1
|
Gosia M, Doshi G, Bagwe Parab S, Godad A. Innovative Approaches to Psoriasis: Small Molecules Targeting Key Signaling Pathways. Immunol Invest 2025:1-37. [PMID: 39819440 DOI: 10.1080/08820139.2025.2449960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
BACKGROUND Psoriasis (Pso) is a chronic, immune-mediated dermatological condition characterized by dysregulated inflammatory responses and the hyperproliferation of keratinocytes. Biologics, which target specific cytokines such as IL-17 and IL-23, have revolutionized the management by addressing key drivers of its pathophysiology. Despite their efficacy, biologics are not without limitations, including the need for intermittent administration and ongoing monitoring. In contrast, small molecules offer a promising alternative by selectively inhibiting key signaling pathways that modulate pro-inflammatory cytokines involved in the inflammatory cascade. METHODS AND RESULTS This review suggests a new therapeutic strategy for Pso treatment, emphasizing the intricate relationships between small molecules and important signaling pathways involved in the pathophysiology of skin conditions. Improving treatment outcomes and reducing the side effects associated with conventional medicines, this review aims to better understand how tailored small-molecule inhibitors might efficiently control these pathways. This creative approach promotes the creation of individualized treatment plans that can greatly enhance the quality of life of patients with Psoby utilizing the knowledge gathered from recent developments in signaling pathway research. CONCLUSION This review delves into the molecular mechanisms underlying Pso and explores how small molecules can be harnessed to enhance treatment outcomes, presenting a new paradigm for managing this chronic skin disorder.
Collapse
Affiliation(s)
- Meeral Gosia
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Siddhi Bagwe Parab
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Angel Godad
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
2
|
Gupta P, Kalvatala S, Joseph A, Panghal A, Santra S. Outline of Therapeutic Potential of Different Plants Reported Against Psoriasis via In Vitro, Pre-Clinical or Clinical Studies. Phytother Res 2025. [PMID: 39754500 DOI: 10.1002/ptr.8405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/28/2024] [Accepted: 11/15/2024] [Indexed: 01/06/2025]
Abstract
Psoriasis is a noncontagious, autoimmune chronic inflammatory disease with an unknown root cause. It is classified as a multifactorial and chronic skin disorder that also affects the immune system and is genetic. Environmental factors such as stress, infections, and injuries all play an important role in the disease's development. Although there is no cure for this disease, topical, oral, and systemic whole-body treatments are available to relieve symptoms. Several plants and phytochemicals which have been found effective in the management of the psoriasis experimentally (preclinical and clinical). These plants/phytochemicals have applications in topical, oral, and systemic treatments. Traditionally, some of the plants have been utilized as the primary treatment, including their extracts and/or phytochemicals, for individuals with moderate to severe psoriasis (due to fewer side effects), while phototherapy is generally reserved for more advanced cases. This report describes various plants and phytochemicals that have been found to be effective against psoriasis in in vitro, preclinical, and clinical studies. This review summarizes the key findings from experimental studies on various pathological aspects of psoriasis and may be useful, effective, and informative for future research.
Collapse
Affiliation(s)
- Pawan Gupta
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
- Research and Development Cell, Lovely Professional University, Phagwara, India
| | - Sudhakar Kalvatala
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Abhinav Joseph
- Research and Development Cell, Lovely Professional University, Phagwara, India
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| | - Anil Panghal
- Department of Processing and Food Engineering, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Soumava Santra
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
3
|
Alanzi AR, Alsalhi MS, Mothana RA, Alqahtani JH, Alqahtani MJ. Insilico discovery of novel Phosphodiesterase 4 (PDE4) inhibitors for the treatment of psoriasis: Insights from computer aided drug design approaches. PLoS One 2024; 19:e0305934. [PMID: 39535988 PMCID: PMC11559988 DOI: 10.1371/journal.pone.0305934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 11/16/2024] Open
Abstract
Psoriasis is chronic immune-mediated inflammatory disorder characterized by various comorbidities, erythematous plaques with silvery scale which can lead to psoriatic arthritis. The phosphodiesterase 4 (PDE4) protein is a potential drug target to control Psoriasis. In the current study, pharmacophore-based virtual screening of Diversity library of ChemDiv database was first performed, and then the screened hits were docked to the active site of PDE4 to choose the best binding modes. Forty-six hits generated during the virtual screening were prepared and docked to the PDE4 receptor by SP docking module of glide. The binding affinities of the selected hits were calculated by molecular docking and based on the affinities, ten hits were selected for the bioactivity scores prediction and ADMET analysis. Based on the ADMET profiling, four hits D356-2630, C700-2058, G842-0420 and F403-0203 were processed to MD simulations for stability analysis. The outcomes showed that these compounds showed strong binding with proteins with better binding free energies. Based on the results of our study, we proposed that these hits can function as lead in the biological assays and in vitro studies are required to develop the novel drug candidates.
Collapse
Affiliation(s)
- Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Alsalhi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher H. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Moneerah J. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Helliwell PS. 50 years of spondyloarthritis: a look back and a look ahead. Curr Opin Rheumatol 2024; 36:261-266. [PMID: 38656252 DOI: 10.1097/bor.0000000000001019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW It is now 50 years since the concept of spondyloarthritis was introduced by Moll, Wright and co-authors from Leeds, UK. This review will review the original concept and mark significant milestones over the last 50 years while looking ahead to developments in the future. RECENT FINDINGS While the diseases included under this rubric in the original description may have changed the core conditions remain and are still characterized by axial inflammation as a common feature. Imaging, animal models, genetics and immunology have contributed to our knowledge of the pathogenesis and classification of these diseases and have led to the development of more effective treatments. SUMMARY Future developments, facilitated by large research consortia, will help build on our current knowledge and will help clarify disease heterogeneity and provide insights into new therapeutic pathways.
Collapse
Affiliation(s)
- Philip S Helliwell
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Chapel Allerton Hospital, Leeds, UK
| |
Collapse
|
5
|
Frederiksen CG, Sedeh FB, Taudorf EH, Saunte DM, Jemec GBE. Orismilast for the treatment of mild to severe hidradenitis suppurativa: Week 16 data from OSIRIS, a Phase 2a, open-label, single-centre, single-arm, dose-finding clinical trial. J Eur Acad Dermatol Venereol 2024; 38:920-930. [PMID: 38147438 DOI: 10.1111/jdv.19770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is a disease with an unmet need for treatment. OBJECTIVE To examine tolerability, safety and efficacy of oral phosphodiesterase-4 (PDE4) inhibitior orismilast 10-40 mg twice daily (BID) in HS. METHODS A Phase 2a, single-arm, single-centre, open-label, 16-week trial in HS patients. Adjustments in maximal dose and titration were allowed, to improve tolerability, dividing the study population in two groups who completed and discontinued 16 weeks of treatment. Descriptive statistics were applied to efficacy data from patients who completed treatment and patients who discontinued treatment prematurely. A last-observation-carried-forward (LOCF) approach was used for patients who discontinued treatment. The primary endpoint was percent change in the total number of abscesses and nodules (AN-count) at Week 16, with the HS Clinical Response with a 50% reduction in the AN-count (HiSCR50) as key secondary endpoint. RESULTS Of the 20 patients included, 9 completed 16 weeks of treatment and 11 discontinued treatment prematurely. The mean AN-count was reduced with 33.1% in patients who completed treatment and with 12.0% in patients who discontinued. HiSCR50 was achieved by 67.0% and 27.0% of patients who completed and discontinued treatment, respectively. Most adverse events were mild to moderate. CONCLUSIONS Oral orismilast demonstrated a dose-dependent tolerability, with mild to moderate adverse effects. Further, the results of this exploratory trial indicate that orismilast may lead to clinical improvements in HS. However, larger trials with tolerable dose ranges are warranted. The Trial is registered at Clinicaltrials.gov (UNI50007201) and EudraCT.ema.europa.eu (2021-000049-42).
Collapse
Affiliation(s)
- C G Frederiksen
- Department of Dermatology, University Hospital of Zealand, Roskilde, Denmark
| | - F B Sedeh
- Department of Dermatology, University Hospital of Zealand, Roskilde, Denmark
| | - E H Taudorf
- Department of Dermatology, University Hospital of Zealand, Roskilde, Denmark
| | - D M Saunte
- Department of Dermatology, University Hospital of Zealand, Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, København, Denmark
| | - G B E Jemec
- Department of Dermatology, University Hospital of Zealand, Roskilde, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, København, Denmark
| |
Collapse
|
6
|
Chang CH, Chovatiya R. More yeast, more problems?: reevaluating the role of Malassezia in seborrheic dermatitis. Arch Dermatol Res 2024; 316:100. [PMID: 38472524 DOI: 10.1007/s00403-024-02830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024]
Abstract
Seborrheic dermatitis (SD) is an inflammatory skin disorder and eczema subtype increasingly recognized to be associated with significant physical, psychosocial, and financial burden. The full spectrum of SD, including dandruff localized to the scalp, is estimated to affect half of the world's population. Despite such high prevalence, the exact etiopathogenesis of SD remains unclear. Historically, many researchers have theorized a central, causative role of Malassezia spp. based on prior studies including the proliferation of Malassezia yeast on lesional skin of some SD patients and empiric clinical response to antifungal therapy. However, upon closer examination, many of these findings have not been reproducible nor consistent. Emerging data from novel, targeted anti-inflammatory therapeutics, as well as evidence from genome-wide association studies and murine models, should prompt a reevaluation of the popular yeast-centered hypothesis. Here, through focused review of the literature, including laboratory studies, clinical trials, and expert consensus, we examine and synthesize the data arguing for and against a primary role for Malassezia in SD. We propose an expansion of SD pathogenesis and suggest reframing our view of SD to be based primarily on dysregulation of the host immune system and skin epidermal barrier, like other eczemas.
Collapse
Affiliation(s)
- Christy H Chang
- College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Raj Chovatiya
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Chicago Medical School, Rosalind Franklin University, North Chicago, IL, USA.
- Center for Medical Dermatology and Immunology Research, Chicago, IL, USA.
| |
Collapse
|
7
|
Mansilla-Polo M, Gimeno E, Morgado-Carrasco D. Topical and Oral Roflumilast in Dermatology: A Narrative Review. ACTAS DERMO-SIFILIOGRAFICAS 2024; 115:265-279. [PMID: 37709133 DOI: 10.1016/j.ad.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
Oral roflumilast is a phosphodiesterase-4 inhibitor approved for the prevention of exacerbations of chronic obstructive pulmonary disease and chronic bronchitis. In dermatology, topical roflumilast is authorized by the US Food and Drug Administration for the treatment of plaque psoriasis and mild to moderate seborrheic dermatitis. Several studies have described the off-label use of roflumilast in dermatology, including a randomized controlled trial showing its usefulness in the treatment of psoriasis; case reports and small series have also reported successful outcomes in hidradenitis suppurativa, recurrent oral aphthosis, nummular eczema, lichen planus, and Behçet disease. Roflumilast has a favorable safety profile, similar to that of apremilast, and it is considerably cheaper than new generation drugs and even some conventional immunosuppressants. We review the pharmacokinetics and pharmacodynamics of topical and oral roflumilast and discuss potential adverse effects and both approved and off-label uses in dermatology. Roflumilast is a promising agent to consider.
Collapse
Affiliation(s)
- M Mansilla-Polo
- Servicio de Dermatología, Hospital Universitario y Politécnico La Fe, Valencia, España; Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, España
| | - E Gimeno
- Servicio de Dermatología, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, España
| | - D Morgado-Carrasco
- Servicio de Dermatología, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, España; Servicio de Dermatología, Hospital de Figueres, Fundació Salut Empordà, Figueres, Girona, España.
| |
Collapse
|
8
|
Mansilla-Polo M, Gimeno E, Morgado-Carrasco D. [Translated aticle] Topical and Oral Roflumilast in Dermatology: A Narrative Review. ACTAS DERMO-SIFILIOGRAFICAS 2024; 115:T265-T279. [PMID: 38224734 DOI: 10.1016/j.ad.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/04/2023] [Indexed: 01/17/2024] Open
Abstract
Oral roflumilast is a phosphodiesterase-4 inhibitor approved for the prevention of exacerbations of chronic obstructive pulmonary disease and chronic bronchitis. In dermatology, topical roflumilast is authorized by the US Food and Drug Administration for the treatment of plaque psoriasis and mild to moderate seborrheic dermatitis. Several studies have described the off-label use of roflumilast in dermatology, including a randomized controlled trial showing its usefulness in the treatment of psoriasis; case reports and small series have also reported successful outcomes in hidradenitis suppurativa, recurrent oral aphthosis, nummular eczema, lichen planus, and Behçet disease. Roflumilast has a favorable safety profile, similar to that of apremilast, and it is considerably cheaper than new generation drugs and even some conventional immunosuppressants. We review the pharmacokinetics and pharmacodynamics of topical and oral roflumilast and discuss potential adverse effects and both approved and off-label uses in dermatology. Roflumilast is a promising agent to consider.
Collapse
Affiliation(s)
- M Mansilla-Polo
- Servicio de Dermatología, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - E Gimeno
- Servicio de Dermatología, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - D Morgado-Carrasco
- Servicio de Dermatología, Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Servicio de Dermatología, Hospital de Figueres, Fundació Salut Empordà, Figueres, Girona, Spain.
| |
Collapse
|
9
|
Drakos A, Torres T, Vender R. Emerging Oral Therapies for the Treatment of Psoriasis: A Review of Pipeline Agents. Pharmaceutics 2024; 16:111. [PMID: 38258121 PMCID: PMC10819460 DOI: 10.3390/pharmaceutics16010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The introduction of biologic agents for the treatment of psoriasis has revolutionized the current treatment landscape, targeting cytokines in the interleukin (IL)-23/IL-17 pathway and demonstrating strong efficacy and safety profiles in clinical trials. These agents however are costly, are associated with a risk of immunogenicity, and require administration by intravenous or subcutaneous injection, limiting their use among patients. Oral therapies, specifically small molecule and microbiome therapeutics, have the potential to be more convenient and cost-effective agents for patients and have been a focus of development in recent years, with few targeted oral medications available for the disease. In this manuscript, we review pipeline oral therapies for psoriasis identified through a search of ClinicalTrials.gov (30 June 2022-1 October 2023). Available preclinical and clinical trial data on each therapeutic agent are discussed. Small molecules under development include tumor necrosis factor inhibitors, IL-23 inhibitors, IL-17 inhibitors, phosphodiesterase-4 inhibitors, Janus kinase inhibitors, A3 adenosine receptor agonists, and sphingosine-1-phosphate receptor 1 agonists, several of which are entering phase III trials. Oral microbials have also demonstrated success in early phase studies. As new oral therapies emerge for the treatment of psoriasis, real-world data and comparative trials are needed to better inform their use among patients.
Collapse
Affiliation(s)
- Anastasia Drakos
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Tiago Torres
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal;
- Department of Dermatology, Centro Hospitalar de Santo António, 4099-001 Porto, Portugal
| | - Ronald Vender
- Dermatrials Research Inc. & Venderm Consulting, Hamilton, ON L8N 1Y2, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
10
|
Kubota-Ishida N, Kaji C, Matsumoto S, Wakabayashi T, Matsuhira T, Okura I, Cho N, Isshiki S, Kumura K, Tabata Y. ME3183, a novel phosphodiesterase-4 inhibitor, exhibits potent anti-inflammatory effects and is well tolerated in a non-clinical study. Eur J Pharmacol 2024; 962:176202. [PMID: 37996010 DOI: 10.1016/j.ejphar.2023.176202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors are expected to exhibit efficacy against inflammatory diseases due to their broad pharmacological activity. The launched PDE4 inhibitors apremilast, crisaborole, and roflumilast have not exhibited sufficient inhibitory potential due to poor margins of effectiveness and tolerability. In this report, we describe the non-clinical efficacy, brain translocation, and vomit-inducing effects of ME3183 compared with apremilast. ME3183 showed extensive cytokine suppression in vitro studies using human peripheral blood mononuclear cells and T cells. ME3183 also significantly suppressed skin inflammation in a chronic oxazolone-induced dermatitis model and showed antipruritic effects in a substance P-induced mouse pruritus model. In these in vitro and in vivo studies, ME3183 also significantly suppressed cytokines, and focusing on tumor necrosis factor-α as a psoriasis-related cytokine and interleukin-4 as an atopic dermatitis-related cytokine, ME3183 potently inhibited both cytokines. ME3183 showed in vivo efficacy at lower doses than apremilast. The brain distribution of ME3183 was sufficiently low in mice and rats. The effective dose of ME3183 for emesis was similar to that of apremilast in ferrets. Given its high-potency inhibitory effects, ME3183 would have a wide margin of efficacy and tolerability. These wide margins demonstrate the effectiveness of ME3183 in treating many inflammatory diseases, such as psoriasis and atopic dermatitis. An on-going phase 2 trial is expected to further demonstrate the efficacy and safety of ME3183.
Collapse
Affiliation(s)
- Natsuki Kubota-Ishida
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan.
| | - Chizuko Kaji
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Shogo Matsumoto
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Tsubasa Wakabayashi
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Takashi Matsuhira
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Iori Okura
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Naoki Cho
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Satoshi Isshiki
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Ko Kumura
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| | - Yuji Tabata
- R&D Division, Meiji Seika Pharma Co., Ltd., 2-4-16, Kyobashi, Chuo-ku, Tokyo, 104-8002, Japan
| |
Collapse
|
11
|
Crowley EL, Gooderham MJ. Phosphodiesterase-4 Inhibition in the Management of Psoriasis. Pharmaceutics 2023; 16:23. [PMID: 38258034 PMCID: PMC10819567 DOI: 10.3390/pharmaceutics16010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
Psoriasis is a common chronic immune-mediated disease with many comorbidities and impacts on quality of life. Among the treatments for psoriasis, phosphodiesterase-4 (PDE4) inhibitors are emerging with expanding options. PDE4 inhibitors play a pivotal role in the inflammatory cascade by degrading cyclic adenosine monophosphate (cAMP), contributing to pro-inflammatory mediator production. Apremilast, an oral PDE4 inhibitor, is approved for psoriasis. While effective, its adverse effects can limit its utility. Roflumilast, a topical PDE4 inhibitor, was also recently approved for psoriasis and shows promise in clinical trials. Crisaborole, a PDE4 inhibitor approved for atopic dermatitis, has also been studied in psoriasis. This review summarizes evidence from randomized clinical trials regarding the efficacy and safety of PDE4 inhibitors in psoriasis treatment. By highlighting their potential benefits and limitations, this review provides valuable insights for clinicians and researchers aiming to optimize psoriasis management.
Collapse
Affiliation(s)
- Erika L. Crowley
- Faculty of Medicine, University of British Columbia Okanagan, 3333 University Way, Kelowna, BC V1V 1V7, Canada;
| | - Melinda J. Gooderham
- SKiN Centre for Dermatology, 775 Monaghan Rd, Peterborough, ON K9J 5K2, Canada
- Probity Medical Research, 139 Union St E, Waterloo, ON N2J 1C4, Canada
- Department of Medicine, Queen’s University, 99 University Ave, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
12
|
Drakos A, Vender R, Torres T. Topical roflumilast for the treatment of psoriasis. Expert Rev Clin Immunol 2023; 19:1053-1062. [PMID: 37243575 DOI: 10.1080/1744666x.2023.2219897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/13/2023] [Accepted: 05/26/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION New non-steroidal topical agents are needed for the treatment of psoriasis. Roflumilast cream 0.3% is a once daily phosphodiesterase-4 inhibitor that was recently approved by the FDA for the treatment of plaque psoriasis in adolescents and adults. It is indicated for use on all body surfaces including intertriginous areas. AREAS COVERED In this review, we summarize the current knowledge about roflumilast cream for the treatment of psoriasis, highlighting its efficacy and safety profile from published clinical trials. Roflumilast's mechanism of action and pharmacokinetic profile are also discussed. EXPERT OPINION Positive results were reported across trials with 48% of patients treated with roflumilast achieving an Investigator Global Assessment score of clear or almost clear at 8 weeks in phase III studies. Most adverse events were mild or moderate in severity and few application-site reactions were reported among participants. Unique advantages of the cream are its success in treating intertriginous areas and its ability to reduce symptoms of itch, results of which may significantly improve quality of life for patients. In the future, real-world data and active comparator trials with existing non-steroidal agents are needed to better understand roflumilast's place in the current treatment landscape.
Collapse
Affiliation(s)
| | - Ron Vender
- Dermatrials Research Inc. & Venderm Innovations in Psoriasis, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Tiago Torres
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- Department of Dermatology, Centro Hospitalar de Santo António, Porto, Portugal
| |
Collapse
|
13
|
Xu Y, Li Z, Wu S, Guo L, Jiang X. Oral small-molecule tyrosine kinase 2 and phosphodiesterase 4 inhibitors in plaque psoriasis: a network meta-analysis. Front Immunol 2023; 14:1180170. [PMID: 37334353 PMCID: PMC10272578 DOI: 10.3389/fimmu.2023.1180170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Background Orally administered small-molecule drugs including tyrosine kinase 2 (TYK2) inhibitors and phosphodiesterase 4 (PDE4) inhibitors are new candidates for systemic therapy in plaque psoriasis. However, no previous articles evaluated the benefit and risk profile of TYK2 and PDE4 inhibitors in psoriasis. Objectives The objective of this study was to compare the efficacy and safety of oral small-molecule drugs, including TYK2 and PDE4 inhibitors, in treating moderate-to-severe plaque psoriasis. Methods PubMed, Embase, and Cochrane library were searched for eligible randomized clinical trials (RCTs). Response rates for a 75% reduction from baseline in Psoriasis Area and Severity Index (PASI-75) and Physician's Global Assessment score of 0 or 1 (PGA 0/1) were used for efficacy assessment. Safety was evaluated with the incidence of adverse events (AEs). A Bayesian multiple treatment network meta-analysis (NMA) was performed. Results In total, 13 RCTs (five for TYK2 inhibitors and eight for PDE4 inhibitors) involving 5274 patients were included. The study found that deucravacitinib at any dose (except for 3 mg QOD), ropsacitinib (200 and 400 mg QD), and apremilast (20 and 30 mg BID) had higher PASI and PGA response rates than placebo. In addition, deucravacitinib (3 mg BID, 6 mg QD, 6 mg BID, and 12 mg QD), and ropsacitinib (400 mg QD) showed superior efficacy than apremilast (30 mg BID). In terms of safety, deucravacitinib or ropsacitinib at any dose did not lead to a higher incidence of AEs than apremilast (30 mg BID). The ranking analysis of efficacy revealed that deucravacitinib 12 mg QD and deucravacitinib 3 mg BID had the highest chance of being the most effective oral treatment, followed by deucravacitinib 6 mg BID and ropsacitinib 400 mg QD. Conclusions Oral TYK2 inhibitors demonstrated satisfactory performance in treating psoriasis, surpassing apremilast at certain doses. More large-scale, long-term studies focusing on novel TYK2 inhibitors are needed. Systematic review registration PROSPERO (ID: CRD42022384859), available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022384859, identifier CRD42022384859.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhixuan Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Shuwei Wu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Linghong Guo
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Agrawal A, Kulkarni GT. Topical application of aerial portion of Acalypha indica Linn ameliorates psoriasis in rodents: Evidences from in vivo and in silico studies. JOURNAL OF ETHNOPHARMACOLOGY 2023:116685. [PMID: 37236382 DOI: 10.1016/j.jep.2023.116685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
ETHANOPHARMACOLOGICAL RELEVANCE Acalypha indica Linn. is a weed, used traditionally for different skin diseases such as eczema and dermatitis in various parts of India. There are no previous in vivo studies reported on the antipsoriatic potential of this medicinal plant. AIM The aim of this study was to investigate antipsoriatic activity of coconut oil dispersion of aerial portion of Acalypha indica Linn. Few lipid-soluble phytoconstituents of this plantwere subjected to molecular docking studies on different targets to determine phytoconstituent responsible for antipsoriatic activity. METHODS Virgin coconut oil dispersion of aerial portion of the plant was prepared by mixing three parts of coconut oil and one part of powdered aerial portion. The acute dermal toxicity was determined according to OECD guidelines. Mouse tail model was used to evaluate the antipsoriatic activity. Molecular docking of phytoconstituents was carried out using Biovia Discovery Studio. RESULTS In acute dermal toxicity study,the coconut oil dispersion was found to be safe up to the dose of 20000 mg/kg. The dispersion exhibited significant antipsoriatic activity (p < 0.01) at the dose of 250 mg/kg; at 500 mg/kg dose, the activity was similar that of 250 mg/kg dose. In the docking study of the phytoconstituents, 2-methyl anthraquinone was found to be responsible for antipsoriatic activity. CONCLUSION This study provides new evidence of Acalypha indica Linn as antipsoriatic plant and justifies its traditional use. Computational studies also endorse the results obtained via acute dermal toxicity study and mouse tail model for evaluation of antipsoriatic potential.
Collapse
Affiliation(s)
- Anurag Agrawal
- School of Pharmacy, ITM University, Gwalior, Madhya Pradesh, 474 001, India; Uttarakhand Technical University, Dehradun, Uttarakhand, 248 007, India; Department of Pharmacology, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, Dist. Gautam Buddha Nagar, Uttar Pradesh, 201310, India
| | - Giriraj T Kulkarni
- Gokaraju Rangaraju College of Pharmacy, Hyderabad, Telangana, 500 090, India.
| |
Collapse
|
15
|
Nikam RV, Gowtham M, More PS, Shinde AS. Current and emerging prospects in the psoriatic treatment. Int Immunopharmacol 2023; 120:110331. [PMID: 37210912 DOI: 10.1016/j.intimp.2023.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/23/2023]
Abstract
Psoriasis is an autoimmune chronic disorder that causes inflammation and a scaly epidermis. The exact pathogenesis of the disease is not known yet. According to the studies, psoriasis is considered an immune-mediated disease. Until now it is believed that genetic and environmental factors are responsible for the disease. There are many comorbidities associated with psoriasis which increases difficulties as patients in some cases get addicted to drugs, alcohol, and smoking which reduces their quality of life. The patient may face social ignorance or suicidal thoughts which may arise in the patient's mind. Due to the undefined trigger of the disease, the treatment is not fully established but by considering the severe impact of the disease researchers are focusing on novel approaches for successful treatment. which has succeeded to a large extent. Here we review pathogenesis, problems faced by psoriatic patients, the need for the development of new treatments over conventional therapies, and the history of psoriatic treatments. We thoroughly focus on emerging treatments like biologics, biosimilars, and small molecules which are now showing more efficacy and safety than conventional treatments. Also, this review article discusses novel approaches which are now in research such as drug repurposing, treatment by stimulation of the vagus nerve, regulation of microbiota, and autophagy for improving disease conditions.
Collapse
Affiliation(s)
- Rutuja Vilas Nikam
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - M Gowtham
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Pratiksha Sanjay More
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| | - Anuja Sanjay Shinde
- Department of Pharmaceutics, Sanjivani College of Pharmaceutical Education and Research, At Sahajanandnagar, Post-Shinganapur, Tal-Kopargaon, Dist-Ahmednagar, Maharashtra 423603, India.
| |
Collapse
|
16
|
Parab S, Doshi G. An update on emerging immunological targets and their inhibitors in the treatment of psoriasis. Int Immunopharmacol 2022; 113:109341. [DOI: 10.1016/j.intimp.2022.109341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/27/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
17
|
Drakos A, Vender R. A Review of the Clinical Trial Landscape in Psoriasis: An Update for Clinicians. Dermatol Ther (Heidelb) 2022; 12:2715-2730. [PMID: 36319883 PMCID: PMC9674811 DOI: 10.1007/s13555-022-00840-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
As our understanding of the pathogenesis of psoriasis has evolved over the past two decades, so has the number of treatment options. The introduction of biologic agents targeting specific cytokines in the interleukin (IL)-23/IL-17 pathway has proven successful in promoting skin clearance among patients. However, their use is often limited owing to cost, parenteral administration, and possible reduced efficacy over time. Topical therapies have also seen limited advancement, with agents such as corticosteroids and vitamin D derivatives remaining the mainstay of treatment, despite side effects limiting their long-term use. New therapeutic agents are needed to improve disease management for patients. In this review, we summarize pipeline and recently approved therapies undergoing clinical trials for psoriasis during a 12-month search period (30 June 2021 to 30 June 2022) using ClinicalTrials.gov. New-generation biologics and oral small molecules in phase II or III development were included, and pivotal data identified through various search modalities (PubMed, conference presentations, etc.) evaluating each drug candidate will be discussed. Topical therapies will also be discussed in line with recent US Food and Drug Administration approvals. As new therapies continue to enter the treatment landscape, long-term data and comparative trials will be needed to better understand their place among existing therapeutic agents.
Collapse
Affiliation(s)
| | - Ronald Vender
- Dermatrials Research Inc., Venderm Innovations in Psoriasis, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
18
|
Hari G, Kishore A, Karkala SRP. Treatments for psoriasis: A journey from classical to advanced therapies. How far have we reached? Eur J Pharmacol 2022; 929:175147. [PMID: 35820531 DOI: 10.1016/j.ejphar.2022.175147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
Psoriasis is considered an autoimmune, inflammatory disorder with a genetic basis. The underlying aetiology is yet unclear. Evidence suggests the congregation of immune cells and their secreted inflammatory cytokines, leukocytes, and other inflammation-promoting factors in large amounts within the epidermal layers of the skin, driving an inflammatory milieu. Although psoriasis is not a fatal condition, patients experience severe pain and suffering. It has a debilitating effect on the physiological and psychological state of the patient. Its distinguishing features are inflammation, formation of plaques on the skin and hyperproliferation of keratinocytes. Therapeutic strategies for treating psoriasis witnessed a radical improvement from traditional therapies to the approval of specific therapies like biologics and small molecules. The emerging evidence about new pharmacological targets and mechanisms in psoriasis has widened the scope for expanding therapeutic strategies. Our review discusses the existing treatments for plaque psoriasis and updates on therapies based on novel pharmacological targets in clinical development.
Collapse
Affiliation(s)
- Gangadhar Hari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sreedhara Ranganath Pai Karkala
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
19
|
Quartuccio L, Sebastiani M, Spinelli FR, Di Marco F, Peluso R, D'Angelo S, Cauli A, Rossini M, Atzeni F. More than a random association between chronic obstructive pulmonary disease and psoriatic arthritis: shared pathogenic features and implications for treatment. Expert Rev Clin Immunol 2022; 18:983-990. [PMID: 35881045 DOI: 10.1080/1744666x.2022.2106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Psoriatic arthritis (PsA) is a chronic inflammatory condition characterized by skin and joints involvement, and with a great burden of comorbidity that could affect the choice of treatment. Chronic obstructive pulmonary disease (COPD) is one of the primary causes of morbidity and mortality. Medical therapy can improve symptoms and the frequency and severity of exacerbations. A variety of evidence showed an increasing association between COPD and PsA. AREAS COVERED Psoriatic disease and COPD appear to have a possible pathophysiologic link. The inhibition of intracellular molecules responsible for pro-inflammatory responses could be a therapeutic approach for both psoriatic diseases and COPD. Inhibitors of phosphodiesterase 4 (PDE-4) were developed to treat chronic inflammatory conditions such as psoriasis, PsA and COPD. Roflumilast has been used to treat COPD and asthma, while Apremilast to treat psoriasis and PsA. Given the efficacy and safety of these treatments, we can speculate that blocking PDE-4 might also provide clinical benefits in patients with co-existing COPD and PsA. EXPERT OPINION This hypothesis could offer the opportunity to screen patients for both diseases. Furthermore, this approach would increase the involvement of other specialists in the management of PsA, and it would improve the use of a tailored treatment for each patient.
Collapse
Affiliation(s)
- Luca Quartuccio
- Department of Medicine, Rheumatology Unit, University of Udine, Udine, Italy
| | - Marco Sebastiani
- Rheumatology Unit, Azienda Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Romana Spinelli
- Reumatologia, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari, Sapienza University of Rome, Rome, Italy
| | - Fabiano Di Marco
- Respiratory Unit, Department of Health Sciences, University of Milan, Milan, Italy
| | - Rosario Peluso
- Rheumatology Unit, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Salvatore D'Angelo
- Rheumatology Institute of Lucania (IReL) and Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Potenza, Italy
| | - Alberto Cauli
- Rheumatology Unit, Department of Medical Sciences and Public Health, AOU and University of Cagliari, Cagliari, Italy
| | - Maurizio Rossini
- Department of Medicine, University of Verona, Rheumatology Unit, Azienda Ospedaliera Universitaria Integrata di Verona, Policlinico Borgo Roma, Verona, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, Messina, Italy
| |
Collapse
|
20
|
Zhou F, Huang Y, Liu L, Song Z, Hou KQ, Yang Y, Luo HB, Huang YY, Xiong XF. Structure-based optimization of Toddacoumalone as highly potent and selective PDE4 inhibitors with anti-inflammatory effects. Biochem Pharmacol 2022; 202:115123. [PMID: 35688178 DOI: 10.1016/j.bcp.2022.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
Phosphodiesterase-4 (PDE4) is an important drug target for inflammatory diseases. Previously, we identified a series of novel PDE4 inhibitors derived from the natural Toddacoumalone, among which the hit compound 2 with a naphthyridine scaffold showed moderate potency with the IC50 value of 400 nM. Based on the co-crystal structure of PDE4D-2, further structural optimizations and structure-activity relationship studies led to a highly potent PDE4 inhibitor 23a with the IC50 value of 0.25 nM and excellent selectivity profiles over other PDEs (>4000-fold). The co-crystal structure of PDE4D-23a elucidated that 23a has strong interactions with the M and Q pocket of PDE4D. Importantly, compound 23a significantly inhibits the release of inflammatory cytokines TNF-α and IL-6 in lipopolysaccharide-stimulated RAW264.7 cells. Thus, compound 23a with a naphthyridine scaffold is a promising PDE4 inhibitor for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Feng Zhou
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Yue Huang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Lu Liu
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Zhendong Song
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Ke-Qiang Hou
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Yifan Yang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China
| | - Hai-Bin Luo
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, 570228 Haikou, PR China
| | - Yi-You Huang
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, 570228 Haikou, PR China.
| | - Xiao-Feng Xiong
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, PR China.
| |
Collapse
|
21
|
Prasannanjaneyulu V, Nene S, Jain H, Nooreen R, Otavi S, Chitlangya P, Srivastava S. Old drugs, new tricks: Emerging role of drug repurposing in the management of atopic dermatitis. Cytokine Growth Factor Rev 2022; 65:12-26. [PMID: 35550114 DOI: 10.1016/j.cytogfr.2022.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 11/03/2022]
Abstract
Atopic dermatitis is a chronic recurring pruritic inflammatory skin disease manifested by increased pro-inflammatory mediators which lead to dry, thickened, cracked, scaly skin. The current treatment options for atopic dermatitis management comprise drawbacks and leave unmet effective clinical needs. So, the approach for repurposing existing drugs for atopic dermatitis management may potentially overcome these unmet needs. Diseases that share the common pathophysiological pathways with atopic dermatitis can serve as a foundation for the repurposing of drugs. Drugs used in the management of cancer, rheumatoid arthritis, and other immune-mediated diseases such as psoriasis are under investigation to know the potential in atopic dermatitis management by utilizing repurposing strategies for a novel therapeutic indication. This review mainly envisages the probable repurposing of drugs for the management of atopic dermatitis disease; the barriers and regulatory aspects involved in the repurposing of existing drugs.
Collapse
Affiliation(s)
- Velpula Prasannanjaneyulu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shweta Nene
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Harsha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rimsha Nooreen
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shivam Otavi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Palak Chitlangya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
22
|
Darwish KM, Abdelwaly A, Atta AM, Helal MA. Discovery of tetrahydro-β-carboline- and indole-based derivatives as promising phosphodiesterase-4 inhibitors: Synthesis, biological evaluation, and molecular modeling studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Xiao YC, Yu JL, Dai QQ, Li G, Li GB. Targeting Metalloenzymes by Boron-Containing Metal-Binding Pharmacophores. J Med Chem 2021; 64:17706-17727. [PMID: 34875836 DOI: 10.1021/acs.jmedchem.1c01691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metalloenzymes have critical roles in a wide range of biological processes and are directly involved in many human diseases; hence, they are considered as important targets for therapeutic intervention. The specific characteristics of metal ion(s)-containing active sites make exploitation of metal-binding pharmacophores (MBPs) critical to inhibitor development targeting metalloenzymes. This Perspective focuses on boron-containing MBPs, which display unique binding modes with metalloenzyme active sites, particularly via mimicking native substrates or tetrahedral transition states. The design concepts regarding boron-containing MBPs are highlighted through the case analyses on five distinct classes of clinically relevant nucleophilic metalloenzymes from medicinal chemistry perspectives. The challenges (e.g., selectivity) faced by some boron-containing MBPs and possible strategies (e.g., bioisosteres) for metalloenzyme inhibitor transformation are also discussed.
Collapse
Affiliation(s)
- You-Cai Xiao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jun-Lin Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qing-Qing Dai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Gen Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Huang Z, Liu J, Yang J, Yan Y, Yang C, He X, Huang R, Tan M, Wu D, Yan J, Shen B. PDE4B Induces Epithelial-to-Mesenchymal Transition in Bladder Cancer Cells and Is Transcriptionally Suppressed by CBX7. Front Cell Dev Biol 2021; 9:783050. [PMID: 34977026 PMCID: PMC8716816 DOI: 10.3389/fcell.2021.783050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Urinary bladder cancer (UBC) is a common malignant tumor with high incidence. Advances in the diagnosis and treatment of this disease demand the identification of novel therapeutic targets. Multiple studies demonstrated that PDE4B level was upregulated in malignancies and high PDE4B expression was correlated with poor outcomes. Herein, we identified that PDE4B was a potential therapeutic target in UBC. We confirmed that PDE4B expression was correlated with aggressive clinicopathological characteristics and unfavorable prognosis. Functional studies demonstrated that ectopic expression of PDE4B promoted UBC cells proliferation, migration and invasion, whereas PDE4B depletion suppressed cancer cell aggressiveness. We also identified CBX7 as a regulator of PDE4B to suppress the expression of PDE4B at the transcription level in a PRC1-dependent manner. Moreover, our results indicated that PDE4B induced epithelial-to-mesenchymal transition (EMT) in UBC cells via β-catenin pathway, whereas inhibition of PDE4B by its small molecule inhibitor, rolipram, effectively reversed the PDE4B overexpression-induced effects. To sum up, our results indicated that PDE4B acts as an oncogene by promoting UBC cell migration and invasion via β-catenin/EMT pathway.
Collapse
Affiliation(s)
- Zhengnan Huang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiakuan Liu
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Jiale Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ruimin Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Denglong Wu, ; Jun Yan, ; Bing Shen,
| | - Jun Yan
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
- *Correspondence: Denglong Wu, ; Jun Yan, ; Bing Shen,
| | - Bing Shen
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Denglong Wu, ; Jun Yan, ; Bing Shen,
| |
Collapse
|
25
|
Megat S, Hugel S, Journée SH, Bohren Y, Lacaud A, Lelièvre V, Doridot S, Villa P, Bourguignon JJ, Salvat E, Schlichter R, Freund-Mercier MJ, Yalcin I, Barrot M. Antiallodynic action of phosphodiesterase inhibitors in a mouse model of peripheral nerve injury. Neuropharmacology 2021; 205:108909. [PMID: 34875284 DOI: 10.1016/j.neuropharm.2021.108909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/01/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022]
Abstract
Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory nervous system. It is accompanied by neuronal and non-neuronal alterations, including alterations in intracellular second messenger pathways. Cellular levels of 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) are regulated by phosphodiesterase (PDE) enzymes. Here, we studied the impact of PDE inhibitors (PDEi) in a mouse model of peripheral nerve injury induced by placing a cuff around the main branch of the sciatic nerve. Mechanical hypersensitivity, evaluated using von Frey filaments, was relieved by sustained treatment with the non-selective PDEi theophylline and ibudilast (AV-411), with PDE4i rolipram, etazolate and YM-976, and with PDE5i sildenafil, zaprinast and MY-5445, but not by treatments with PDE1i vinpocetine, PDE2i EHNA or PDE3i milrinone. Using pharmacological and knock-out approaches, we show a preferential implication of delta opioid receptors in the action of the PDE4i rolipram and of both mu and delta opioid receptors in the action of the PDE5i sildenafil. Calcium imaging highlighted a preferential action of rolipram on dorsal root ganglia non-neuronal cells, through PDE4B and PDE4D inhibition. Rolipram had anti-neuroimmune action, as shown by its impact on levels of the pro-inflammatory cytokine tumor necrosis factor-α (TNFα) in the dorsal root ganglia of mice with peripheral nerve injury, as well as in human peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharides. This study suggests that PDEs, especially PDE4 and 5, may be targets of interest in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Salim Megat
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Sylvain Hugel
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Sarah H Journée
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Yohann Bohren
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Centre d'Evaluation et de Traitement de la Douleur, Strasbourg, France
| | - Adrien Lacaud
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Vincent Lelièvre
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Stéphane Doridot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Chronobiotron, Strasbourg, France
| | - Pascal Villa
- Université de Strasbourg, Centre National de la Recherche Scientifique, Plateforme de Chimie Biologique Intégrative de Strasbourg, UAR3286, Illkirch, France
| | - Jean-Jacques Bourguignon
- Université de Strasbourg, Centre National de la Recherche Scientifique, Laboratoire d'Innovation Thérapeutique, Illkirch, France
| | - Eric Salvat
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Centre d'Evaluation et de Traitement de la Douleur, Strasbourg, France
| | - Remy Schlichter
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Marie-José Freund-Mercier
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
26
|
Huang YY, Deng J, Tian YJ, Liang J, Xie X, Huang Y, Zhu J, Zhu Z, Zhou Q, He X, Luo HB. Mangostanin Derivatives as Novel and Orally Active Phosphodiesterase 4 Inhibitors for the Treatment of Idiopathic Pulmonary Fibrosis with Improved Safety. J Med Chem 2021; 64:13736-13751. [PMID: 34520193 DOI: 10.1021/acs.jmedchem.1c01085] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease, and its incidence rate is rapidly rising. However, effective therapies for the treatment of IPF are still lacking. Phosphodiesterase 4 (PDE4) inhibitors were reported to be potential anti-fibrotic agents, but their clinical use was hampered by side effects like emesis and nausea. Herein, structure-based hit-to-lead optimizations of natural mangostanin resulted in the novel and orally active PDE4 inhibitor 18a with potent inhibitory affinity (IC50 = 4.2 nM), favorable physico-chemical properties, and a different binding pattern from roflumilast. Emetic activity tests on dogs demonstrated that 18a cannot cause emesis even at an oral dose of 10 mg/kg, whereas rolipram had severe emetic effects at an oral dose of 1 mg/kg. Finally, the oral administration of 18a (10 mg/kg) exhibited comparable anti-pulmonary fibrosis effects with pirfenidone (150 mg/kg) in a bleomycin-induced IPF rat model, indicating its potential as a novel anti-IPF agent with improved safety.
Collapse
Affiliation(s)
- Yi-You Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jinhui Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Yi-Jing Tian
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jinhao Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Xi Xie
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yue Huang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Jiaqi Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Ziran Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Qian Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xixin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
27
|
Tseng JC, Chang YC, Huang CM, Hsu LC, Chuang TH. Therapeutic Development Based on the Immunopathogenic Mechanisms of Psoriasis. Pharmaceutics 2021; 13:pharmaceutics13071064. [PMID: 34371756 PMCID: PMC8308930 DOI: 10.3390/pharmaceutics13071064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Psoriasis, a complex inflammatory autoimmune skin disorder that affects 2–3% of the global population, is thought to be genetically predetermined and induced by environmental and immunological factors. In the past decades, basic and clinical studies have significantly expanded knowledge on the molecular, cellular, and immunological mechanisms underlying the pathogenesis of psoriasis. Based on these pathogenic mechanisms, the current disease model emphasizes the role of aberrant Th1 and Th17 responses. Th1 and Th17 immune responses are regulated by a complex network of different cytokines, including TNF-α, IL-17, and IL-23; signal transduction pathways downstream to the cytokine receptors; and various activated transcription factors, including NF-κB, interferon regulatory factors (IRFs), and signal transducer and activator of transcriptions (STATs). The biologics developed to specifically target the cytokines have achieved a better efficacy and safety for the systemic management of psoriasis compared with traditional treatments. Nevertheless, the current therapeutics can only alleviate the symptoms; there is still no cure for psoriasis. Therefore, the development of more effective, safe, and affordable therapeutics for psoriasis is important. In this review, we discussed the current trend of therapeutic development for psoriasis based on the recent discoveries in the immune modulation of the inflammatory response in psoriasis.
Collapse
Affiliation(s)
- Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan;
| | - Yung-Chi Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan;
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan;
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan;
- Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Correspondence: (L.-C.H.); (T.-H.C.); Tel.: +886-2-2312-3456 (ext. 65700) (L.-C.H.); +886-37-246-166 (ext. 37611) (T.-H.C.)
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan;
- Correspondence: (L.-C.H.); (T.-H.C.); Tel.: +886-2-2312-3456 (ext. 65700) (L.-C.H.); +886-37-246-166 (ext. 37611) (T.-H.C.)
| |
Collapse
|
28
|
Cook Sangar ML, Girard EJ, Hopping G, Yin C, Pakiam F, Brusniak MY, Nguyen E, Ruff R, Gewe MM, Byrnes-Blake K, Nairn NW, Miller DM, Mehlin C, Strand AD, Mhyre AJ, Correnti CE, Strong RK, Simon JA, Olson JM. A potent peptide-steroid conjugate accumulates in cartilage and reverses arthritis without evidence of systemic corticosteroid exposure. Sci Transl Med 2021; 12:12/533/eaay1041. [PMID: 32132215 DOI: 10.1126/scitranslmed.aay1041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
On-target, off-tissue toxicity limits the systemic use of drugs that would otherwise reduce symptoms or reverse the damage of arthritic diseases, leaving millions of patients in pain and with limited physical mobility. We identified cystine-dense peptides (CDPs) that rapidly accumulate in cartilage of the knees, ankles, hips, shoulders, and intervertebral discs after systemic administration. These CDPs could be used to concentrate arthritis drugs in joints. A cartilage-accumulating peptide, CDP-11R, reached peak concentration in cartilage within 30 min after administration and remained detectable for more than 4 days. Structural analysis of the peptides by crystallography revealed that the distribution of positive charge may be a distinguishing feature of joint-accumulating CDPs. In addition, quantitative whole-body autoradiography showed that the disulfide-bonded tertiary structure is critical for cartilage accumulation and retention. CDP-11R distributed to joints while carrying a fluorophore imaging agent or one of two different steroid payloads, dexamethasone (dex) and triamcinolone acetonide (TAA). Of the two payloads, the dex conjugate did not advance because the free drug released into circulation was sufficient to cause on-target toxicity. In contrast, the CDP-11R-TAA conjugate alleviated joint inflammation in the rat collagen-induced model of rheumatoid arthritis while avoiding toxicities that occurred with nontargeted steroid treatment at the same molar dose. This conjugate shows promise for clinical development and establishes proof of concept for multijoint targeting of disease-modifying therapeutic payloads.
Collapse
Affiliation(s)
- Michelle L Cook Sangar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Emily J Girard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Gene Hopping
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chunfeng Yin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Fiona Pakiam
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mi-Youn Brusniak
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Elizabeth Nguyen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Raymond Ruff
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Mesfin M Gewe
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | - Christopher Mehlin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew D Strand
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew J Mhyre
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Colin E Correnti
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Roland K Strong
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julian A Simon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
29
|
Affiliation(s)
- Idy Tam
- Tufts University School of Medicine, Boston, Massachusetts
| | - Jared S Kahn
- Tufts University School of Medicine, Boston, Massachusetts.,Department of Dermatology, Tufts Medical Center, Boston, Massachusetts
| | - David Rosmarin
- Department of Dermatology, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
30
|
Epstein PM, Basole C, Brocke S. The Role of PDE8 in T Cell Recruitment and Function in Inflammation. Front Cell Dev Biol 2021; 9:636778. [PMID: 33937235 PMCID: PMC8085600 DOI: 10.3389/fcell.2021.636778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/29/2021] [Indexed: 01/07/2023] Open
Abstract
Inhibitors targeting cyclic nucleotide phosphodiesterases (PDEs) expressed in leukocytes have entered clinical practice to treat inflammatory disorders, with three PDE4 inhibitors currently in clinical use as therapeutics for psoriasis, psoriatic arthritis, atopic dermatitis and chronic obstructive pulmonary disease. In contrast, the PDE8 family that is upregulated in pro-inflammatory T cells is a largely unexplored therapeutic target. It was shown that PDE8A plays a major role in controlling T cell and breast cancer cell motility, including adhesion to endothelial cells under physiological shear stress and chemotaxis. This is a unique function of PDE8 not shared by PDE4, another cAMP specific PDE, employed, as noted, as an anti-inflammatory therapeutic. Additionally, a regulatory role was shown for the PDE8A-rapidly accelerated fibrosarcoma (Raf)-1 kinase signaling complex in myelin antigen reactive CD4+ effector T cell adhesion and locomotion by a mechanism differing from that of PDE4. The PDE8A-Raf-1 kinase signaling complex affects T cell motility, at least in part, via regulating the LFA-1 integrin mediated adhesion to ICAM-1. The findings that PDE8A and its isoforms are expressed at higher levels in naive and myelin oligodendrocyte glycoprotein (MOG)35–55 activated effector T (Teff) cells compared to regulatory T (Treg) cells and that PDE8 inhibition specifically affects MOG35–55 activated Teff cell adhesion, indicates that PDE8A could represent a new beneficial target expressed in pathogenic Teff cells in CNS inflammation. The implications of this work for targeting PDE8 in inflammation will be discussed in this review.
Collapse
Affiliation(s)
- Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, CT, United States
| | - Chaitali Basole
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
31
|
Milakovic M, Gooderham MJ. Phosphodiesterase-4 Inhibition in Psoriasis. PSORIASIS-TARGETS AND THERAPY 2021; 11:21-29. [PMID: 33763335 PMCID: PMC7982714 DOI: 10.2147/ptt.s303634] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/04/2021] [Indexed: 01/13/2023]
Abstract
Psoriasis is a chronic immune-mediated inflammatory disorder. Phosphodiesterase-4 (PDE-4) is an enzyme that mediates inflammatory responses and plays a role in psoriasis pathogenesis. PDE-4 degrades its substrate cyclic adenosine monophosphate (cAMP) to adenosine monophosphate (AMP), which subsequently leads to the production of pro-inflammatory mediators. Inhibitors of PDE-4 work by blocking the degradation of cAMP, which leads to a reduction in inflammation. Apremilast is the only approved oral PDE-4 inhibitor for the treatment of psoriasis. While it is effective for some patients, it may be limited by adverse effects in others. A topical PDE-4 inhibitor, roflumilast, is being investigated in psoriasis and showing promising results. Crisaborole, a topical PDE-4 inhibitor approved for use in atopic dermatitis, has also been investigated in psoriasis. This is an updated comprehensive review to summarize the currently available evidence for the PDE-4 inhibitors apremilast, roflumilast and crisaborole in the treatment of psoriasis, with a focus on data from randomized clinical trials.
Collapse
Affiliation(s)
| | - Melinda J Gooderham
- Skin Centre for Dermatology, Peterborough, ON, K9J 5K2, Canada.,Probity Medical Research, Waterloo, ON, N2J 1C4, Canada.,Department of Medicine, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
32
|
S SLJ, V R. Scope of adjuvant therapy using roflumilast, a PDE-4 inhibitor against COVID-19. Pulm Pharmacol Ther 2021; 66:101978. [PMID: 33259924 PMCID: PMC7833560 DOI: 10.1016/j.pupt.2020.101978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/18/2020] [Accepted: 11/24/2020] [Indexed: 01/19/2023]
Abstract
The recent pandemic of COVID-19 caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents an extraordinary challenge to identify effective drugs for prevention and treatment. The pathogenesis implicate acute respiratory disorder (ARD) which is attributed to significantly triggered "cytokine storm" and compromised immune system. This article summarizes the likely benefits of roflumilast, a Phosphodiesterase-4 (PDE-4) inhibitor as a comprehensive support COVID-19 pathogenesis. Roflumilast, a well-known anti-inflammatory and immunomodulatory drug, is protective against respiratory models of chemical and smoke induced lung damage. There is significant data which demonstrate the protective effect of PDE-4 inhibitor in respiratory viral models and is likely to be beneficial in combating COVID-19 pathogenesis. Roflumilast is effective in patients with severe COPD by reducing the rate of exacerbations with the improvement of the lung function, which might further be beneficial for better clinical outcomes in COVID-19 patients. However, further clinical trials are warranted to examine this conjecture.
Collapse
Affiliation(s)
- Sugin Lal Jabaris S
- Department of Pharmacology, Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Govt. of India, Anna Hospital Campus, Arumbakkam, Chennai-106, India.
| | - Ranju V
- Department of Genetic Toxicology, Microbiology and In Vitro Toxicology, Eurofins Advinus, Phase 21 & 22, Bangalore-560 058, India
| |
Collapse
|
33
|
Luo M, Huang P, Pan Y, Zhu Z, Zhou R, Yang Z, Wang C. Weighted gene coexpression network and experimental analyses identify lncRNA SPRR2C as a regulator of the IL-22-stimulated HaCaT cell phenotype through the miR-330/STAT1/S100A7 axis. Cell Death Dis 2021; 12:86. [PMID: 33452236 PMCID: PMC7810847 DOI: 10.1038/s41419-020-03305-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/29/2023]
Abstract
Psoriasis is a chronic inflammatory disease of the skin with highly complex pathogenesis. In this study, we identified lncRNA SPRR2C (small proline-rich protein 2C) as a hub gene with a critical effect on the pathogenesis of psoriasis and response to treatment using both weighted gene coexpression network analysis (WGCNA) and differential expression analysis. SPRR2C expression was significantly upregulated in both psoriatic lesion samples and HaCaT cell lines in response to IL-22 treatment. After SPRR2C knockdown, IL-22-induced suppression of HaCaT proliferation, changes in the KRT5/14/1/10 protein levels, and suppression of the IL-1β, IL-6, and TNF-α mRNA levels were dramatically reversed. In the coexpression network with SPRR2C based on GSE114286, miR-330 was significantly negatively correlated with SPRR2C, while STAT1 and S100A7 were positively correlated with SPRR2C. By binding to miR-330, SPRR2C competed with STAT1 and S100A7 to counteract miR-330-mediated suppression of STAT1 and S100A7. MiR-330 overexpression also reversed the IL-22-induced changes in HaCaT cell lines; in response to IL-22 treatment, miR-330 inhibition significantly attenuated the effects of SPRR2C knockdown. STAT1 and S100A7 expression was significantly upregulated in psoriatic lesion samples. The expression of miR-330 had a negative correlation with the expression of SPRR2C, while the expression of SPRR2C had a positive correlation with the expression of STAT1 and S100A7. Thus, SPRR2C modulates the IL-22-stimulated HaCaT cell phenotype through the miR-330/STAT1/S100A7 axis. WGCNA might uncover additional biological pathways that are crucial in the pathogenesis and response to the treatment of psoriasis.
Collapse
Affiliation(s)
- Meijunzi Luo
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Pan Huang
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Yi Pan
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Zhu Zhu
- The Second Clinical College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Rong Zhou
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Zhibo Yang
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China
| | - Chang Wang
- Department of Dermatology, the Second Affiliated Hospital, The Domestic First-class Discipline Construction Project of Chinese Medicine of Hunan University of Chinese Medicine, Changsha, 410005, Hunan, China.
| |
Collapse
|
34
|
Purohit V, Riley S, Tan H, Ports WC. Predictors of Systemic Exposure to Topical Crisaborole: A Nonlinear Regression Analysis. J Clin Pharmacol 2020; 60:1344-1354. [PMID: 32433779 PMCID: PMC7540423 DOI: 10.1002/jcph.1624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Crisaborole ointment, 2%, is a nonsteroidal phosphodiesterase 4 inhibitor for the treatment of mild to moderate atopic dermatitis. Results from 2 randomized, double-blind, vehicle-controlled phase 3 studies showed that twice-daily crisaborole in children and adults with mild to moderate atopic dermatitis was efficacious and well tolerated. Initial pharmacokinetics (PK) studies of crisaborole indicated absorption with measurable systemic levels of crisaborole. The current analysis was conducted to correlate steady-state systemic exposure parameters with ointment dose and identify covariates impacting PK parameters in healthy participants and patients with atopic dermatitis or psoriasis. A nonlinear regression analysis was conducted using ointment dose and noncompartmental PK parameters at steady state (area under the curve [AUCss ] and maximum concentration [Cmax,ss ]). PK data were available from 244 participants across 6 clinical studies (AUCss , N = 239; Cmax,ss , N = 241). Disease condition had the greatest impact on slope in both models, corresponding to 2.5-fold higher AUCss and Cmax,ss values at a given ointment dose in patients with atopic dermatitis or psoriasis relative to healthy participants. Disease severity, race/ethnicity, and sex had marginal effects on AUCss and Cmax,ss . Systemic exposures were similar across age groups ≥2 years of age when the same percentage of body surface area (%BSA) was treated. Predictive performance plots for AUCss and Cmax,ss for different age groups demonstrated that the models adequately describe the observed data. Model predictions indicated that systemic exposure to crisaborole in pediatric patients (2-17 years) is unlikely to exceed systemic exposure in adults (≥18 years), even at the highest possible ointment dose corresponding to a %BSA of 90.
Collapse
|
35
|
The PDE4 inhibitor CHF6001 affects keratinocyte proliferation via cellular redox pathways. Arch Biochem Biophys 2020; 685:108355. [DOI: 10.1016/j.abb.2020.108355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 11/22/2022]
|
36
|
Lourenço EMG, Fernandes JM, Carvalho VDF, Grougnet R, Martins MA, Jordão AK, Zucolotto SM, Barbosa EG. Identification of a Selective PDE4B Inhibitor From Bryophyllum pinnatum by Target Fishing Study and In Vitro Evaluation of Quercetin 3- O-α-L-Arabinopyranosyl-(1→2)- O-α-L-Rhamnopyranoside. Front Pharmacol 2020; 10:1582. [PMID: 32038254 PMCID: PMC6987432 DOI: 10.3389/fphar.2019.01582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
Natural products are considered an important source of bioactive compounds especially in biodiversity-rich countries like Brazil. The identification of potential targets is crucial to the development of drugs from natural sources. In this context, in silico methodologies, such as inverse virtual screening (target fishing), are interesting tools as they are a rational and direct method that reduces costs and experimental time. Among the species of Brazilian biomes, Bryophyllum pinnatum (Lam.) Oken, native to Madagascar, is widely used by the population to treat inflammation conditions. It has a remarkable presence of flavonoids, including quercetin 3-O-α-L-arabinopyranosyl-(1→2)-O-α-L-rhamnopyranoside (1), considered one of its major compounds. However, until now there were no studies addressing its putative mechanism of action and explaining its pharmacological action. The enzyme PDE4B, known as an antiinflammatory protein, was indicated as a promising target by target fishing methods. This activity was confirmed by in vitro enzymatic inhibition, and an expressive selectivity of PDE4B over PDE4A was demonstrated. The interactions were investigated through molecular dynamics simulations. The results were pioneering, representing an advance in the investigation of the antiinflammatory action of B. pinnatum and confirm the potential of the flavonoid as a chemical extract marker. Also, the flavonoid was shown to be a promising lead for the design of other selective PDE4B blockers to treat inflammatory diseases.
Collapse
Affiliation(s)
- Estela M G Lourenço
- Laboratório de Química Farmacêutica Computacional, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Júlia M Fernandes
- Laboratório de Produtos Naturais Bioativos, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | - Raphael Grougnet
- Laboratoire de Pharmacognosie, Faculté de Pharmacie, Université Paris Descartes, Paris, France
| | - Marco A Martins
- Laboratório de Inflamação, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Alessandro K Jordão
- Laboratório de Química Farmacêutica Computacional, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Silvana M Zucolotto
- Laboratório de Produtos Naturais Bioativos, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Euzébio G Barbosa
- Laboratório de Química Farmacêutica Computacional, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
37
|
Negreiros-Lima GL, Lima KM, Moreira IZ, Jardim BLO, Vago JP, Galvão I, Teixeira LCR, Pinho V, Teixeira MM, Sugimoto MA, Sousa LP. Cyclic AMP Regulates Key Features of Macrophages via PKA: Recruitment, Reprogramming and Efferocytosis. Cells 2020; 9:E128. [PMID: 31935860 PMCID: PMC7017228 DOI: 10.3390/cells9010128] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are central to inflammation resolution, an active process aimed at restoring tissue homeostasis following an inflammatory response. Here, the effects of db-cAMP on macrophage phenotype and function were investigated. Injection of db-cAMP into the pleural cavity of mice induced monocytes recruitment in a manner dependent on PKA and CCR2/CCL2 pathways. Furthermore, db-cAMP promoted reprogramming of bone-marrow-derived macrophages to a M2 phenotype as seen by increased Arg-1/CD206/Ym-1 expression and IL-10 levels (M2 markers). Db-cAMP also showed a synergistic effect with IL-4 in inducing STAT-3 phosphorylation and Arg-1 expression. Importantly, db-cAMP prevented IFN-γ/LPS-induced macrophage polarization to M1-like as shown by increased Arg-1 associated to lower levels of M1 cytokines (TNF-α/IL-6) and p-STAT1. In vivo, db-cAMP reduced the number of M1 macrophages induced by LPS injection without changes in M2 and Mres numbers. Moreover, db-cAMP enhanced efferocytosis of apoptotic neutrophils in a PKA-dependent manner and increased the expression of Annexin A1 and CD36, two molecules associated with efferocytosis. Finally, inhibition of endogenous PKA during LPS-induced pleurisy impaired the physiological resolution of inflammation. Taken together, the results suggest that cAMP is involved in the major functions of macrophages, such as nonphlogistic recruitment, reprogramming and efferocytosis, all key processes for inflammation resolution.
Collapse
Affiliation(s)
- Graziele L. Negreiros-Lima
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Kátia M. Lima
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Isabella Z. Moreira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Bruna Lorrayne O. Jardim
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Juliana P. Vago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.P.V.); (M.M.T.)
| | - Izabela Galvão
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.G.); (V.P.)
| | - Lívia Cristina R. Teixeira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (I.G.); (V.P.)
| | - Mauro M. Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (J.P.V.); (M.M.T.)
| | - Michelle A. Sugimoto
- Programa de Pós-Graduação em Doenças Infecciosas e Medicina Tropical, Escola de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Brazil;
| | - Lirlândia P. Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (G.L.N.-L.); (I.Z.M.); (B.L.O.J.); (L.C.R.T.)
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| |
Collapse
|
38
|
Liao Y, Jia X, Tang Y, Li S, Zang Y, Wang L, Cui ZN, Song G. Discovery of novel inhibitors of phosphodiesterase 4 with 1-phenyl-3,4-dihydroisoquinoline scaffold: Structure-based drug design and fragment identification. Bioorg Med Chem Lett 2019; 29:126720. [DOI: 10.1016/j.bmcl.2019.126720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/06/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022]
|
39
|
Molina-Figuera E, González-Cantero Á, Martínez-Lorenzo E, Sánchez-Moya AI, García-Olmedo O, Gómez-Dorado B, Schoendorff-Ortega C. Successful Treatment of Refractory Type 1 Pityriasis Rubra Pilaris With Apremilast. J Cutan Med Surg 2019; 22:104-105. [PMID: 29309244 DOI: 10.1177/1203475417733464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | | | | | | | - Blas Gómez-Dorado
- 1 Servicio de Dermatología, Complejo Hospitalario de Toledo, Toledo, Spain
| | | |
Collapse
|
40
|
Gür Çetinkaya P, Şahiner ÜM. Childhood atopic dermatitis: current developments, treatment approaches, and future expectations. Turk J Med Sci 2019; 49:963-984. [PMID: 31408293 PMCID: PMC7018348 DOI: 10.3906/sag-1810-105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disorder of childhood. Underlying factors that contribute to AD are impaired epithelial barrier, alterations in the lipid composition of the skin, immunological imbalance including increased Th2/Th1 ratio, proinflammatory cytokines, decreased T regulatory cells, genetic mutations, and epigenetic alterations. Atopic dermatitis is a multifactorial disease with a particularly complicated pathophysiology. Discoveries to date may be considered the tip of the iceberg, and the increasing number of studies in this field indicate that there are many points to be elucidated in AD pathophysiology. In this review, we aimed to illustrate the current understanding of the underlying pathogenic mechanisms in AD, to evaluate available treatment options with a focus on recently discovered therapeutic agents, and to determine the personal, familial, and economic burdens of the disease, which are frequently neglected issues in AD. Currently available therapies only provide transient solutions and cannot fully cure the disease. However, advances in the understanding of the pathogenic mechanisms of the disease have led to the production of new treatment options, while ongoing drug trials also have had promising results.
Collapse
Affiliation(s)
- Pınar Gür Çetinkaya
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ümit Murat Şahiner
- Division of Pediatric Allergy and Asthma Unit, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
41
|
Phosphodiesterase 4D, miR-203 and selected cytokines in the peripheral blood are associated with canine atopic dermatitis. PLoS One 2019; 14:e0218670. [PMID: 31226136 PMCID: PMC6588236 DOI: 10.1371/journal.pone.0218670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/06/2019] [Indexed: 11/22/2022] Open
Abstract
Canine Atopic Dermatitis (AD) is a common complex and multifactorial disease involving immune dysregulation, genetic predisposition, skin barrier defects, environmental factors and allergic sensitization. To date, diagnosis of canine AD relies on a combination of patient history, clinical examination, allergy testing and response to diet trials/therapies with no reliable biomarkers available to distinguish AD from other diseases with similar clinical presentations. A handful of studies to identify potential biomarkers in the peripheral blood of AD dogs and healthy controls have been performed with some showing inconsistent and contradictory results. In this study, we, for the first time, report statistically significant increases in expression of phosphodiesterase 4D (PDE4D) gene in peripheral blood mononuclear cells (PBMCs) and miR-203 in plasma from AD dogs compared to healthy controls. In addition, we report a statistically non-significant change of the CD4+/CD8+ ratio, a dramatic decrease of three gene markers (PIAS1, RORA and SH2B1) as well as a panel of differential expression of cytokines in AD dogs in comparison to the healthy controls. Our study provides important insight into the complexities of canine AD, and further studies to verify the specificity of these findings for canine AD at a larger-scale are warranted.
Collapse
|
42
|
Apoptotic or Antiproliferative Activity of Natural Products against Keratinocytes for the Treatment of Psoriasis. Int J Mol Sci 2019; 20:ijms20102558. [PMID: 31137673 PMCID: PMC6566887 DOI: 10.3390/ijms20102558] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Natural products or herbs can be used as an effective therapy for treating psoriasis, an autoimmune skin disease that involves keratinocyte overproliferation. It has been demonstrated that phytomedicine, which is used for psoriasis patients, provides some advantages, including natural sources, a lower risk of adverse effects, and the avoidance of dissatisfaction with conventional therapy. The herbal products’ structural diversity and multiple mechanisms of action have enabled the synergistic activity to mitigate psoriasis. In recent years, the concept of using natural products as antiproliferative agents in psoriasis treatment has attracted increasing attention in basic and clinical investigations. This review highlights the development of an apoptotic or antiproliferatic strategy for natural-product management in the treatment of psoriasis. We systematically introduce the concepts and molecular mechanisms of keratinocyte-proliferation inhibition by crude extracts or natural compounds that were isolated from natural resources, especially plants. Most of these studies focus on evaluation through an in vitro keratinocyte model and an in vivo psoriasis-like animal model. Topical delivery is the major route for the in vivo or clinical administration of these natural products. The potential use of antiproliferative phytomedicine on hyperproliferative keratinocytes suggests a way forward for generating advances in the field of psoriasis therapy.
Collapse
|
43
|
Lin CY, Hsu CY, Elzoghby AO, Alalaiwe A, Hwang TL, Fang JY. Oleic acid as the active agent and lipid matrix in cilomilast-loaded nanocarriers to assist PDE4 inhibition of activated neutrophils for mitigating psoriasis-like lesions. Acta Biomater 2019; 90:350-361. [PMID: 30951898 DOI: 10.1016/j.actbio.2019.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/16/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Both phosphodiesterase (PDE4) inhibitors and omega-9 fatty acids show anti-inflammatory activity for treating inflamed skin diseases, but their efficacy remains low. Combinatorial agents are anticipated to offer an advanced strategy for efficient therapy. We prepared cilomilast-loaded oleic acid (OA) nanocarriers to test the inhibitory capability against human neutrophil stimulation and a murine psoriasis model. OA played dual roles in the nanocarriers as both the active ingredient and lipid matrix in the nanoparticulate core. OA nanoparticles but not free OA could restrain calcium mobilization in activated neutrophils. The inhibition level of superoxide anion and elastase by cilomilast-loaded OA nanocarriers approximated that of free forms. In the mouse model, the intradermal nanosystems reduced imiquimod-induced epidermal thickening from 230.4 to 63.1 μm. Transepidermal water loss was decreased from 30.2 to 11.3 g/m2/h by integrated nanocarriers. The nanosystems mitigated neutrophil infiltration and hyperproliferation in the psoriasiform lesion via decreased expression of cytokines and chemokines. STATEMENT OF SIGNIFICANCE: The long-term therapy for psoriasis is unsatisfactory due to the possible adverse effects and inefficiency after prolonged use. Both phosphodiesterase (PDE4) inhibitors and omega-9 fatty acids such as oleic acid (OA) show anti-inflammatory activity for treating inflamed skin diseases. Combinatorial agents are anticipated to offer an advanced strategy for efficient therapy. OA is also ideal for incorporation into nanoparticles to enhance particulate emulsification, drug entrapment, and biocompatibility. We prepared cilomilast-loaded oleic acid (OA) nanocarriers to test the inhibitory capability against human neutrophil stimulation and a murine psoriasis lesion. OA nanocarriers are indigenous to prevent neutrophil activation and the deterioration of psoriatic lesion. Cilomilast incorporation in OA nanocarriers could further mitigate the clinical score and suppressing proinflammatory mediators.
Collapse
|
44
|
Furst DE, Belasco J, Louie JS. Genetic and inflammatory factors associated with psoriatic arthritis: Relevance to diagnosis and management. Clin Immunol 2019; 202:59-75. [DOI: 10.1016/j.clim.2019.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 12/22/2022]
|
45
|
Majid I, Imran S, Batool S. Apremilast is effective in controlling the progression of adult vitiligo: A case series. Dermatol Ther 2019; 32:e12923. [DOI: 10.1111/dth.12923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/10/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Imran Majid
- Department of DermatologyCUTIS Institute of Dermatology Srinagar Jammu and Kashmir India
| | - Saher Imran
- Department of DermatologyCUTIS Institute of Dermatology Srinagar Jammu and Kashmir India
| | - Sameena Batool
- Department of DermatologyCUTIS Institute of Dermatology Srinagar Jammu and Kashmir India
| |
Collapse
|
46
|
Navarro-Triviño FJ, Cuenca-Barrales C, Vega-Castillo JJ, Ruiz-Villaverde R. Chronic hand eczema and hepatogenic pruritus with good response to apremilast. Dermatol Ther 2019; 32:e12879. [PMID: 30912252 DOI: 10.1111/dth.12879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 11/27/2022]
Abstract
Hand eczema (HE) presents a high prevalence and severe impact on the quality of life of the patients. HE is a worldwide problem recognized for his high socio-occupational involvement. Treatment is mainly based on adequate recommendations for hand care together with topical anti-inflammatory treatments. Frequently, patients require systemic treatments such alitretinoin, among others. The comorbidities of the patients and the side effects of the treatments sometimes require prescribing other treatments off label on the technical data. This role in immunomodulation has led to the development of new studies that investigate what role does apremilast have in eczematous diseases, such as atopic dermatitis. We present this case for the quick and complete response of HE with apremilast, and the effective control of hepatogenic pruritus. These finding open a new possibility and alternative treatment of this complex and difficult of control with the treatments already described in the literature.
Collapse
Affiliation(s)
| | - Carlos Cuenca-Barrales
- Unidad de Gestión Clínica de Dermatología, Hospital Universitario San Cecilio, Granada, Spain
| | - Jorge J Vega-Castillo
- Unidad de Gestión Clínica de Dermatología, Hospital Universitario San Cecilio, Granada, Spain
| | - Ricardo Ruiz-Villaverde
- Unidad de Gestión Clínica de Dermatología, Hospital Universitario San Cecilio, Granada, Spain
| |
Collapse
|
47
|
The PDE4 inhibitor CHF6001 modulates pro-inflammatory cytokines, chemokines and Th1- and Th17-polarizing cytokines in human dendritic cells. Biochem Pharmacol 2019; 163:371-380. [PMID: 30851246 DOI: 10.1016/j.bcp.2019.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors are used to treat autoimmune and inflammatory diseases, such as psoriasis and chronic obstructive pulmonary disease (COPD). CHF6001 is a novel, potent and selective inhaled PDE4 inhibitor in development for the treatment of COPD. When tested in vitro on human dendritic cells (DCs), CHF6001 decreased the release of pro-inflammatory cytokines (TNF-α and IL-6), chemokines (CXCL8, CCL3, CXCL10 and CCL19) and of Th1- and Th17-polarizing cytokines (IL-12, IL-23 and IL-1β). In contrast to β-methasone, a reference steroid anti-inflammatory drug, CHF6001 increased the secretion of CCL22, a Th2 recruiting chemokine, and the expression of the lymph node homing receptor CCR7. Accordingly, the migration of DCs to CCR7 ligands was increased, while migration to pro-inflammatory chemokines was decreased. Of note, the action of CHF6001 was apparently mediated by a promoter-specific decrease in NF-κB p65 recruitment, independent of perturbation of LPS signalling or NF-κB nuclear translocation. Our results indicate that CHF6001 can modulate DC pro-inflammatory Th1/Th17 polarizing potential by fine tuning the transcriptional activity of the master inflammatory transcription factor NF-κB. Therefore, CHF6001 may prove useful to control Th1/Th17-polarized inflammatory diseases such as COPD.
Collapse
|
48
|
Loures MAR, Alves HV, de Moraes AG, Santos TDS, Lara FF, Neves JSF, Macedo LC, Teixeira JJV, Sell AM, Visentainer JEL. Association of TNF, IL12, and IL23 gene polymorphisms and psoriatic arthritis: meta-analysis. Expert Rev Clin Immunol 2019; 15:303-313. [PMID: 30584776 DOI: 10.1080/1744666x.2019.1564039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Psoriatic arthritis (PsA) is a chronic skin and joint condition that considerably affects patient quality of life. Several studies have demonstrated different associations of genetic polymorphisms in the pathogenic process of PsA. Therefore, we conducted a meta-analysis to estimate the effect of polymorphisms in the cytokines TNF, IL12B, IL23A, and IL23R on PsA risk. METHODS We screened 1,097 abstracts and identified 14 relevant studies published between January 2007 and December 2017. A systematic search was conducted in PubMed, Web of Knowledge and Scopus databases. Meta-analyses were performed for the comparisons of alleles and multiple genetic models. RESULTS Among the cytokines studied, we found 17 polymorphisms that were the most investigated. The association to PsA was observed in the presence of polymorphisms: TNF-238 G > A (rs361525), -308 G > A (rs1800629), and -857 C > T (rs1799724); IL12B C > G (rs6887695) and A > C (rs3212227); IL23A A > G (rs2066808) and IL23R G > A (rs11209026). CONCLUSION Our findings suggest that these variant cytokine genes may strongly influence the immunological response of PsA.
Collapse
Affiliation(s)
- Marco Antonio Rocha Loures
- a Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine , Maringá State University , Maringá , Brazil
| | - Hugo Vicentin Alves
- a Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine , Maringá State University , Maringá , Brazil
| | - Amarilis Giaretta de Moraes
- a Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine , Maringá State University , Maringá , Brazil
| | - Thaís da Silva Santos
- a Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine , Maringá State University , Maringá , Brazil
| | - Fernanda Formaggi Lara
- a Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine , Maringá State University , Maringá , Brazil
| | - Janisleya Silva Ferreira Neves
- a Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine , Maringá State University , Maringá , Brazil
| | - Luciana Conci Macedo
- a Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine , Maringá State University , Maringá , Brazil
| | - Jorge Juarez Vieira Teixeira
- a Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine , Maringá State University , Maringá , Brazil
| | - Ana Maria Sell
- a Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine , Maringá State University , Maringá , Brazil
| | - Jeane Eliete Laguila Visentainer
- a Postgraduate Program in Biosciences and Physiopathology, Department of Clinical Analysis and Biomedicine , Maringá State University , Maringá , Brazil.,b Immunogenetics Laboratory, Department of Basic Health Sciences , Maringá State University , Maringá , Brazil
| |
Collapse
|
49
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
50
|
|