1
|
Akhmetshina A, Kratky D, Rendina-Ruedy E. Influence of Cholesterol on the Regulation of Osteoblast Function. Metabolites 2023; 13:metabo13040578. [PMID: 37110236 PMCID: PMC10143138 DOI: 10.3390/metabo13040578] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Bone is a dynamic tissue composed of cells, an extracellular matrix, and mineralized portion. Osteoblasts are responsible for proper bone formation and remodeling, and function. These processes are endergonic and require cellular energy in the form of adenosine triphosphate (ATP), which is derived from various sources such as glucose, fatty acids, and amino acids. However, other lipids such as cholesterol have also been found to play a critical role in bone homeostasis and can also contribute to the overall bioenergetic capacity of osteoblasts. In addition, several epidemiological studies have found a link between elevated cholesterol, cardiovascular disease, an enhanced risk of osteoporosis, and increased bone metastasis in cancer patients. This review focuses on how cholesterol, its derivatives, and cholesterol-lowering medications (statins) regulate osteoblast function and bone formation. It also highlights the molecular mechanisms underlying the cholesterol-osteoblast crosstalk.
Collapse
Affiliation(s)
- Alena Akhmetshina
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Elizabeth Rendina-Ruedy
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
2
|
Sun H, Meng S, Chen J, Wan Q. Effects of Hyperlipidemia on Osseointegration of Dental Implants and Its Strategies. J Funct Biomater 2023; 14:jfb14040194. [PMID: 37103284 PMCID: PMC10145040 DOI: 10.3390/jfb14040194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Hyperlipidemia refers to the abnormal increase in plasma lipid level exceeding the normal range. At present, a large number of patients require dental implantation. However, hyperlipidemia affects bone metabolism, promotes bone loss, and inhibits the osseointegration of dental implants through the mutual regulation of adipocytes, osteoblasts, and osteoclasts. This review summarized the effects of hyperlipidemia on dental implants and addressed the potential strategies of dental implants to promote osseointegration in a hyperlipidemic environment and to improve the success rate of dental implants in patients with hyperlipidemia. We summarized topical drug delivery methods to solve the interference of hyperlipidemia in osseointegration, which were local drug injection, implant surface modification and bone-grafting material modification. Statins are the most effective drugs in the treatment of hyperlipidemia, and they also encourage bone formation. Statins have been used in these three methods and have been found to be positive in promoting osseointegration. Directly coating simvastatin on the rough surface of the implant can effectively promote osseointegration of the implant in a hyperlipidemic environment. However, the delivery method of this drug is not efficient. Recently, a variety of efficient methods of simvastatin delivery, such as hydrogels and nanoparticles, have been developed to boost bone formation, but few of them were applied to dental implants. Applicating these drug delivery systems using the three aforementioned ways, according to the mechanical and biological properties of materials, could be promising ways to promote osseointegration under hyperlipidemic conditions. However, more research is needed to confirm.
Collapse
|
3
|
Sabandal MMI, Schäfer E, Petsching S, Jung S, Kleinheinz J, Sielker S. Pleiotropic effects on proliferation and mineralization of primary human adipose tissue-derived stromal cells induced by simvastatin. Open Biol 2022; 12:210337. [PMID: 35673853 PMCID: PMC9174717 DOI: 10.1098/rsob.210337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The circulating low-density lipoprotein concentration in blood can be reduced by the administration of statins. Frequently simvastatin (SV) is prescribed. Due to the reported pleiotropic effects of SV the aim of this study was to evaluate mineralization effects on human adipose tissue-derived stromal cells upon administration of SV. After informed consent human adipose tissue-derived stromal cells were obtained from tissue surplus of regular treatments of 14 individuals. According to established protocols after adding various SV concentrations (0.01 µM, 0.1 µM, 1.0 µM, 2.0 µM), alkaline phosphate (osteoblastic marker), mineralization capability and viability were determined at day 18, 21 and 28. The Kruskal-Wallis test was performed for statistical analysis. After adding SV a dose-dependent significant decreased viability and levels of alkaline phosphatase (p < 0.01) and a significantly increased mineralization (p < 0.01) of the primary cultures was recognized during the late mineralization stage. Mineralization of the human adipose tissue-derived stromal cells was induced by SV, possibly originated from alternative pathways than the alkaline phosphatase pathway. Further investigations should be performed regarding switching into the osteoblastic differentiation and as a possible source of cells that can be used as the basis for a potential bone graft substitute, which may allow an extension of the field of application.
Collapse
Affiliation(s)
- Martin Mariano Isabelo Sabandal
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Albert-Schweitzer-Campus 1, Gebäude W30, Waldeyerstr. 30, 48149 Münster, Germany
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Albert-Schweitzer-Campus 1, Gebäude W30, Waldeyerstr. 30, 48149 Münster, Germany
| | - Simon Petsching
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Susanne Jung
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Johannes Kleinheinz
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Sonja Sielker
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| |
Collapse
|
4
|
Tomographic evaluation of the effect of simvastatin topical use on alveolar bone microarchitecture, pain and swelling after mandibular third molar extraction: a randomized controlled trial. Clin Oral Investig 2022; 26:3533-3545. [DOI: 10.1007/s00784-021-04322-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/24/2021] [Indexed: 11/03/2022]
|
5
|
Loo-Kirana R, Gilijamse M, Hogervorst J, Schoenmaker T, de Vries TJ. Although Anatomically Micrometers Apart: Human Periodontal Ligament Cells Are Slightly More Active in Bone Remodeling Than Alveolar Bone Derived Cells. Front Cell Dev Biol 2021; 9:709408. [PMID: 34616725 PMCID: PMC8488427 DOI: 10.3389/fcell.2021.709408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 01/09/2023] Open
Abstract
The periodontal ligament (PDL) and the alveolar bone are part of the periodontium, a complex structure that supports the teeth. The alveolar bone is continuously remodeled and is greatly affected by several complex oral events, like tooth extraction, orthodontic movement, and periodontitis. Until now, the role of PDL cells in terms of osteogenesis and osteoclastogenesis has been widely studied, whereas surprisingly little is known about the bone remodeling capacity of alveolar bone. Therefore, the purpose of this study was to compare the biological character of human alveolar bone cells and PDL cells in terms of osteogenesis and osteoclastogenesis in vitro. Paired samples of PDL cells and alveolar bone cells from seven patients with compromised general and oral health were collected and cultured. Bone A (early outgrowth) and bone B (late outgrowth) were included. PDL, bone A, bone B cell cultures all had a fibroblast appearance with similar expression pattern of six mesenchymal markers. These cultures were subjected to osteogenesis and osteoclastogenesis assays. For osteoclastogenesis assays, the cells were co-cultured with peripheral blood mononuclear cells, a source for osteoclast precursor cells. The total duration of the experiments was 21 days. Osteogenesis was slightly favored for PDL compared to bone A and B as shown by stronger Alizarin red staining and higher expression of RUNX2 and Collagen I at day 7 and for ALP at day 21. PDL induced approximately two times more osteoclasts than alveolar bone cells. In line with these findings was the higher expression of cell fusion marker DC-STAMP in PDL-PBMC co-cultures compared to bone B at day 21. In conclusion, alveolar bone contains remodeling activity, but to a different extent compared to PDL cells. We showed that human alveolar bone cells can be used as an in vitro model to study bone remodeling.
Collapse
Affiliation(s)
- Rebecca Loo-Kirana
- Department of Periodontology, Academic Centre For Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marjolijn Gilijamse
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Amsterdam UMC, Location VUmc, Amsterdam, Netherlands.,Department of Oral and Maxillofacial Surgery, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Jolanda Hogervorst
- Department of Oral Cell Biology, Academic Centre For Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre For Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Centre For Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Malekpour Z, Akbari V, Varshosaz J, Taheri A. Preparation and characterization of poly (lactic-co-glycolic acid) nanofibers containing simvastatin coated with hyaluronic acid for using in periodontal tissue engineering. Biotechnol Prog 2021; 37:e3195. [PMID: 34296538 DOI: 10.1002/btpr.3195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/04/2021] [Accepted: 07/18/2021] [Indexed: 01/02/2023]
Abstract
Periodontal diseases can lead to soft tissue defects. Tissue engineering can provide functional replacements for damaged tissues. Recently, electrospun nanofibers have attracted great interest for tissue engineering and drug delivery applications. This has been revealed that statins exhibit positive impacts on the proliferation and regeneration of periodontal tissues. Electrospun simvastatin loaded poly (lactic-co-glycolic acid) (SIM-PLGA-NF) were prepared using electrospinning technique. Optimal conditions for preparation of SIM-PLGA-NF (PLGA concentration of 30 wt%, voltage of 15 kV, and flow rate of 1.5 ml h-1 ) were identified using a 23 factorial design. The optimized SIM-PLGA-NFs (diameter of 640.2 ± 32.5 nm and simvastatin entrapment efficacy of 99.6 ± 1.5%) were surface modified with 1% w/v hyaluronic acid solution (1%HA- SIM-PLGA-NF) to improve their compatibility with fibroblasts and potential application as a periodontal tissue engineering scaffold. HA-SIM-PLGA NFs were analyzed using SEM, FTIR, and XRD. 1%HA-SIM-PLGA-NF had uniform, bead-free and interwoven morphology, which is similar to the extracellular matrix. The mechanical performance of SIM-PLGA-NFs and release profile of simvastatin from these nanofibers have been also greatly improved after coating with HA. In vitro cellular tests showed that the proliferation, adhesion, and differentiation of fibroblast cells positively enhanced on the surface of 1%HA- SIM-PLGA-NF. These results demonstrate the potential application of 1%HA-SIM-PLGA-NFs as a scaffold for periodontal tissue engineering.
Collapse
Affiliation(s)
- Zahra Malekpour
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azade Taheri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
7
|
de Carvalho RDP, Côrrea Viana Casarin R, Lima POD, Cogo-Müller K. STATINSWITH POTENTIAL TO CONTROL PERIODONTITIS: FROM BIOLOGICAL MECHANISMS TO CLINICAL STUDIES. J Oral Biosci 2021; 63:232-244. [PMID: 34146687 DOI: 10.1016/j.job.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Statins are widely used for the treatment of hyperlipidemia. However, these drugs have pleiotropic effects that can be promising for the prevention and treatment of oral diseases, such as periodontitis. HIGHLIGHT This review aimed to identify preclinical, observational, and clinical studies that evaluate the effects and biological mechanisms of statins on oral cells and tissues and those using these drugs to treat periodontitis. A LITERATURE SURVEY HAS BEEN CONDUCTED IN PUBMED USING COMBINATIONS OF THE UNITERMS: "statins," "dentistry," "periodontal disease," and "periodontal treatment." In vitro findings showed positive statin results in cell lines related to alveolar bone metabolism by altering the signaling pathway Osteoprotegerin/Receptor Activator of Nuclear Factor Kappa B/Receptor Activator of Nuclear Factor Kappa B Ligand (OPG/RANK/RANKL), stimulating the production of alkaline phosphatase and osteocalcin, and reducing the production of matrix metalloproteinases (MMPs). Animal studies have shown a reduction in alveolar bone loss and osteoclastic activity, in addition to a reduction in inflammatory markers, such as IL-1, IL-6, and TNF-α, when statins were used prophylactically. Clinical trials showed a positive impact on clinical parameters, leading to a higher reduction in probing depth and gain in clinical attachment when a local statin was adjunctively associated with mechanical therapy. CONCLUSION Statins were shown to be promising for regenerating and stimulating bone activity, with great potential for treating chronic periodontitis. However, further studies are required to confirm its effectiveness.
Collapse
Affiliation(s)
| | | | | | - Karina Cogo-Müller
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
8
|
Jin H, Ji Y, Cui Y, Xu L, Liu H, Wang J. Simvastatin-Incorporated Drug Delivery Systems for Bone Regeneration. ACS Biomater Sci Eng 2021; 7:2177-2191. [PMID: 33877804 DOI: 10.1021/acsbiomaterials.1c00462] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Local drug delivery systems composed of biomaterials and osteogenic substances provide promising strategies for the reconstruction of large bone defects. In recent years, simvastatin has been studied extensively for its pleiotropic effects other than lowering of cholesterol, including its ability to induce osteogenesis and angiogenesis. Accordingly, several studies of simvastatin incorporated drug delivery systems have been performed to demonstrate the feasibility of such systems in enhancing bone regeneration. Therefore, this review explores the molecular mechanisms by which simvastatin affects bone metabolism and angiogenesis. The simvastatin concentrations that promote osteogenic differentiation are analyzed. Furthermore, we summarize and discuss a variety of simvastatin-loaded drug delivery systems that use different loading methods and materials. Finally, current shortcomings of and future development directions for simvastatin-loaded drug delivery systems are summarized. This review provides various advanced design strategies for simvastatin-incorporated drug delivery systems that can enhance bone regeneration.
Collapse
Affiliation(s)
- Hui Jin
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China.,Department of Pain, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Youbo Ji
- Department of Pain, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yutao Cui
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Li Xu
- Department of Orthopedics, Weihai Guanghua Hospital, Weihai 264200, P.R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
9
|
Zhang H, Zhang Y, Chen X, Li J, Zhang Z, Yu H. Effects of statins on cytokines levels in gingival crevicular fluid and saliva and on clinical periodontal parameters of middle-aged and elderly patients with type 2 diabetes mellitus. PLoS One 2021; 16:e0244806. [PMID: 33417619 PMCID: PMC7793287 DOI: 10.1371/journal.pone.0244806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023] Open
Abstract
Objective To analyze the effect of statins on cytokines levels in gingival crevicular fluid (GCF) and saliva and on clinical periodontal parameters of middle-aged and elderly patients with type 2 diabetes mellitus (T2DM). Methods Systemically healthy controls (C group, n = 62), T2DM patients not taking statins (D group, n = 57) and T2DM patients taking statins (S group, n = 24) were recruited. In each group, subjects (40–85 years) were subclassified into the h (periodontal health)group, the g (gingivitis)group or the p (periodontitis) group according to different periodontal conditions. 17 cytokines in gingival crevicular fluid (GCF) and saliva samples of each subject were measured utilizing the Luminex technology kit. Further, HbA1c (glycated hemoglobin), FPG (fasting plasma glucose), PD (probing depth), CAL (clinical attachment level), BOP (bleeding on probing), GI (gingival index) and PI (periodontal index) were recorded. Data distribution was tested through the Shapiro-Wilk test, upon which the Kruskal-Wallis test was applied followed by Mann-Whitney U test and Bonferroni’s correction. Results Levels of IFN-γ, IL-5, IL-10 and IL-13 in the saliva of the Dh group were significantly lower than those in the Ch group, while factor IL-4 was higher (p<0.05). Levels of MIP-3α, IL-7 and IL-2 in GCF of the Dh group were considerably higher than those in the Ch group (p<0.05), while that of IL-23 was considerably lower. Compared with the Cg group, levels of IFN-γ, IL-4, IL-5, IL-6, IL-10 and IL-13 were significantly lower in the saliva of the Dg group (p<0.05). Lower levels of IFN-γ, IL-5 and IL-10 were detected in the Sg group than those in the Cg group (p<0.05). At the same time, levels of IL-1β, IL-6, IL-7, IL-13, IL-17, IL-21 and MIP-3α in the gingival crevicular fluid of the Sg group were lower in comparison with the Dg group. In addition, lower levels of IL-4 and higher levels of IL-7 in GCF were identified in the Dg group than those in the Cg group, while in the Sg group, lower levels of IL-4, MIP-1αand MIP-3αwere observed than those in the Cg group (p<0.05). Lower levels of IFN-γ, IL-6, IL-10, IL-13 and I-TAC were found in the Sp group compared with those in the Cp group. The IFN-γ, IL-6 and IL-10 levels were lower in the Dp group than those in the Cp group (p<0.05). Meanwhile, in the Sp group, lower levels of pro-inflammatory factors IFN-γ, IL-1β, IL-2, IL-6, IL-7, IL-21 and TNF-α, in addition to higher levels of anti-inflammatory factors IL-4 and IL-5 in gingival crevicular fluid, were identified than those in the Dp group. Higher levels of IFN-γ,IL-1β,IL-2,IL-7,IL-21 and TNF-α and a lower level of IL-5 in the Dp group were identified than those in the Cp group (p<0.05). Moreover, statins were able to substantially reduce PD in T2DM patients with periodontitis, indicating an obvious influence on the levels of cytokines secreted by Th1 cells, Th2 cells and Th17 cells, as revealed by PCA (principal component analysis). Conclusion Statins are associated with reduced PD and cytokines levels in the GCF and saliva of T2DM patients with periodontitis.
Collapse
Affiliation(s)
- Huiyuan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yameng Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaochun Chen
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Juhong Li
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Ziyang Zhang
- Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
10
|
Sabandal MMI, Schäfer E, Imper J, Jung S, Kleinheinz J, Sielker S. Simvastatin Induces In Vitro Mineralization Effects of Primary Human Odontoblast-Like Cells. MATERIALS 2020; 13:ma13204679. [PMID: 33092304 PMCID: PMC7588985 DOI: 10.3390/ma13204679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022]
Abstract
Simvastatin (SV) is an often prescribed statin reducing the LDL-concentration in circulating blood. The aim of this study was to evaluate the pleiotropic effects of SV to primary human odontoblast-like cells. Twenty four wisdom teeth of different subjects were extracted and the pulp tissue was removed and minced under sterile conditions. After mincing, the requested cells were passaged according to established protocols. Osteoblastic marker (ALP conversion), viability and mineralization were determined at days 14, 17 and 21 after simvastatin exposition (0.01 µM, 0.1 µM, 1.0 µM, 2.0 µM). The sample size per group was 24 cultures with three replicates per culture for ALP-conversion and mineralization and 6 replicates for viability. A Kruskal–Wallis test was used for statistical analysis. After adding SV, viability was significantly (p < 0.01) decreased in a time- and dose-dependent manner, whereas after 21 days, mineralization was significant (p < 0.01). ALP-conversion in groups with SV concentrations of 1 and 2 µM SV was significantly (p < 0.01) increased. Pleiotropic effects regarding mineralization in higher SV concentrations were possibly induced via alternative mineralization pathways as almost equal elevations of ALP conversion were not evident in the control and experimental groups.
Collapse
Affiliation(s)
- Martin Mariano Isabelo Sabandal
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, 48149 Münster, Germany; (E.S.); (J.I.)
- Correspondence: ; Tel.: +49-251-843-712
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, 48149 Münster, Germany; (E.S.); (J.I.)
| | - Jessica Imper
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, 48149 Münster, Germany; (E.S.); (J.I.)
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, 48149 Münster, Germany; (S.J.); (J.K.); (S.S.)
| | - Susanne Jung
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, 48149 Münster, Germany; (S.J.); (J.K.); (S.S.)
| | - Johannes Kleinheinz
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, 48149 Münster, Germany; (S.J.); (J.K.); (S.S.)
| | - Sonja Sielker
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, 48149 Münster, Germany; (S.J.); (J.K.); (S.S.)
| |
Collapse
|
11
|
Sabandal MMI, Schäfer E, Aed J, Jung S, Kleinheinz J, Sielker S. Simvastatin induces adverse effects on proliferation and mineralization of human primary osteoblasts. Head Face Med 2020; 16:18. [PMID: 32819403 PMCID: PMC7439668 DOI: 10.1186/s13005-020-00232-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/22/2020] [Indexed: 11/10/2022] Open
Abstract
Background Frequently statins were administered to reduce the LDL-concentration in circulating blood. Especially simvastatin (SV) is an often prescribed statin. Pleiotropic effects of these drugs were reported. Thus, the aim of this study was to evaluate effects of SV on osteoblastic mineralization. Methods After informed consent primary osteoblasts were collected from tissue surplus after treatment of 14 individuals in the Department of Cranio-Maxillofacial Surgery, University Hospital Münster. The cells were passaged according to established protocols. Viability, mineralization capability and osteoblastic marker (alkaline phosphatase) were determined at day 9, 13 and 16 after adding various SV concentrations (0.05 μM, 0.1 μM, 0.5 μM, 1.0 μM). Statistical analysis was performed using the Kruskal-Wallis-test. Results The cell cultures showed a time and dose-dependent significantly decreased viability (p < 0.01) and a significantly increased mineralization (p < 0.01) in a late mineralization stage after adding SV. The typical alteration of the alkaline phosphatase (ALP) levels during osteogenic differentiation was not recognizable. Conclusions The pleiotropic effects found for different SV concentrations were possibly originated from other mineralization pathways beside the ALP induced one. Additionally, possible alterations of protein expression levels during mineralization and investigation of possible deviating application of SV in other treatment fields can be considered after gaining a deeper insight in the affected mechanisms.
Collapse
Affiliation(s)
- Martin Mariano Isabelo Sabandal
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Albert-Schweitzer-Campus 1, Gebäude W30, Waldeyerstr. 30, 48149, Münster, Germany.
| | - Edgar Schäfer
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Albert-Schweitzer-Campus 1, Gebäude W30, Waldeyerstr. 30, 48149, Münster, Germany
| | - Jonathan Aed
- Central Interdisciplinary Ambulance in the School of Dentistry, University of Münster, Albert-Schweitzer-Campus 1, Gebäude W30, Waldeyerstr. 30, 48149, Münster, Germany.,Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Susanne Jung
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Johannes Kleinheinz
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| | - Sonja Sielker
- Department of Cranio-Maxillofacial Surgery, University Hospital Münster, Münster, Germany
| |
Collapse
|
12
|
Tahamtan S, Shirban F, Bagherniya M, Johnston TP, Sahebkar A. The effects of statins on dental and oral health: a review of preclinical and clinical studies. J Transl Med 2020; 18:155. [PMID: 32252793 PMCID: PMC7132955 DOI: 10.1186/s12967-020-02326-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 04/01/2020] [Indexed: 12/15/2022] Open
Abstract
The statin family of drugs are safe and effective therapeutic agents for the treatment of arteriosclerotic cardiovascular disease (CVD). Due to a wide range of health benefits in addition to their cholesterol lowering properties, statins have recently attracted significant attention as a new treatment strategy for several conditions, which are not directly related to normalizing a lipid profile and preventing CVD. Statins exert a variety of beneficial effects on different aspects of oral health, which includes their positive effects on bone metabolism, their anti-inflammatory and antioxidant properties, and their potential effects on epithelization and wound healing. Additionally, they possess antimicrobial, antiviral, and fungicidal properties, which makes this class of drugs attractive to the field of periodontal diseases and oral and dental health. However, to the best of our knowledge, there has been no comprehensive study to date, which has investigated the effects of statin drugs on different aspects of dental and oral health. Therefore, the primary objective of this paper was to review the effect of statins on dental and oral health. Results of our extensive review have indicated that statins possess remarkable and promising effects on several aspects of dental and oral health including chronic periodontitis, alveolar bone loss due to either extraction or chronic periodontitis, osseointegration of implants, dental pulp cells, orthodontic tooth movement, and orthodontic relapse, tissue healing (wound/bone healing), salivary gland function, and finally, anti-cancer effects. Hence, statins can be considered as novel, safe, inexpensive, and widely-accessible therapeutic agents to improve different aspects of dental and oral health.
Collapse
Affiliation(s)
- Shabnam Tahamtan
- Dental Research Center, Department of Orthodontics, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farinaz Shirban
- Dental Research Center, Department of Orthodontics, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
13
|
Sanz M, Marco del Castillo A, Jepsen S, Gonzalez‐Juanatey JR, D’Aiuto F, Bouchard P, Chapple I, Dietrich T, Gotsman I, Graziani F, Herrera D, Loos B, Madianos P, Michel J, Perel P, Pieske B, Shapira L, Shechter M, Tonetti M, Vlachopoulos C, Wimmer G. Periodontitis and cardiovascular diseases: Consensus report. J Clin Periodontol 2020; 47:268-288. [PMID: 32011025 PMCID: PMC7027895 DOI: 10.1111/jcpe.13189] [Citation(s) in RCA: 650] [Impact Index Per Article: 162.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND In Europe cardiovascular disease (CVD) is responsible for 3.9 million deaths (45% of deaths), being ischaemic heart disease, stroke, hypertension (leading to heart failure) the major cause of these CVD related deaths. Periodontitis is also a chronic non-communicable disease (NCD) with a high prevalence, being severe periodontitis, affecting 11.2% of the world's population, the sixth most common human disease. MATERIAL AND METHODS There is now a significant body of evidence to support independent associations between severe periodontitis and several NCDs, in particular CVD. In 2012 a joint workshop was held between the European Federation of Periodontology (EFP) and the American Academy of Periodontology to review the literature relating periodontitis and systemic diseases, including CVD. In the last five years important new scientific information has emerged providing important emerging evidence to support these associations RESULTS AND CONCLUSIONS: The present review reports the proceedings of the workshop jointly organised by the EFP and the World Heart Federation (WHF), which has updated the existing epidemiological evidence for significant associations between periodontitis and CVD, the mechanistic links and the impact of periodontal therapy on cardiovascular and surrogate outcomes. This review has also focused on the potential risk and complications of periodontal therapy in patients on anti thrombotic therapy and has made recommendations for dentists, physicians and for patients visiting both the dental and medical practices.
Collapse
Affiliation(s)
- Mariano Sanz
- Department of Dental Clinical SpecialtiesETEP Research GroupFaculty of OdontologyUniversity Complutense of MadridMadridSpain
| | | | - Søren Jepsen
- Department of Periodontology, Operative and Preventive DentistryUniversity of BonnBonnGermany
| | - Jose R. Gonzalez‐Juanatey
- Cardiology DepartmentUniversity HospitalIDISCIBERCVUniverity of Santiago de CompostelaSantiago de CompostelaSpain
| | - Francesco D’Aiuto
- Department of PeriodontologyEastman Dental Institute and HospitalUniversity College LondonLondonUK
| | - Philippe Bouchard
- U.F.R. d'odontologieUniversité Paris DiderotHôpital Rothschild AP‐HPParisFrance
| | - Iain Chapple
- School of DentistryInstitute of Clinical SciencesCollege of Medical & Dental SciencesThe University of BirminghamBirminghamUK
| | - Thomas Dietrich
- School of DentistryInstitute of Clinical SciencesCollege of Medical & Dental SciencesThe University of BirminghamBirminghamUK
| | - Israel Gotsman
- Heart InstituteHadassah University HospitalJerusalemIsrael
| | - Filippo Graziani
- Department of Surgical, Medical and Molecular Pathology and Critical Care MedicineUniversity of PisaPisaItaly
| | - David Herrera
- Department of Dental Clinical SpecialtiesETEP Research GroupFaculty of OdontologyUniversity Complutense of MadridMadridSpain
| | | | - Phoebus Madianos
- Department of PeriodontologySchool of DentistryNational and Kapodistrian University of AthensAthensGreece
| | - Jean‐Baptiste Michel
- Inserm Unit 1148Laboratory for Translational CV ScienceX. Bichat HospitalParisFrance
| | - Pablo Perel
- World Heart FederationGenevaSwitzerland
- Centre for Global Chronic ConditionsLondon School of Hygiene & Tropical MedicineLondonUK
| | - Burkert Pieske
- Department of Internal Medicin & CardiologyCharité Universitätsmedizin BerlinBerlinGermany
- DZHK (German Center for Cardiovascular Research) Partnersite BerlinGerman Heart Institut BerlinBerlinGermany
| | - Lior Shapira
- Department of PeriodontologyHebrew University – Hadassah Faculty of Dental MedicineJerusalemIsrael
| | - Michael Shechter
- Leviev Heart CenterChaim Sheba Medical Centertel Hashomer and the Sackler Faculty of MedicineTel Aviv UniversityTel Aviv‐YafoIsrael
| | - Maurizio Tonetti
- Department of PeriodontologyPrince Philip Dental HospitalThe University of Hong KongHong KongHong Kong
| | | | - Gernot Wimmer
- Department of Prosthetic DentistrySchool of Dental MedicineKarl‐Franzens University GrazGrazAustria
| |
Collapse
|
14
|
Liang Y, Luan X, Liu X. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact Mater 2020; 5:297-308. [PMID: 32154444 PMCID: PMC7052441 DOI: 10.1016/j.bioactmat.2020.02.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Periodontal disease (PD) is one of the most common inflammatory oral diseases, affecting approximately 47% of adults aged 30 years or older in the United States. If not treated properly, PD leads to degradation of periodontal tissues, causing tooth movement, and eventually tooth loss. Conventional clinical therapy for PD aims at eliminating infectious sources, and reducing inflammation to arrest disease progression, which cannot achieve the regeneration of lost periodontal tissues. Over the past two decades, various regenerative periodontal therapies, such as guided tissue regeneration (GTR), enamel matrix derivative, bone grafts, growth factor delivery, and the combination of cells and growth factors with matrix-based scaffolds have been developed to target the restoration of lost tooth-supporting tissues, including periodontal ligament, alveolar bone, and cementum. This review discusses recent progresses of periodontal regeneration using tissue-engineering and regenerative medicine approaches. Specifically, we focus on the advances of biomaterials and controlled drug delivery for periodontal regeneration in recent years. Special attention is given to the development of advanced bio-inspired scaffolding biomaterials and temporospatial control of multi-drug delivery for the regeneration of cementum-periodontal ligament-alveolar bone complex. Challenges and future perspectives are presented to provide inspiration for the design and development of innovative biomaterials and delivery system for new regenerative periodontal therapy.
Collapse
Affiliation(s)
- Yongxi Liang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xianghong Luan
- Department of Periodontics, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| |
Collapse
|
15
|
Sanz M, del Castillo AM, Jepsen S, Gonzalez-Juanatey JR, D’Aiuto F, Bouchard P, Chapple I, Dietrich T, Gotsman I, Graziani F, Herrera D, Loos B, Madianos P, Michel JB, Perel P, Pieske B, Shapira L, Shechter M, Tonetti M, Vlachopoulos C, Wimmer G. Periodontitis and Cardiovascular Diseases. Consensus Report. Glob Heart 2020; 15:1. [PMID: 32489774 PMCID: PMC7218770 DOI: 10.5334/gh.400] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
Background In Europe cardiovascular disease (CVD) is responsible for 3.9 million deaths (45% of deaths), being ischaemic heart disease, stroke, hypertension (leading to heart failure) the major cause of these CVD related deaths. Periodontitis is also a chronic non-communicable disease (NCD) with a high prevalence, being severe periodontitis, affecting 11.2% of the world's population, the sixth most common human disease. Material and Methods There is now a significant body of evidence to support independent associations between severe periodontitis and several NCDs, in particular CVD. In 2012 a joint workshop was held between the European Federation of Periodontology (EFP) and the American Academy of Periodontology to review the literature relating periodontitis and systemic diseases, including CVD. In the last five years important new scientific information has emerged providing important emerging evidence to support these associations. Results and Conclusions The present review reports the proceedings of the workshop jointly organised by the EFP and the World Heart Federation (WHF), which has updated the existing epidemiological evidence for significant associations between periodontitis and CVD, the mechanistic links and the impact of periodontal therapy on cardiovascular and surrogate outcomes. This review has also focused on the potential risk and complications of periodontal therapy in patients on anti thrombotic therapy and has made recommendations for dentists, physicians and for patients visiting both the dental and medical practices.
Collapse
Affiliation(s)
- M. Sanz
- Department of Dental Clinical Specialties and ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Plaza Ramon y Cajal, Madrid, ES
| | | | - S. Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, DE
| | - J. R. Gonzalez-Juanatey
- Cardiology Department, University Hospital, University of Santiago de Compostela, IDIS, CIBERCV, ES
| | - F. D’Aiuto
- Department of Periodontology, Eastman Dental Institute and Hospital, University College London, London, UK
| | - P. Bouchard
- U.F.R. d’odontologie, Université Paris Diderot, Hôpital Rothschild AP-HP, Paris, FR
| | - I. Chapple
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - T. Dietrich
- School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - I. Gotsman
- Heart Institute, Hadassah University Hospital, Jerusalem, IL
| | - F. Graziani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, IT
| | - D. Herrera
- Department of Dental Clinical Specialties and ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Plaza Ramon y Cajal, Madrid, ES
| | - B. Loos
- ACTA University, Amsterdam, NL
| | - P. Madianos
- Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, GR
| | - J. B. Michel
- Inserm Unit 1148, laboratory for translational CV science, X. Bichat hospital, Paris, FR
| | - P. Perel
- World Heart Federation, Geneva, CH
- Centre for Global Chronic Conditions, London School of Hygiene and Tropical Medicine, UK
| | - B. Pieske
- Charité Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, Berlin, DE
- DZHK (German Center for Cardiovascular Research) Partnersite Berlin, German Heart Institut Berlin, DE
| | - L. Shapira
- Department of Periodontology, Hebrew University – Hadassah Faculty of Dental Medicine, Jerusalem, IL
| | - M. Shechter
- Leviev Heart Center, Chaim Sheba Medical Center, tel Hashomer and the Sackler Faculty of Medicine, Tel Aviv University, IL
| | - M. Tonetti
- Department of Periodontology, The University of Hong Kong, Prince Philip Dental Hospital, HK
| | - C. Vlachopoulos
- Department of Cardiology, National and Kapodistrian University of Athens, GR
| | - G. Wimmer
- Department of Prosthetic Dentistry, School of Dental Medicine, Karl-Franzens University Graz, AT
| |
Collapse
|
16
|
Issa DR, Abdel-Ghaffar KA, Al-Shahat MA, Hassan AAA, Iacono VJ, Gamal AY. Guided tissue regeneration of intrabony defects with perforated barrier membranes, simvastatin, and EDTA root surface modification: A clinical and biochemical study. J Periodontal Res 2019; 55:85-95. [PMID: 31448832 DOI: 10.1111/jre.12692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 07/08/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Perforated barrier membranes (PBM) were suggested to enhance periodontal regeneration by allowing positive charity of wanted elements from the gingival tissue side. The present study was designed to evaluate clinically and biochemically the use of PBM combined with simvastatin (SMV) gel with and without an associated EDTA gel root surface etching as a suggested option that could improve SMV availability and clinical outcomes of PBM. METHODS Forty patients having moderate-to-severe chronic periodontitis with 40 intrabony defects were randomly divided into four treatment groups (10 sites each). Patients in group 1 received 1.2% SMV gel and covering the defect with occlusive membrane (OM). Patients in group 2 received 1.2% SMV gel and covering the defect with PBM. Group 3 received 24% EDTA root surface etching, 1.2% SMV gel, and defect coverage with OM (eOM). Patients in group 4 were treated as in group 3 but the defect was covered with PBM (ePBM). Clinical parameters were recorded at baseline before surgical procedures and were reassessed at 6 and 9 months after therapy. The mean concentration of SMV in gingival crevicular fluid (GCF) was estimated by reverse-phase high-performance liquid chromatography at days 1, 7, 14, 21, and 30. RESULTS At 6- and 9-month observation periods, groups 3 and 4 showed a statistically significant improvement in PD reduction and CAL gain compared with groups 1 and 2. Group 4 showed a statistically significant more defect fill compared with groups 1, 2, and 3 (P ≤ .05). Group 2 showed statistically significant higher defect fill compared with group 1 and group 3 (P < .05). Bone density was significantly increased with no significant difference between the four groups at 6- and 9-month observation periods. SMV-GCF concentration in group 4 showed the highest mean concentration with no significant difference than that of group 3. CONCLUSION The use of perforated barrier membranes in association with SMV enhances the clinical hard tissue parameters compared with occlusive ones in treating intrabony periodontal defects. Moreover, EDTA root surface treatment could enhance SMV availability in the defect area.
Collapse
Affiliation(s)
- Dalia Rasheed Issa
- Department of Oral Medicine and Periodontology, Faculty of Dentistry, Kafrelsheikh University, Kafr El Sheikh, Egypt
| | - Khaled A Abdel-Ghaffar
- Department of Periodontology, Faculty of Dental Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed A Al-Shahat
- Department of Periodontology, Faculty of Dental Medicine, Delta University for science and technology, Cairo, Egypt
| | - Ahmed Abdel Aziz Hassan
- Department of Periodontology, Faculty of Dental Medicine, Ain Shams University, Cairo, Egypt
| | - Vincent J Iacono
- School of Dental Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Ahmed Y Gamal
- Department of Periodontology, Faculty of Oral and Dental Medicine, Nahda University, Benisweif, Egypt
| |
Collapse
|
17
|
Zhou Y, Deng T, Zhang H, Guan Q, Zhao H, Yu C, Shao S, Zhao M, Xu J. Hypercholesterolaemia increases the risk of high‑turnover osteoporosis in men. Mol Med Rep 2019; 19:4603-4612. [PMID: 30957178 PMCID: PMC6522796 DOI: 10.3892/mmr.2019.10131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 03/08/2019] [Indexed: 01/23/2023] Open
Abstract
As the incidence of osteoporosis (OP) and hypercholesterolaemia in men has increased, male OP has drawn more attention from clinicians worldwide. The present study sought to investigate the effects of cholesterol on male bone. Between July 2015 and October 2015, 216 men (aged ≥18 years) were recruited for this cross‑sectional study. To test our clinical hypothesis, we designed two male animal models: Exogenous hypercholesterolaemia induced by a high‑cholesterol diet (HCD) and endogenous hypercholesterolaemia induced by apolipoprotein E (ApoE) knockout. Finally, the direct effects of cholesterol on osteoblasts were observed in cell experiments. In our clinical studies, men with hypercholesterolaemia displayed a lower bone mineral density (BMD) and increased beta collagen cross‑linking (beta‑CTX) and type I anterior collagen amino terminal peptide (PINP) levels compared to those of the control subjects. Serum cholesterol levels were a significant independent predictor of BMD, beta‑CTX and PINP and were negatively correlated with BMD and positively correlated with beta‑CTX and PINP levels. Our animal experimental results validated our clinical results, as they also indicated that hypercholesterolaemia damages bone microstructure and reduces bone strength. Cholesterol directly increased osteoblast functional gene expression in vitro. Hypercholesterolaemia increases the risk of high‑turnover osteoporosis in men at least in part by excessively promoting the activity of the remodelling pathway. In addition, hypercholesterolaemia damages the bone microstructure, resulting in osteopenia or OP and reduced bone strength, leading to a higher risk of fracture in men. We emphasize the importance of preventing and treating hypercholesterolaemia as well as monitoring bone metabolic markers and BMD in men with hypercholesterolemia for the effective prevention of bone loss and subsequent fracture. In addition, our findings provide a theoretical basis for the development of treatments for high cholesterol‑induced osteoporosis in men.
Collapse
Affiliation(s)
- Yanman Zhou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Tuo Deng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qingbo Guan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hongqiang Zhao
- Department of Internal Medicine, Laiwu People's Hospital, Laiwu, Shandong 271100, P.R. China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shanshan Shao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Meng Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jin Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
18
|
Cui C, Li Y, Liu Y. Down-regulation of miR-377 suppresses high glucose and hypoxia-induced angiogenesis and inflammation in human retinal endothelial cells by direct up-regulation of target gene SIRT1. Hum Cell 2019; 32:260-274. [DOI: 10.1007/s13577-019-00240-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/19/2019] [Indexed: 02/06/2023]
|
19
|
Bertl K, Parllaku A, Pandis N, Buhlin K, Klinge B, Stavropoulos A. The effect of local and systemic statin use as an adjunct to non-surgical and surgical periodontal therapy-A systematic review and meta-analysis. J Dent 2018; 67:18-28. [PMID: 28855141 DOI: 10.1016/j.jdent.2017.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES To evaluate the effect of local and/or systemic statin use as an adjunct to non-surgical and/or surgical periodontal therapy. DATA Literature search according to PRISMA guidelines with the following eligibility criteria: (a) English or German language; (b) interventional studies; (c) statins as monotherapy or as an adjunct to non-surgical and/or surgical treatment of periodontitis; (d) clinical and/or radiographic treatment effect size of statin intake reported. SOURCES Medline (PubMed), Embase (Ovid), CENTRAL (Ovid). STUDY SELECTION Thirteen clinical studies regarding local application and 2 with systemic administration of statins as an adjunct to non-surgical treatment (SRP) and 4 studies regarding intrasurgical statin application with a maximum follow-up of 9 months could be included; simvastatin, atorvastatin, and rosuvastatin were used. Local but not systemic statin application as an adjunct to SRP yielded significantly larger probing pocket depth (PD), radiographic defect depth (RDD), and bleeding index reduction, and larger clinical attachment level gain, and less residual PD and RDD (p≤0.016); rosuvastatin appeared as the most efficacious. Three of 4 studies reported a significant positive effect of intrasurgical statin application. No adverse events were reported after statin use. The vast majority of the included studies were from the same research group. CONCLUSIONS Significant additional clinical and radiographic improvements are obtained after local, but not systemic, statin use as an adjunct to SRP in deep pockets associated with intrabony defects and seemingly with furcation defects; intrasurgical statin application seems similarly beneficial. Confirmation of these results, and especially of the effect size, from other research groups is warranted.
Collapse
Affiliation(s)
- Kristina Bertl
- Department of Periodontology, Faculty of Odontology, University of Malmö, Sweden; Division of Oral Surgery, School of Dentistry, Medical University of Vienna, Austria
| | - Arlinda Parllaku
- Private Practice, Tirana, Albania; Postgraduate Course Periodontology, Medical University of Vienna
| | - Nikolaos Pandis
- School of Dental Medicine, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Switzerland
| | - Kåre Buhlin
- Department of Dental Medicine, Division of Periodontology, Karolinska Institute, Huddinge, Sweden
| | - Björn Klinge
- Department of Periodontology, Faculty of Odontology, University of Malmö, Sweden
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, University of Malmö, Sweden.
| |
Collapse
|
20
|
Meza-Mauricio J, Soto-Peñaloza D, Peñarrocha-Oltra D, Montiel-Company JM, Peruzzo DC. Locally applied statins as adjuvants to non-surgical periodontal treatment for chronic periodontitis: a systematic review and meta-analysis. Clin Oral Investig 2018; 22:2413-2430. [DOI: 10.1007/s00784-018-2507-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 05/30/2018] [Indexed: 12/22/2022]
|
21
|
Zhou J, Gao X, Huang S, Ma L, Cui Y, Wang H, Qiu J, Wang L, Dong Q, Chen Z, Wang X, Zhang D. Simvastatin Improves the Jaw Bone Microstructural Defect Induced by High Cholesterol Diet in Rats by Regulating Autophagic Flux. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4147932. [PMID: 30050930 PMCID: PMC6040281 DOI: 10.1155/2018/4147932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The objective of this study is to evaluate the effect of simvastatin on the jaw bone microstructural defect and autophagy in rats with high cholesterol diet (HCD). METHODS Male Sprague-Dawley rats were fed a standard rodent chow (NC group) or a high cholesterol diet for 32 weeks and the HCD-fed rats were treated with vehicle (HC group) or simvastatin (5 mg/kg orally daily for 8 weeks, HC + SIM group, and n = 10/group). The static histomorphometric changes in the jaw bone tissues in individual rats were evaluated. The relative levels of OPG, RANKL, NF-κB, LC3, and p62 in the jaw bone tissues were determined by quantitative RT-PCR and/or immunohistochemistry. RESULTS Compared with the NC group, the HC groups had lower trabecular bone volume, trabecular thickness and trabecular number, and increased ratios of RANKL/OPG in the jaw bone, accompanied by enhanced NF-κB activation and autophagy. Simvastatin treatment inhabited these changes, including the decreased levels of serum proinflammatory cytokines and increased autophagy. CONCLUSION Simvastatin treatment could inhibit the hyperlipidemia-induced jaw bone microstructural defect in rats by increasing autophagic flux.
Collapse
Affiliation(s)
- Jianhua Zhou
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Shandong Provincial Hospital, Jinan, Shandong 250012, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, China
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, China
| | - Xiaoli Gao
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Shandong Provincial Hospital, Jinan, Shandong 250012, China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Shandong Provincial Hospital, Jinan, Shandong 250012, China
| | - Li Ma
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Shandong Provincial Hospital, Jinan, Shandong 250012, China
| | - Yanjun Cui
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Shandong Provincial Hospital, Jinan, Shandong 250012, China
| | - Hengkun Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Shandong Provincial Hospital, Jinan, Shandong 250012, China
| | - Jianzhong Qiu
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, China
| | - Lili Wang
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266071, China
| | - Quanjiang Dong
- Central Laboratories, Qingdao Municipal Hospital, Qingdao, Shandong 266071, China
| | - Zhenggang Chen
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, China
| | - Xuxia Wang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, China
| | - Dongsheng Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Affiliated to Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Shandong Provincial Hospital, Jinan, Shandong 250012, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
22
|
Bertl K, Steiner I, Pandis N, Buhlin K, Klinge B, Stavropoulos A. Statins in nonsurgical and surgical periodontal therapy. A systematic review and meta-analysis of preclinical in vivo trials. J Periodontal Res 2017; 53:267-287. [PMID: 29211309 DOI: 10.1111/jre.12514] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2017] [Indexed: 12/13/2022]
Abstract
The cholesterol-lowering drugs, statins, possess anti-inflammatory, antimicrobial and pro-osteogenic properties, and thus have been tested as an adjunct to periodontal treatment. The present systematic review aimed to answer the following focused research question: What is the effect of local and/or systemic statin use on periodontal tissues in preclinical in vivo studies of experimentally induced periodontitis (EIP) and/or acute/chronified periodontal defect (ACP) models? A literature search (of Medline/PubMed, Embase/Ovid, CENTRAL/Ovid) using the following main eligibility criteria was performed: (i) English or German language; (ii) controlled preclinical in vivo trials; (iii) local and/or systemic statin use in EIP and/or ACP models; and (iv) quantitative evaluation of periodontal tissues (i.e., alveolar bone level/amount, attachment level, cementum formation, periodontal ligament formation). Sixteen studies in EIP models and 7 studies in ACP models evaluated simvastatin, atorvastatin or rosuvastatin. Thirteen of the EIP (81%) and 2 of the ACP (29%) studies presented significantly better results in terms of alveolar bone level/amount in favor of statins. Meta-analysis based on 14 EIP trials confirmed a significant benefit of local and systemic statin use (P < .001) in terms of alveolar bone level/amount; meta-regression revealed that statin type exhibited a significant effect (P = .014) in favor of atorvastatin. Three studies reported a significantly higher periodontal attachment level in favor of statin use (P < .001). Complete periodontal regeneration was never observed; furthermore, statins did not exert any apparent effect on cementum formation. Neither local nor systemic use of statins resulted in severe adverse effects. Statin use in periodontal indications has a positive effect on periodontal tissue parameters, supporting the positive results already observed in clinical trials. Nevertheless, not all statins available have been tested so far, and further research is needed to identify the maximum effective concentration/dose and optimal carrier.
Collapse
Affiliation(s)
- K Bertl
- Department of Periodontology, Faculty of Odontology, University of Malmö, Malmö, Sweden.,Division of Oral Surgery, School of Dentistry, Medical University of Vienna, Vienna, Austria
| | - I Steiner
- Private Practice, Taiskirchen, Austria.,Postgraduate Course Periodontology, Medical University of Vienna, Vienna, Austria
| | - N Pandis
- Department of Orthodontics and Dentofacial Orthopedics, Dental School/Medical Faculty, University of Bern, Bern, Switzerland
| | - K Buhlin
- Division of Periodontology, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - B Klinge
- Department of Periodontology, Faculty of Odontology, University of Malmö, Malmö, Sweden
| | - A Stavropoulos
- Department of Periodontology, Faculty of Odontology, University of Malmö, Malmö, Sweden
| |
Collapse
|
23
|
Swerts AA, Santos BFE, Bruzadelli SR, Brigagão MRPL, Lima DCD, Fernandes LA. Treatment of experimental periodontal disease by laser therapy in simvastatin-modified rats. J Appl Oral Sci 2017; 25:387-395. [PMID: 28877277 PMCID: PMC5595111 DOI: 10.1590/1678-7757-2016-0467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/29/2016] [Indexed: 12/28/2022] Open
Abstract
Low intensity laser can be used as a promising alternative in the treatment of periodontal disease.
Collapse
Affiliation(s)
- Andressa Araújo Swerts
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, MG, Brasil
| | | | - Simone Ribeiro Bruzadelli
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, MG, Brasil
| | | | - Daniela Coelho de Lima
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, MG, Brasil
| | - Leandro Araújo Fernandes
- Universidade Federal de Alfenas, Faculdade de Odontologia, Departamento de Clínica e Cirurgia, Alfenas, MG, Brasil
| |
Collapse
|
24
|
Magan‐Fernandez A, Fernández‐Barbero JE, O’ Valle F, Ortiz R, Galindo‐Moreno P, Mesa F. Simvastatin exerts antiproliferative and differentiating effects on MG63 osteoblast‐like cells: Morphological and immunocytochemical study. J Periodontal Res 2017; 53:91-97. [DOI: 10.1111/jre.12491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2017] [Indexed: 11/29/2022]
Affiliation(s)
- A. Magan‐Fernandez
- Department of Periodontics School of Dentistry University of Granada Granada Spain
| | - J. E. Fernández‐Barbero
- Department of Human Anatomy and Embryology School of Medicine (IBIMER, CIBM) University of Granada Granada Spain
| | - F. O’ Valle
- Department of Pathology School of Medicine (IBIMER, CIBM) University of Granada Granada Spain
| | - R. Ortiz
- Department of Human Anatomy and Embryology School of Health Sciences (IBIMER, CIBM) University of Jaen Andalucía Spain
| | - P. Galindo‐Moreno
- Department of Oral Surgery and Implant Dentistry School of Dentistry University of Granada Andalucía Spain
| | - F. Mesa
- Department of Periodontics School of Dentistry University of Granada Granada Spain
| |
Collapse
|
25
|
Dolci GS, Portela LV, Onofre de Souza D, Medeiros Fossati AC. Atorvastatin-induced osteoclast inhibition reduces orthodontic relapse. Am J Orthod Dentofacial Orthop 2017; 151:528-538. [DOI: 10.1016/j.ajodo.2016.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 01/27/2023]
|
26
|
Morand DN, Davideau JL, Clauss F, Jessel N, Tenenbaum H, Huck O. Cytokines during periodontal wound healing: potential application for new therapeutic approach. Oral Dis 2016; 23:300-311. [PMID: 26945691 DOI: 10.1111/odi.12469] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/12/2016] [Accepted: 03/01/2016] [Indexed: 12/15/2022]
Abstract
Regeneration of periodontal tissues is one of the main goals of periodontal therapy. However, current treatment, including surgical approach, use of membrane to allow maturation of all periodontal tissues, or use of enamel matrix derivatives, presents limitations in their indications and outcomes leading to the development of new tissue engineering strategies. Several cytokines are considered as key molecules during periodontal destruction process. However, their role during each phase of periodontal wound healing remains unclear. Control and modulation of the inflammatory response and especially, release of cytokines or activation/inhibition in a time- and spatial-controlled manner may be a potential perspective for periodontal tissue engineering. The aim of this review was to summarize the specific role of several cytokines during periodontal wound healing and the potential therapeutic interest of inflammatory modulation for periodontal regeneration especially related to the expression sequence of cytokines.
Collapse
Affiliation(s)
- D N Morand
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - J-L Davideau
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - F Clauss
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - N Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - H Tenenbaum
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| | - O Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1109, Osteoarticular and Dental Regenerative Nanomedicine Laboratory, Faculté de Médecine de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Department of periodontology, Dental Faculty, University of Strasbourg, Strasbourg, France
| |
Collapse
|
27
|
Estanislau IMG, Terceiro IRC, Lisboa MRP, Teles PDB, Carvalho RDS, Martins RS, Moreira MMSM. Pleiotropic effects of statins on the treatment of chronic periodontitis--a systematic review. Br J Clin Pharmacol 2015; 79:877-85. [PMID: 25444240 PMCID: PMC4456120 DOI: 10.1111/bcp.12564] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/26/2014] [Indexed: 12/23/2022] Open
Abstract
AIM Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase and are an important group of hypolipidaemic drugs, widely used in the treatment of hypercholesterolaemia and cardiovascular disease. Some studies have shown that statins are able to modulate inflammation and alveolar bone loss. METHODS In order to evaluate whether statins could influence periodontal treatment, improving the clinical and radiographic parameters in chronic periodontitis, a systematic review was conducted in the databases PUBMED and BIREME, searching for articles in English and Portuguese, published between the years 2004 and 2014, using the combined keywords statin, periodontal disease, periodontitis and alveolar bone. Studies regarding the treatment of chronic periodontitis in humans, blind or double-blind, retrospective cohort or randomized controlled trials that used statins topically or systemically were selected. RESULTS Statins have important anti-inflammatory and immune effects, reducing levels of C-reactive protein and matrix metalloproteinases and their intermediate products, such as tumour necrosis factor-α, and are also able to inhibit the adhesion and extravasation of leukocytes, which block the co-stimulation of T cells. Statins reduce bone resorption by inhibiting osteoclast formation and lead to increased apoptosis of these cells. The effect of statins on bone formation is related to the increased gene expression of bone morphogenetic protein in osteoblasts. CONCLUSION Although we found biological mechanisms and clinical results that show lower alveolar bone loss and reduction of clinical signs of inflammation, further studies are needed to evaluate the clinical applicability of statins in the routine treatment of chronic periodontitis.
Collapse
Affiliation(s)
- Ilanna Mara Gomes Estanislau
- Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of CearáFortaleza, Brazil
| | | | | | | | - Rosimary de Sousa Carvalho
- Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of CearáFortaleza, Brazil
| | - Ricardo Souza Martins
- Department of Clinical Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of CearáFortaleza, Brazil
| | | |
Collapse
|
28
|
Mandal CC. High Cholesterol Deteriorates Bone Health: New Insights into Molecular Mechanisms. Front Endocrinol (Lausanne) 2015; 6:165. [PMID: 26557105 PMCID: PMC4617053 DOI: 10.3389/fendo.2015.00165] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/08/2015] [Indexed: 01/09/2023] Open
Abstract
Many epidemiological studies show a positive connection between cardiovascular diseases and risk of osteoporosis, suggesting a role of hyperlipidemia and/or hypercholesterolemia in regulating osteoporosis. The majority of the studies indicated a correlation between high cholesterol and high LDL-cholesterol level with low bone mineral density, a strong predictor of osteoporosis. Similarly, bone metastasis is a serious complication of cancer for patients. Several epidemiological and basic studies have established that high cholesterol is associated with increased cancer risk. Moreover, osteoporotic bone environment predisposes the cancer cells for metastatic growth in the bone microenvironment. This review focuses on how cholesterol and cholesterol-lowering drugs (statins) regulate the functions of bone residential osteoblast and osteoclast cells to augment or to prevent bone deterioration. Moreover, this study provides an insight into molecular mechanisms of cholesterol-mediated bone deterioration. It also proposes a potential mechanism by which cellular cholesterol boosts cancer-induced bone metastasis.
Collapse
Affiliation(s)
- Chandi C. Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Rajasthan, India
- *Correspondence: Chandi C. Mandal,
| |
Collapse
|
29
|
Magán-Fernández A, Papay-Ramírez L, Tomás J, Marfil-Álvarez R, Rizzo M, Bravo M, Mesa F. Association of Simvastatin and Hyperlipidemia With Periodontal Status and Bone Metabolism Markers. J Periodontol 2014; 85:1408-15. [DOI: 10.1902/jop.2014.130652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Montero J, Manzano G, Albaladejo A. The role of topical simvastatin on bone regeneration: A systematic review. J Clin Exp Dent 2014; 6:e286-90. [PMID: 25136432 PMCID: PMC4134860 DOI: 10.4317/jced.51415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/04/2014] [Indexed: 12/01/2022] Open
Abstract
Objectives: The aim of this systematic review was to summarize the results concerning the use of simvastatin for promoting bone regeneration and to discuss the level of scientific evidence supporting such findings.
Material and Methods: A Pubmed search using “Simvastatin”[Mesh] AND “Bone Regeneration”[Mesh] as Boolean operators was constrained to the last 10 years and only included papers written in English.
Results: Of the 41 relevant papers reviewed, most of them (76.2%) have been published in the last 5 years, and most of them address animal studies (66.6%) performed on rats or rabbits in extraoral regions. Only 4 randomized controlled trials (RCTs) assessed the role of topical simvastatin in periodontal patients.
Conclusions: A large part of the evidence concerning the role of topical simvastatin on bone regeneration comes from animal studies (mainly rats) focusing on extraoral bone defects. Only the use of subgingival simvastatin after root scaling has been properly supported by RCT.
Key words:Simvastatin, bone regeneration, topical administration, osteogenesis, osteoinduction.
Collapse
Affiliation(s)
- Javier Montero
- DDS. PhD, Tenured lecturer in Prosthodontics. Department of Surgery, Faculty of Medicine, University of Salamanca (USAL), Salamanca, Spain
| | - Guillermo Manzano
- DDS, Postgraduate Student. Master in Dental Sciences. University of Salamanca (USAL), Salamanca, Spain
| | - Alberto Albaladejo
- DDS. PhD, Tenured lecturer in Orthodontics. Department of Surgery, Faculty of Medicine, University of Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
31
|
Chang PC, Dovban AS, Lim LP, Chong LY, Kuo MY, Wang CH. Dual delivery of PDGF and simvastatin to accelerate periodontal regeneration in vivo. Biomaterials 2013; 34:9990-7. [DOI: 10.1016/j.biomaterials.2013.09.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/10/2013] [Indexed: 01/20/2023]
|
32
|
Zhao BJ, Liu YH. Simvastatin induces the osteogenic differentiation of human periodontal ligament stem cells. Fundam Clin Pharmacol 2013; 28:583-92. [DOI: 10.1111/fcp.12050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/20/2013] [Accepted: 09/13/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Bing-jiao Zhao
- Department of Orthodontics; School of Stomatology; Tongji University; 399 YanChangZhong Road Shanghai 200072 China
- Department of Orthodontics; Shanghai Stomatological Disease Center; 1258 FuXingZhong Road Shanghai 200002 China
| | - Yue-hua Liu
- Department of Orthodontics; School of Stomatology; Tongji University; 399 YanChangZhong Road Shanghai 200072 China
| |
Collapse
|
33
|
Yu HL, Miao HT, Gao LF, Li L, Xi YD, Nie SP, Xiao R. Adaptive responses by mouse fetus to a maternal HLE diet by downregulating SREBP1: a microarray- and bio-analytic-based study. J Lipid Res 2013; 54:3269-80. [PMID: 23981283 DOI: 10.1194/jlr.m037416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maternal diet has long been recognized as a significant factor affecting offspring development and health, but the target genes affected by a maternal high-lipid diet are currently unknown. In this study, the gene expression profile of neonatal mouse liver was analyzed using gene chips to identify genes with significant up- or downregulated expression levels due to maternal high-fat diet during gestation. Real-time PCR and Western blotting were used to measure key genes selected using microarray. Serum lipid, glucose, and insulin levels in adult offspring from dams fed with chow or a high-lipid diet were measured using commercial kits. Results indicate that the expression of genes involved in cholesterol and fatty acid synthesis were significantly inhibited, while the expression of genes involved in glycolysis were significantly decreased by maternal high-lipid diet during gestation. SREBP1 might be the key gene regulating genes involved in fatty acid, glucose, and cholesterol metabolism in response to a maternal high-fat diet.
Collapse
Affiliation(s)
- Huan-Ling Yu
- School of Public Health and Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Yun KI, Kim DJ, Park JU. Osteogenic potential of adult stem cells from human maxillary sinus membrane by Simvastatin in vitro: preliminary report. J Korean Assoc Oral Maxillofac Surg 2013; 39:150-5. [PMID: 24471035 PMCID: PMC3858128 DOI: 10.5125/jkaoms.2013.39.4.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/25/2013] [Accepted: 07/25/2013] [Indexed: 01/14/2023] Open
Abstract
Objectives The objective of this study is to determine the adequate concentration and to evaluate the osteogenic potential of simvastatin in human maxillary sinus membrane-derived stem cells (hSMSC). Materials and Methods Mesenchymal stem cells derived from the human maxillary sinus membrane were treated with various concentrations of simvastatin. The adequate concentration of simvastatin for osteogenic induction was determined using bone morphogenetic protein (BMP-2). The efficacy of osteogenic differentiation of simavastatin was verified using osteocalcin mRNA, and the mineralization efficacy of hSMSCs and simvastatin treatment was compared with alkaline phosphatase and von Kossa staining. Results Expression of BMP-2 mRNA and protein was observed after three days and was dependent on the concentration of simvastatin. Expression of osteocalcin mRNA was observed after three days in the 1.0 µM simvastatin-treated group. Mineralization was observed after three days in the simvastatin-treated group. Conclusion These results suggest that simvastatin induces the osteogenic potential of mesenchymal stem cells derived from the human maxillary sinus membrane mucosa.
Collapse
Affiliation(s)
- Kyoung-In Yun
- Department of Oral and Maxillofacial Surgery, The Catholic University of Korea, St. Paul's Hospital, Seoul, Korea
| | - Dong-Joon Kim
- Department of Oral and Maxillofacial Surgery, The Catholic University of Korea School of Medicine, Seoul, Korea
| | - Je-Uk Park
- Department of Oral and Maxillofacial Surgery, The Catholic University of Korea School of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Shadmehr E, Khademi A. Effect of
S
imvastatin on kinetics of
O
steoprotegrin/receptor activator nuclear kappa
B L
igand
mRNA
expression in periapical lesions. Int Endod J 2013; 46:1077-82. [DOI: 10.1111/iej.12101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/19/2013] [Indexed: 01/17/2023]
Affiliation(s)
- E. Shadmehr
- Department of Endodontics and Torabinejad Research Center Esfahan Dental College Esfahan Iran
| | - A. Khademi
- Department of Endodontics and Torabinejad Research Center Esfahan Dental College Esfahan Iran
| |
Collapse
|
36
|
Saewong S, Thammasitboon K, Wattanaroonwong N. Simvastatin induces apoptosis and disruption of the actin cytoskeleton in human dental pulp cells and periodontal ligament fibroblasts. Arch Oral Biol 2013; 58:964-74. [PMID: 23561831 DOI: 10.1016/j.archoralbio.2013.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/22/2012] [Accepted: 03/04/2013] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Simvastatin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, and widely used as cholesterol-lowering agent, has been suggested for its beneficial effects on alveolar bone formation, regeneration of dental pulp tissue and periodontal ligament. High doses of simvastatin appear to induce apoptosis in several cell types, but little is known about its possible effect on tooth-associated cells. Therefore, the effects of simvastatin were studied on apoptosis and cell morphology of human dental pulp cells (HDPCs) and periodontal ligament fibroblasts (HPLFs). METHODS HDPCs/HPLFs obtained from 4 patients were cultured with or without various concentrations of simvastatin (0.1, 1, and 10μM) for 24, 48, and 72h. The 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to evaluate cell viability. The levels of apoptosis of HDPCs and HPLFs were measured by flow cytometry after Annexin V/propidium iodide double staining. Phalloidin-FITC and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining was used to examine differences in the actin cytoskeleton and nuclear morphology, respectively. RESULTS The viability of HDPCs and HPLFs was significantly reduced after simvastatin treatment in a dose- and time-dependent manner (p<0.05). The apoptosis of HDPCs and HPLFs was significantly increased in 10μM simvastatin-treated cells (p<0.05). The effect on apoptosis was comparable for HDPCs and HPLFs. Nuclear staining showed typical apoptotic nuclear condensation and fragmentation in simvastatin-treated HDPCs/HPLFs. A dose- and time-dependent simvastatin-induced disruption of the actin cytoskeleton was observed in both cell types. CONCLUSION Our data demonstrated that simvastatin decreases the viability of HDPCs and HPLFs, probably by inducing apoptosis.
Collapse
Affiliation(s)
- Sirinart Saewong
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University PSU, 15 Karnjanavanit Road, Haad Yai, Songkhla 90112, Thailand
| | | | | |
Collapse
|
37
|
Mo H, Yeganehjoo H, Shah A, Mo WK, Soelaiman IN, Shen CL. Mevalonate-suppressive dietary isoprenoids for bone health. J Nutr Biochem 2012; 23:1543-51. [DOI: 10.1016/j.jnutbio.2012.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/13/2012] [Accepted: 07/19/2012] [Indexed: 12/19/2022]
|