhibitory and anti-inflammatory). Combined with biotechnology, this folk medicine system can lead to the development of novel antiviral drugs and therapies. In this Review, we will summarize some selected bioactive compounds with probable mechanisms of their antiviral actions, focusing on the immunological axis of these compounds.
Collapse
Affiliation(s)
- Mony Thakur
- Department
of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| | - Mona Singh
- Department
of Obstetrics and Gynaecology, Medical College
of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Sandeep Kumar
- Division
of Cell Biology and Immunology, Council
of Scientific and Industrial Research - Institute of Microbial Technology, Chandigarh 160036, India
| | - Ved Prakash Dwivedi
- International
Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tikam Chand Dakal
- Genome
and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Vinod Yadav
- Department
of Microbiology, Central University of Haryana, Mahendergarh, Haryana 123031, India
| |
Collapse
|
35
|
Javanbakht P, Yazdi FR, Taghizadeh F, Khadivi F, Hamidabadi HG, Kashani IR, Zarini D, Mojaverrostami S. Quercetin as a possible complementary therapy in multiple sclerosis: Anti-oxidative, anti-inflammatory and remyelination potential properties. Heliyon 2023; 9:e21741. [PMID: 37954351 PMCID: PMC10638059 DOI: 10.1016/j.heliyon.2023.e21741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Multiple sclerosis (MS) is a complex autoimmune disorder of the central nervous system (CNS) which causes various symptoms such as fatigue, dyscoordination weakness and visual weakness. The intricacy of the immune system and obscure etiology are the main reasons for the lack of a definite treatment for MS. Oxidative stress is one of the most important key factors in MS pathogenesis. It can enhance inflammation, neurodegeneration and autoimmune-mediated processes, which can lead to excessive demyelination and axonal disruption. Recently, promising effects of Quercetin as a non-pharmacological anti-oxidant therapy have been reported in preclinical studies of MS disease. In this review, we provide a compendium of preclinical and clinical studies that have investigated the effects of Quercetin on MS disease to evaluate its potential utility as a complementary therapy in MS. Quercetin treatment in MS disease not only protects the CNS against oxidative stress and neuroinflammation, but it also declines the demyelination process and promotes remyelination potential. The present study clarifies the reported knowledge on the beneficial effects of Quercetin against MS, with future implication as a neuroprotective complementary therapy.
Collapse
Affiliation(s)
- Parinaz Javanbakht
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzane Rezaei Yazdi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Zarini
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Li Z, Lee JE, Cho N, Yoo HM. Anti-viral effect of usenamine a using SARS-CoV-2 pseudo-typed viruses. Heliyon 2023; 9:e21742. [PMID: 38027904 PMCID: PMC10656252 DOI: 10.1016/j.heliyon.2023.e21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The escalating pandemic brought about by the novel SARS-CoV-2 virus is threatening global health, and thus, it is necessary to develop effective antiviral drugs. Usenamine A is a dibenzo-furan derivative separated from lichen Usnea diffracta showing broad-spectrum activity against different viruses. We evaluate that usenamine A has antiviral effects against novel SARS-CoV-2 Delta variant pseudotyped viruses (PVs) in A549 cells. In addition, usenamine A significantly suppresses SARS-CoV-2 PV-induced mitochondrial depolarization, elevated reactive oxygen species (ROS) levels, apoptosis, and inflammation. Usenamine A also causes the SARS-CoV-2 spike protein to become less stable. Thus, usenamine A shows potential as an antiviral drug that can provide protection against COVID-19.
Collapse
Affiliation(s)
- Zijun Li
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Joo-Eun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, South Korea
| |
Collapse
|
37
|
Abhinand CS, Ibrahim J, Keshava Prasad TS, Raju R, Oommen OV, Nair AS. Molecular docking and dynamics studies for the identification of Nipah virus glycoprotein inhibitors from Indian medicinal plants. J Biomol Struct Dyn 2023; 41:9211-9218. [PMID: 36473711 DOI: 10.1080/07391102.2022.2153169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
The infection by Nipah Virus (NiV), a zoonotic paramyxovirus, is fatal and several outbreaks have been reported in humans in various countries. No effective vaccines or drugs are developed till date to control this infection. The NiV-Glycoprotein (NiV-G) is one of the essential proteins for viral entry by binding to the Ephrin-B receptors. The present study screens the potential phytocompounds that can target NiV-G and thereby inhibit the viral entry to human. Computer-aided virtual screening of 1426 phytocompounds from various medicinal plants was carried out to investigate their efficacy as potential therapeutics. Ribavirin, the currently used drug, was also docked to compare the docking score and intermolecular interactions between ligand and target protein. Further, molecular dynamics simulations and MM-PBSA binding free energy calculations were performed to understand the stability of the docked complexes. Radius of gyrations and Solvent Accessible Surface Area were also performed to evaluate the compactness and solvent behaviour of ligand-receptor complexes during the 100 ns simulation. Our analysis revealed that the alkaloid, Serpentinine, has the highest potency to block NiV-G with favourable binding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chandran S Abhinand
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Junaida Ibrahim
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | | | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Center for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Oommen V Oommen
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
38
|
Masters ET. Medicinal plants of the upper Aswa River catchment of northern Uganda - a cultural crossroads. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2023; 19:48. [PMID: 37884931 PMCID: PMC10605377 DOI: 10.1186/s13002-023-00620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND This paper presents a comparative inventory of medicinal plant taxa and their uses by smallholder farming communities of four cultures in the Aswa River catchment of northern Uganda, situated in the eastern Sudanian savanna parkland ecotype of sub-Saharan Africa. The purpose of the study was to document the ethnobotanical use of medicinal plants by the Lango, Acholi, Teso (Atesot) and Ethur (jo Abwor), in an historical moment before civil conflict and mass displacement of the respondent communities disrupted the inter-generational transmission of traditional technical knowledge within the study area. METHODS Following community consultations in four districts of northern Uganda during 1999-2000, interviews were conducted with holders of specialist knowledge on plants used as medicine on basis of a plant specimen allocated a voucher number and identified by the national herbarium. Use reports reflecting specific medicinal applications were compiled in aggregate to obtain a Relative Importance Index ranking. The commonality of medicinal taxa cited between each cultural interface was assessed by the Jaccard Index of Similarity, and the similarity of specific medicinal usage by taxon using Rahman's Similarity Index. RESULTS The data collected from 112 respondents comprise 280 medicinal use reports describing 263 applications for 62 medical conditions, citing 108 taxa from 44 botanical families of which Fabaceae comprised 20% of all use reports. No earlier mention could be found to corroborate 72 use reports (27% of the total), representing medicinal indications as yet undocumented, and potentially worthy of investigation. The RI values ranged between 15 and 94%, with 13 taxa having RI values above 50%. The JI ratios indicate the highest degree of similarity in the plant taxa used as medicine (21%) between the Lango and Teso cultures who share a common origin; however, Rahman's Similarity Index indicates the highest similarity of specific medicinal usage by taxon between the Lango and Acholi, who share a common language group through cultural assimilation over time. CONCLUSIONS As a comparative study, the results imply that cultural exchange and assimilation may be a greater driver of inter-cultural similarity of ethnopharmacological use of a given taxon, as compared to shared historical origins.
Collapse
Affiliation(s)
- Eliot T Masters
- Nelson Marlborough Institute of Technology (Te Pūkenga), Nelson, New Zealand.
| |
Collapse
|
39
|
Fibriani A, Taharuddin AAP, Yamahoki N, Stephanie R, Laurelia J, Agustiyanti DF, Wisnuwardhani PH, Angelina M, Rubiyana Y, Ningrum RA, Wardiana A, Desriani D, Iskandar F, Permatasari FA, Giri-Rachman EA. Porphyrin-derived carbon dots for an enhanced antiviral activity targeting the CTD of SARS-CoV-2 nucleocapsid. J Genet Eng Biotechnol 2023; 21:93. [PMID: 37801271 PMCID: PMC10558421 DOI: 10.1186/s43141-023-00548-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Since effective antiviral drugs for COVID-19 are still limited in number, the exploration of compounds that have antiviral activity against SARS-CoV-2 is in high demand. Porphyrin is potentially developed as a COVID-19 antiviral drug. However, its low solubility in water restricts its clinical application. Reconstruction of porphyrin into carbon dots is expected to possess better solubility and bioavailability as well as lower biotoxicity. METHODS AND RESULTS In this study, we investigated the antiviral activity of porphyrin and porphyrin-derived carbon dots against SARS-CoV-2. Through the in silico analysis and assessment using a novel drug screening platform, namely dimer-based screening system, we demonstrated the capability of the antivirus candidates in inhibiting the dimerization of the C-terminal domain of SARS-CoV-2 Nucleocapsid. It was shown that porphyrin-derived carbon dots possessed lower cytotoxicity on Vero E6 cells than porphyrin. Furthermore, we also assessed their antiviral activity on the SARS-CoV-2-infected Vero E6 cells. The transformation of porphyrin into carbon dots substantially augmented its performance in disrupting SARS-CoV-2 propagation in vitro. CONCLUSIONS Therefore, this study comprehensively demonstrated the potential of porphyrin-derived carbon dots to be developed further as a promisingly safe and effective COVID-19 antiviral drug.
Collapse
Affiliation(s)
- Azzania Fibriani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| | | | - Nicholas Yamahoki
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Rebecca Stephanie
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Jessica Laurelia
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| | - Dian Fitria Agustiyanti
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Popi Hadi Wisnuwardhani
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Marissa Angelina
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, Indonesian National Research and Innovation Agency (BRIN), Serpong, 15314, Indonesia
| | - Yana Rubiyana
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Ratih Asmana Ningrum
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Andri Wardiana
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Desriani Desriani
- Research Center for Genetic Engineering, Indonesian National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Ferry Iskandar
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency-Institut Teknologi, Bandung, Bandung, 40132, Indonesia
| | - Fitri Aulia Permatasari
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency-Institut Teknologi, Bandung, Bandung, 40132, Indonesia
- Research Center for Chemistry, National Research and Innovation Agency (BRIN), Serpong, 15314, Indonesia
| | - Ernawati Arifin Giri-Rachman
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
40
|
Mohanty SS, Sahoo CR, Paidesetty SK, Padhy RN. Role of phytocompounds as the potential anti-viral agent: an overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2311-2329. [PMID: 37160482 PMCID: PMC10169142 DOI: 10.1007/s00210-023-02517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Viral diseases are the most notorious infective agent(s) causing morbidity and mortality in every nook and corner for ages; viruses are active in host cells, and specific anti-virus medicines' developments remain uncanny. In this century of the biological era, human viruses act predominantly as versatile spreaders. The infection of the present COVID-19 virus is up in the air; blithely, the integument of medicinal chemistry approaches, particularly bioactive derived phytocompounds could be helpful to control those human viruses, recognized in the last 100 years. Indeed, natural products are being used for various therapeutic purposes. The major bioactive phytocompounds are chemically containing coumarin, thiosulfonate, steroid, polysaccharide, tannin, lignin, proanthocyanidin, terpene, quinone, saponin, flavonoid, alkaloid, and polyphenol, that are documented for inhibitory action against several viral infections. Mostly, about 20-30% of plants from tropical or temperate regions are known to have some antiviral activity. This comprehensive analysis of bioactive-derived phytocompounds would represent a significant impact and might be helpful for antiviral research and the current state of viral treatments.
Collapse
Affiliation(s)
- Swati Sucharita Mohanty
- Department of Medical Oncology, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
- Present Address: Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, ICMR-Regional Medical Research Centre, 751023 Bhubaneswar, India
| | - Sudhir Kumar Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| | - Rabindra Nath Padhy
- Central Research Laboratory, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| |
Collapse
|
41
|
Sharma D, Joshi M, Apparsundaram S, Goyal RK, Patel B, Dhobi M. Solanum nigrum L. in COVID-19 and post-COVID complications: a propitious candidate. Mol Cell Biochem 2023; 478:2221-2240. [PMID: 36689040 PMCID: PMC9868520 DOI: 10.1007/s11010-022-04654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023]
Abstract
COVID-19 is caused by severe acute respiratory syndrome coronavirus-2, SARS-CoV-2. COVID-19 has changed the world scenario and caused mortality around the globe. Patients who recovered from COVID-19 have shown neurological, psychological, renal, cardiovascular, pulmonary, and hematological complications. In some patients, complications lasted more than 6 months. However, significantly less attention has been given to post-COVID complications. Currently available drugs are used to tackle the complications, but new interventions must address the problem. Phytochemicals from natural sources have been evaluated in recent times to cure or alleviate COVID-19 symptoms. An edible plant, Solanum nigrum, could be therapeutic in treating COVID-19 as the AYUSH ministry of India prescribes it during the pandemic. S. nigrum demonstrates anti-inflammatory, immunomodulatory, and antiviral action to treat the SARS-CoV-2 infection and its post-complications. Different parts of the plant represent a reduction in proinflammatory cytokines and prevent multi-organ failure by protecting various organs (liver, kidney, heart, neuro, and lung). The review proposes the possible role of the plant S. nigrum in managing the symptoms of COVID-19 and its post-COVID complications based on in silico docking and pharmacological studies. Further systematic and experimental studies are required to validate our hypothesis.
Collapse
Affiliation(s)
- Divya Sharma
- Delhi Pharmaceutical Sciences and Research University, 110017, New Delhi, India
| | - Mit Joshi
- Institute of Pharmacy, Nirma University, 382481, Ahmedabad, Gujarat, India
| | - Subbu Apparsundaram
- Delhi Pharmaceutical Sciences and Research University, 110017, New Delhi, India
| | - Ramesh K Goyal
- Delhi Pharmaceutical Sciences and Research University, 110017, New Delhi, India
| | - Bhoomika Patel
- National Forensic Sciences University, Sector-9, Gandhinagar-382007, Gujarat, India.
| | - Mahaveer Dhobi
- Delhi Pharmaceutical Sciences and Research University, 110017, New Delhi, India.
| |
Collapse
|
42
|
Pattaro-Júnior JR, Araújo IG, Moraes CB, Barbosa CG, Philippsen GS, Freitas-Junior LH, Guidi AC, de Mello JCP, Peralta RM, Fernandez MA, Teixeira RR, Seixas FAV. Antiviral activity of Cenostigma pluviosum var. peltophoroides extract and fractions against SARS-CoV-2. J Biomol Struct Dyn 2023; 41:7297-7308. [PMID: 36069130 DOI: 10.1080/07391102.2022.2120078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Few extracts of plant species from the Brazilian flora have been validated from a pharmacological and clinical point of view, and it is important to determine whether their traditional use is proven by pharmacological effects. Cenostigma pluviosum var. peltophoroides is one of those plants, which belongs to the Fabaceae family that is widely used in traditional medicine and is very rich in tannins. Due to the lack of effective drugs to treat severe cases of Covid-19, the main protease of SARS-CoV-2 (Mpro) becomes an attractive target in the research for new antivirals since this enzyme is crucial for virus replication and does not have homologs in humans. This study aimed to prospect inhibitor candidates among the compounds from C. pluviosum extract, by virtual screening simulations using SARS-CoV-2 Mpro as target. Experimental validation was made by inhibitory proteolytic assays of recombinant Mpro and by antiviral activity with infected Vero cells. Docking simulations identify four compounds with potential inhibitory activity of Mpro present in the extract. The compound pentagalloylglucose showed the best result in proteolytic kinetics experiments, with suppression of recombinant Mpro activity by approximately 60%. However, in experiments with infected cells ethyl acetate fraction and sub-fractions, F2 and F4 of C. pluviosum extract performed better than pentagalloylglucose, reaching close to 100% of antiviral activity. The prominent activity of the extract fractions in infected cells may be a result of a synergistic effect from the different hydrolyzable tannins present, performing simultaneous action on Mpro and other targets from SARS-CoV-2 and host.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- José Renato Pattaro-Júnior
- Laboratory of Structural Biochemistry, Departamento de Tecnologia, Universidade Estadual de Maringá, Umuarama, PR, Brazil
| | - Ingrid Garcia Araújo
- Laboratory of Structural Biochemistry, Departamento de Tecnologia, Universidade Estadual de Maringá, Umuarama, PR, Brazil
| | | | | | | | | | - Ana Carolina Guidi
- PalaFito Laboratory, Departamento de Farmácia, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | - Rosane Marina Peralta
- Laboratory of Biochemistry and Physiology of Microorganisms, Departamento de Bioquímica, Universidade Estadual de Maringá, PR, Brazil
| | - Maria Aparecida Fernandez
- Laboratório de Organização Funcional do Núcleo, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Róbson Ricardo Teixeira
- Laboratory of Organic Chemistry, Departamento de Química, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Flavio Augusto Vicente Seixas
- Laboratory of Structural Biochemistry, Departamento de Tecnologia, Universidade Estadual de Maringá, Umuarama, PR, Brazil
| |
Collapse
|
43
|
Hyun SW, Han S, Son JW, Song MS, Kim DA, Ha SD. Development and efficacy assessment of hand sanitizers and polylactic acid films incorporating caffeic acid and vanillin for enhanced antiviral properties against HCoV-229E. Virol J 2023; 20:194. [PMID: 37641064 PMCID: PMC10463313 DOI: 10.1186/s12985-023-02159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Although three years after the outbreak of SARS-CoV-2, the virus is still having a significant impact on human health and the global economy. Infection through respiratory droplets is the main transmission route, but the transmission of the virus by surface contact cannot be ignored. Hand sanitizers and antiviral films can be applied to control SARS-CoV-2, but sanitizers and films show drawbacks such as resistance of the virus against ethanol and environmental problems including the overuse of plastics. Therefore, this study suggested applying natural substrates to hand sanitizers and antiviral films made of biodegradable plastic (PLA). This approach is expected to provide advantages for the easy control of SARS-CoV-2 through the application of natural substances. METHODS Antiviral disinfectants and films were manufactured by adding caffeic acid and vanillin to ethanol, isopropyl alcohol, benzalkonium chloride, and PLA. Antiviral efficacies were evaluated with slightly modified international standard testing methods EN 14,476 and ISO 21,702. RESULTS In suspension, all the hand sanitizers evaluated in this study showed a reduction of more than 4 log within 2 min against HCoV-229E. After natural substances were added to the hand sanitizers, the time needed to reach the detection limit of the viral titer was shortened both in suspension and porcine skin. However, no difference in the time needed to reach the detection limit of the viral titer was observed in benzalkonium chloride. In the case of antiviral films, those made using both PLA and natural substances showed a 1 log reduction of HCoV-229E compared to the neat PLA film for all treatment groups. Furthermore, the influence of the organic load was evaluated according to the number of contacts of the antiviral products with porcine skin. Ten rubs on the skin resulted in slightly higher antiviral activity than 50 rubs. CONCLUSION This study revealed that caffeic acid and vanillin can be effectively used to control HCoV-229E for hand sanitizers and antiviral films. In addition, it is recommended to remove organic matter from the skin for maintaining the antiviral activity of hand sanitizer and antiviral film as the antiviral activity decreased as the organic load increased in this study.
Collapse
Affiliation(s)
- Seok-Woo Hyun
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sangha Han
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Jeong Won Son
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Min Su Song
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Dan Ah Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
44
|
Ullah S, Rahman W, Ullah F, Ullah A, Ahmad G, Ijaz M, Ullah H, Zheng Z, Gao T. AVPCD: a plant-derived medicine database of antiviral phytochemicals for cancer, Covid-19, malaria and HIV. Database (Oxford) 2023; 2023:baad056. [PMID: 37594855 PMCID: PMC10437090 DOI: 10.1093/database/baad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 08/20/2023]
Abstract
Serious illnesses caused by viruses are becoming the world's most critical public health issues and lead millions of deaths each year in the world. Thousands of studies confirmed that the plant-derived medicines could play positive therapeutic effects on the patients with viral diseases. Since thousands of antiviral phytochemicals have been identified as lifesaving drugs in medical research, a comprehensive database is highly desirable to integrate the medicinal plants with their different medicinal properties. Therefore, we provided a friendly antiviral phytochemical database AVPCD covering 2537 antiviral phytochemicals from 383 medicinal compounds and 319 different families with annotation of their scientific, family and common names, along with the parts used, disease information, active compounds, links of relevant articles for COVID-19, cancer, HIV and malaria. Furthermore, each compound in AVPCD was annotated with its 2D and 3D structure, molecular formula, molecular weight, isomeric SMILES, InChI, InChI Key and IUPAC name and 21 other properties. Each compound was annotated with more than 20 properties. Specifically, a scoring method was designed to measure the confidence of each phytochemical for the viral diseases. In addition, we constructed a user-friendly platform with several powerful modules for searching and browsing the details of all phytochemicals. We believe this database will facilitate global researchers, drug developers and health practitioners in obtaining useful information against viral diseases.
Collapse
Affiliation(s)
- Shahid Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Wajeeha Rahman
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Farhan Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Anees Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Gulzar Ahmad
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Muhammad Ijaz
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Hameed Ullah
- S Khan Lab Mardan, Khyber Pakhtunkhwa, Takhtbhai, KP 23200, Pakistan
| | - Zilong Zheng
- Big Data Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Tianshun Gao
- Big Data Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
45
|
Rout M, Mishra S, Dey S, Singh MK, Dehury B, Pati S. Exploiting the potential of natural polyphenols as antivirals against monkeypox envelope protein F13 using machine learning and all-atoms MD simulations. Comput Biol Med 2023; 162:107116. [PMID: 37302336 PMCID: PMC10239311 DOI: 10.1016/j.compbiomed.2023.107116] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2023]
Abstract
The re-emergence of monkeypox (MPX), in the era of COVID-19 pandemic is a new global menace. Regardless of its leniency, there are chances of MPX expediting severe health deterioration. The role of envelope protein, F13 as a critical component for production of extracellular viral particles makes it a crucial drug target. Polyphenols, exhibiting antiviral properties have been acclaimed as an effective alternative to the traditional treatment methods for management of viral diseases. To facilitate the development of potent MPX specific therapeutics, herein, we have employed state-of-the-art machine learning techniques to predict a highly accurate 3-dimensional structure of F13 as well as identify binding hotspots on the protein surface. Additionally, we have effectuated high-throughput virtual screening methodology on 57 potent natural polyphenols having antiviral activities followed by all-atoms molecular dynamics (MD) simulations, to substantiate the mode of interaction of F13 protein and polyphenol complexes. The structure-based virtual screening based on Glide SP, XP and MM/GBSA scores enables the selection of six potent polyphenols having higher binding affinity towards F13. Non-bonded contact analysis, of pre- and post- MD complexes propound the critical role of Glu143, Asp134, Asn345, Ser321 and Tyr320 residues in polyphenol recognition, which is well supported by per-residue decomposition analysis. Close-observation of the structural ensembles from MD suggests that the binding groove of F13 is mostly hydrophobic in nature. Taken together, this structure-based analysis from our study provides a lead on Myricetin, and Demethoxycurcumin, which may act as potent inhibitors of F13. In conclusion, our study provides new insights into the molecular recognition and dynamics of F13-polyphenol bound states, offering new promises for development of antivirals to combat monkeypox. However, further in vitro and in vivo experiments are necessary to validate these results.
Collapse
Affiliation(s)
- Madhusmita Rout
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India
| | - Sarbani Mishra
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India
| | - Suchanda Dey
- Biomics and Biodiversity Lab, Siksha 'O' Anusandhan (deemed to be) University, Kalinga Nagar, Ghatikia, Bhubaneswar, 751003, Odisha, India
| | - Mahender Kumar Singh
- Data Science Laboratory, National Brain Research Centre, Gurgaon, Haryana, 122052, India
| | - Budheswar Dehury
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India.
| | - Sanghamitra Pati
- Bioinformatics Division, ICMR-Regional Medical Research Centre, Nalco Square, Chandrasekharpur, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
46
|
Wang M, Li C, Li J, Hu W, Yu A, Tang H, Li J, Kuang H, Zhang H. Extraction, Purification, Structural Characteristics, Biological Activity and Application of Polysaccharides from Portulaca oleracea L. (Purslane): A Review. Molecules 2023; 28:4813. [PMID: 37375369 DOI: 10.3390/molecules28124813] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Portulaca oleracea L. (purslane) is a widely distributed plant with a long history of cultivation and consumption. Notably, polysaccharides obtained from purslane exhibit surprising and satisfactory biological activities, which explain the various benefits of purslane on human health, including anti-inflammatory, antidiabetic, antitumor, antifatigue, antiviral and immunomodulatory effects. This article systematically reviews the extraction and purification methods, chemical structure, chemical modification, biological activity and other aspects of polysaccharides from purslane collected in the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, Baidu Scholar, Google Scholar and CNKI databases in the last 14 years, using the keywords "Portulaca oleracea L. polysaccharides" and "purslane polysaccharides". The application of purslane polysaccharides in different fields is also summarized, and its application prospects are also discussed. This paper provides an updated and deeper understanding of purslane polysaccharides, which will provide useful guidance for the further optimization of polysaccharide structures and the development of purslane polysaccharides as a novel functional material, as well as a theoretical basis for its further research and application in human health and manufacturing development.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Caijiao Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiaye Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haipeng Tang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Jiayan Li
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Huijie Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
47
|
Sharma R, Bhattu M, Tripathi A, Verma M, Acevedo R, Kumar P, Rajput VD, Singh J. Potential medicinal plants to combat viral infections: A way forward to environmental biotechnology. ENVIRONMENTAL RESEARCH 2023; 227:115725. [PMID: 37001848 DOI: 10.1016/j.envres.2023.115725] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
The viral diseases encouraged scientific community to evaluate the natural antiviral bioactive components rather than protease inhibitors, harmful organic molecules or nucleic acid analogues. For this purpose, medicinal plants have been gaining tremendous importance in the field of attenuating the various kinds of infectious and non-infectious diseases. Most of the commonly used medicines contains the bioactive components/phytoconstituents that are generally extracted from medicinal plants. Moreover, the medicinal plants offer many advantages for the recovery applications of infectious disease especially in viral infections including HIV-1, HIV-2, Enterovirus, Japanese Encephalitis Virus, Hepatitis B virus, Herpes Virus, Respiratory syncytial virus, Chandipura virus and Influenza A/H1N1. Considering the lack of acceptable drug candidates and the growing antimicrobial resistance to existing drug molecules for many emerging viral diseases, medicinal plants may offer best platform to develop sustainable/efficient/economic alternatives against viral infections. In this regard, for exploring and analyzing large volume of scientific data, bibliometric analysis was done using VOS Viewer shedding light on the emerging areas in the field of medicinal plants and their antiviral activity. This review covers most of the plant species that have some novel bioactive compound like gnidicin, gniditrin, rutin, apigenin, quercetin, kaempferol, curcumin, tannin and oleuropin which showed high efficacy to inhibit the several disease causing virus and their mechanism of action in HIV, Covid-19, HBV and RSV were discussed. Moreover, it also delves the in-depth mechanism of medicinal with challenges and future prospective. Therefore, this work delves the key role of environment in the biological field.
Collapse
Affiliation(s)
- Rhydum Sharma
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Ashutosh Tripathi
- University Centre for Research and Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Meenakshi Verma
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Roberto Acevedo
- San Sebastián University, Campus Bellavista 7, Santiago, Chile
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
| |
Collapse
|
48
|
Varbanov M, Philippot S, González-Cardenete MA. Anticoronavirus Evaluation of Antimicrobial Diterpenoids: Application of New Ferruginol Analogues. Viruses 2023; 15:1342. [PMID: 37376641 DOI: 10.3390/v15061342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The abietane diterpene (+)-ferruginol (1), like other natural and semisynthetic abietanes, is distinguished for its interesting pharmacological properties such as antimicrobial activity, including antiviral. In this study, selected C18-functionalized semisynthetic abietanes prepared from the commercially available (+)-dehydroabietylamine or methyl dehydroabietate were tested in vitro against human coronavirus 229E (HCoV-229E). As a result, a new ferruginol analogue caused a relevant reduction in virus titer as well as the inhibition of a cytopathic effect. A toxicity prediction based on in silico analysis was also performed as well as an estimation of bioavailability. This work demonstrates the antimicrobial and specifically antiviral activity of two tested compounds, making these molecules interesting for the development of new antivirals.
Collapse
Affiliation(s)
- Mihayl Varbanov
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Laboratoire de Virologie, CHRU de Nancy Brabois, 54500 Vandoeuvre-lès-Nancy, France
| | | | - Miguel A González-Cardenete
- Instituto de Tecnologia Química (UPV-CSIC), Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
49
|
Rababi D, Nag A. Evaluation of therapeutic potentials of selected phytochemicals against Nipah virus, a multi-dimensional in silico study. 3 Biotech 2023; 13:174. [PMID: 37180429 PMCID: PMC10170460 DOI: 10.1007/s13205-023-03595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
The current study attempted to evaluate the potential of fifty-three (53) natural compounds as Nipah virus attachment glycoprotein (NiV G) inhibitors through in silico molecular docking study. Pharmacophore alignment of the four (4) selected compounds (Naringin, Mulberrofuran B, Rutin and Quercetin 3-galactoside) through Principal Component Analysis (PCA) revealed that common pharmacophores, namely four H bond acceptors, one H bond donor and two aromatic groups were responsible for the residual interaction with the target protein. Out of these four compounds, Naringin was found to have the highest inhibitory potential ( - 9.19 kcal mol-1) against the target protein NiV G, when compared to the control drug, Ribavirin ( - 6.95 kcal mol-1). The molecular dynamic simulation revealed that Naringin could make a stable complex with the target protein in the near-native physiological condition. Finally, MM-PBSA (Molecular Mechanics-Poisson-Boltzmann Solvent-Accessible Surface Area) analysis in agreement with our molecular docking result, showed that Naringin ( - 218.664 kJ mol-1) could strongly bind with the target protein NiV G than the control drug Ribavirin ( - 83.812 kJ mol-1). Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03595-y.
Collapse
Affiliation(s)
- Deblina Rababi
- Department of Life Sciences, Bangalore Central Campus, CHRIST (Deemed to be University), Bangalore, India
| | - Anish Nag
- Department of Life Sciences, Bangalore Central Campus, CHRIST (Deemed to be University), Bangalore, India
| |
Collapse
|
50
|
Tsuchiya H. Treatments of COVID-19-Associated Taste and Saliva Secretory Disorders. Dent J (Basel) 2023; 11:140. [PMID: 37366663 DOI: 10.3390/dj11060140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Since the worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, treating taste and saliva secretory disorders associated with coronavirus disease 2019 (COVID-19) has become a critical issue. The aim of the present study was to update information on treatments applicable to such oral symptoms and discuss their pathogenic mechanisms. The literature search indicated that different treatments using tetracycline, corticosteroids, zinc, stellate ganglion block, phytochemical curcumin, traditional herbal medicine, nutraceutical vitamin D, photobiomodulation, antiviral drugs, malic acid sialagogue, chewing gum, acupuncture, and/or moxibustion have potential effects on COVID-19-associated ageusia/dysgeusia/hypogeusia and xerostomia/dry mouth/hyposalivation. These treatments have multiple modes of action on viral cellular entry and replication, cell proliferation and differentiation, immunity, and/or SARS-CoV-2 infection-induced pathological conditions such as inflammation, cytokine storm, pyroptosis, neuropathy, zinc dyshomeostasis, and dysautonomia. An understanding of currently available treatment options is required for dental professionals because they may treat patients who were infected with SARS-CoV-2 or who recovered from COVID-19, and become aware of their abnormal taste and salivary secretion. By doing so, dentists and dental hygienists could play a crucial role in managing COVID-19 oral symptoms and contribute to improving the oral health-related quality of life of the relevant patients.
Collapse
Affiliation(s)
- Hironori Tsuchiya
- Department of Dental Basic Education, Asahi University School of Dentistry, Mizuho, Gifu 501-0296, Japan
| |
Collapse
|