1
|
Bennett T, Walmsley S, Bendayan R. Aging with HIV and HIV-associated neurocognitive impairment. AIDS 2025; 39:215-228. [PMID: 39878669 DOI: 10.1097/qad.0000000000004057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/04/2024] [Indexed: 01/31/2025]
Abstract
Antiretroviral therapy (ART) is the most effective therapeutic intervention for HIV infection. With improved survival, comorbidities, including neuropsychiatric and HIV-associated neurocognitive impairment (NCI) are of increasing concern to aging people with HIV (PWH). The clinical features and the inter-individual variability of the aging process confound the elucidation of the diagnosis and underlying mechanisms of cognitive dysfunction in aging PWH. Herein, we review the clinical aspects of HIV-associated NCI in the aging PWH contrasting to the normative neuro-aging seen in people without HIV (PWoH) and address the growing role of biomarkers to predict the onset of age-related diseases in PWH and their clinical significance. There is an urgent need for further research into the role of specific immune brain biomarkers in predicting the aging process and how these biomarkers may assist in understanding the mechanisms and possible prognosis of age-related neurocognitive comorbidities in aging PWH as an endpoint for interventional studies.
Collapse
Affiliation(s)
- Teresa Bennett
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
| | - Sharon Walmsley
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy
| |
Collapse
|
2
|
Wang H, Jiu X, Wang Z, Zhang Y. Neuroimaging advances in neurocognitive disorders among HIV-infected individuals. Front Neurol 2025; 16:1479183. [PMID: 40017532 PMCID: PMC11864956 DOI: 10.3389/fneur.2025.1479183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/26/2025] [Indexed: 03/01/2025] Open
Abstract
Although combination antiretroviral therapy (cART) has been widely applied and effectively extends the lifespan of patients infected with human immunodeficiency virus (HIV), these patients remain at a substantially increased risk of developing neurocognitive impairment, commonly referred to as HIV-associated neurocognitive disorders (HAND). Magnetic resonance imaging (MRI) has emerged as an indispensable tool for characterizing the brain function and structure. In this review, we focus on the applications of various MRI-based neuroimaging techniques in individuals infected with HIV. Functional MRI, structural MRI, diffusion MRI, and quantitative MRI have all contributed to advancing our comprehension of the neurological alterations caused by HIV. It is hoped that more reliable evidence can be achieved to fully determine the driving factors of cognitive impairment in HIV through the combination of multi-modal MRI and the utilization of more advanced neuroimaging analysis methods.
Collapse
Affiliation(s)
- Han Wang
- Department of Radiology, Bethune International Peace Hospital (the 980th Hospital of PLA Joint Logistic Support Force), Shijiazhuang, Hebei, China
- Department of Radiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaolin Jiu
- Department of Radiology, Bethune International Peace Hospital (the 980th Hospital of PLA Joint Logistic Support Force), Shijiazhuang, Hebei, China
| | - Zihua Wang
- Department of Oncology, Bethune International Peace Hospital (the 980th Hospital of PLA Joint Logistic Support Force), Shijiazhuang, Hebei, China
| | - Yanwei Zhang
- Department of Radiology, Bethune International Peace Hospital (the 980th Hospital of PLA Joint Logistic Support Force), Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Del Bene VA, Fazeli PL, Blake JA, Li W, Collette C, Triebel KL, Byun JY, Jacob AE, Kamath V, Vance DE. Social Determinants of Health and Cross-Sectional Cognitive Intra-Individual Variability in Adults from the Deep South Living with HIV. Arch Clin Neuropsychol 2025:acae126. [PMID: 39778187 DOI: 10.1093/arclin/acae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Cognitive intra-individual variability (IIV) is a sensitive marker of neuropathology and is increased in people with HIV (PWH). In a sample of PWH from the United States Deep South, we examined the relationship of cognitive IIV with cognitive impairment and social determinants of health (SDoH). This secondary analysis included 131 PWH from a larger cognitive training protocol. Our primary outcome measure was the coefficient of variation (CoV). We also included the individual standard deviation (iSD), with both calculated from demographically adjusted T-scores and unadjusted sample-based scores. Mixed-effects models investigated the relationship between IIV and cognitive impairment severity (i.e., Global Rating Score), SDoH, and clinical variables. Bivariate correlations were used to further explore these relationships. Greater cognitive IIV was associated with greater cognitive impairment in PWH, when accounting for demographic factors. When IIV is calculated from the sample, then IIV is no longer associated with cognitive impairment, but is associated with race (>IIV in Black and African American participants). Demographically adjusted IIV is associated with global cognition, Wide Range Achievement Test-Fourth Edition reading score, and viral load (iSD only). No correlations were significant when using the unadjusted sample-based IIV metrics. In PWH from the Deep South, greater cognitive variability is seen in those with greater cognitive impairment, in Black participants, and in those with lower reading scores. Further research on the psychometric properties of IIV in HIV and other populations is needed, as results varied depending on the normative adjustments.
Collapse
Affiliation(s)
- Victor A Del Bene
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pariya L Fazeli
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jason A Blake
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wei Li
- School of Health Professions, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher Collette
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristen L Triebel
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jun Y Byun
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexandra E Jacob
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David E Vance
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
Luo H, Chen J, Liu J, Wang W, Hou C, Jiang X, Ma J, Xu F, Aili X, Zhou Z, Li H. Bridging brain and blood: a prospective view on neuroimaging-exosome correlations in HIV-associated neurocognitive disorders. Front Neurol 2025; 15:1479272. [PMID: 39839878 PMCID: PMC11745957 DOI: 10.3389/fneur.2024.1479272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is a complex neurological complication resulting from human immunodeficiency virus (HIV) infection, affecting about 50% of individuals with HIV and significantly diminishing their quality of life. HAND includes a variety of cognitive, motor, and behavioral disorders, severely impacting patients' quality of life and social functioning. Although combination antiretroviral therapy (cART) has greatly improved the prognosis for HIV patients, the incidence of HAND remains high, underscoring the urgent need to better understand its pathological mechanisms and develop early diagnostic methods. This review highlights the latest advancements in neuroimaging and exosome biomarkers in HAND research. Neuroimaging, particularly magnetic resonance imaging (MRI), offers a non-invasive and repeatable method to monitor subtle changes in brain structure and function, potentially detecting early signs of HAND. Meanwhile, exosomes are nano-sized vesicles secreted by cells that serve as key mediators of intercellular communication, playing a crucial role in the neuropathology of HIV and potentially acting as a critical bridge between peripheral blood and central nervous system lesions. Thus, combining plasma exosome biomarkers with indicators derived from neuroimaging scans may enhance the early diagnosis of HAND. This review summarizes evidence supporting the role of exosomes as reliable biomarkers for early detection and management of HAND. Furthermore, we emphasize the correlation between neuroimaging biomarkers and exosome biomarkers and explore their potential combined use. This review discusses the technical challenges and methodological limitations of integrating these two types of biomarkers and proposes future research directions. This multidisciplinary integrative approach not only promises to improve the neurocognitive health management of HIV patients but may also offer valuable insights for research into other neurodegenerative diseases.
Collapse
Affiliation(s)
- Haixia Luo
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Junzhuo Chen
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jiaojiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chuanke Hou
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xingyuan Jiang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Juming Ma
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fan Xu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xire Aili
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhongkai Zhou
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Murzin AI, Elfimov KA, Gashnikova NM. The Proviral Reservoirs of Human Immunodeficiency Virus (HIV) Infection. Pathogens 2024; 14:15. [PMID: 39860976 PMCID: PMC11768375 DOI: 10.3390/pathogens14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025] Open
Abstract
Human Immunodeficiency Virus (HIV) proviral reservoirs are cells that harbor integrated HIV proviral DNA within their nuclear genomes. These cells form a heterogeneous group, represented by peripheral blood mononuclear cells (PBMCs), tissue-resident lymphoid and monocytic cells, and glial cells of the central nervous system. The importance of studying the properties of proviral reservoirs is connected with the inaccessibility of integrated HIV proviral DNA for modern anti-retroviral therapies (ARTs) that block virus reproduction. If treatment is not effective enough or is interrupted, the proviral reservoir can reactivate. Early initiation of ART improves the prognosis of the course of HIV infection, which is explained by the reduction in the proviral reservoir pool observed in the early stages of the disease. Different HIV subtypes present differences in the number of latent reservoirs, as determined by structural and functional differences. Unique signatures of patients with HIV, such as elite controllers, have control over viral replication and can be said to have achieved a functional cure for HIV infection. Uncovering the causes of this phenomenon will bring humanity closer to curing HIV infection, potential approaches to which include stem cell transplantation, clustered regularly interspaced short palindromic repeats (CRISPR)/cas9, "Shock and kill", "Block and lock", and the application of broad-spectrum neutralizing antibodies (bNAbs).
Collapse
Affiliation(s)
- Andrey I. Murzin
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo 630559, Russia; (K.A.E.); (N.M.G.)
| | | | | |
Collapse
|
6
|
Campbell LM, Fennema-Notestine C, Sundermann EE, Barrett A, Bondi MW, Ellis RJ, Franklin D, Gelman B, Gilbert PE, Grant I, Heaton RK, Moore DJ, Morgello S, Letendre S, Patel PB, Roesch S. The prefrontal cortex, but not the medial temporal lobe, is associated with episodic memory in middle-aged persons with HIV. J Int Neuropsychol Soc 2024; 30:966-976. [PMID: 39545285 PMCID: PMC11735296 DOI: 10.1017/s1355617724000596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
OBJECTIVE Identifying persons with HIV (PWH) at increased risk for Alzheimer's disease (AD) is complicated because memory deficits are common in HIV-associated neurocognitive disorders (HAND) and a defining feature of amnestic mild cognitive impairment (aMCI; a precursor to AD). Recognition memory deficits may be useful in differentiating these etiologies. Therefore, neuroimaging correlates of different memory deficits (i.e., recall, recognition) and their longitudinal trajectories in PWH were examined. DESIGN We examined 92 PWH from the CHARTER Program, ages 45-68, without severe comorbid conditions, who received baseline structural MRI and baseline and longitudinal neuropsychological testing. Linear and logistic regression examined neuroanatomical correlates (i.e., cortical thickness and volumes of regions associated with HAND and/or AD) of memory performance at baseline and multilevel modeling examined neuroanatomical correlates of memory decline (average follow-up = 6.5 years). RESULTS At baseline, thinner pars opercularis cortex was associated with impaired recognition (p = 0.012; p = 0.060 after correcting for multiple comparisons). Worse delayed recall was associated with thinner pars opercularis (p = 0.001) and thinner rostral middle frontal cortex (p = 0.006) cross sectionally even after correcting for multiple comparisons. Delayed recall and recognition were not associated with medial temporal lobe (MTL), basal ganglia, or other prefrontal structures. Recognition impairment was variable over time, and there was little decline in delayed recall. Baseline MTL and prefrontal structures were not associated with delayed recall. CONCLUSIONS Episodic memory was associated with prefrontal structures, and MTL and prefrontal structures did not predict memory decline. There was relative stability in memory over time. Findings suggest that episodic memory is more related to frontal structures, rather than encroaching AD pathology, in middle-aged PWH. Additional research should clarify if recognition is useful clinically to differentiate aMCI and HAND.
Collapse
Affiliation(s)
| | | | | | - Averi Barrett
- University of California San Diego, La Jolla, CA, USA
| | - Mark W. Bondi
- University of California San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | | | | | | | | | - Igor Grant
- University of California San Diego, La Jolla, CA, USA
| | | | | | - Susan Morgello
- The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - CHARTER Group
- University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Ostermann PN, Evering TH. The impact of aging on HIV-1-related neurocognitive impairment. Ageing Res Rev 2024; 102:102513. [PMID: 39307316 DOI: 10.1016/j.arr.2024.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Depending on the population studied, HIV-1-related neurocognitive impairment is estimated to impact up to half the population of people living with HIV (PLWH) despite the availability of combination antiretroviral therapy (cART). Various factors contribute to this neurocognitive impairment, which complicates our understanding of the molecular mechanisms involved. Biological aging has been implicated as one factor possibly impacting the development and progression of HIV-1-related neurocognitive impairment. This is increasingly important as the life expectancy of PLWH with virologic suppression on cART is currently projected to be similar to that of individuals not living with HIV. Based on our increasing understanding of the biological aging process on a cellular level, we aim to dissect possible interactions of aging- and HIV-1 infection-induced effects and their role in neurocognitive decline. Thus, we begin by providing a brief overview of the clinical aspects of HIV-1-related neurocognitive impairment and review the accumulating evidence implicating aging in its development (Part I). We then discuss potential interactions between aging-associated pathways and HIV-1-induced effects at the molecular level (Part II).
Collapse
Affiliation(s)
- Philipp Niklas Ostermann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Teresa Hope Evering
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
8
|
Yadav A, Gionet G, Karaj A, Kossenkov AV, Kannan T, Putt ME, Stephens Shields AJ, Ashare RL, Collman RG. Association of smoking with neurocognition, inflammatory and myeloid cell activation profiles in people with HIV on antiretroviral therapy. AIDS 2024; 38:2010-2020. [PMID: 39283742 DOI: 10.1097/qad.0000000000004015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE People with HIV (PWH) experience excess comorbidities, including neurocognitive disorders, which are linked to inflammation, particularly monocyte-macrophage activation. Smoking contributes to morbidity and mortality in well treated PWH. We investigated associations between smoking, neurocognitive function, and inflammation in PWH on antiretroviral therapy (ART). DESIGN We used baseline data on cognition and inflammation from a longitudinal study of virologically suppressed PWH who do and do not smoke. METHODS Participants completed four neurocognitive tests (seven measures), with a composite score as the primary measure. Inflammatory markers were plasma sCD14, sCD163, and CCL2/MCP-1; %CD14 + monocytes expressing CD16, CD163, and CCR2; and %CD8 + T cells co-expressing CD38/HLA-DR. Exploratory analyses included a plasma cytokine/chemokine panel, neurofilament light chain (NFL), hsCRP, and monocyte transcriptomes by RNAseq. RESULTS We recruited 58 PWH [26 current smoking (PWH/S), 32 no current smoking (PWH/NS)]. Mean composite and individual neurocognitive scores did not differ significantly by smoking status except for the color shape task; PWH/S exhibited worse cognitive flexibility, with adjusted mean times 317.2 [95% confidence interval (CI) 1.4-632.9] ms longer than PWH/NS. PWH/S had higher plasma sCD14 than PWH/NS [median (IQR) 1820 (1678-2105) vs. 1551 (1284-1760) ng/ml, P = 0.009]. Other inflammatory markers were not significantly different between PWH/S and PWH/NS. Monocyte transcriptomes showed several functions, regulators, and gene-sets that differed by smoking status. CONCLUSION sCD14, a marker of monocyte activation, is elevated in PWH who smoke. Although neurocognitive measures and other inflammatory markers did not generally differ, these data implicate smoking-related myeloid activation and monocyte gene dysregulation in the HIV/smoking synergy driving HIV-associated comorbidities.
Collapse
Affiliation(s)
| | - Gabrielle Gionet
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine
| | - Antoneta Karaj
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine
| | | | | | - Mary E Putt
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine
| | - Alisa J Stephens Shields
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine
| | - Rebecca L Ashare
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
9
|
Singh MV, Uddin MN, Covacevich Vidalle M, Sutton KR, Boodoo ZD, Peterson AN, Tyrell A, Tivarus ME, Wang HZ, Sahin B, Zhong J, Weber MT, Wang L, Qiu X, Maggirwar SB, Schifitto G. Non-classical monocyte levels correlate negatively with HIV-associated cerebral small vessel disease and cognitive performance. Front Cell Infect Microbiol 2024; 14:1405431. [PMID: 39507948 PMCID: PMC11537857 DOI: 10.3389/fcimb.2024.1405431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Background Despite antiretroviral treatment (cART), aging people living with HIV (PWH) are more susceptible to neurocognitive impairment (NCI) probably due to synergistic/additive contribution of traditional cerebrovascular risk factors. Specifically, transmigration of inflammatory CD16+ monocytes through the altered blood brain barrier (BBB) may exacerbate cerebral small vessel disease (CSVD), a known cause of vascular cognitive impairment. Methods PWH on cART (n=108) and age, sex, and Reynold's cardiovascular risk score-matched uninfected individuals (PWoH, n=111) were enrolled. This is a longitudinal observational study but only cross-sectional data from entry visit are reported. Neuropsychological testing and brain magnetic resonance imaging (MRI) were performed. CSVD was diagnosed by Fazekas score ≥1. Flow cytometric analyses of fresh whole blood were conducted to evaluate circulating levels of monocyte subsets (classical, intermediate, and non-classical) and markers of monocyte activation (CCR2, CD40, PSGL-1, TNFR2 and tissue factor). ELISAs were used to measure sCD14, ICAM, and Osteoprotegerin. Two-way analysis of variance (ANOVA), and linear regression models were performed to study the effects of HIV status, CSVD status, and their interaction to outcome variables such as cognitive score. Two-sample t-tests and correlation analyses were performed between and within PWoH with CSVD and PWH with CSVD participants. Results PWH with CSVD (n=81) had significantly lower total cognitive scores, higher levels of NCMs and soluble CD14 and intracellular adhesion molecule 1 (ICAM-1) as compared to PWoH with CSVD group (n=68). sCD14 and ICAM1 were positively correlated with each other indicating that monocyte and endothelial activation are associated with each other. Cognition was negatively correlated with NCMs, especially in the PWH with CSVD group. Among other blood biomarkers measured, osteoprotegerin levels showed mild negative correlation with cognitive performance in individuals with CSVD irrespective of HIV status. Conclusions Elevated levels of NCMs may contribute to neuroinflammation, CSVD and subsequent cognitive impairment. This finding is of particular relevance in aging PWH as both HIV and aging are associated with increased levels of NCMs. NCMs may serve as a potential biomarker to address these comorbidities. Further longitudinal studies are needed to evaluate whether changes in NCM levels are associated with changes in CSVD burden and cognitive impairment.
Collapse
Affiliation(s)
- Meera V. Singh
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | | | - Karli R. Sutton
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Zachary D. Boodoo
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | | | - Alicia Tyrell
- Clinical and Translational Science Institute, University of Rochester, Rochester, NY, United States
| | - Madalina E. Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Henry Z. Wang
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| | - Bogachan Sahin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Jianhui Zhong
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
| | - Miriam T. Weber
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, United States
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Sanjay B. Maggirwar
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester, Rochester, NY, United States
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
10
|
Fang Y, Wang W, Wang Q, Li HJ, Liu M. Attention-Enhanced Fusion of Structural and Functional MRI for Analyzing HIV-Associated Asymptomatic Neurocognitive Impairment. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2024; 15011:113-123. [PMID: 39463883 PMCID: PMC11512738 DOI: 10.1007/978-3-031-72120-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Asymptomatic neurocognitive impairment (ANI) is a predominant form of cognitive impairment among individuals infected with human immunodeficiency virus (HIV). The current diagnostic criteria for ANI primarily rely on subjective clinical assessments, possibly leading to different interpretations among clinicians. Some recent studies leverage structural or functional MRI containing objective biomarkers for ANI analysis, offering clinicians companion diagnostic tools. However, they mainly utilize a single imaging modality, neglecting complementary information provided by structural and functional MRI. To this end, we propose an attention-enhanced structural and functional MRI fusion (ASFF) framework for HIV-associated ANI analysis. Specifically, the ASFF first extracts data-driven and human-engineered features from structural MRI, and also captures functional MRI features via a graph isomorphism network and Transformer. A mutual cross-attention fusion module is then designed to model the underlying relationship between structural and functional MRI. Additionally, a semantic inter-modality constraint is introduced to encourage consistency of multimodal features, facilitating effective feature fusion. Experimental results on 137 subjects from an HIV-associated ANI dataset with T1-weighted MRI and resting-state functional MRI show the effectiveness of our ASFF in ANI identification. Furthermore, our method can identify both modality-shared and modality-specific brain regions, which may advance our understanding of the structural and functional pathology underlying ANI.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qianqian Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hong-Jun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Avalos B, Kulbe JR, Ford MK, Laird AE, Walter K, Mante M, Florio JB, Boustani A, Chaillon A, Schlachetzki JCM, Sundermann EE, Volsky DJ, Rissman RA, Ellis RJ, Letendre SL, Iudicello J, Fields JA. Cannabis Use and Cannabidiol Modulate HIV-Induced Alterations in TREM2 Expression: Implications for Age-Related Neuropathogenesis. Viruses 2024; 16:1509. [PMID: 39459844 PMCID: PMC11512329 DOI: 10.3390/v16101509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) is involved in neuroinflammation and HIV-associated neurocognitive impairment (NCI). People with HIV (PWH) using cannabis exhibit lower inflammation and neurological disorders. We hypothesized that TREM2 dysfunction mediates HIV neuropathogenesis and can be reversed by cannabinoids. EcoHIV-infected wildtype (WT) and TREM2R47H mutant mice were used to study HIV's impact on TREM2 and behavior. TREM2 and related gene expressions were examined in monocyte-derived macrophages (MDMs) from PWH (n = 42) and people without HIV (PWoH; n = 19) with varying cannabis use via RNA sequencing and qPCR. Differences in membrane-bound and soluble TREM2 (sTREM2) were evaluated using immunocytochemistry (ICC) and ELISA. EcoHIV increased immature and C-terminal fragment forms of TREM2 in WT mice but not in TREM2R47H mice, with increased IBA1 protein in TREM2R47H hippocampi, correlating with worse memory test performance. TREM2 mRNA levels increased with age in PWoH but not in PWH. Cannabidiol (CBD) treatment increased TREM2 mRNA alone and with IL1β. RNA-seq showed the upregulation of TREM2-related transcripts in cannabis-using PWH compared to naïve controls. IL1β increased sTREM2 and reduced membrane-bound TREM2, effects partially reversed by CBD. These findings suggest HIV affects TREM2 expression modulated by cannabis and CBD, offering insights for therapeutic strategies.
Collapse
Affiliation(s)
- Bryant Avalos
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jacqueline R. Kulbe
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Mary K. Ford
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Anna Elizabeth Laird
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Kyle Walter
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Michael Mante
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Jazmin B. Florio
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ali Boustani
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | | | - Erin E. Sundermann
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - David J. Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert A. Rissman
- Alzheimer’s Therapeutic Research Institute, Keck School of Medicine, University of Southern California, 9880 Mesa Rim Road, San Diego, CA 92121, USA; (M.M.); (J.B.F.); (R.A.R.)
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Scott L. Letendre
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
- Department of Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA;
| | - Jennifer Iudicello
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; (B.A.); (J.R.K.); (M.K.F.); (A.E.L.); (K.W.); (A.B.); (E.E.S.); (R.J.E.); (S.L.L.); (J.I.)
| |
Collapse
|
12
|
Bohannon DG, Zablocki-Thomas LD, Leung ES, Dupont JK, Hattler JB, Kowalewska J, Zhao M, Luo J, Salemi M, Amedee AM, Li Q, Kuroda MJ, Kim WK. CSF1R inhibition depletes brain macrophages and reduces brain virus burden in SIV-infected macaques. Brain 2024; 147:3059-3069. [PMID: 39049445 PMCID: PMC11370798 DOI: 10.1093/brain/awae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 07/27/2024] Open
Abstract
Perivascular macrophages (PVMs) and, to a lesser degree, microglia are targets and reservoirs of HIV and simian immunodeficiency virus (SIV) in the brain. Previously, we demonstrated that colony-stimulating factor 1 receptor (CSF1R) in PVMs was upregulated and activated in chronically SIV-infected rhesus macaques with encephalitis, correlating with SIV infection of PVMs. Herein, we investigated the role of CSF1R in the brain during acute SIV infection using BLZ945, a brain-penetrant CSF1R kinase inhibitor. Apart from three uninfected historic controls, nine Indian rhesus macaques were infected acutely with SIVmac251 and divided into three groups (n = 3 each): an untreated control and two groups treated for 20-30 days with low- (10 mg/kg/day) or high- (30 mg/kg/day) dose BLZ945. With the high-dose BLZ945 treatment, there was a significant reduction in cells expressing CD163 and CD206 across all four brain areas examined, compared with the low-dose treatment and control groups. In 9 of 11 tested regions, tissue viral DNA (vDNA) loads were reduced by 95%-99% following at least one of the two doses, and even to undetectable levels in some instances. Decreased numbers of CD163+ and CD206+ cells correlated significantly with lower levels of vDNA in all four corresponding brain areas. In contrast, BLZ945 treatment did not significantly affect the number of microglia. Our results indicate that doses as low as 10 mg/kg/day of BLZ945 are sufficient to reduce the tissue vDNA loads in the brain with no apparent adverse effect. This study provides evidence that infected PVMs are highly sensitive to CSF1R inhibition, opening new possibilities to achieve viral clearance.
Collapse
Affiliation(s)
- Diana G Bohannon
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Laurent D Zablocki-Thomas
- Department of Anatomy, Physiology & Cell Biology, University California, Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Evan S Leung
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Jinbum K Dupont
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Julian B Hattler
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Jolanta Kowalewska
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Miaoyun Zhao
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jiangtao Luo
- Department of Health Systems and Population Health Sciences, the Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, TX 77204, USA
| | - Marco Salemi
- Department of Epidemiology, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Angela M Amedee
- Department of Microbiology, Immunology & Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Marcelo J Kuroda
- Department of Anatomy, Physiology & Cell Biology, University California, Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, 70433, USA
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Kaur H, Alluri RK, Wu K, Kalayjian RC, Bush WS, Palella FJ, Koletar SL, Hileman CO, Erlandson KM, Ellis RJ, Bedimo RJ, Taiwo BO, Tassiopoulos KK, Kallianpur AR. Sex-Biased Associations of Circulating Ferroptosis Inhibitors with Reduced Lipid Peroxidation and Better Neurocognitive Performance in People with HIV. Antioxidants (Basel) 2024; 13:1042. [PMID: 39334701 PMCID: PMC11429126 DOI: 10.3390/antiox13091042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Ferroptosis is implicated in viral neuropathogenesis and may underlie HIV-associated neurocognitive impairment (NCI). Emerging data also suggest differences in brain iron transport by sex. We hypothesized that circulating ferritins that inhibit ferroptosis associate with neurocognitive function and NCI in people with HIV (PWH) in a sex-biased manner. Serum ferritin heavy-chain-1 (FTH1), ferritin light-chain (FTL), and urinary F2-isoprostanes (uF2-isoPs, specific lipid peroxidation marker) were quantified in 324 PWH (including 61 women) with serial global (NPZ-4) and domain-specific neurocognitive testing. Biomarker associations with neurocognitive test scores and NCIs were evaluated by multivariable regression; correlations with uF2-isoPs were also assessed. Higher FTL and FTH1 levels were associated with less NCI in all PWH (adjusted odds ratios 0.53, 95% confidence interval (95% CI) 0.36-0.79 and 0.66, 95% CI 0.45-0.97, respectively). In women, higher FTL and FTH1 were also associated with better NPZ-4 (FTL adjusted beta (β) = 0.15, 95% CI 0.02-0.29; FTL-by-sex βinteraction = 0.32, p = 0.047) and domain-specific neurocognitive test scores. Effects on neurocognitive performance persisted for up to 5 years. Levels of both ferritins correlated inversely with uF2-isoPs in women (FTL: rho = -0.47, p < 0.001). Circulating FTL and FTH1 exert sustained, sex-biased neuroprotective effects in PWH, possibly by protecting against iron-mediated lipid peroxidation (ferroptosis). Larger studies are needed to confirm the observed sex differences and further delineate the underlying mechanisms.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Genomic Medicine, Cleveland Clinic/Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ravi K Alluri
- Department of Genomic Medicine, Cleveland Clinic/Lerner Research Institute, Cleveland, OH 44195, USA
| | - Kunling Wu
- Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Robert C Kalayjian
- Department of Medicine/Infectious Diseases, MetroHealth Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Frank J Palella
- Department of Medicine/Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Susan L Koletar
- Department of Medicine/Infectious Diseases, The Ohio State University, Columbus, OH 43210, USA
| | - Corrilynn O Hileman
- Department of Medicine/Infectious Diseases, MetroHealth Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kristine M Erlandson
- Department of Medicine/Infectious Diseases, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ronald J Ellis
- Department of Neurosciences, University of California-San Diego, San Diego, CA 92103, USA
| | - Roger J Bedimo
- Medicine/Infectious Diseases Section, VA North Texas Health Care System, Dallas, TX 75216, USA
| | - Babafemi O Taiwo
- Department of Medicine/Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Asha R Kallianpur
- Department of Genomic Medicine, Cleveland Clinic/Lerner Research Institute, Cleveland, OH 44195, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
14
|
Hu A, Zaongo SD, Harypursat V, Wang X, Ouyang J, Chen Y. HIV-associated neurocognitive disorder: key implications of the microbiota-gut-brain axis. Front Microbiol 2024; 15:1428239. [PMID: 39155987 PMCID: PMC11327151 DOI: 10.3389/fmicb.2024.1428239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is now recognized to be relatively common in people living with HIV (PLWH), and remains a common cause of cognitive impairment. Unfortunately, the fundamental pathogenic processes underlying this specific outcome of HIV infection have not as yet been fully elucidated. With increased interest in research related to the microbiota-gut-brain axis, the gut-brain axis has been shown to play critical roles in regulating central nervous system disorders such as Alzheimer's disease and Parkinson's disease. PLWH are characterized by a particular affliction, referred to as gut-associated dysbiosis syndrome, which provokes an alteration in microbial composition and diversity, and of their associated metabolite composition within the gut. Interestingly, the gut microbiota has also been recognized as a key element, which both positively and negatively influences human brain health, including the functioning and development of the central nervous system (CNS). In this review, based on published evidence, we critically discuss the relevant interactions between the microbiota-gut-brain axis and the pathogenesis of HAND in the context of HIV infection. It is likely that HAND manifestation in PLWH mainly results from (i) gut-associated dysbiosis syndrome and a leaky gut on the one hand and (ii) inflammation on the other hand. In other words, the preceding features of HIV infection negatively alter the composition of the gut microbiota (microbes and their associated metabolites) and promote proinflammatory immune responses which singularly or in tandem damage neurons and/or induce inadequate neuronal signaling. Thus, HAND is fairly prevalent in PLWH. This work aims to demonstrate that in the quest to prevent and possibly treat HAND, the gut microbiota may ultimately represent a therapeutically targetable "host factor."
Collapse
Affiliation(s)
- Aizhen Hu
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Xin Wang
- Phase I Clinical Trial Center, Chonggang General Hospital, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
15
|
Ayoub SM, Holloway BM, Miranda AH, Roberts BZ, Young JW, Minassian A, Ellis RJ. The Impact of Cannabis Use on Cognition in People with HIV: Evidence of Function-Dependent Effects and Mechanisms from Clinical and Preclinical Studies. Curr HIV/AIDS Rep 2024; 21:87-115. [PMID: 38602558 PMCID: PMC11129923 DOI: 10.1007/s11904-024-00698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Cannabis may have beneficial anti-inflammatory effects in people with HIV (PWH); however, given this population's high burden of persisting neurocognitive impairment (NCI), clinicians are concerned they may be particularly vulnerable to the deleterious effects of cannabis on cognition. Here, we present a systematic scoping review of clinical and preclinical studies evaluating the effects of cannabinoid exposure on cognition in HIV. RECENT FINDINGS Results revealed little evidence to support a harmful impact of cannabis use on cognition in HIV, with few eligible preclinical data existing. Furthermore, the beneficial/harmful effects of cannabis use observed on cognition were function-dependent and confounded by several factors (e.g., age, frequency of use). Results are discussed alongside potential mechanisms of cannabis effects on cognition in HIV (e.g., anti-inflammatory), and considerations are outlined for screening PWH that may benefit from cannabis interventions. We further highlight the value of accelerating research discoveries in this area by utilizing translatable cross-species tasks to facilitate comparisons across human and animal work.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA.
| | - Breanna M Holloway
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Alannah H Miranda
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Chien A, Wu T, Lau CY, Pandya D, Wiebold A, Agan B, Snow J, Smith B, Nath A, Nair G. White and Gray Matter Changes are Associated With Neurocognitive Decline in HIV Infection. Ann Neurol 2024; 95:941-950. [PMID: 38362961 PMCID: PMC11060903 DOI: 10.1002/ana.26896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To investigate the relationship between neurocognitive deficits and structural changes on brain magnetic resonance imaging in people living with HIV (PLWH) with good virological control on combination antiretroviral therapy, compared with socioeconomically matched control participants recruited from the same communities. METHODS Brain magnetic resonance imaging scans, and clinical and neuropsychological data were obtained from virologically controlled PLWH (viral load of <50 c/mL and at least 1 year of combination antiretroviral therapy) and socioeconomically matched control participants. Magnetic resonance imaging was carried out on 3 T scanner with 8-channel head coils and segmented using Classification using Derivative-based Features. Multiple regression analysis was performed to examine the association between brain volume and various clinical and neuropsychiatric parameters adjusting for age, race, and sex. To evaluate longitudinal changes in brain volumes, a random coefficient model was used to evaluate the changes over time (age) adjusting for sex and race. RESULTS The cross-sectional study included 164 PLWH and 51 controls, and the longitudinal study included 68 PLWH and 20 controls with 2 or more visits (mean 2.2 years, range 0.8-5.1 years). Gray matter (GM) atrophy rate was significantly higher in PLWH compared with control participants, and importantly, the GM and global atrophy was associated with the various neuropsychological domain scores. Higher volume of white matter hyperintensities were associated with increased atherosclerotic cardiovascular disease risk score, and decreased executive functioning and memory domain scores in PLWH. INTERPRETATION These findings suggest ongoing neurological damage even in virologically controlled participants, with significant implications for clinical management of PLWH. ANN NEUROL 2024;95:941-950.
Collapse
Affiliation(s)
- Alice Chien
- National Institute of Neurological Disorders and Stroke, MD, USA
| | - Tianxia Wu
- National Institute of Neurological Disorders and Stroke, MD, USA
| | - Chuen-Yen Lau
- National Institute of Allergy and Infectious Diseases, MD, USA
| | - Darshan Pandya
- National Institute of Neurological Disorders and Stroke, MD, USA
| | - Amanda Wiebold
- National Institute of Neurological Disorders and Stroke, MD, USA
| | - Brian Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Joseph Snow
- National Institute of Mental Health, MD, USA
| | - Bryan Smith
- National Institute of Neurological Disorders and Stroke, MD, USA
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, MD, USA
| | - Govind Nair
- National Institute of Neurological Disorders and Stroke, MD, USA
| |
Collapse
|
17
|
Moschopoulos CD, Stanitsa E, Protopapas K, Kavatha D, Papageorgiou SG, Antoniadou A, Papadopoulos A. Multimodal Approach to Neurocognitive Function in People Living with HIV in the cART Era: A Comprehensive Review. Life (Basel) 2024; 14:508. [PMID: 38672778 PMCID: PMC11050956 DOI: 10.3390/life14040508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Combination antiretroviral treatment (cART) has revolutionized the management of human immunodeficiency virus (HIV) and has markedly improved the disease burden and life expectancy of people living with HIV. HIV enters the central nervous system (CNS) early in the course of infection, establishes latency, and produces a pro-inflammatory milieu that may affect cognitive functions, even in the cART era. Whereas severe forms of neurocognitive impairment (NCI) such as HIV-associated dementia have declined over the last decades, milder forms have become more prevalent, are commonly multifactorial, and are associated with comorbidity burdens, mental health, cART neurotoxicity, and ageing. Since 2007, the Frascati criteria have been used to characterize and classify HIV-associated neurocognitive disorders (HAND) into three stages, namely asymptomatic neurocognitive impairment (ANI), mild neurocognitive disorder (MND), and HIV-associated dementia (HAD). These criteria are based on a comprehensive neuropsychological assessment that presupposes the availability of validated, demographically adjusted, and normative population data. Novel neuroimaging modalities and biomarkers have been proposed in order to complement NCI assessments, elucidate neuropathogenic mechanisms, and support HIV-associated NCI diagnosis, monitoring, and prognosis. By integrating neuropsychological assessments with biomarkers and neuroimaging into a holistic care approach, clinicians can enhance diagnostic accuracy, prognosis, and patient outcomes. This review interrogates the value of these modes of assessment and proposes a unified approach to NCI diagnosis.
Collapse
Affiliation(s)
- Charalampos D. Moschopoulos
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Evangelia Stanitsa
- 1st Department of Neurology, Medical School of Athens, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.S.); (S.G.P.)
| | - Konstantinos Protopapas
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Dimitra Kavatha
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Medical School of Athens, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.S.); (S.G.P.)
| | - Anastasia Antoniadou
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| | - Antonios Papadopoulos
- 4th Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, 12462 Athens, Greece; (K.P.); (D.K.); (A.A.); (A.P.)
| |
Collapse
|
18
|
Zhao J, Wu Y, Chen F, Zhao H, Chen J, Jing B, Li H. Distance-specific functional connectivity strength alterations in human immunodeficiency virus asymptomatic neurocognitive impairment patients: a cross-sectional study. Quant Imaging Med Surg 2024; 14:1835-1843. [PMID: 38415129 PMCID: PMC10895095 DOI: 10.21037/qims-23-1161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/20/2023] [Indexed: 02/29/2024]
Abstract
Background Asymptomatic neurocognitive impairment (ANI) is the mildest form of human immunodeficiency virus (HIV)-associated neurocognitive disorders (HANDs), and functional connectivity strength (FCS) alternations have been observed in the ANI stage. However, it is not clear whether the FCS alterations are influenced by the anatomical distance. This study sought to investigate distance-specific FCS changes in HIV ANI patients. Methods In total, 29 patients with HAND and 32 healthy controls (HCs) were enrolled in the study. Between-group differences were detected for short, middle and long range anatomical distance FCS. A correlation analysis was performed to examine the relationship between distance-specific FCS and immunological parameters and neuropsychological tests. A receiver operating characteristic (ROC) analysis was conducted to examine the discriminative performance for HIV ANI patients. Results In comparison to the HCs, the HAND patients showed increased short-range FCS in the left inferior parietal lobule (IPL), middle-range FCS in the superior temporal gyrus (STG), long-range FCS in the left precuneus (PCC), and decreased FCS in the right postcentral gyrus (PCG) (cluster P<0.05, voxel significance P<0.001). Further, the long-range FCS in the right PCG was negatively correlated with the CD4/CD8 ratio (r=-0.479, 95% confidence interval (CI): -0.735 to -0.104, P=0.015), and the distance-specific FCS also showed good classification performance between the HAND patients and HCs. The left IPL, left STG, right PCG, and left PCC had areas under the curve (AUCs) of 0.875 [95% confidence interval (CI): 0.758-0.949, P<0.0001], 0.806 (95% CI: 0.677-0.900, P<0.0001), 0.855 (95% CI: 0.734-0.935, P<0.0001), and 0.852 (95% CI: 0.754-0.950, P<0.0001), respectively. There was no significant relationship between the distance-specific FCS and the neuropsychological tests. Conclusions Distance-specific FCS could be used to examine subtle alternations in HIV-infected patients in the ANI stage and help to explain the possible neurophysiological mechanism of HAND.
Collapse
Affiliation(s)
- Jing Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Feng Chen
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Haiyan Zhao
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jian Chen
- School of Electronic, Electrical Engineering and Physics, Fujian University of Technology, Fuzhou, China
| | - Bin Jing
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Pfefferbaum A, Zhao Q, Pohl KM, Sassoon SA, Zahr NM, Sullivan EV. Age-Accelerated Increase of White Matter Hyperintensity Volumes Is Exacerbated by Heavy Alcohol Use in People Living With HIV. Biol Psychiatry 2024; 95:231-244. [PMID: 37597798 PMCID: PMC10840832 DOI: 10.1016/j.biopsych.2023.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/13/2023] [Accepted: 07/30/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Antiretroviral treatment has enabled people living with HIV infection to have a near-normal life span. With longevity comes opportunities for engaging in risky behavior, including initiation of excessive drinking. Given that both HIV infection and alcohol use disorder (AUD) can disrupt brain white matter integrity, we questioned whether HIV infection, even if successfully treated, or AUD alone results in signs of accelerated white matter aging and whether HIV+AUD comorbidity further accelerates brain aging. METHODS Longitudinal magnetic resonance imaging-FLAIR data were acquired over a 15-year period from 179 control individuals, 204 participants with AUD, 70 participants with HIV, and 75 participants with comorbid HIV+AUD. White matter hyperintensity (WMH) volumes were quantified and localized, and their functional relevance was examined with cognitive and motor testing. RESULTS The 3 diagnostic groups each had larger WMH volumes than the control group. Although all 4 groups exhibited accelerating volume increases with aging, only the HIV groups showed faster WMH enlargement than control individuals; the comorbid group showed faster acceleration than the HIV-only group. Sex and HIV infection length, but not viral suppression status, moderated acceleration. Correlations emerged between WMH volumes and attention/working memory and executive function scores of the AUD and HIV groups and between WMH volumes and motor skills in the 3 diagnostic groups. CONCLUSIONS Even treated HIV can show accelerated aging, possibly from treatment sequelae or legacy effects, and notably from AUD comorbidity. WMH volumes may be especially relevant for tracking HIV and AUD brain health because each condition is associated with liability for hypertensive processes, for which WMHs are considered a marker.
Collapse
Affiliation(s)
- Adolf Pfefferbaum
- Center for Health Sciences, SRI International, Menlo Park, California; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Qingyu Zhao
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Kilian M Pohl
- Center for Health Sciences, SRI International, Menlo Park, California; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | | | - Natalie M Zahr
- Center for Health Sciences, SRI International, Menlo Park, California; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Edith V Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
20
|
Lu T, Ding L, Zheng X, Li Y, Wei W, Liu W, Tao J, Xue X. Alisol A Exerts Neuroprotective Effects Against HFD-Induced Pathological Brain Aging via the SIRT3-NF-κB/MAPK Pathway. Mol Neurobiol 2024; 61:753-771. [PMID: 37659035 PMCID: PMC10861652 DOI: 10.1007/s12035-023-03592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Chronic consumption of a high-fat diet (HFD) has profound effects on brain aging, which is mainly characterized by cognitive decline, inflammatory responses, and neurovascular damage. Alisol A (AA) is a triterpenoid with therapeutic potential for metabolic diseases, but whether it has a neuroprotective effect against brain aging caused by a HFD has not been investigated. Six-month-old male C57BL6/J mice were exposed to a HFD with or without AA treatment for 12 weeks. Behavioral tasks were used to assess the cognitive abilities of the mice. Neuroinflammation and changes in neurovascular structure in the brains were examined. We further assessed the mechanism by which AA exerts neuroprotective effects against HFD-induced pathological brain aging in vitro and in vivo. Behavioral tests showed that cognitive function was improved in AA-treated animals. AA treatment reduced microglia activation and inflammatory cytokine release induced by a HFD. Furthermore, AA treatment increased the number of hippocampal neurons, the density of dendritic spines, and the expression of tight junction proteins. We also demonstrated that AA attenuated microglial activation by targeting the SIRT3-NF-κB/MAPK pathway and ameliorated microglial activation-induced tight junction degeneration in endothelial cells and apoptosis in hippocampal neurons. The results of this study show that AA may be a promising agent for the treatment of HFD-induced brain aging.
Collapse
Affiliation(s)
- Taotao Lu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
- Fujian Key Laboratory of Rehabilitation Techniques, Cognitive Rehabilitation, Fuzhou, 350112, China
| | - Linlin Ding
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
| | - Xiaoqing Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
| | - Yongxu Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, No 13, Hudongzhi Road, Fuzhou City, 350003, Fujian Province, China
| | - Wei Wei
- Fujian Key Laboratory of Rehabilitation Techniques, Cognitive Rehabilitation, Fuzhou, 350112, China
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, No 13, Hudongzhi Road, Fuzhou City, 350003, Fujian Province, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350112, China
- Fujian Key Laboratory of Rehabilitation Techniques, Cognitive Rehabilitation, Fuzhou, 350112, China
| | - Xiehua Xue
- Fujian Key Laboratory of Rehabilitation Techniques, Cognitive Rehabilitation, Fuzhou, 350112, China.
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, No 13, Hudongzhi Road, Fuzhou City, 350003, Fujian Province, China.
| |
Collapse
|
21
|
Starr A, Nickoloff-Bybel E, Abedalthaqafi R, Albloushi N, Jordan-Sciutto KL. Human iPSC-derived neurons reveal NMDAR-independent dysfunction following HIV-associated insults. Front Mol Neurosci 2024; 16:1353562. [PMID: 38348237 PMCID: PMC10859444 DOI: 10.3389/fnmol.2023.1353562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/30/2023] [Indexed: 02/15/2024] Open
Abstract
The central nervous system encounters a number of challenges following HIV infection, leading to increased risk for a collection of neurocognitive symptoms clinically classified as HIV-associated neurocognitive disorders (HAND). Studies attempting to identify causal mechanisms and potential therapeutic interventions have historically relied on primary rodent neurons, but a number of recent reports take advantage of iPSC-derived neurons in order to study these mechanisms in a readily reproducible, human model. We found that iPSC-derived neurons differentiated via an inducible neurogenin-2 transcription factor were resistant to gross toxicity from a number of HIV-associated insults previously reported to be toxic in rodent models, including HIV-infected myeloid cell supernatants and the integrase inhibitor antiretroviral drug, elvitegravir. Further examination of these cultures revealed robust resistance to NMDA receptor-mediated toxicity. We then performed a comparative analysis of iPSC neurons exposed to integrase inhibitors and activated microglial supernatants to study sub-cytotoxic alterations in micro electrode array (MEA)-measured neuronal activity and gene expression, identifying extracellular matrix interaction/morphogenesis as the most consistently altered pathways across HIV-associated insults. These findings illustrate that HIV-associated insults dysregulate human neuronal activity and organization even in the absence of gross NMDA-mediated neurotoxicity, which has important implications on the effects of these insults in neurodevelopment and on the interpretation of primary vs. iPSC in vitro neuronal studies.
Collapse
Affiliation(s)
| | | | | | | | - Kelly L. Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Zhan Y, Cai DC, Liu Y, Song F, Shan F, Song P, Chen G, Zhang Y, Wang H, Shi Y. Altered metabolism in right basal ganglia associated with asymptomatic neurocognitive impairment in HIV-infected individuals. Heliyon 2024; 10:e23342. [PMID: 38169709 PMCID: PMC10758793 DOI: 10.1016/j.heliyon.2023.e23342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/02/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Background Only few studies have focused on the metabolite differences between asymptomatic neurocognitive impairment (ANI) and cognitively normal people living with HIV (PLWH). The current study aims to examine whether brain metabolisms in basal ganglia (BG) by magnetic resonance spectroscopy (MRS) were potential to discriminate ANI from cognitively normal PLWH. Methods According to neuropsychological (NP) test, 80 PLWH (37.4 ± 10.2 years) were divided into ANI group (HIV-ANI, n = 31) and NP normal group (HIV-normal, n = 49). Brain metabolisms by MRS from right BG were compared between groups, including N-acetylaspartate and N-acetyl aspartylglutamate (tNAA), creatine and phosphocreatine (tCr), and choline-containing compounds (tCho). A total value of three metabolites were introduced. All brain metabolisms were evaluated as its percentage of total. Furthermore, correlations between MRS and NP and clinical measures were evaluated. A logistic regression model was applied, and the AUC values for the model and the continuous factors were compared using receiver operating curve (ROC) analysis. Results Compared to HIV-normal group, tNAA/total was lower and tCr/total was higher in the HIV-ANI group (P < 0.05). Both tNAA/total and tCr/total values were correlated with NP score (P < 0.05), especially in verbal fluency, speed of information processing, learning, and recall (P < 0.05). The logistic model included BG-tCr/total, current CD4 and infection years of PLWH. The AUC value for the BG-tCr/total was 0.696 and was not significantly lower than that for logistic model (P < 0.01). Conclusion The altered brain metabolites in the right BG were found in the ANI group compared to PLWH with normal cognition, and further associated with NP deficits. The current findings indicated that brain metabolites assessed by MRS has the potential to discriminate ANI from cognitively normal PLWH.
Collapse
Affiliation(s)
- Yi Zhan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dan-Chao Cai
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Ying Liu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Fengxiang Song
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Pengrui Song
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Guochao Chen
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yijun Zhang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Magaki S, Zhang T, Han K, Hilda M, Yong WH, Achim C, Fishbein G, Fishbein MC, Garner O, Salamon N, Williams CK, Valdes-Sueiras MA, Hsu JJ, Kelesidis T, Mathisen GE, Lavretsky H, Singer EJ, Vinters HV. HIV and COVID-19: two pandemics with significant (but different) central nervous system complications. FREE NEUROPATHOLOGY 2024; 5:5-5. [PMID: 38469363 PMCID: PMC10925920 DOI: 10.17879/freeneuropathology-2024-5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024]
Abstract
Human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause significant neurologic disease. Central nervous system (CNS) involvement of HIV has been extensively studied, with well-documented invasion of HIV into the brain in the initial stage of infection, while the acute effects of SARS-CoV-2 in the brain are unclear. Neuropathologic features of active HIV infection in the brain are well characterized whereas neuropathologic findings in acute COVID-19 are largely non-specific. On the other hand, neuropathologic substrates of chronic dysfunction in both infections, as HIV-associated neurocognitive disorders (HAND) and post-COVID conditions (PCC)/long COVID are unknown. Thus far, neuropathologic studies on patients with HAND in the era of combined antiretroviral therapy have been inconclusive, and autopsy studies on patients diagnosed with PCC have yet to be published. Further longitudinal, multidisciplinary studies on patients with HAND and PCC and neuropathologic studies in comparison to controls are warranted to help elucidate the mechanisms of CNS dysfunction in both conditions.
Collapse
Affiliation(s)
- Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Ting Zhang
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Karam Han
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Mirbaha Hilda
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - William H. Yong
- Department of Pathology and Laboratory Medicine, University of California-Irvine School of Medicine, Irvine, CA, USA
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Gregory Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Miguel A. Valdes-Sueiras
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey J. Hsu
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Glenn E. Mathisen
- Department of Infectious Diseases, Olive View-University of California Los Angeles Medical Center, Sylmar, CA, USA
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elyse J. Singer
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
Riggs PK, Anderson AM, Tang B, Rubin LH, Morgello S, Marra CM, Gelman BB, Clifford DB, Franklin D, Heaton RK, Ellis RJ, Fennema-Notestine C, Letendre SL. Elevated Plasma Protein Carbonyl Concentration Is Associated with More Abnormal White Matter in People with HIV. Viruses 2023; 15:2410. [PMID: 38140650 PMCID: PMC10747698 DOI: 10.3390/v15122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Structural brain abnormalities, including those in white matter (WM), remain common in people with HIV (PWH). Their pathogenesis is uncertain and may reflect multiple etiologies. Oxidative stress is associated with inflammation, HIV, and its comorbidities. The post-translational carbonylation of proteins results from oxidative stress, and circulating protein carbonyls may reflect this. In this cross-sectional analysis, we evaluated the associations between protein carbonyls and a panel of soluble biomarkers of neuronal injury and inflammation in plasma (N = 45) and cerebrospinal fluid (CSF, n = 32) with structural brain MRI. The volume of abnormal WM was normalized for the total WM volume (nAWM). In this multisite project, all regression models were adjusted for the scanner. The candidate covariates included demographics, HIV disease characteristics, and comorbidities. Participants were PWH on virally suppressive antiretroviral therapy (ART) and were mostly white (64.4%) men (88.9%), with a mean age of 56.8 years. In unadjusted analyses, more nAWM was associated with higher plasma protein carbonyls (p = 0.002) and higher CCL2 (p = 0.045). In the adjusted regression models for nAWM, the association with plasma protein carbonyls remained significant (FDR p = 0.018). Protein carbonyls in plasma may be a valuable biomarker of oxidative stress and its associated adverse health effects, including within the central nervous system. If confirmed, these findings would support the hypothesis that reducing oxidative stress could treat or prevent WM injury in PWH.
Collapse
Affiliation(s)
- Patricia K. Riggs
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Albert M. Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bin Tang
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Leah H. Rubin
- Departments of Neurology, Psychiatry and Behavioral Sciences, and Epidemiology, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, Mt Sinai School of Medicine, New York, NY 10029, USA
| | - Christina M. Marra
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Benjamin B. Gelman
- Departments of Pathology, and Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David B. Clifford
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Donald Franklin
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Robert K. Heaton
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Department of Radiology, University of California San Diego, San Diego, CA 92093, USA
| | - Scott L. Letendre
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
25
|
Ellis RJ, Marquine MJ, Kaul M, Fields JA, Schlachetzki JCM. Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Nat Rev Neurol 2023; 19:668-687. [PMID: 37816937 PMCID: PMC11052664 DOI: 10.1038/s41582-023-00879-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
People living with HIV are affected by the chronic consequences of neurocognitive impairment (NCI) despite antiretroviral therapies that suppress viral replication, improve health and extend life. Furthermore, viral suppression does not eliminate the virus, and remaining infected cells may continue to produce viral proteins that trigger neurodegeneration. Comorbidities such as diabetes mellitus are likely to contribute substantially to CNS injury in people living with HIV, and some components of antiretroviral therapy exert undesirable side effects on the nervous system. No treatment for HIV-associated NCI has been approved by the European Medicines Agency or the US Food and Drug Administration. Historically, roadblocks to developing effective treatments have included a limited understanding of the pathophysiology of HIV-associated NCI and heterogeneity in its clinical manifestations. This heterogeneity might reflect multiple underlying causes that differ among individuals, rather than a single unifying neuropathogenesis. Despite these complexities, accelerating discoveries in HIV neuropathogenesis are yielding potentially druggable targets, including excessive immune activation, metabolic alterations culminating in mitochondrial dysfunction, dysregulation of metal ion homeostasis and lysosomal function, and microbiome alterations. In addition to drug treatments, we also highlight the importance of non-pharmacological interventions. By revisiting mechanisms implicated in NCI and potential interventions addressing these mechanisms, we hope to supply reasons for optimism in people living with HIV affected by NCI and their care providers.
Collapse
Affiliation(s)
- Ronald J Ellis
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - María J Marquine
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Marcus Kaul
- School of Medicine, Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
O’Connor EE, Sullivan EV, Chang L, Hammoud DA, Wilson TW, Ragin AB, Meade CS, Coughlin J, Ances BM. Imaging of Brain Structural and Functional Effects in People With Human Immunodeficiency Virus. J Infect Dis 2023; 227:S16-S29. [PMID: 36930637 PMCID: PMC10022717 DOI: 10.1093/infdis/jiac387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Before the introduction of antiretroviral therapy, human immunodeficiency virus (HIV) infection was often accompanied by central nervous system (CNS) opportunistic infections and HIV encephalopathy marked by profound structural and functional alterations detectable with neuroimaging. Treatment with antiretroviral therapy nearly eliminated CNS opportunistic infections, while neuropsychiatric impairment and peripheral nerve and organ damage have persisted among virally suppressed people with HIV (PWH), suggesting ongoing brain injury. Neuroimaging research must use methods sensitive for detecting subtle HIV-associated brain structural and functional abnormalities, while allowing for adjustments for potential confounders, such as age, sex, substance use, hepatitis C coinfection, cardiovascular risk, and others. Here, we review existing and emerging neuroimaging tools that demonstrated promise in detecting markers of HIV-associated brain pathology and explore strategies to study the impact of potential confounding factors on these brain measures. We emphasize neuroimaging approaches that may be used in parallel to gather complementary information, allowing efficient detection and interpretation of altered brain structure and function associated with suboptimal clinical outcomes among virally suppressed PWH. We examine the advantages of each imaging modality and systematic approaches in study design and analysis. We also consider advantages of combining experimental and statistical control techniques to improve sensitivity and specificity of biotype identification and explore the costs and benefits of aggregating data from multiple studies to achieve larger sample sizes, enabling use of emerging methods for combining and analyzing large, multifaceted data sets. Many of the topics addressed in this article were discussed at the National Institute of Mental Health meeting "Biotypes of CNS Complications in People Living with HIV," held in October 2021, and are part of ongoing research initiatives to define the role of neuroimaging in emerging alternative approaches to identifying biotypes of CNS complications in PWH. An outcome of these considerations may be the development of a common neuroimaging protocol available for researchers to use in future studies examining neurological changes in the brains of PWH.
Collapse
Affiliation(s)
- Erin E O’Connor
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA
- Center for Health Sciences, SRI International, Menlo Park, California, USA
| | - Linda Chang
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, Maryland, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska, USA
| | - Ann B Ragin
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christina S Meade
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jennifer Coughlin
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Beau M Ances
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Murdoch DM, Barfield R, Chan C, Towe SL, Bell RP, Volkheimer A, Choe J, Hall SA, Berger M, Xie J, Meade CS. Neuroimaging and immunological features of neurocognitive function related to substance use in people with HIV. J Neurovirol 2023; 29:78-93. [PMID: 36348233 PMCID: PMC10089970 DOI: 10.1007/s13365-022-01102-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
This study sought to identify neuroimaging and immunological factors associated with substance use and that contribute to neurocognitive impairment (NCI) in people with HIV (PWH). We performed cross-sectional immunological phenotyping, neuroimaging, and neurocognitive testing on virally suppressed PWH in four substance groups: cocaine only users (COC), marijuana only users (MJ), dual users (Dual), and Non-users. Participants completed substance use assessments, multimodal MRI brain scan, neuropsychological testing, and blood and CSF sampling. We employed a two-stage analysis of 305 possible biomarkers of cognitive function associated with substance use. Feature reduction (Kruskal Wallis p-value < 0.05) identified 53 biomarkers associated with substance use (22 MRI and 31 immunological) for model inclusion along with clinical and demographic variables. We employed eXtreme Gradient Boosting (XGBoost) with these markers to predict cognitive function (global T-score). SHapley Additive exPlanations (SHAP) values were calculated to rank features for impact on model output and NCI. Participants were 110 PWH with sustained HIV viral suppression (33 MJ, 12 COC, 22 Dual, and 43 Non-users). The ten highest ranking biomarkers for predicting global T-score were 4 neuroimaging biomarkers including functional connectivity, gray matter volume, and white matter integrity; 5 soluble biomarkers (plasma glycine, alanine, lyso-phosphatidylcholine (lysoPC) aC17.0, hydroxy-sphingomyelin (SM.OH) C14.1, and phosphatidylcholinediacyl (PC aa) C28.1); and 1 clinical variable (nadir CD4 count). The results of our machine learning model suggest that substance use may indirectly contribute to NCI in PWH through both metabolomic and neuropathological mechanisms.
Collapse
Affiliation(s)
- David M Murdoch
- Department of Medicine, Duke University Medical Center, DUMC Box 2629, Durham, NC, 27710, USA.
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, NC, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, NC, USA
| | - Sheri L Towe
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Ryan P Bell
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Alicia Volkheimer
- Department of Medicine, Duke University Medical Center, DUMC Box 2629, Durham, NC, 27710, USA
| | - Joyce Choe
- Department of Medicine, Duke University Medical Center, DUMC Box 2629, Durham, NC, 27710, USA
| | - Shana A Hall
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jichun Xie
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, NC, USA
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Christina S Meade
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
28
|
Channer B, Matt SM, Nickoloff-Bybel EA, Pappa V, Agarwal Y, Wickman J, Gaskill PJ. Dopamine, Immunity, and Disease. Pharmacol Rev 2023; 75:62-158. [PMID: 36757901 PMCID: PMC9832385 DOI: 10.1124/pharmrev.122.000618] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter dopamine is a key factor in central nervous system (CNS) function, regulating many processes including reward, movement, and cognition. Dopamine also regulates critical functions in peripheral organs, such as blood pressure, renal activity, and intestinal motility. Beyond these functions, a growing body of evidence indicates that dopamine is an important immunoregulatory factor. Most types of immune cells express dopamine receptors and other dopaminergic proteins, and many immune cells take up, produce, store, and/or release dopamine, suggesting that dopaminergic immunomodulation is important for immune function. Targeting these pathways could be a promising avenue for the treatment of inflammation and disease, but despite increasing research in this area, data on the specific effects of dopamine on many immune cells and disease processes remain inconsistent and poorly understood. Therefore, this review integrates the current knowledge of the role of dopamine in immune cell function and inflammatory signaling across systems. We also discuss the current understanding of dopaminergic regulation of immune signaling in the CNS and peripheral tissues, highlighting the role of dopaminergic immunomodulation in diseases such as Parkinson's disease, several neuropsychiatric conditions, neurologic human immunodeficiency virus, inflammatory bowel disease, rheumatoid arthritis, and others. Careful consideration is given to the influence of experimental design on results, and we note a number of areas in need of further research. Overall, this review integrates our knowledge of dopaminergic immunology at the cellular, tissue, and disease level and prompts the development of therapeutics and strategies targeted toward ameliorating disease through dopaminergic regulation of immunity. SIGNIFICANCE STATEMENT: Canonically, dopamine is recognized as a neurotransmitter involved in the regulation of movement, cognition, and reward. However, dopamine also acts as an immune modulator in the central nervous system and periphery. This review comprehensively assesses the current knowledge of dopaminergic immunomodulation and the role of dopamine in disease pathogenesis at the cellular and tissue level. This will provide broad access to this information across fields, identify areas in need of further investigation, and drive the development of dopaminergic therapeutic strategies.
Collapse
Affiliation(s)
- Breana Channer
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Stephanie M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Emily A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Vasiliki Pappa
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Yash Agarwal
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Jason Wickman
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania (B.C., S.M.M., E.A.N-B., Y.A., J.W., P.J.G.); and The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania (V.P.)
| |
Collapse
|
29
|
Cognitive Intra-individual Variability in HIV: an Integrative Review. Neuropsychol Rev 2022; 32:855-876. [PMID: 34826006 PMCID: PMC9944348 DOI: 10.1007/s11065-021-09528-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/30/2021] [Indexed: 10/19/2022]
Abstract
Nearly 30-50% of people living with HIV experience HIV-Associated Neurocognitive Disorder (HAND). HAND indicates performance at least one standard deviation below the normative mean on any two cognitive domains. This method for diagnosing or classifying cognitive impairment has utility, however, cognitive intraindividual variability provides a different way to understand cognitive impairment. Cognitive intraindividual variability refers to the scatter in cognitive performance within repeated measures of the same cognitive test (i.e., inconsistency) or across different cognitive tests (i.e., dispersion). Cognitive intraindividual variability is associated with cognitive impairment and cognitive decline in various clinical populations. This integrative review of 13 articles examined two types of cognitive intraindividual variability in people living with HIV, inconsistency and dispersion. Cognitive intraindividual variability appears to be a promising approach to detect subtle cognitive impairments that are not captured by traditional mean-based neuropsychological testing. Greater intraindividual variability in people living with HIV has been associated with: 1) poorer cognitive performance and cognitive decline, 2) cortical atrophy, both gray and white matter volume, 3) poorer everyday functioning (i.e., driving simulation performance), specifically medication adherence, and 4) even mortality. This inspires future directions for research. First, greater cognitive intraindividual variability may reflect a greater task demand on executive control to harness and regulate cognitive control over time. By improving executive functioning through cognitive training, it may reduce cognitive intraindividual variability which could slow down cognitive decline. Second, cognitive intraindividual variability may be reconsidered in prior cognitive intervention studies in which only mean-based cognitive outcomes were used. It is possible that such cognitive interventions may actually improve cognitive intraindividual variability, which could have clinical relevance.
Collapse
|
30
|
Elevation of cell-associated HIV-1 transcripts in CSF CD4+ T cells, despite effective antiretroviral therapy, is linked to brain injury. Proc Natl Acad Sci U S A 2022; 119:e2210584119. [PMID: 36413502 PMCID: PMC9860316 DOI: 10.1073/pnas.2210584119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antiretroviral therapy (ART) can attain prolonged undetectable HIV-1 in plasma and cerebrospinal fluid (CSF), but brain injury remains prevalent in people living with HIV-1 infection (PLHIV). We investigated cell-associated (CA)-HIV-1 RNA transcripts in cells in CSF and blood, using the highly sensitive Double-R assay, together with proton Magnetic Resonance Spectroscopy (1H MRS) of major brain metabolites, in sixteen PLHIV. 14/16 CSF cell samples had quantifiable CA-HIV-1 RNA, at levels significantly higher than in their PBMCs (median 9,266 vs 185 copies /106 CD4+ T-cells; p<0.0001). In individual PLHIV, higher levels of HIV-1 transcripts in CSF cells were associated with greater brain injury in the frontal white matter (Std β=-0.73; p=0.007) and posterior cingulate (Std β=-0.61; p=0.03). 18-colour flow cytometry revealed that the CSF cells were 91% memory T-cells, equally CD4+ and CD8+ T-cells, but fewer B cells (0.4 %), and monocytes (3.1%). CXCR3+CD49d+integrin β7-, CCR5+CD4+ T-cells were highly enriched in CSF, compared with PBMC (p <0.001). However, CA-HIV-1 RNA could not be detected in 10/16 preparations of highly purified monocytes from PBMC, and was extremely low in the other six. Our data show that elevated HIV-1 transcripts in CSF cells were associated with brain injury, despite suppressive ART. The cellular source is most likely memory CD4+ T cells from blood, rather than trafficking monocytes. Future research should focus on inhibitors of this transcription to reduce local production of potentially neurotoxic and inflammatory viral products.
Collapse
|
31
|
Fox HS, Niu M, Morsey BM, Lamberty BG, Emanuel K, Periyasamy P, Callen S, Acharya A, Kubik G, Eudy J, Guda C, Dyavar SR, Fletcher CV, Byrareddy SN, Buch S. Morphine suppresses peripheral responses and transforms brain myeloid gene expression to favor neuropathogenesis in SIV infection. Front Immunol 2022; 13:1012884. [PMID: 36466814 PMCID: PMC9709286 DOI: 10.3389/fimmu.2022.1012884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
The twin pandemics of opioid abuse and HIV infection can have devastating effects on physiological systems, including on the brain. Our previous work found that morphine increased the viral reservoir in the brains of treated SIV-infected macaques. In this study, we investigated the interaction of morphine and SIV to identify novel host-specific targets using a multimodal approach. We probed systemic parameters and performed single-cell examination of the targets for infection in the brain, microglia and macrophages. Morphine treatment created an immunosuppressive environment, blunting initial responses to infection, which persisted during antiretroviral treatment. Antiretroviral drug concentrations and penetration into the cerebrospinal fluid and brain were unchanged by morphine treatment. Interestingly, the transcriptional signature of both microglia and brain macrophages was transformed to one of a neurodegenerative phenotype. Notably, the expression of osteopontin, a pleiotropic cytokine, was significantly elevated in microglia. This was especially notable in the white matter, which is also dually affected by HIV and opioids. Increased osteopontin expression was linked to numerous HIV neuropathogenic mechanisms, including those that can maintain a viral reservoir. The opioid morphine is detrimental to SIV/HIV infection, especially in the brain.
Collapse
Affiliation(s)
- Howard S. Fox
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States,*Correspondence: Howard S. Fox,
| | - Meng Niu
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Brenda M. Morsey
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Benjamin G. Lamberty
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katy Emanuel
- Departments of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Palsamy Periyasamy
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shannon Callen
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arpan Acharya
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Gregory Kubik
- The Genomics Core Facility, University of Nebraska Medical Center, Omaha, NE, United States
| | - James Eudy
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chittibabu Guda
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shetty Ravi Dyavar
- The Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, Omaha, NE, United States
| | - Courtney V. Fletcher
- The Antiviral Pharmacology Laboratory, University of Nebraska Medical Center, Omaha, NE, United States
| | - Siddappa N. Byrareddy
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
32
|
Sreeram S, Ye F, Garcia-Mesa Y, Nguyen K, El Sayed A, Leskov K, Karn J. The potential role of HIV-1 latency in promoting neuroinflammation and HIV-1-associated neurocognitive disorder. Trends Immunol 2022; 43:630-639. [PMID: 35840529 PMCID: PMC9339484 DOI: 10.1016/j.it.2022.06.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Despite potent suppression of HIV-1 viral replication in the central nervous system (CNS) by antiretroviral therapy (ART), between 15% and 60% of HIV-1-infected patients receiving ART exhibit neuroinflammation and symptoms of HIV-1-associated neurocognitive disorder (HAND) - a significant unmet challenge. We propose that the emergence of HIV-1 from latency in microglia underlies both neuroinflammation in the CNS and the progression of HAND. Recent molecular studies of cellular silencing mechanisms of HIV-1 in microglia show that HIV-1 latency can be reversed both by proinflammatory cytokines and by signals from damaged neurons, potentially creating intermittent cycles of HIV-1 reactivation and silencing in the brain. We posit that anti-inflammatory agents that also block HIV-1 reactivation, such as nuclear receptor agonists, might provide new putative therapeutic avenues for the treatment of HAND.
Collapse
Affiliation(s)
- Sheetal Sreeram
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Kien Nguyen
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Ahmed El Sayed
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Konstantin Leskov
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology. Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
33
|
Meyer AC, Njamnshi AK, Gisslen M, Price RW. Neuroimmunology of CNS HIV Infection: A Narrative Review. Front Neurol 2022; 13:843801. [PMID: 35775044 PMCID: PMC9237409 DOI: 10.3389/fneur.2022.843801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
This short review provides an overview of the interactions of human immunodeficiency virus type 1 (HIV), immune and inflammatory reactions, and CNS injury over the course of infection. Systemic infection is the overall driver of disease and serves as the “platform” for eventual CNS injury, setting the level of immune dysfunction and providing both the HIV seeding and immune-inflammatory responses to the CNS. These systemic processes determine the timing of and vulnerability to HIV-related neuronal injury which occurs in a separate “compartment” with features that parallel their systemic counterparts but also evolve independently. Direct CNS HIV infection, along with opportunistic infections, can have profound neurological consequences for the infected individual. HIV-related CNS morbidities are of worldwide importance but are enhanced by the particular epidemiological, socioeconomic and environmental factors that heighten the impact of HIV infection in Africa.
Collapse
Affiliation(s)
- Ana-Claire Meyer
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alfred Kongnyu Njamnshi
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
| | - Magnus Gisslen
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Richard W. Price
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA, United States
- *Correspondence: Richard W. Price
| |
Collapse
|
34
|
Recent Advances in the Molecular and Cellular Mechanisms of gp120-Mediated Neurotoxicity. Cells 2022; 11:cells11101599. [PMID: 35626635 PMCID: PMC9139548 DOI: 10.3390/cells11101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/01/2023] Open
Abstract
Axonal degeneration and loss of synapses are often seen in different brain areas of people living with human immunodeficiency virus (HIV). Nevertheless, the underlying causes of the pathological alterations observed in these individuals are poorly comprehended, considering that HIV does not infect neurons. Experimental data have shown that viral proteins, including the envelope protein gp120, cause synaptic pathology followed by neuronal cell death. These neurotoxic effects on synapses could be the result of a variety of mechanisms that decrease synaptic plasticity. In this paper, we will briefly present new emerging concepts connected with the ability of gp120 to promote the degeneration of synapses by either directly damaging the axonal cytoskeleton and/or the indirect activation of the p75 neurotrophin receptor death domain in dendrites.
Collapse
|
35
|
Ellis RJ, Heaton RK, Tang B, Collier A, Marra CM, Gelman BB, Morgello S, Clifford DB, Sacktor N, Cookson D, Letendre S. Peripheral inflammation and depressed mood independently predict neurocognitive worsening over 12 years. Brain Behav Immun Health 2022; 21:100437. [PMID: 35308084 PMCID: PMC8928134 DOI: 10.1016/j.bbih.2022.100437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/09/2022] [Accepted: 02/26/2022] [Indexed: 10/25/2022] Open
Abstract
Background Neurocognitive (NC) impairment in people with HIV (PWH) is associated with important adverse outcomes, but no markers exist to predict long-term NC decline. We evaluated depressed mood and markers of persistent inflammation, oxidative stress and altered amyloid processing (all common in PWH) as predictors of NC worsening over 12 years. Methods PWH were enrolled and followed longitudinally in the CNS HIV Antiretroviral Effects Research (CHARTER) study at six US sites. At entry we quantified biomarkers in blood of inflammation: (interleukin-6 [IL-6], C-reactive protein [CRP], monocyte chemoattractant protein type 1 [MCP-1], D-dimer, soluble sCD14 (sCD14), soluble tumor necrosis factor receptor - type II [sTNFR-II], neopterin, and soluble CD40 ligand [sCD40L], oxidative stress (protein carbonyls, 8-oxo-2'-deoxyguanosine [8-oxo-dG]) and altered amyloid processing [amyloid beta (Aβ)-42, soluble amyloid precursor protein-α (sAPPα)] using commercial immunoassays. The Beck Depression Inventory-II (BDI-II) assessed depressed mood at entry. NC decline over 12 years was evaluated using the published and validated summary (global) regression-based change score (sRBCS). A factor analysis reduced dimensionality of the biomarkers. Univariable and multiple regression models tested the relationship between baseline predictors and the outcome of neurocognitive decline. Results Participants were 191 PWH, 37 (19.4%) women, 46.6% African American, 43.5% non-Hispanic white, 8.83% Hispanic, 15.7% white, 1.6% other; at study entry mean (SD) age 43.6 (8.06) years, estimated duration of HIV infection (median, IQR) 9.82 [4.44, 14.5] years, nadir CD4 104/μL (19,205), current CD4 568/μL (356, 817), and 80.1% had plasma HIV RNA <50 c/mL. Participants were enrolled between 2003 and 2007; median (IQR) duration of follow-up 12.4 [9.69, 16.2] years. Three biomarker factors were identified: Factor (F)1 (IL-6, CRP), F2 (sTNFR-II, neopterin) and F3 (sCD40L, sAPPα). Participants with higher F1, reflecting worse systemic inflammation at baseline, and higher F3, had greater decline in global neurocognition (r = -0.168, p = 0.0205 and r = -0.156, p = 0.0309, respectively). Of the F1 components, higher CRP levels were associated with worse decline (r = -0.154, p = 0.0332), while IL-6 did not (r = -0.109, p = 0.135). NC change was not significantly related to F2, nor to demographics, nadir and current CD4, viral suppression or baseline NC comorbidity ratings. Individuals with worse depressed mood at entry also experienced more NC decline (r = -0.1734, p = 0.0006). Together BDI-II (p = 0.0290), F1 (p = 0.0484) and F3 (p = 0.0309) contributed independently to NC decline (p = 0.0028); their interactions were not significant. Neither CRP nor IL-6 correlated significantly with depression. Conclusions PWH with greater systemic inflammation and more depression at entry had greater NC decline over 12 years. Understanding the basis of this inflammatory state might be particularly important. These findings raise the possibility that targeted anti-inflammatory or antidepressant therapies may help prevent NC worsening in PWH with depression and inflammation.
Collapse
Affiliation(s)
- Ronald J. Ellis
- University of California San Diego, San Diego, CA, United States
| | - Robert K. Heaton
- University of California San Diego, San Diego, CA, United States
| | - Bin Tang
- University of California San Diego, San Diego, CA, United States
| | - A.C. Collier
- University of Washington, Seattle, WA, United States
| | | | | | - S. Morgello
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - N. Sacktor
- Johns-Hopkins University, Baltimore, MD, United States
| | - D. Cookson
- University of California San Diego, San Diego, CA, United States
| | - Scott Letendre
- University of California San Diego, San Diego, CA, United States
| |
Collapse
|
36
|
The association between benzodiazepine use and greater risk of neurocognitive impairment is moderated by medical burden in people with HIV. J Neurovirol 2022; 28:410-421. [PMID: 35389174 PMCID: PMC9470605 DOI: 10.1007/s13365-022-01076-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022]
Abstract
Benzodiazepine use is linked to neurocognitive impairment (NCI) in the general population and people with HIV (PWH); however, this relationship may depend on age-related factors such as medical comorbidities, which occur at an elevated rate and manifest earlier in PWH. We retrospectively examined whether chronological age or medical burden, a clinical marker for aging, moderated the relationship between benzodiazepine use and NCI in PWH. Participants were 435 PWH on antiretroviral therapy who underwent neurocognitive and medical evaluations, including self-reported current benzodiazepine use. A medical burden index score (proportion of accumulated multisystem deficits) was calculated from 28 medical deficits. Demographically corrected cognitive deficit scores from 15 neuropsychological tests were used to calculate global and domain-specific NCI based on established cut-offs. Logistic regressions separately modeled global and domain-specific NCI as a function of benzodiazepine x age and benzodiazepine x medical burden interactions, adjusting for current affective symptoms and HIV disease characteristics. A statistically significant benzodiazepine x medical burden interaction (p = .006) revealed that current benzodiazepine use increased odds of global NCI only among those who had a high medical burden (index score > 0.3 as indicated by the Johnson–Neyman analysis), which was driven by the domains of processing speed, motor, and verbal fluency. No age x benzodiazepine interactive effects on NCI were present. Findings suggest that the relationship between BZD use and NCI among PWH is specific to those with greater medical burden, which may be a greater risk factor for BZD-related NCI than chronological age.
Collapse
|
37
|
Yen YF, Lai HH, Kuo YC, Chan SY, Chen LY, Chen CC, Wang TH, Wang CC, Chen M, Yen TF, Kuo LL, Kuo ST, Chuang PH. Association of depression and antidepressant therapy with antiretroviral therapy adherence and health-related quality of life in men who have sex with men. PLoS One 2022; 17:e0264503. [PMID: 35213633 PMCID: PMC8880848 DOI: 10.1371/journal.pone.0264503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 02/11/2022] [Indexed: 11/22/2022] Open
Abstract
UNAIDS’ HIV treatment targets require that 90% of people living with HIV/AIDS (PLWHA) receiving antiretroviral treatment (ART) achieve viral suppression and 90% of people with viral suppression have good health-related quality of life (HRQOL). This study aimed to examine the association of depression and antidepressant therapy with ART adherence and HRQOL in HIV-infected men who have sex with men (MSM). From 2018 through 2020, HIV-infected MSMs were consecutively recruited (N = 565) for the evaluation of ART adherence and HRQOL at Taipei City Hospital HIV clinics. Non-adherence to ART was defined as a Medication Adherence Report Scale score of < 23. HRQOL in PLWHHA was evaluated using WHOQOL-BREF, Taiwan version. Overall, 14.0% had depression and 12.4% exhibited non-adherence to ART. The nonadherence proportion was 21.8% and 10.5% in depressed and nondepressed HIV-infected MSM, respectively. After adjusting for other covariates, depression was associated with a higher risk of nonadherence to ART (adjusted odds ratio = 2.02; 95% confidence interval: 1.02–4.00). Physical, psychological, social, and environmental HRQOL were significantly negatively associated with depression. Considering antidepressant therapy, ART nonadherence was significantly associated with depression without antidepressant therapy but not with antidepressant therapy. The depressed HIV-infected MSM without antidepressant therapy had worse psychological, social, and environmental HRQOL than those with antidepressant therapy. Our study suggests that depression is associated with poor ART adherence and HRQOL, particularly in those without antidepressant therapy. Adequate diagnosis and treatment of depression should be provided for PLWHA to improve their ART adherence and HRQOL.
Collapse
Affiliation(s)
- Yung-Feng Yen
- Section of Infectious Diseases, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
- University of Taipei, Taipei, Taiwan
- * E-mail:
| | - Hsin-Hao Lai
- Section of Infectious Diseases, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Chun Kuo
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Taipei City Hospital, Linsen, Chinese Medicine, and Kunming Branch, Taipei, Taiwan
| | - Shang-Yih Chan
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- University of Taipei, Taipei, Taiwan
- Department of Internal Medicine, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - Lian-Yu Chen
- Kunming Prevention Center, Taipei City Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Chu-Chieh Chen
- Department of Health Care Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Teng-Ho Wang
- Section of Infectious Diseases, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Chien Chun Wang
- Section of Infectious Diseases, Taipei City Hospital, Linsen, Chinese Medicine, and Kunming Branch, Taipei, Taiwan
| | - Marcelo Chen
- Department of Urology, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Cosmetic Applications and Management, Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Tsen-Fang Yen
- Department of Nursing, Taipei City Hospital, Linsen, Chinese Medicine, and Kunming Branch, Taipei, Taiwan
| | - Li-Lan Kuo
- Department of Nursing, Taipei City Hospital, Linsen, Chinese Medicine, and Kunming Branch, Taipei, Taiwan
| | - Shu-Ting Kuo
- Department of Nursing, Taipei City Hospital, Linsen, Chinese Medicine, and Kunming Branch, Taipei, Taiwan
| | - Pei-Hung Chuang
- Section of Infectious Diseases, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| |
Collapse
|
38
|
Zang C, Liu H, Ju C, Yuan F, Ning J, Shang M, Bao X, Yu Y, Yao X, Zhang D. Gardenia jasminoides J. Ellis extract alleviated white matter damage through promoting the differentiation of oligodendrocyte precursor cells via suppressing neuroinflammation. Food Funct 2022; 13:2131-2141. [PMID: 35112688 DOI: 10.1039/d1fo02127c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Increasing evidence has highlighted the role of white matter damage in the pathology of Alzheimer's disease (AD). Previous research has shown that a mixture of crocin analogues (GJ-4), Gardenia jasminoides J. Ellis extract, improved cognition in several AD mouse models, but the mechanism remains unclear. The aim of the present study was to investigate the effects and underlying mechanisms of GJ-4 on white matter damage. Proteomic analysis and western blotting results suggested that the level of myelin-related proteins, including myelin basic protein (MBP), myelin associated glycoprotein (MAG) and myelin associated oligodendrocyte basic protein (MOBP), was significantly decreased in the brain of PrP-hAβPPswe/PS1ΔE9 (APP/PS1) transgenic mice, and GJ-4 treatment increased the expressions of these proteins. This result revealed that GJ-4 could ameliorate myelin injury, suggesting that this might be a possible mechanism of GJ-4 on cognition. To validate the effects of GJ-4 on myelin, a metabolite of GJ-4, crocetin, which can pass through the blood-brain barrier, was applied in in vitro experiments. A mechanistic study revealed that crocetin significantly promoted the differentiation of primary cultured oligodendrocyte precursor cells to oligodendrocytes through up-regulation of nuclear Ki67 and transcription factor 2 (Olig2). Oligodendrocytes, the myelin-forming cells, have been reported to be lifelong partners of neurons. Therefore, to investigate the effects of crocetin on myelin and neurons, lysophosphatidylcholine (LPC)-treated primary mixed midbrain neuronal/glial culture was used. Immunofluorescence results indicated that crocetin treatment protected neurons and suppressed microglial activation against LPC-induced injury. To further discern the effects of GJ-4 on white matter injury and neuroinflammation, an LPC-induced mouse model was developed. GJ-4 administration increased oligodendrocyte proliferation, differentiation, and myelin repair. The mechanistic study indicated that GJ-4 improved white matter injury through the regulation of neuroinflammatory dysfunction. These data indicated that GJ-4 effectively repaired white matter damage in the LPC-treated mice. Thus, the present study supported GJ-4 as a potential therapeutic agent for AD and white matter related diseases.
Collapse
Affiliation(s)
- Caixia Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Hui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Cheng Ju
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Fangyu Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Yang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Xinsheng Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P. R. China.
| |
Collapse
|
39
|
Sari H, Galbusera R, Bonnier G, Lin Y, Alshelh Z, Torrado-Carvajal A, Mukerji SS, Ratai EM, Gandhi RT, Chu JT, Akeju O, Orhurhu V, Salvatore AN, Sherman J, Kwon DS, Walker B, Rosen B, Price JC, Pollak LE, Loggia M, Granziera C. Multimodal Investigation of Neuroinflammation in Aviremic Patients With HIV on Antiretroviral Therapy and HIV Elite Controllers. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/2/e1144. [PMID: 35140142 PMCID: PMC8860468 DOI: 10.1212/nxi.0000000000001144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES The presence of HIV in the CNS has been related to chronic immune activation and cognitive dysfunction. The aim of this work was to investigate (1) the presence of neuroinflammation in aviremic people with HIV (PWH) on therapy and in nontreated aviremic PWH (elite controllers [ECs]) using a translocator protein 18 kDa radioligand; (2) the relationship between neuroinflammation and cognitive function in aviremic PWH; and (3) the relationship between [11C]-PBR28 signal and quantitative MRI (qMRI) measures of brain tissue integrity such as T1 and T2 relaxation times (rts). METHODS [11C]-PBR28 (standard uptake value ratio, SUVR) images were generated in 36 participants (14 PWH, 6 ECs, and 16 healthy controls) using a statistically defined pseudoreference region. Group comparisons of [11C]-PBR28 SUVR were performed using region of interest-based and voxelwise analyses. The relationship between inflammation, qMRI measures, and cognitive function was studied. RESULTS In region of interest analyses, ECs exhibited significantly lower [11C]-PBR28 signal in the thalamus, putamen, superior temporal gyrus, prefrontal cortex, and cerebellum compared with the PWH. In voxelwise analyses, differences were observed in the thalamus, precuneus cortex, inferior temporal gyrus, occipital cortex, cerebellum, and white matter (WM). [11C]-PBR28 signal in the WM and superior temporal gyrus was related to processing speed and selective attention in PWH. In a subset of PWH (n = 12), [11C]-PBR28 signal in the thalamus and WM regions was related to a decrease in T2 rt and to an increase in T1 rt suggesting a colocalization of increased glial metabolism, decrease in microstructural integrity, and iron accumulation. DISCUSSION This study casts a new light onto the role of neuroinflammation and related microstructural alterations of HIV infection in the CNS and shows that ECs suppress neuroinflammation more effectively than PWH on therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Cristina Granziera
- From the MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging (H.S., Y.L., Z.A., A.T.-C., E.M.R., A.N.S., B.R., J.C.P., M.L.), Massachusetts General Hospital, Harvard Medical School, Charlestown; Neurologic Clinic and Policlinic (R.G., G.B., C.G.), Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel (R.G., G.B., C.G.), Department of Biomedical Engineering, University Hospital Basel and University of Basel, Switzerland; Medical Image Analysis and Biometry Lab (A.T.-C.), Universidad Rey Juan Carlos, Madrid, Spain; Department of Neurology (S.S.M., R.T.G.), Infectious Diseases (J.T.C.), Department of Anesthesia (O.A., V.O.), and Department of Psychiatry (J.S., L.E.P.), Massachusetts General Hospital, Boston; and Ragon Institute of MGH (D.S.K., B.W.), MIT and Harvard, Cambridge, MA.
| |
Collapse
|
40
|
George G, Murphy DC, Hogg HDJ, Boniface JB, Urasa S, Rwiza J, Uwemeye L, Bristow C, Hillsmith G, Rainey E, Walker R, Gray WK, Maria-Paddick S. Evaluation of a low-resource screening strategy for ophthalmic pathologies and associated neurological morbidity in an older Tanzanian HIV-positive population. Sci Rep 2022; 12:1434. [PMID: 35082308 PMCID: PMC8791939 DOI: 10.1038/s41598-022-04989-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/06/2021] [Indexed: 12/20/2022] Open
Abstract
Globally, 43 million people are living with HIV, 90% in developing countries. Increasing life expectancy with combination antiretroviral therapy (cART) results in chronic complications, including HIV-associated neurocognitive disorders (HAND) and eye diseases. HAND screening is currently challenging. Our aim was to evaluate clinical utility of retinopathy as a screening measure of HAND in older cART-treated individuals in Tanzania and feasibility of smartphone-based retinal screening in this low-resource setting. A cross-sectional systematic sample aged ≥ 50-years attending routine HIV follow-up in Tanzania were comprehensively assessed for HAND by American Academy of Neurology criteria and received ophthalmic assessment including smartphone-based retinal imaging. HAND and ophthalmic assessments were independent and blinded. Diagnostic accuracy was evaluated by AUROC curves. Of 129 individuals assessed, 69.8% were visually impaired. Thirteen had retinopathy. HAND prevalence was 66.7%. Retinopathy was significantly associated with HAND but HIV-disease factors (CD4, viral load) were not. Diagnostic accuracy of retinopathy for HAND was poor (AUROC 0.545-0.617) but specificity and positive predictive value were high. We conclude that ocular pathology and HAND appear highly prevalent in this low-resource setting. Although retinal screening cannot be used alone identify HAND, prioritization of individuals with abnormal retinal screening is a potential strategy in low-resource settings.
Collapse
Affiliation(s)
- Grace George
- Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Declan C Murphy
- Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - H D Jeffry Hogg
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, Tyne and Wear, UK
| | | | - Sarah Urasa
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Justus Rwiza
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Livin Uwemeye
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Clare Bristow
- Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Grace Hillsmith
- Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Emma Rainey
- Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - Richard Walker
- Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
- Northumbria Healthcare NHS Foundation Trust, Newcastle upon Tyne, Tyne and Wear, UK
| | - William K Gray
- Northumbria Healthcare NHS Foundation Trust, Newcastle upon Tyne, Tyne and Wear, UK
| | - Stella Maria-Paddick
- Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK.
- Department of Old Age Psychiatry, Gateshead Health NHS Foundation Trust, Bensham Hospital, Fontwell Drive, Gateshead, Tyne and Wear, UK.
| |
Collapse
|
41
|
Simon L, Edwards S, Molina PE. Pathophysiological Consequences of At-Risk Alcohol Use; Implications for Comorbidity Risk in Persons Living With Human Immunodeficiency Virus. Front Physiol 2022; 12:758230. [PMID: 35115952 PMCID: PMC8804300 DOI: 10.3389/fphys.2021.758230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
At-risk alcohol use is a significant risk factor associated with multisystemic pathophysiological effects leading to multiorgan injury and contributing to 5.3% of all deaths worldwide. The alcohol-mediated cellular and molecular alterations are particularly salient in vulnerable populations, such as people living with HIV (PLWH), diminishing their physiological reserve, and accelerating the aging process. This review presents salient alcohol-associated mechanisms involved in exacerbation of cardiometabolic and neuropathological comorbidities and their implications in the context of HIV disease. The review integrates consideration of environmental factors, such as consumption of a Western diet and its interactions with alcohol-induced metabolic and neurocognitive dyshomeostasis. Major alcohol-mediated mechanisms that contribute to cardiometabolic comorbidity include impaired substrate utilization and storage, endothelial dysfunction, dysregulation of the renin-angiotensin-aldosterone system, and hypertension. Neuroinflammation and loss of neurotrophic support in vulnerable brain regions significantly contribute to alcohol-associated development of neurological deficits and alcohol use disorder risk. Collectively, evidence suggests that at-risk alcohol use exacerbates cardiometabolic and neurocognitive pathologies and accelerates biological aging leading to the development of geriatric comorbidities manifested as frailty in PLWH.
Collapse
|
42
|
Finkelstein A, Faiyaz A, Weber MT, Qiu X, Uddin MN, Zhong J, Schifitto G. Fixel-Based Analysis and Free Water Corrected DTI Evaluation of HIV-Associated Neurocognitive Disorders. Front Neurol 2021; 12:725059. [PMID: 34803875 PMCID: PMC8600320 DOI: 10.3389/fneur.2021.725059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background: White matter (WM) damage is a consistent finding in HIV-infected (HIV+) individuals. Previous studies have evaluated WM fiber tract-specific brain regions in HIV-associated neurocognitive disorders (HAND) using diffusion tensor imaging (DTI). However, DTI might lack an accurate biological interpretation, and the technique suffers from several limitations. Fixel-based analysis (FBA) and free water corrected DTI (fwcDTI) have recently emerged as useful techniques to quantify abnormalities in WM. Here, we sought to evaluate FBA and fwcDTI metrics between HIV+ and healthy controls (HIV−) individuals. Using machine learning classifiers, we compared the specificity of both FBA and fwcDTI metrics in their ability to distinguish between individuals with and without cognitive impairment in HIV+ individuals. Methods: Forty-two HIV+ and 52 HIV– participants underwent MRI exam, clinical, and neuropsychological assessments. FBA metrics included fiber density (FD), fiber bundle cross section (FC), and fiber density and cross section (FDC). We also obtained fwcDTI metrics such as fractional anisotropy (FAT) and mean diffusivity (MDT). Tract-based spatial statistics (TBSS) was performed on FAT and MDT. We evaluated the correlations between MRI metrics with cognitive performance and blood markers, such as neurofilament light chain (NfL), and Tau protein. Four different binary classifiers were used to show the specificity of the MRI metrics for classifying cognitive impairment in HIV+ individuals. Results: Whole-brain FBA showed significant reductions (up to 15%) in various fiber bundles, specifically the cerebral peduncle, posterior limb of internal capsule, middle cerebellar peduncle, and superior corona radiata. TBSS of fwcDTI metrics revealed decreased FAT in HIV+ individuals compared to HIV– individuals in areas consistent with those observed in FBA, but these were not significant. Machine learning classifiers were consistently better able to distinguish between cognitively normal patients and those with cognitive impairment when using fixel-based metrics as input features as compared to fwcDTI metrics. Conclusion: Our findings lend support that FBA may serve as a potential in vivo biomarker for evaluating and monitoring axonal degeneration in HIV+ patients at risk for neurocognitive impairment.
Collapse
Affiliation(s)
- Alan Finkelstein
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Abrar Faiyaz
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Miriam T Weber
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Jianhui Zhong
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States.,Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States.,Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| | - Giovanni Schifitto
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States.,Department of Neurology, University of Rochester, Rochester, NY, United States.,Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| |
Collapse
|
43
|
Gaskill PJ, Fields JA, Langford DT, Stauch KL, Williams DW. Editorial: Advances in Understanding NeuroHIV Associated Changes in Neuroimmune Communication in the Combined Anti-retroviral Therapy (cART) Era. Front Neurol 2021; 12:763448. [PMID: 34675877 PMCID: PMC8523985 DOI: 10.3389/fneur.2021.763448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 12/04/2022] Open
Affiliation(s)
- Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Dianne T Langford
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Kelly L Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dionna W Williams
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
44
|
Patisaul HB, Behl M, Birnbaum LS, Blum A, Diamond ML, Rojello Fernández S, Hogberg HT, Kwiatkowski CF, Page JD, Soehl A, Stapleton HM. Beyond Cholinesterase Inhibition: Developmental Neurotoxicity of Organophosphate Ester Flame Retardants and Plasticizers. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:105001. [PMID: 34612677 PMCID: PMC8493874 DOI: 10.1289/ehp9285] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/02/2021] [Accepted: 08/11/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND To date, the toxicity of organophosphate esters has primarily been studied regarding their use as pesticides and their effects on the neurotransmitter acetylcholinesterase (AChE). Currently, flame retardants and plasticizers are the two largest market segments for organophosphate esters and they are found in a wide variety of products, including electronics, building materials, vehicles, furniture, car seats, plastics, and textiles. As a result, organophosphate esters and their metabolites are routinely found in human urine, blood, placental tissue, and breast milk across the globe. It has been asserted that their neurological effects are minimal given that they do not act on AChE in precisely the same way as organophosphate ester pesticides. OBJECTIVES This commentary describes research on the non-AChE neurodevelopmental toxicity of organophosphate esters used as flame retardants and plasticizers (OPEs). Studies in humans, mammalian, nonmammalian, and in vitro models are presented, and relevant neurodevelopmental pathways, including adverse outcome pathways, are described. By highlighting this scientific evidence, we hope to elevate the level of concern for widespread human exposure to these OPEs and to provide recommendations for how to better protect public health. DISCUSSION Collectively, the findings presented demonstrate that OPEs can alter neurodevelopmental processes by interfering with noncholinergic pathways at environmentally relevant doses. Application of a pathways framework indicates several specific mechanisms of action, including perturbation of glutamate and gamma-aminobutyric acid and disruption of the endocrine system. The effects may have implications for the development of cognitive and social skills in children. Our conclusion is that concern is warranted for the developmental neurotoxicity of OPE exposure. We thus describe important considerations for reducing harm and to provide recommendations for government and industry decision makers. https://doi.org/10.1289/EHP9285.
Collapse
Affiliation(s)
- Heather B. Patisaul
- College of Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Mamta Behl
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Linda S. Birnbaum
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Arlene Blum
- Green Science Policy Institute, Berkeley, California, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, California, USA
| | | | | | - Helena T. Hogberg
- Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Carol F. Kwiatkowski
- Green Science Policy Institute, Berkeley, California, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Jamie D. Page
- Cancer Prevention & Education Society, Meads House, Leighterton, Tetbury, Gloucestershire, UK
| | - Anna Soehl
- Green Science Policy Institute, Berkeley, California, USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
45
|
League AF, Gorman BL, Hermes DJ, Johnson CT, Jacobs IR, Yadav-Samudrala BJ, Poklis JL, Niphakis MJ, Cravatt BF, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Monoacylglycerol Lipase Inhibitor MJN110 Reduces Neuronal Hyperexcitability, Restores Dendritic Arborization Complexity, and Regulates Reward-Related Behavior in Presence of HIV-1 Tat. Front Neurol 2021; 12:651272. [PMID: 34484091 PMCID: PMC8415271 DOI: 10.3389/fneur.2021.651272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
While current therapeutic strategies for people living with human immunodeficiency virus type 1 (HIV-1) suppress virus replication peripherally, viral proteins such as transactivator of transcription (Tat) enter the central nervous system early upon infection and contribute to chronic inflammatory conditions even alongside antiretroviral treatment. As demand grows for supplemental strategies to combat virus-associated pathology presenting frequently as HIV-associated neurocognitive disorders (HAND), the present study aimed to characterize the potential utility of inhibiting monoacylglycerol lipase (MAGL) activity to increase inhibitory activity at cannabinoid receptor-type 1 receptors through upregulation of 2-arachidonoylglycerol (2-AG) and downregulation of its degradation into proinflammatory metabolite arachidonic acid (AA). The MAGL inhibitor MJN110 significantly reduced intracellular calcium and increased dendritic branching complexity in Tat-treated primary frontal cortex neuron cultures. Chronic MJN110 administration in vivo increased 2-AG levels in the prefrontal cortex (PFC) and striatum across Tat(+) and Tat(–) groups and restored PFC N-arachidonoylethanolamine (AEA) levels in Tat(+) subjects. While Tat expression significantly increased rate of reward-related behavioral task acquisition in a novel discriminative stimulus learning and cognitive flexibility assay, MJN110 altered reversal acquisition specifically in Tat(+) mice to rates indistinguishable from Tat(–) controls. Collectively, our results suggest a neuroprotective role of MAGL inhibition in reducing neuronal hyperexcitability, restoring dendritic arborization complexity, and mitigating neurocognitive alterations driven by viral proteins associated with latent HIV-1 infection.
Collapse
Affiliation(s)
- Alexis F League
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin L Gorman
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Douglas J Hermes
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Clare T Johnson
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Ian R Jacobs
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Micah J Niphakis
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States
| | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
46
|
Li R, Qi Y, Shi L, Wang W, Zhang A, Luo Y, Kung WK, Jiao Z, Liu G, Li H, Zhang L. Brain Volumetric Alterations in Preclinical HIV-Associated Neurocognitive Disorder Using Automatic Brain Quantification and Segmentation Tool. Front Neurosci 2021; 15:713760. [PMID: 34456678 PMCID: PMC8385127 DOI: 10.3389/fnins.2021.713760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aimed to determine if people living with HIV (PLWH) in preclinical human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND), with no clinical symptoms and without decreased daily functioning, suffer from brain volumetric alterations and its patterns. Method Fifty-nine male PLWH at the HAND preclinical stage were evaluated, including 19 subjects with asymptomatic neurocognitive impairment (ANI), 17 subjects with cognitive abnormality that does not reach ANI (Not reach ANI), and 23 subjects with cognitive integrity. Moreover, 23 healthy volunteers were set as the seronegative normal controls (NCs). These individuals underwent sagittal three-dimensional T1-weighted imaging (3D T1WI). Quantified data and volumetric measures of brain structures were automatically segmented and extracted using AccuBrain®. In addition, the multiple linear regression analysis was performed to analyze the relationship of volumes of brain structures and clinical variables in preclinical HAND, and the correlations of the brain volume parameters with different cognitive function states were assessed by Pearson's correlation analysis. Results The significant difference was shown in the relative volumes of the ventricular system, bilateral lateral ventricle, thalamus, caudate, and left parietal lobe gray matter between the preclinical HAND and NCs. Furthermore, the relative volumes of the bilateral thalamus in preclinical HAND were negatively correlated with attention/working memory (left: r = -0.271, p = 0.042; right: r = -0.273, p = 0.040). Higher age was associated with increased relative volumes of the bilateral lateral ventricle and ventricular system and reduced relative volumes of the left thalamus and parietal lobe gray matter. The lower CD4+/CD8+ ratio was associated with increased relative volumes of the left lateral ventricle and ventricular system. Longer disease course was associated with increased relative volumes of the bilateral thalamus. No significant difference was found among preclinical HAND subgroups in all indices, and the difference between the individual groups (Not reach ANI and Cognitive integrity groups) and NCs was also insignificant. However, there was a significant difference between ANI and NCs in the relative volumes of the bilateral caudate and lateral ventricle. Conclusion Male PLWH at the HAND preclinical stage suffer from brain volumetric alterations. AccuBrain® provides potential value in evaluating HIV-related neurocognitive dysfunction.
Collapse
Affiliation(s)
- Ruili Li
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yu Qi
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lin Shi
- BrainNow Research Institute, Shenzhen, China.,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Aidong Zhang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yishan Luo
- BrainNow Research Institute, Shenzhen, China
| | | | - Zengxin Jiao
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Guangxue Liu
- Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
47
|
Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021; 18:24. [PMID: 34429135 PMCID: PMC8385912 DOI: 10.1186/s12977-021-00569-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
The HIV co-receptors, CCR5 and CXCR4, are necessary for HIV entry into target cells, interacting with the HIV envelope protein, gp120, to initiate several signaling cascades thought to be important to the entry process. Co-receptor signaling may also promote the development of neuroHIV by contributing to both persistent neuroinflammation and indirect neurotoxicity. But despite the critical importance of CXCR4 and CCR5 signaling to HIV pathogenesis, there is only one therapeutic (the CCR5 inhibitor Maraviroc) that targets these receptors. Moreover, our understanding of co-receptor signaling in the specific context of neuroHIV is relatively poor. Research into co-receptor signaling has largely stalled in the past decade, possibly owing to the complexity of the signaling cascades and functions mediated by these receptors. Examining the many signaling pathways triggered by co-receptor activation has been challenging due to the lack of specific molecular tools targeting many of the proteins involved in these pathways and the wide array of model systems used across these experiments. Studies examining the impact of co-receptor signaling on HIV neuropathogenesis often show activation of multiple overlapping pathways by similar stimuli, leading to contradictory data on the effects of co-receptor activation. To address this, we will broadly review HIV infection and neuropathogenesis, examine different co-receptor mediated signaling pathways and functions, then discuss the HIV mediated signaling and the differences between activation induced by HIV and cognate ligands. We will assess the specific effects of co-receptor activation on neuropathogenesis, focusing on neuroinflammation. We will also explore how the use of substances of abuse, which are highly prevalent in people living with HIV, can exacerbate the neuropathogenic effects of co-receptor signaling. Finally, we will discuss the current state of therapeutics targeting co-receptors, highlighting challenges the field has faced and areas in which research into co-receptor signaling would yield the most therapeutic benefit in the context of HIV infection. This discussion will provide a comprehensive overview of what is known and what remains to be explored in regard to co-receptor signaling and HIV infection, and will emphasize the potential value of HIV co-receptors as a target for future therapeutic development. ![]()
Collapse
Affiliation(s)
- E A Nickoloff-Bybel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - L Festa
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA, 19104, USA
| | - O Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
48
|
Ellis RJ, Wilson N, Peterson S. Cannabis and Inflammation in HIV: A Review of Human and Animal Studies. Viruses 2021; 13:v13081521. [PMID: 34452386 PMCID: PMC8402692 DOI: 10.3390/v13081521] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/24/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022] Open
Abstract
Persistent inflammation occurs in people with HIV (PWH) and has many downstream adverse effects including myocardial infarction, neurocognitive impairment and death. Because the proportion of people with HIV who use cannabis is high and cannabis may be anti-inflammatory, it is important to characterize the impact of cannabis use on inflammation specifically in PWH. We performed a selective, non-exhaustive review of the literature on the effects of cannabis on inflammation in PWH. Research in this area suggests that cannabinoids are anti-inflammatory in the setting of HIV. Anti-inflammatory actions are mediated in many cases through effects on the endocannabinoid system (ECS) in the gut, and through stabilization of gut–blood barrier integrity. Cannabidiol may be particularly important as an anti-inflammatory cannabinoid. Cannabis may provide a beneficial intervention to reduce morbidity related to inflammation in PWH.
Collapse
Affiliation(s)
- Ronald J. Ellis
- Departments of Neurosciences and Psychiatry, University of California, San Diego, UCSD HNRC, Mail Code 8231 220 Dickinson Street, Suite B, San Diego, CA 92103, USA
- Correspondence:
| | - Natalie Wilson
- Department of Community Health Systems, School of Nursing, University of California, San Francisco, 1700 Owens Street, Suite 316, San Francisco, CA 94158, USA;
| | - Scott Peterson
- Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Road, La Jolla, CA 92037, USA;
| |
Collapse
|
49
|
Rates of cognitive impairment in a South African cohort of people with HIV: variation by definitional criteria and lack of association with neuroimaging biomarkers. J Neurovirol 2021; 27:579-594. [PMID: 34241815 DOI: 10.1007/s13365-021-00993-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/14/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
There is wide variation in the reported prevalence of cognitive impairment in people with HIV (PWH). Part of this variation may be attributable to different studies using different methods of combining neuropsychological test scores to classify participants as either cognitively impaired or unimpaired. Our aim was to determine, in a South African cohort of PWH (N = 148), (a) how much variation in reported rates was due to method used to define cognitive impairment and (b) which method correlated best with MRI biomarkers of HIV-related brain pathology. Participants completed detailed neuropsychological assessment and underwent 3 T structural MRI and diffusion tensor imaging (DTI). We used the neuropsychological data to investigate 20 different methods of determining HIV-associated cognitive impairment. We used the neuroimaging data to obtain volumes for cortical and subcortical grey matter and total white matter and DTI metrics for several white matter tracts. Applying each of the 20 methods to the cognitive dataset resulted in a wide variation (20-97%) in estimated rates of impairment. Logistic regression models showed no method was associated with HIV-related neuroimaging abnormalities as measured by structural volumes or DTI metrics. We conclude that for the population from which this sample was drawn, much of the variation in reported rates of cognitive impairment in PWH is due to the method of classification used, and that none of these methods accurately reflects biological effects of HIV in the brain. We suggest that defining HIV-associated cognitive impairment using neuropsychological test performance only is insufficient; pre-morbid functioning, co-morbidities, cognitive symptoms, and functional impairment should always be considered.
Collapse
|
50
|
WANG Z, MANION MM, LAIDLAW E, RUPERT A, LAU CY, SMITH BR, NATH A, SERETI I, HAMMOUD DA. Redistribution of brain glucose metabolism in people with HIV after antiretroviral therapy initiation. AIDS 2021; 35:1209-1219. [PMID: 33710014 PMCID: PMC8556661 DOI: 10.1097/qad.0000000000002875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We evaluated brain glucose metabolism in people living with HIV (PWH) with [18F]-Fluoro-Deoxyglucose (FDG) PET/computed tomography (CT) before and after antiretroviral therapy (ART) initiation. DESIGN We conducted a longitudinal study wherein ART-naive late-presenting untreated PWH with CD4+ cell counts less than 100 cells/μl were prospectively assessed for FDG uptake at baseline and at 4-8 weeks (n = 22) and 19-26 months (n = 11) following ART initiation. METHODS Relative uptake in the subcortical regions (caudate, putamen and thalamus) and cortical regions (frontal, parietal, temporal and occipital cortices) were compared across time and correlated with biomarkers of disease activity and inflammation, in addition to being compared with a group of uninfected individuals (n = 10). RESULTS Before treatment initiation, putaminal and caudate relative FDG uptake values in PWH were significantly higher than in uninfected controls. Relative putaminal and thalamic uptake significantly decreased shortly following ART initiation, while frontal cortex values significantly increased. FDG uptake changes correlated with changes in CD4+ cell counts and viral load, and, in the thalamus, with IL-6R and sCD14. Approximately 2 years following ART initiation, there was further decrease in subcortical relative uptake values, reaching levels below those of uninfected controls. CONCLUSION Our findings support pretreatment basal ganglia and thalamic neuroinflammatory changes in PWH, which decrease after treatment with eventual unmasking of long-term irreversible neuronal damage. Meanwhile, increased frontal cortex metabolism following ART initiation suggests reversible cortical dysfunction which improves with virologic control and increased CD4+ cell counts. Early initiation of treatment after HIV diagnosis and secondary control of inflammation are thus necessary to halt neurological damage in PWH.
Collapse
Affiliation(s)
- Zeping WANG
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Maura M. MANION
- Laboratory of Immunoregulation, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth LAIDLAW
- Laboratory of Immunoregulation, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Adam RUPERT
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Chuen-Yen LAU
- National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Bryan R. SMITH
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, Bethesda, Maryland, USA
| | - Avindra NATH
- Section of Infections of the Nervous System, National Institute of Neurological Diseases and Stroke, Bethesda, Maryland, USA
| | - Irini SERETI
- Laboratory of Immunoregulation, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dima A HAMMOUD
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|